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ABSTRACT
Personalized policy represents a paradigm shift one decision rule for all users to an individualized decision
rule for each user. Developing personalized policy in mobile health applications imposes challenges. First,
for lack of adherence, data from each user are limited. Second, unmeasured contextual factors can poten-
tially impact on decision making. Aiming to optimize immediate rewards, we propose using a generalized
linear mixed modeling framework where population features and individual features are modeled as fixed
and random effects, respectively, and synthesized to form the personalized policy. The group lasso type
penalty is imposed to avoid overfitting of individual deviations from the population model. We examine the
conditions under which the proposed method work in the presence of time-varying endogenous covariates,
and provide conditional optimality and marginal consistency results of the expected immediate outcome
under the estimated policies. We apply our method to develop personalized push (“prompt”) schedules
in 294 app users, with the goal to maximize the prompt response rate given past app usage and other
contextual factors. The proposed method compares favorably to existing estimation methods including
using the R function “glmer” in a simulation study. Supplementary materials for this article are available
online.
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1. Introduction

Mobile technologies such as smartphones and wearables enable
continuous monitoring of exposure to environmental stres-
sors and ecological assessment of health-relevant data over
an extended period of time, thereby facilitating the delivery
of tailored interventions in an adaptive manner (Riley et al.
2011). Examples of utilization abound. Heron and Smyth (2010)
reviewed the use of tailored interventions based on momen-
tary assessments to support management of a variety of health
behaviors and symptoms such as smoking, diabetes, and weight
loss. Depp et al. (2010) studied the efficacy of personalized
pushed engagement based on real-time data in mental illness
patients. Mohr et al. (2013) envisioned a continuous evalua-
tion system of health apps based on evidence generated by
routinely collected data. To illustrate, we consider a suite of
smartphone apps, called IntelliCare, that serves users with
anxiety or depression using different psychological treatment
strategies including cognitive behavioral therapy, positive psy-
chology, and physical activity-based interventions (Mohr et al.
2017). The suite consists of a Hub app that helps users nav-
igate apps within the IntelliCare ecosystem and coordinates
their experience, with a specific function to provide links and
recommendations for other IntelliCare apps so as to maximize
user engagement based on a user’s app usage history (Cheung
et al. 2018). In this article, we are motivated by a sub-study of
the IntelliCare suite, in which the Hub app would send push
notifications to prompt a user to complete a short four-item
patient health questionnaire repeatedly at 7-day intervals at a
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random time during the day. The purpose of these prompts
is to remind users to assess their depression and anxiety
symptoms.

The objective of the study is to learn the best time to push
a prompt, a factor that is known to impact mobile application
usage (Bohmer et al. 2011), to maximize a user’s immediate
response rate given his or her past engagement and other con-
textual factors experienced. There are three main reasons to
focus on immediate outcomes. First, it may facilitate timely
adjustment to a user’s other intervention decisions. In the Intel-
liCare example, information on a prompt responder’s health
status can assist the Hub app to determine the best app(s) to
recommend for the user in the following week, while such
information is not available for prompt nonresponders. Second,
an immediate outcome often serves as a measure of a user’s
short-term engagement, which, once sustained, is expected to
translate into a long-term engagement, a prelude for behav-
ior changes. Engagement on mobile health apps is report-
edly declining quickly over time in the literature (Christensen,
Griffiths, and Farrer 2009; Helander et al. 2014). Therefore,
constant attentions and prompt actions are required to main-
tain a user’s engagement to materialize any behavior change.
Third, optimizing immediate outcome, given the rapid decline
in engagement, is most practically feasible, as compared to long-
term outcome. While long-term outcome is often desirable, its
practical benefit often requires long-term engagement, which
is particularly challenging in mobile health applications. Aim-
ing for immediate outcome faces a minimal risk in practical
implementation.
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Developing decision policies to prescribe evidence-based
mobile-delivered intervention is challenging because it must
incorporate both shared and individual information. On one
hand, decisions on intervention for a given cohort are often
based on some shared characteristics, making it possible to learn
by borrowing strength from users sharing similar features. On
the other hand, any sensible policy on human behavior, mobile
health policies included, is necessarily individualized due to
unmeasured heterogeneities which should be accounted for
when deciding upon an appropriate intervention (Ohrnberger,
Fichera, and Sutton 2017). For example, whether and how a
user will respond to a push notification depends vastly on his
or her circumstance at that moment, which is either difficult or
impossible to characterize. Numerous policy learning methods
that support decision making using medical data and mobile
health data have been proposed. For example, there is a large sta-
tistical literature on reinforcement learning (RL) algorithms that
estimate optimal policies under a nomothetic model (Murphy
2003; Qian and Murphy 2011; Zhang et al. 2012; Zhao et al. 2012,
2015; Laber, Linn, and Stefanski 2014; Song et al. 2015; Ertefaie
and Strawderman 2018; Luckett et al. 2020). A nomothetic
approach assumes that a population model captures all between-
subject heterogeneity and facilitates estimation by pooling data
across participants. While this approach may address user het-
erogeneity and allow for estimation of personalized policies
by incorporating appropriate interactions with actions, it often
requires the untestable assumption of no unobserved con-
founders. Alternatively, an ideographic approach achieves per-
sonalization using an “N-of-1” method whereby each person’s
decision model is estimated using his or her own data only
(Lillie et al. 2011; Kravitz and Duan 2014; Lei, Tewari, and
Murphy 2017). Although in principle this approach allows for
insights about individuals without assumptions on any reference
population, its practicality relies on how long a user can be
followed. In general, the efficiency of this approach may suffer,
especially in situations where an action exhibits similar effects
on all individuals.

In this article, we aim to develop policies, one for each user,
that provide personalized feedback through their interaction
with the IntelliCare apps. We consider estimating personal-
ized policy under a generalized contextual bandits framework.
Contextual bandits are popular approaches to personalizing
interventions in mobile health applications (Lei, Tewari, and
Murphy 2017; Tewari and Murphy 2017). It typically assumes
that the contexts are independent and identically distributed, or
more generally, that future contexts are independent of current
actions. We extend conventional stochastic contextual bandits
in two ways: first, we allow the current contextual factors to
be endogenous, that is, dependent on the outcome process
and previous treatment assignments; and second, we adopt the
generalized linear mixed model (GLMM) framework with the
outcome as dependent variable and the time-varying contextual
factors, action and their interactions as predictors. For instance,
in the IntelliCare “Prompt” sub-study, the outcome of interest
is a binary response and the action is the time period during
a day when a prompt is pushed. The estimated policy aims to
recommend an action that maximizes the predicted outcome
based on the contextual factors experienced by a user and his or
her past engagement. In addition to tailoring, each user will have

a personalized policy through the estimation of random effects,
which account for individual departures from the population
model due to unobserved heterogeneity.

While the GLMM is one of the most popular methods to
handle longitudinal outcome data, GLMM-based estimation
methods are largely designed for settings where the covariates
are exogenous with respect to the outcome process. When the
time-varying covariates are allowed to be endogenous (e.g.,
depending on the outcome process, previous treatment assign-
ments, and possibly random effects parameters), estimation
of the GLMM fixed effect coefficients based on likelihood or
generalized estimating equations may lead to bias because it
no longer corresponds to the conditional interpretation of the
parameters (see, e.g., Pepe and Anderson 1994; Diggle et al.
2002). For linear mixed models (LMM) where the conditional
interpretation of fixed effects is consistent with the scientific
interest in predicting person-specific effects, Qian, Klasnja, and
Murphy (2019) showed that standard software can be used to
obtain a valid estimate of the fixed effects if the time-varying
covariates are independent of the random effects parameters
conditional on past history. In this article, we further explore
the behavior of both fixed effects and random effects parameter
estimates in GLMM in the presence of endogeneity.

We note some previous work on studying personalized treat-
ment effects using GLMM. For example, Cho, Wang, and Qu
(2017) used GLMM to predict individual outcome under each
treatment arm with a random slope on the treatment indicator,
and built a random forest model to predict random slope using
patients baseline covariates. Personalized treatment can then
be implemented by selecting the treatment with the maximal
estimated random effects. Qian, Klasnja, and Murphy (2019)
studied the bias and variance of parameter estimates in LMM.
However, neither of them considered constructing personal-
ized policy through including random effects on treatment-by-
covariate interactions in their models. Allowing for random
effects on treatment-by-covariate interactions presents a key
computational challenge due to the large number of random
effects. To address this challenge, we propose a novel algorithm
that jointly estimates the fixed effects and the random effects
under a ridge-type penalty on the latter. In addition, to avoid
overfitting of the individual deviations from the population
mean, we propose a group lasso penalty on the random effects
of each covariate (Yuan and Lin 2006). Intuitively, we view
the random effects of a covariate as its interactions with the
unobserved confounders. If such interactions do not exist, then
we expect the corresponding random effects for that covariate
shrink to zero simultaneously for all users (hence the group
lasso); otherwise, the random effects yield the desired hetero-
geneous policies across users.

In this article, we examine conditions under which the pro-
posed method yields consistent estimators in the presence of
endogeneity in GLMM. Compared with Qian, Klasnja, and
Murphy (2019), our conditions allow the contextual factors
to depend directly on the outcome process or latent random
effect parameters. Awaring that a personalized policy reflects
both the population and the individual, we propose to use an
average error bound to quantify its asymptotic performance.
Specifically, we provide an asymptotic averaged error bound of
the estimated policies for the conditional expected immediate
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outcome given current contextual factors and a consistency
result of the marginal expected immediate outcome. Further-
more, as shown in Section 3, our method does not require a
full conditional distribution of outcome or random effects to be
correctly specified, but relies on a much weaker assumption that
the conditional mean outcome model is correctly specified.

This article is organized as follows. In Section 2, we set up
the formulation of the personalized policy learning problem,
and present a new policy estimation method. We then study the
theoretical properties of the proposed method in Section 3, and
compare it with some existing approaches in Section 4. We will
revisit the IntelliCare Prompt study in Section 5 and apply the
proposed method to develop personalized policies in the study.
We end this article with some concluding remarks in Section 6.
Details of computational algorithms, technical derivations, and
proofs are provided as separate supplementary materials.

2. Personalized Policy Learning

2.1. Notations and Problem Formulation

Suppose we have collected data from n mobile application users.
Each user i is tracked longitudinally over mi time intervals. At
each time interval t = 1, . . . , mi, let Sit ∈ S be the vector of
contextual factors containing the user’s observation prior to the
decision point t (e.g., demographics, app usage prior to decision,
etc.), Ait be the decision action taking values in a prespecified
finite discrete space A that is randomized to the user, and Yit be
the scalar outcome of interest observed after decision, with the
convention that larger values of Yit are preferred. We note that
the covariates Sit may include endogenous variables that depend
on previous outcomes and actions, as well as other exogenous
and contextual factors. Here we assume that the decision point
is fixed. For example, in the IntelliCare sub-study, the decision
action is the time period of sending push notification during
a day for every seven days since installation of the Hub app;
contextual factors may contain app usage pattern in the previous
seven days, whether the decision day is a weekday or weekend,
user’s response to previous action, etc.; and the outcome of
interest is whether a user responds to the push notification.
In summary, the observed trajectory of each user is denoted
by the triplets {(Sit , Ait , Yit) : t = 1, . . . , mi}. We further denote
the entire history up to t by Sit = (Si1, . . . , Sit) and Ait =
(Ai1, . . . , Ait).

Our objective is to estimate for a given user i a personalized
policy π0i, which when implemented will result in the maximal
conditional expected outcome, Eπ0i(Yit|Sit , Ai,t−1), where the
expectation is taken with respect to the conditional distribution
of Yit given the history (Sit , Ai,t−1) and action Ai,t is consistent
with π0i. We further make the commonly used assumption that
the conditional distribution of Yit given Sit , Ait is Markovian,
so that Eπ0i(Yit|Sit , Ai,t−1) = Eπ0i(Yit|Sit) = E{Yit|Sit , Ait =
π0i(Sit)}. We note that Sit can include lagged variables at previ-
ous time points (e.g., Yi,t−2). Further let Q0i(s, a) = E(Yit|Sit =
s, Ait = a) so as to make explicit the conditional expectation is
user-specific. Then π0i(s) ∈ arg maxa∈A Q0i(s, a). Once π0i is
estimated by π̂i (say), the estimated policy will be used to guide
decision making for the user in the future time points. While
this formulation of the problem assumes a stationary policy

in that the function Q0i is time-invariant, the policy decisions
can be time-dependent by including time in the covariate state
Sit . In our application, this assumption is aligned with the fact
that mobile application usage is habitual given other contextual
factors.

We facilitate the learning problem under the GLMM frame-
work, and postulate

Q0i(Sit , Ait) = g−1 {h1(Sit , Ait)
ᵀβ0 + h2(Sit , Ait)

ᵀα
ᵀ
0i·
}

:= Q(Sit , Ait ; β0, α0i·), (1)

for i = 1, . . . , n and t = 1, . . . , mi, where g(·) is a known strictly
monotone increasing link function. For example, the canonical
forms of g(·) are, respectively, the identity function for contin-
uous outcome, logit for binary outcome, and logarithmic for
counts. Here β0 is a p-dimensional vector of unknown param-
eters, and h1(Sit , Ait) ∈ R

p is a prespecified vector function of
(Sit , Ait) so that h1(Sit , Ait)ᵀβ0 is the fixed effects component;
for example, h1(Sit , Ait)ᵀβ = β0 +β1Sit +β2Ait +β3SitAit . The
random effects are denoted by α0, an n × q (q ≤ p) matrix with
the ith row, α0i·, denoting the random effects parameters for
the ith user, and h2(Sit , Ait) ∈ R

q is a sub-vector of h1(Sit , Ait)
chosen so that h2(Sit , Ait)ᵀα0i· models subject-specific devia-
tions from the mean model. Under model (1) and a monotone
increasing g(·), the optimal policy π0i can be expressed as

π0i(Sit) ∈ arg max
a∈A

(
h1(Sit , a)ᵀβ0 + h2(Sit , a)ᵀα

ᵀ
0i·
)

. (2)

Note that α0i· plays dual roles in our proposed method. On
one hand, it defines the individual deviation from the mean
model of the ith user, and can be viewed as a fixed parameter to
be estimated and to be acted upon. This role operationalizes the
personalized policy decisions (2). On the other hand, {α0i·} can
be viewed as a random sample of the population. This viewpoint
motivates some degree of “smoothness” in the estimation of
α0i·’s, which is described next.

2.2. Policy Estimation

Let {�(Yit , Sit , Ait ; β , αi·, φ) : β ∈ R
p, αᵀ

i· ∈ R
q} denote the

working conditional log-likelihood of Yit under a fully specified
GLMM with the systematic component (1). For example, with a
continuous Yit , we may set �(·) to be the Gaussian log-likelihood
with mean Q(Sit , Ait ; β , αi·), variance σ 2, and an identity link.
When Yit is binary, we may choose �(·) to be the Bernoulli
log-likelihood with probability Q(Sit , Ait ; β , αi·) and a logit link.
However, the theoretical results described in Section 3 will hold
for any choice of �(·) that satisfies

E
[ n∑

i=1

mi∑
t=1

∇β�(Yit , Sit , Ait ; β , αi·, φ)
∣∣
β=β0,α=α0

]
= 0 and

E
[ mi∑

t=1
∇αi·�(Yit , Sit , Ait ; β , αi·, φ)

∣∣
β=β0,α=α0

]
= 0 for

i = 1, . . . , n, (3)

where αi· is the ith row of α, φ is a nuisance parameter in the
working log-likelihood, and ∇β� and ∇αi·� denote the partial
derivatives of � with respect to β and αi·, respectively. It is easy
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to verify that the Gaussian and the Bernoulli log-likelihoods
satisfy (3); and since they are often the practical choices for
continuous and binary outcomes, they may be used as pseudo-
log-likelihood in many applications. Correspondingly, we define
the penalized pseudo-log-likelihood

Lppl(β , α) =
n∑

i=1

mi∑
t=1

�(Yit , Sit , Ait ; β , αi·, φ)

− 1
2

n∑
i=1

αi·D−α
ᵀ
i· − λ

q∑
l=1

wl‖α·l‖, (4)

where D ∈ R
q×q is a symmetric positive semidefinite matrix,

D− is the Moore–Penrose generalized inverse of D, wl is the
weight for the th random effects term and λ ≥ 0 is a tuning
parameter.

We propose to estimate β0 and α0 by maximizing (4). The
maximum penalized-pseudo-likelihood estimator is denoted by

(β̂ , α̂) = arg max
β∈Rp,α∈Rn×q

Lppl(β .α), (5)

and the corresponding personalized policy for user i is estimated
by

π̂i(s) ∈ arg max
a∈A

(
h1(s, a)ᵀβ̂ + h2(s, a)ᵀα̂

ᵀ
i·
)

,

analogously to π0i in (2).
The second term on the right-hand side of (4) puts a ridge-

type penalty to shrink and stabilize the estimation of the random
effects α ∈ R

n×q. Under the viewpoint that {α} is a random
sample of a population, it is natural to choose D to reflect the
variance-covariance matrix of α

ᵀ
0i·, although it is not required

for the asymptotic properties to hold (see Section 3). The third
term in (4) is the group lasso penalty, where each group l con-
tains the random effects parameter of the lth term in h2(Sit , Ait)
for all n users. Under a similar viewpoint, it is intuitive to set the
group-specific weight wl ≥ 0 to be inverse proportional to the
variance of αil.

In practice, we propose to update D, φ, and wl’s iteratively, in
conjunction with the trust region Newton (TRON) algorithm
in the estimation of β and α. Briefly, the TRON algorithm
combines the trust region method (Steihaug 1983) and the trun-
cated Newton method (Nash 2000) to solve an unconstrained
convex optimization problem. At each iteration, TRON defines
a trust region and approximates the objective function using
a quadratic model within the region. If a prespecified change
of the objective function is achieved in the current iteration,
the updated direction is accepted and the region is expanded;
the region will be shrunk otherwise. The approximation sub-
problem is solved via the conjugate gradient method. Since
TRON solves the inverse of a potentially large Hessian matrix
by iteratively updating the parameters, convergence can be
achieved quickly with a large and dense Hessian. Overall, the
computational cost per iteration is of the order of the number of
nonzero elements in the design matrix. In addition, we propose
to choose the tuning parameter λ for the group lasso penalty
using an AIC-type criterion. The details are given in Section S1
of the supplementary materials.

3. Theoretical Remarks

In this section, we study the asymptotic behaviors of β̂ and α̂,
and conditional and marginal performance of estimated policies
π̂i’s under the following assumptions. All proofs are given in
Section S2 of the supplementary materials.

(C1) There exists a positive constant c1, such that the treatment
randomization probability P(Ait = at|Sit = st , Ai,t−1 =
at−1) ≥ c1 for all possible values of (st , at) at any time
point t ≥ 1.

(C2) The random vectors h1(Sit , Ait) and h2(Sit , Ait) and out-
come Yit are square integrable under the data generative
distribution for t ≥ 1 and i = 1, . . . , n.

(C3) The latent random effects α0i·, i = 1, . . . , n, are indepen-
dent and identically distributed with mean 0 and finite
variance �.

(C4) There exists (β0, α0) such that (1) holds, and (β0, α0) is
Pα0 -almost surely an interior point of a compact set � ∈
R

p+nq.
(C5) The pseudo-log-likelihood �(Yit , Sit , Ait ; β , αi·, φ) is con-

cave in (β , α), satisfies condition (3), and its expected
second-order derivative is continuous in (β , α).

(C6) Denote �1(β , α) = ∑n
i=1

∑mi
t=1 �(Yit , Sit , Ait ; β , αi·, φ).

We need the following regularity conditions:

(i) As N := ∑n
i=1 mi → ∞, β0 satisfies

N−1E
{[∇β�1(β0, α0)

]ᵀ∇β�1(β0, α0)
} = O(1);

sup(β ,α)∈�

∥∥∥N−1∇ᵀ
β ∇β�1(β , α) − E

{
N−1∇ᵀ

β ∇β�1

(β , α)|α0
}∥∥∥

F
= oP(1) Pα0 -almost surely, where ‖·‖F

denotes the Frobenius norm;
and Mββ � − lim infN→∞ E

{
N−1∇ᵀ

β ∇β�1(β0, α0)
}

is positive definite with all eigenvalues greater than
δ0 > 0.

(ii) supi m−1
i E

{∇αi·�1(β0, α0)ᵀ∇αi·�1(β0, α0)
} = O(1).

(iii) For i = 1, . . . , n, as mi → ∞, α0i· satisfies
sup(β ,α)∈� ‖m−1

i ∇ᵀ
αi·∇αi·�1(β , α)−E

{
m−1

i ∇ᵀ
αi·∇αi·�1

(β , α)|α0
}‖F = oP(1) Pα0 -almost surely;

and Mαi·αi· � − lim infmi E
{
m−1

i ∇ᵀ
αi·∇αi·�1(β0, α0)

}
is positive definite with all eigenvalues greater than
δ0 > 0.

(C7) The weights satisfy max{l∈{1,...,q}:σ 2
l >0} |wl| = OP(1),

where σ 2
l is the lth diagonal element of �, the variance-

covariance matrix of α0i·.
(C8) The tuning parameter λ satisfies λ = o

{
n−1

(
∑n

i=1 m−1
i )1/2}.

Theorem 1. Suppose Assumptions C1-C8 hold. As
n, mini{mi} → ∞, (β̂ , α̂) satisfies ||β̂λ − β0|| = Op(N−1/2)

and ||α̂λi − α0i·|| = OP(m−1/2
i ), i = 1, . . . , n.

Remarks. Condition (C6) is similar to the regularity conditions
required in maximum likelihood estimation. In particular, when
the covariates Sit ’s are exogenous, it is easy to verify that (C6)
holds under the regularity conditions used in GLMM. Interest-
ingly, Condition (C6) also holds under many situations when
Sit ’s are endogenous; and importantly, these situations can be
verified. For illustration purposes, we verify this condition in
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the Appendix in two quite common scenarios: (i) when Yit is
binary and the distribution of Sit directly depends on the latent
random effects α0i·; (ii) when Yit follows Gaussian distribution
and Sit = Yi,t−1.

Theorem 1 characterizes the asymptotic behavior of every α̂i·
under the condition that mini mi → ∞. This condition, how-
ever, can be relaxed if we are only interested in the asymptotic
behavior of α̂i· on average. Specifically, we only require that the
proportion of mi’s that do not go to infinity goes to zero. Without
loss of generality, suppose m1 ≤ m2 ≤ · · · ≤ mn. Let kn be the
index so that mkn is bounded, and mkn+1 → ∞.

Corollary 1. Suppose (C6)(iii) holds for i = kn + 1, . . . , n,
and the remaining assumptions in C1–C8 continue to hold. As
n, mini>kn{mi} → ∞, suppose kn/n → 0. Then, ||β̂ − β0|| =
OP(N−1/2) and

1
n

n∑
i=1

‖α̂i· − α0i·‖2 = OP

⎛
⎝kn

n
+ 1

n

n∑
i=kn+1

m−1
i

⎞
⎠ .

Next, we present the properties of the estimated personal-
ized policies π̂i. Specifically, we consider both the conditional
expected outcome under π̂i at each time point t given Sit = st ,
and the marginal expected outcome assuming π̂i is used to make
decision for user i from the beginning to time point t. The results
are stated in the theorem below.

Theorem 2. Assume all conditions in Corollary 1 hold. Suppose
the inverse link function of the corresponding exponential fam-
ily distribution, g−1(·), is Hölder continuous. That is, for any
η1, η2 in the domain, |g−1(η1)− g−1(η2)| ≤ L|η1 −η2|γ , where
L is a positive constant and 0 < γ ≤ 1. Then for any t ≥ 1, as
n, mini>kn{mi} → ∞,

1
n

n∑
i=1

[Eπ0i(Yit|Sit = st , α0i·) − Eπ̂i(Yit|Sit = st , α0i·)]

= OP

⎛
⎜⎝
⎡
⎣kn

n
+ 1

n

n∑
i=kn+1

m−1
i

⎤
⎦

γ /2
⎞
⎟⎠ . (6)

In addition, assume

Pα0i·

[{
α0i· : P

(
arg max

a∈A
Q(Si,t−1(π0i,t−2), a; β0, α0i·)

is unique
∣∣α0i·

)
= 1

}]
= 1, (7)

where Si,t−1(π0i,t−2) is the potential outcome of Si,t−1 that
would have been observed were π0i used to make decision up
to time point t − 2. Then we have,

1
n

n∑
i=1

∣∣Eπ0i(Yit|α0i·) − Eπ̂i(Yit|α0i·)
∣∣ = oP(1). (8)

Remarks.

1. Equation (6) measures the difference in conditional expected
immediate outcome given current state between π0i and the

estimated policies π̂i’s. The personalized policy π0i is opti-
mal in the conditional sense, in that it yields the maximal
expected outcome if treatment assignment Ait is consistent
with π0i given Sit . As such, Equation (6) describes the condi-
tional optimality of estimated policies π̂i’s given the current
information.

2. We note that π0i may not necessarily be optimal in a marginal
sense after integrating out Sit , because the distribution of Sit
may depend on previous treatment assignment. Therefore,
the marginal result equation (8) implies consistency rather
than optimality.

3. Condition (7) implies that the optimal decision at time t − 1
is unique almost surely, given that π0i were used to make
decision at previous time points. This assumption is not
needed to show consistency when t = 1.

4. Simulation Study

4.1. Setup

In this section, we examine the estimation properties of the max-
imum penalized-pseudo-likelihood estimator (β̂ , α̂) in (5) and
the performance of the personalized policy π̂i using simulation.

In a simulated trial, each user would be followed for m =
10, 20, 30 time points for training purposes, with 10 additional
subsequent testing time points. At time point t, user i would
receive one of three possible actions with equal probability,
that is, the actions were generated randomly with probabilities
(1/3, 1/3, 1/3); the actions Ait ’s were then coded using two
dummy variables and were centered. The covariate process Sit =
(Xit , t) included a binary endogenous variable Xit ∈ {−1, 1},
which would depend on the previous outcome Yi,t−1, the previ-
ous action Ai,t−1 and the random effects α. Specifically, we set
P(Xi1 = 1) = α0i0, and

P(Xit = 1|Ai,t−1, Si,t−1, α0i·)
= expit((−3Yi,t−1 + 2Xi,t−1 − Ai,t−1)

/
10 + α0i4 − α0i5 + α0i6 − α0i7),

for t ≥ 2, where expit(·) is the expit function, α0i0 ∼ U(0, 1),
and α0ij is the jth component of α0i· for j = 1, . . . , q. We
considered both binary and continuous outcomes. The condi-
tional mean of the outcome was defined according to (1) where
h1(Sit , Ait) = h2(Sit , Ait) = (1, Sit , Ait , Sit ⊗ Ait) and ⊗ denotes
the Kronecker product, with logit and identity links, respec-
tively, for the binary and continuous outcomes. The continuous
outcomes were generated with an independent Gaussian noise
with standard deviation 1.5. The true fixed effects were specified
by

β0 = (−1, 0.2, −1.5, 0.8, 0.7, 0.1, 0.2, −1.2, −1.4)ᵀ.

We considered two scenarios for the random effects α0, which
were generated from mean zero Gaussian: we set variance-
covariance matrix to be diag(2, 0.1, 0.1, 3, 4, 4, 5, 10, 12) to
represent a scenario with non-sparse random effects, and
diag(2, 0.1, 0.1, 3, 0, 0, 5, 10, 12) with sparse random effects. We
generated 200 simulated trials, each having n = 50 users. Once
the random effects were sampled, they were treated as fixed
parameters in the 50 users.
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The estimation properties of the policy parameters based
on the training data were evaluated using mean squared
error (MSE), defined as

∑n
i=1 ||β̂(π) + α̂

ᵀ
i· (π) − (β0(π) +

α
ᵀ
0i·(π))||22/(n × dim(β0(π))), where β(π) is the sub-vector of

β involved in policy π (i.e., coefficients of Ait and Sit ⊗Ait). The
quality of decisions at the testing time points by the estimated
policies was evaluated in terms of the expected conditional
outcome under π̂ = {π̂i} at each testing time point t:

V π̂ (st) �
1
n

n∑
i=1

Eπ̂i(Yit|Sit = st)

= 1
n

n∑
i=1

Q(Sit = st , Ait = π̂i(st); β0, α0i·),

t = m + 1, m + 2, . . . , m + 10. To facilitate comparison across
scenarios, we standardized the expected outcome against the
optimal policy π0 = {π0i} and the worst policy πworst =
{πworst,i} and obtained the value ratio (VR) for the estimated
policy π̂ :

VRπ̂ (st) = V π̂ (st) − Vπworst(st)

Vπ0(st) − Vπworst(st)
.

4.2. Comparison Methods

In the simulation, we considered some existing methods as alter-
natives to the proposed personalized policy learning method,
which shall be denoted as PPL in the followings.

Under the GLMM framework, instead of using the proposed
algorithm described in Section 2.2, we used the “glmer” function
in the lme4 package in R (Bates et al. 2014). This method
shall be denoted as glmer. The function “glmer” would involve
approximating the marginal likelihood by integrating over the
random effects. This could be problematic in situations with a
large number of random effects (thus having a high-dimensional
integrals) and endogenous covariates.

In addition, we considered the regularized penalized quasi-
likelihood (rPQL) approach developed by Hui, Müller, and
Welsh (2017) for exogenous covariates as yet another alternative
to estimating (β , α) under the GLMM framework. While rPQL
also imposed a group lasso penalty, our proposed algorithm
took a different computational approach: First, we adopted the
novel trust region method to solve the optimization problem;
second, we updated the weights wl’s iteratively whereas rPQL
would keep the weights at their initial values throughout the
computation.

While the methods above would prescribe personalized poli-
cies, we also considered using generalized estimating equations
(GEE) to estimate a population-level effect, and developed a

non-personalized policy by choosing actions maximizing the
estimated population mean. We used an independence working
correlation structure, so as to avoid bias under linear models
with endogenous variables; see Boruvka et al. (2018).

Finally, we examined the performance of an “N-of-1”
approach whereby each user’s personalized policy was estimated
by fitting a generalized linear model to the user’s own data only.
That is, there was no borrowing information from across users
in this method with multiple generalized linear model (MGLM).
We anticipated that MGLM would have difficulties when m was
small, especially with Bernoulli outcomes.

4.3. Simulation Results

Table 1 compares the MSE of the policy parameters in the
simulation scenario with non-sparse random effects. Overall,
the proposed PPL has the smallest MSE when m = 20, 30. Its
superior performance to the other two GLMM-based methods
(glmer and rPQL) indicates the computational advantages of
using the trust region algorithm with iterated weights. These
three methods, as expected, improve with large m, that is, having
more data points.

The “N-of-1” MGLM performs poorly with binary outcome
and when m = 10 with continuous outcome. Even with a
moderate-to-large m = 30, the method remains inferior to
the other methods. This signifies the importance of borrowing
information from across users, even though our goal is to pro-
duce different policies for different users.

Interestingly, GEE has the smallest MSE when m = 10 and
performs relatively well with the larger m’s. While it is somewhat
surprising at first glance, we note that by avoiding estimating
the random effects (α is estimated with 0), GEE will induce
the least variability and hence the MSE. It is illuminating that
the method’s MSE does not improve as m increases, when bias
becomes dominating in the bias-variance tradeoff.

Table 2 compares the methods under the scenario with sparse
random effects. The relative performance of the methods is
similar to that in Table 1, although the bias induced by GEE
becomes more apparent as the variability in the data is smaller
in this scenario. In particular, PPL and glmer has substantially
smaller MSE in this scenario than when random effects are not
as sparse.

To compare the decision quality of the five methods, Fig-
ures 1 and 2 plot the simulated mean VR at the testing time
points following m = 10 training time points from each user,
respectively, under non-sparse random effects and sparse ran-
dom effects.

The proposed PPL has the largest VR for each possible
state Xt for both binary and continuous outcomes. That GEE

Table 1. Estimation properties under scenario with non-sparse random effects (average MSE (SD) over 200 simulation trials).

Binary Continuous

Method m = 10 m = 20 m = 30 m = 10 m = 20 m = 30

PPL 8.22(3.31) 5.41(0.61) 4.70(0.58) 8.99(3.67) 3.69(0.47) 2.37(0.22)

glmer 43.39(34.16) 9.65(2.72) 6.39(1.17) 13.94(4.79) 4.87(0.65) 3.03(0.38)

GEE 7.87(2.92) 6.08(0.57) 6.17(0.52) 8.38(2.83) 5.94(0.38) 5.74(0.21)

MGLM >1E10 >1E10 >1E10 272.35(93.00) 36.24(35.00) 8.10(4.33)

rPQL 8.71(3.9) 5.87(0.73) 5.23(0.65) 7.73(2.32) 5.31(0.30) 4.44(0.26)
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Table 2. Estimation properties under scenario with sparse random effects (average MSE (SD) over 200 simulation trials).

Binary Continuous

Method m = 10 m = 20 m = 30 m = 10 m = 20 m = 30

PPL 7.75(3.57) 4.41(0.80) 3.69(0.69) 7.17(3.09) 2.44(0.46) 1.33(0.20)

glmer 44.56(38.85) 8.80(2.50) 5.73(1.50) 11.75(4.08) 3.48(0.64) 1.86(0.33)

GEE 7.24(3.06) 5.04(0.71) 5.11(0.64) 7.15(2.98) 4.85(0.37) 4.67(0.23)

MGLM >1E10 >1E10 >1E10 274.92(105.00) 34.73(31.90) 7.19(1.78)

rPQL 8.04(3.86) 4.89(0.92) 4.22(0.82) 6.31(1.96) 4.42(0.40) 3.08(0.32)

Figure 1. Value ratio at each testing time point in the simulation with m = 10 under scenario with non-sparse random effects by different Xt .

producing the smallest MSE when m = 10 does not translate
into good decision quality, as the method has the smallest VR
uniformly in our simulation, when compared to all other per-
sonalized policy methods. This serves as an important illustra-
tion how simply considering personalized policy, as opposed to
personalized decisions (which GEE also prescribes), could lead
to potentially radical gain. It is interesting to note that methods
that induce large variability in estimation can be quite compet-
itive; for example, MGLM and glmer for continuous outcome
when Xt = 1. It is due to the fact that the decision quality largely
relies on correctly estimating the sign of the random effects,
not the magnitude. Therefore, one ought to examine both the
estimation properties and decision quality in the comparison of
methods. Overall, our simulation results indicate the proposed
PPL win in these terms. The relative performance of the methods

is similar when m = 20, 30, and the results are presented in
Section S3 of the supplementary materials.

5. Application

We apply the proposed PPL to estimate the best personalized
push schedule in 294 users, who have received at least 20
prompts to complete the patient-health questionnaire since they
downloaded the Hub app. Since the prompts were scheduled on
7-day intervals, this would represent a subsample of users with
at least 20 weeks of app use. The distribution of the number
of prompts in these users is shown in Figure 3. In the data,
we tracked the timestamp of when a prompt was sent. For the
purpose of this analysis, we grouped the time of prompt into
four periods: Night (a1): from midnight to 6:00 a.m.; Morning
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Figure 2. Value ratio at each testing time point in the simulation with m = 10 under scenario with sparse random effects by different Xt .

Figure 3. The distribution of the number of prompts in 294 IntelliCare users.

(a2): from 6:00 a.m. to noon; Afternoon (a3): from noon to 6:00
p.m.; Evening (a4): from 6:00 p.m. to midnight. The observed
proportions of the four periods were, respectively, 0.10, 0.23,
0.35, and 0.32. Using a1 as the reference group, we used three
dummy variables, centered by the observed proportions, to code
the actions a2, a3, and a4 in model fitting.

The state Sit at each time point consisted of three variables.
First, the number of times the Hub was launched (launches)
in the week prior to the prompt was recorded. Second, the

timestamp indicated whether a prompt was sent on a weekday
(weekday). Third, the time point t of the prompt was included as
a predictor in the covariate process Sit . With a binary response
outcome, we estimated (β , α) under model (1) with a logit link,
h1(S, A) = (1, launches, t, weekday, A, launches ⊗ A, weekday ⊗
A, t⊗A) and h2(S, A) = (1, A, launches⊗A, weekday⊗A, t⊗A)

using the first 80% of the time points of each user as training
data. Since each user had at least 20 prompts, we had mi ≥ 16
in the training data for all 294 users.
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Table 3. Model fit using the training data: β̂ is the coefficients of the fixed effects,
and SD(α̂) is the standard deviation of the fitted individual random effects coeffi-
cients.

Variables β̂ SD(α̂)

Intercept −1.80 1.31
weekday 0.01 —
launches (per 5 times) 1.52 —
t (per 5 time points) −0.20 —
Morning (a2) 1.65 1.13
Afternoon (a3) 1.57 0.95
Evening (a4) 1.06 0.78
weekday : a2 0.73 0.34
weekday : a3 0.16 0.62
weekday : a4 0.66 0.52
launches : a2 −2.46 0.39
launches : a3 −1.40 0.21
launches : a4 −1.15 0.43
t : a2 −1.25 0.66
t : a3 −0.96 0.47
t : a4 −0.93 0.44

Table 3 summarizes the results of the model fit. The posi-
tive fixed effects for a2, a3, a4 suggest prompts in the morning,
afternoon, and evening tend to induce better response rate than
those sent during the night (midnight to 6:00 a.m.). The effects
associated with these non-night periods are even greater on
weekdays, indicated by the positive (fixed) interaction between
weekday and these periods. While this result is not surprising,
we also note substantial heterogeneity of the period effects and
the weekday:period interactions, whose SD(α̂)’s have compara-
ble magnitude to β̂ . This supports the needs for personalizing
push schedule in our application.

In contrast, for the launches:period interactions and the
t:period interactions, the fixed effects (β̂) dominate the random
effects; heterogeneity of the random effects coefficients are mea-
sured by SD(α̂). Based on the fixed effects, the response rate
decreases over time, by 0.20 in log-odds over t = 5 time points.
This is in line with findings in the literature (see, e.g., Helander
et al. 2014). In addition, every five additional launches of the
Hub in the prior week improves the log-odds of response to
a night prompt by 1.52. Based on the negative coefficients of
launches:period interactions, a large number of launches also
seems to attenuate or even negate the effects of the time of
prompts. This suggests that for active users who engage the Hub
often, their response pattern is less sensitive to the time of the
prompt.

The quality of these personalized policies in the testing
data is evaluated by the mean response rate under the policies
estimated via inverse probability treatment weighted method
averaged over all test time points. The mean response rate
according to PPL would have been 23%, which compares favor-
ably to other studies in light of the fact that all testing points
are at least 16 weeks from first download. It has been reported
that user engagement is in the range of 3%–15% in the third
month after download (Helander et al. 2014). As a reference
point, the observed response rate in the testing data is 11%. In
addition, we analyzed the prompt response data using the other
methods with the same 80%–20% split of training and testing
data, and obtained the mean response rate 14%, 17%, 14%, and
8%, respectively, for glmer, GEE, MGLM, and rPQL.

6. Discussion

This article proposed PPL for mobile health applications under
the GLMM framework. The advantage of using GLMM is that,
when data from each user are limited, it allows for estimation
of the shared features (i.e., fixed effects) as well as the individual
features (i.e., random effects), two indispensable components of
a personalized policy. We have shown that personalized policies
lead to higher value than non-personalized policy in simulation
studies, and have clearly demonstrated substantial heterogeneity
of the action effects in the prompt response data. We have
also provided theoretical justifications of PPL by examining its
asymptotic properties under a fairly general set of assumptions.
In particular, we have established a conditional regret bound and
marginal consistency in the presence of endogenous covariate
process, where the covariates may depend on previous out-
comes, actions, and even the latent random effects. As endo-
geneity is ubiquitous in longitudinal mobile application usage
(how many times a user launched the Hub app would likely
depend on how he/she had interacted with the Hub in the past),
these theoretical results have broadened the applicability of PPL
to many practical situations.

As an initial attempt to tackle personalized policy learning
problem, we have limited our attention to optimize immediate
outcomes. This can be viewed as an RL problem with a discount
factor of zero. Our choice to maximize immediate outcomes is
primarily based on the unique nature of mobile health study
where adherence declines drastically. On the other hand, when
adequate engagement can be achieved, say, through education or
compensation, a long-term outcome would also be desirable. To
optimize long-term outcomes, we need to take into account the
delayed effect of current action on future contexts and outcomes.
In RL, a standard approach is to treat each user’s longitudinal
data as a Markovian decision process (MDP). An interesting
research direction is to extend the GLMM framework to esti-
mate the MDP parameters to learn personalized policies that
target on long-term outcomes.

This article investigated learning of optimal personalized
policies for existing users after actions have been observed in
batched data. Our ultimate goal is to create an evidence-based
mobile app intervention delivery system in which a key element
is to set up a mechanism that provides feedback so as to enhance
decision quality for existing and new users over time based on
data previously accrued. The proposed PPL algorithm, coupling
with the adaptive randomization (AR), can be used to build an
online decision support system. Briefly speaking, the proposed
PPL algorithm can be used to construct an initial personalized
policy for each existing user. Using this as a warm start, we
can then tilt the allocation of empirically superior interventions
(actions) to the user with high probabilities using ε-greedy or
Thompson-type AR scheme. The policy can be further updated
using PPL algorithm as more data are collected. Note that per-
sonalized algorithms depend on individual-level parameters, as
well as the population-level parameters. For a new user, an initial
personalized policy can be obtained by randomly drawing an
individual-level parameter from the existing pool. The princi-
ple of specifying an AR scheme can be extended similarly. To
implement AR in practice, we need to keep track and model the
enrollment time of mobile app users. Cheung, Chakraborty, and
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Davidson (2015) introduced the implementation of real-time
AR in the context of a population multi-stage policy setting. A
future research direction is to incorporate real-time AR in PPL
framework in the mobile decision support system.

Appendix: Examples of Endogenous Covariates

In this section, we verify condition (C6) in two examples with endoge-
nous covariates. In the first example, Yit is binary , and the distribution
of Sit directly depends on the random effects parameters α0i·. In the
second example, Yit is Gaussian, and Sit = Yi,t−1. For simplicity, we
verify the condition with n = 1 (since individuals are iid), and omit
subscript i from the notations. In both examples, we consider a scalar
mean zero random effects parameter α0 ∈ R, and the treatment At ∈
{−1, 1} is randomly assigned with P(At = 1) = P(At = −1) = 1/2
for t ≥ 1.

Example 1. For binary outcome Yt ∈ {0, 1}, suppose

g(E(Yt|St , At)) = (β0 + α0)StAt ,

where g(·) is the logit link. Conditioning on α, St , t = 1, . . . , m, are iid
N(α0, τ2).

Let �(Yt , St , At ; β , α) be the log-likelihood of Bernoulli distribution
with mean e(β+α)StAt

1+e(β+α)StAt . Then �1(β , α) = ∑m
t=1 �(Yt , St , At ; β , α)

satisfies

�1(β , α) =
m∑

t=1
Yt(β + α)StAt − log

{
1 + e(β+α)StAt

}
,

∇β�1(β , α) = ∇α�1(β , α) =
m∑

t=1
StAt

{
Yt − e(β+α)StAt

1 + e(β+α)StAt

}
,

and

∇ᵀ
β ∇β�1(β , α) = ∇ᵀ

α ∇α�1(β , α) = −
m∑

t=1

S2
t e(β+α)StAt{

1 + e(β+α)StAt
}2 .

It is easy to verify that

E
{∇β�1(β0, α0)

} = E {∇α�1(β0, α0)} = 0,

1
m

E
[{∇β�1(β0, α0)

}2
]

= 1
m

E
[{∇α�1(β0, α0)}2]

= 1
m

m∑
t=1

E

{
S2

t e(β0+α0)StAt{
1 + e(β0+α0)StAt

}2

}
= E

{
S2

1e(β0+α0)S1A1{
1 + e(β0+α0)S1A1

}2

}
< ∞,

and

Mββ = Mαα = E

{
S2

1e(β0+α0)S1A1{
1 + e(β0+α0)S1A1

}2

}
> 0.

Finally, conditioning on α0,
{

S2
t e(β+α)StAt{

1+e(β+α)StAt
}2 , t = 1, . . . , m

}
are iid,

where α = α0 + u. By the uniform law of large numbers theorem,

sup
(β ,α)∈�

∣∣∣∣∣m−1∇ᵀ
β ∇β�1(β , α) − E

{
S2

1e(β+α)S1A1{
1 + e(β+α)S1A1

}2

∣∣∣∣α0

}∣∣∣∣∣ = oP(1).

Example 2. Suppose

Yt|St , At , β0, α0 ∼ N{(β0 + α0)StAt , σ 2},

where St = Yt−1, and Y0 ≡ μ0 is a constant. We consider l(·) to be the
log-likelihood of Gaussian distribution. Below we show that condition
(C6) holds when

Pα0(|β0 + α0| < 1) = 1. (9)

Note that condition (9) is a sufficient condition for an AR(1) process to
be stationary.

�1(β , α) = − 1
2σ 2

m∑
t=1

{
Yt − (β + α)Yt−1At

}2 ,

∇β�1(β , α) = ∇α�1(β , α)

= 1
σ 2

m∑
t=1

{
Yt − (β + α)Yt−1At

}
Yt−1At ,

and

∇ᵀ
β ∇β�1(β , α) = ∇ᵀ

α ∇α�1(β , α) = − 1
σ 2

m∑
t=1

Y2
t−1.

We can verify that

E
{∇β�1(β0, α0)

} = E {∇α�1(β0, α0)} = 0.

Noticing that E(Y2
t ) = ∑t−1

k=1 σ 2E
{
(β0 + α0)2(k−1)

}
, we have,

1
m

E
[{∇β�1(β0, α0)

}2
]

= 1
m

E
[
{∇α�1(β0, α0)}2

]

= 1
mσ 2

m∑
t=1

E(Y2
t ) = 1

m

m∑
t=1

t−1∑
k=1

E
{
(β + α)2(k−1)

}

= 1
m

m∑
t=1

(m − t + 1)E
{
(β0 + α0)2(t−1)

}

which is O(1) when (9) holds.

Since (m − t + 1)E
{
(β0 + α0)2(t−1)

}
= m when t = 1, we have

Mββ = Mαα = 1
m

m∑
t=1

(m − t + 1)E
{
(β0 + α0)

2(t−1)
}

≥ 1.

Finally, under condition (9), for any ε > 0,

P

{
sup

(β ,α′)∈�

∣∣∣∣∣ 1
m

m∑
t=1

Y2
t − E(Y2

t |α0)

∣∣∣∣∣ > ε

∣∣∣∣α0

}

= P

{∣∣∣∣∣ 1
m

m∑
t=1

Y2
t − E(Y2

t |α0)

∣∣∣∣∣ > ε

∣∣∣∣α0

}

≤ (εm)−2E

[ m∑
t=1

{
Y2

t − E(Y2
t |α0)

} ∣∣∣∣α0

]2

= (εm)−22σ 4
m∑

t=1

t−1∑
k=1

(β0 + α0)
4(k−1)

+(εm)−24σ 4
m−1∑
t=1

m∑
t′=t+1

(β0 + α0)2(t′−t)
2t−1∑
l=0

(β0 + α0)2l

= (εm)−2O(m) = o(1),

which implies that

sup
(β ,α)∈�

∣∣∣m−1∇ᵀ
β ∇β�1(β , α) − E

{
m−1∇ᵀ

β ∇β�1(β , α)|α0
}∣∣∣ = oP(1).
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Supplementary Materials

Section S1 contains the estimation algorithm of policy parameters.
Section S2 contains proofs of all technical results.
Section S3 contains additional simulation results for decision quality

comparison of the five methods when m = 20, 30.
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