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Abstract

In this paper we provide a sufficient condition for mean residual life ordering of parallel
systems with n ≥ 3 heterogeneous exponential components.
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1. Introduction

Order statistics play an important role in reliability theory, statistical inference, life testings,
and many other areas. In reliability theory, it is well known that the kth order statistic
corresponds to the lifetime of a (n − k + 1)-out-of-n system. Thus, the study of lifetimes
of k-out-of-n systems is equivalent to the study of the stochastic properties of order statistics.
In particular, a 1-out-of-n system corresponds to a parallel system, and its lifetime is the largest
order statistic of the ones of its components.

Parallel systems are the building blocks of more complex coherent systems, and the study of
the lifetime of parallel systems has attracted much attention and many interesting results have
been established. For a comprehensive survey, we refer the reader to [1] and [6].

Let X = (X1, . . . , Xn) be a parallel system whose components Xi are independent expo-
nential random variables with hazard rate λi, i = 1, . . . , n. Let Y = (Y1, . . . , Yn) be another
parallel system which is independent from X and whose components Yi are independent expo-
nential random variables with hazard rate μi, i = 1, . . . , n. Let Xn : n = max{X1, . . . , Xn} and
Yn : n = max{Y1, . . . , Yn} be the lifetimes of X and Y , respectively. Pledger and Proschan [5]
established that

λ
m� u �⇒ Xn : n ≥st Yn : n.

Misra and Misra [4] showed that

λ
w� u �⇒ Xn : n ≥rh Yn : n.

For n = 2, Dykstra et al. [2] proved that

(λ1, λ2)
m� (μ1, μ2) �⇒ X2 : 2 ≥lr Y2 : 2.
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Zhao and Balakrishnan [9] revealed that, under the condition λ1 ≤ μ1 ≤ μ2 ≤ λ2,

(λ1, λ2)
w� (μ1, μ2) �⇒ X2 : 2 ≥lr Y2 : 2.

In [8], the same authors established a result on mean residual life (MRL) ordering. They showed
that, under the condition λ1 ≤ μ1 ≤ μ2 ≤ λ2,

(λ1, λ2)
rm� (μ1, μ2) �⇒ X2 : 2 ≥mrl Y2 : 2. (1.1)

The formal definitions of these and other orderings relevant to this paper can be found in
Section 2.

Due to the complicated nature of the stochastic comparison in terms of MRL ordering for
the general n situations, (1.1) has not been extended to the situation where the system has n ≥ 3
components.

In this paper we close this gap by extending (1.1) to the case when n ≥ 3. The main results
of this paper can be stated as, under condition

λ1 ≤ μ1, μk ≤ λk, k = 2, . . . , n, (1.2)

we have
λ

rm� u �⇒ Xn : n ≥mrl Yn : n.

The paper is organized as follows. In Section 2 we state the notation and definitions. In
Section 3 we present the proofs of the main results concerning the MRL ordering. In Section 4
we provide a brief discussion.

2. Notation and definitions

Let X be a nonnegative continuous random variable with distribution function FX(t), survival
function F̄X(t) = 1 − FX(t), and density function fX(t). The hazard function and the
reversed hazard function of X are defined as λX(t) = fX(t)/F̄X(t) and rX(t) = fX(t)/FX(t),
respectively. For two nonnegative continuous random variables X and Y , we say that

• X is larger than Y in the usual stochastic order (denoted by X ≥st Y ), if F̄X(t) ≥ F̄Y (t);

• X is larger thanY in the reversed hazard rate order (denoted byX ≥rh Y ), if rX(t) ≥ rY (t);

• X is larger than Y in the likelihood ratio order (denoted by X ≥lr Y ), if the ratio
fX(t)/fY (t) is increasing in t ;

• X is larger than Y in the MRL order (denoted by X ≥mrl Y ), if E(X − t | X > t) ≥
E(Y − t | Y > t).

Given two vectors a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) with ascending entries,

• vector a is said to majorize vector b, denoted by a
m�b, if

∑n
i=1 ai = ∑n

i=1 bi , and∑k
i=1 ai ≤ ∑k

i=1 bi for k = 1, . . . , n − 1;

• vector a is said to weakly majorize vector b, denoted by a
w�b, if

∑k
i=1 ai ≤ ∑k

i=1 bi for
k = 1, . . . , n;

• vector a is said to reciprocally majorize vector b, denoted by a
rm�b, if

∑j
i=1 1/ai ≥∑j

i=1 1/bi, j = 1, . . . , n.

In this paper, we use A
sgn= B to denote that A and B are of the same sign.

The following lemma is used in the proof of the main theorem.
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972 B. CHENG AND J. WANG

Lemma 2.1. For k1 > 0, k2, . . . , kn ≥ k1, the function

H(k1, . . . , kn; x) = 1 − ∏n
i=1(1 − e−kix)

xe−k1x
∏n

i=2(1 − e−kix)

is positive and decreasing in x > 0.

Proof. We have

H(k1, . . . , kn; x) = exp((
∑n

i=1 ki)x) − ∏n
i=1(exp(kix) − 1)

x
∏n

i=2(exp(kix) − 1)
.

Let ui = ekix − 1. Then

H(k1, . . . , kn; x) =
∏n

i=1(ui + 1) − ∏n
i=1 ui

x
∏n

i=2 ui

= 1

xu2 · · · un

+
n−1∑
l=1

∑
i1<i2<···<il

ui1ui2 · · · uil

xu2 · · · un

.

Since each term in the above summation is a positive and decreasing function of x, the lemma
is thus proved. �

3. Proofs of the theorems

Denote λ = (λ1, . . . , λn) and μ = (μ1, . . . , μn). Without loss of generality, we assume
that λ1 ≤ · · · ≤ λn and μ1 ≤ · · · ≤ μn. Define F(λ; t) = ∏n

i=1(1 − e−λi t ). The MRL
function Xn : n is

ϕλ(t) =
∫ ∞
t

{1 − F(λ; u)} du

1 − F(λ; t)
.

Similarly, the MRL function of Yn : n is ϕμ(t).
For 0 < x1 ≤ · · · ≤ xn and x = (x1, . . . , xn), consider the function

�(x) =
∫ ∞

1 {1 − F(x; u)} du

1 − F(x; 1)
.

Since Xn : n >mrl Yn : n is equivalent to �(λt) ≥ �(μt), it is enough to study the monotonicity
of �(x) along certain vector fields. We first establish a monotonicity result.

Theorem 3.1. Let πi ≥ 0, i = 2, . . . , n, such that
∑n

i=2πi ≤ 1. Then

∇�(x2
1 ,−π2x

2
2 ,...,−πnx2

n)(x) ≤ 0.

Proof. First, we have
∂F (x; u)

∂xi

= ue−xiu

1 − e−xiu
F (x; u).

Therefore,

∂�

∂xi

sgn=
∫ ∞

1

{
F(x; 1)

e−xi

1 − e−xi
[1 − F(x; t)] − F(x; t)

te−xi t

1 − e−xi t
[1 − F(x; 1)]

}
dt

= 1

x2
i

∫ ∞

xi

Ki(u) du,

where Ki(u) = F(x; 1)η(xi)[1 − F(x; u/xi)] − F(x; u/xi)η(u)[1 − F(x; 1)], and η(x) =
xe−x/(1 − e−x). For simplicity, we write F(u) for F(x; u) for the rest of the paper.
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By Lemma 2.1, when u ≥ x1,

K1(u)
sgn= 1 − F(u/x1)

F (u/x1)η(u)
− 1 − F(1)

F (1)η(x1)

= H

(
1,

x2

x1
, . . . ,

xn

x1
; u

)
− H

(
1,

x2

x1
, . . . ,

xn

x1
; x1

)

≤ 0.

Thus,

∇�(x2
1 ,−π2x

2
2 ,...,−πnx2

n))

sgn= ∇�[(1−∑n
i=2 πi)x

2
1 ,0,...,0] +

n∑
i=2

∇�(πix
2
1 ,0,...,0,−πix

2
i ,0,...,0)

=
(

1 −
n∑

i=2

πi

)
x2

1
∂�

∂x1
+

n∑
i=2

πi

{
x2

1
∂�

∂x1
− x2

i

∂�

∂xi

}

=
(

1 −
n∑

i=2

πi

) ∫ ∞

x1

K1(u) du

+
n∑

i=2

πi

{∫ ∞

x1

K1(u) du −
∫ ∞

xi

Ki(u) du

}

≤
n∑

i=2

πi

∫ ∞

xi

[K1(u) − Ki(u)] du

≤
n∑

i=2

πi

∫
u≥xi , Ki(u)≤0

[K1(u) − Ki(u)] du.

Assume that Ki(u) ≤ 0. Since F(u) is positive and increasing, we have

Ki(u) − K1(u) =
{

1 − F(u/xi)

F (u/xi)η(u)
− 1 − F(1)

F (1)η(xi)

}
F(1)η(xi)F

(
u

xi

)
η(u)

−
{

1 − F(u/x1)

F (u/x1)η(u)
− 1 − F(1)

F (1)η(x1)

}
F(1)η(x1)F

(
u

x1

)
η(u)

≥
{

1 − F(u/xi)

F (u/xi)η(u)
− 1 − F(1)

F (1)η(xi)

}
F(1)η(xi)F

(
u

x1

)
η(u)

−
{

1 − F(u/x1)

F (u/x1)η(u)
− 1 − F(1)

F (1)η(x1)

}
F(1)η(x1)F

(
u

x1

)
η(u)

sgn=
{

1 − F(u/xi)

F (u/xi)η(u)
− 1 − F(1)

F (1)η(xi)

}
η(xi)

−
{

1 − F(u/x1)

F (u/x1)η(u)
− 1 − F(1)

F (1)η(x1)

}
η(x1)

= 1 − F(u/xi)

F (u/xi)η(u)
η(xi) − 1 − F(u/x1)

F (u/x1)η(u)
η(x1)

= 1 − F(u/xi)

F (u/xi)η(x1u/xi)

η(x1u/xi)η(xi)

η(u)
− 1 − F(u/x1)

F (u/x1)η(u)
η(x1)

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jpr.2017.45
Downloaded from https://www.cambridge.org/core. Teachers College Library - Columbia University, on 20 Sep 2017 at 01:43:44, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jpr.2017.45
https://www.cambridge.org/core


974 B. CHENG AND J. WANG

≥
{
H

(
1,

x2

x1
, . . . ,

xn

x1
; x1

xi

u

)
− H

(
1,

x2

x1
, . . . ,

xn

x1
; u

)}
η(x1)

≥ 0,

where the second to last inequality is because functionη(x1u/xi)/η(u) is increasing overu ≥ xi ,
hence, η(x1u/xi)/η(u) ≥ η(x1)/η(xi), or, equivalently, η(x1u/xi)η(xi)/η(u) ≥ η(x1), and
the last inequality is by Lemma 2.1. Therefore,

∇�(x2
1 ,−π2x

2
2 ,...,−πnx2

n) ≤
n∑

i=2

πi

∫
u≥xi , Ki(u)≤0

[K1(u) − Ki(u)] du ≤ 0. �

Define
�rm(λ) = {μ : μ

rm≺ λ, μk ≤ λk, k ≥ 2}.
Theorem 3.2. Denote by Xn : n(λ) the parallel system with hazard rate parameter λ. For any
μ ∈ �rm(λ), let Yn : n(μ) be another independent parallel system with hazard rate parameter μ.
We have

Xn : n(λ) >mrl Yn : n(μ).

Proof. For any μ ∈ �rm(λ), let k0 be the smallest k such that

k∑
i=1

1

μi

=
k∑

i=1

1

λi

(3.1)

holds. It is easy to see that under condition μk ≤ λk, k ≥ 2, for any k ≥ k0, we should also
have

k∑
i=1

1

μi

=
k∑

i=1

1

λi

, k ≥ k0,

which also implies that μk = λk, k ≥ k0 + 1.
If k0 = 1 then we have μ1 = λ1, condition μ

rm≺λ and (1.2) imply that μ = λ, thus, the
conclusion holds trivially. Now we assume that k0 exists and k0 ≥ 2. Then we know that point

μ = (μ1, . . . , μk0 , μk0+1, . . . , μn) = (μ1, . . . , μk0 , λk0+1, . . . , λn)

is on the (k0 − 1)-dimensional manifold

k0∑
i=1

1

xi

=
k0∑

i=1

1

λi

, xj ≡ λj , j = k0 + 1, . . . , n. (3.2)

Consider the vector field a(x) = (x2
1 , −π2x

2
2 , . . . ,−πk0x

2
k0

, 0, . . . , 0), where
∑k0

i=2πi =
1. The outer normal vector of manifold (3.2) at point x is (−1/x2

1 , . . . ,−1/x2
n), which is

orthogonal to a(x). This means that the vector a(x) is tangent to the manifold (3.2) at point x.
Therefore, we can start from λ and travel on this manifold along a tangent vector field a(x) to
reach μ. In fact, set

{
λ(t) =

(
λ1μ1

(1 − t)μ1 + tλ1
, . . . ,

λk0μk0

(1 − t)μk0 + tλk0

, λk0+1, . . . , λn

)
; 0 ≤ t ≤ 1

}
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indexed by t is a curve on manifold (3.2) which connects points λ and μ. To see this,

k0∑
i=1

1

(λiμi)/[(1 − t)μi + tλi] +
n∑

j=k0+1

1

λj

= (1 − t)

( k0∑
i=1

1

λi

)
+ t

( k0∑
i=1

1

μi

)
+

n∑
j=k0+1

1

λj

=
n∑

i=1

1

λi

,

where the last equality is by (3.1). We show that the tangent vector field of curve λ(t)

at t , denoted by λ′(t), is of the form required in Theorem 3.1. In fact, denote λi(t) =
λiμi/[(1 − t)μi + tλi], i = 1, . . . , k0, then

λ′(t) =
((

1

λ1
− 1

μ1

)
(λ1(t))

2, . . . ,

(
1

λk0

− 1

μk0

)
(λk0(t))

2, 0, . . . , 0

)

sgn=
(

1 · λ2
1(t), −

1/μ2 − 1/λ2

1/λ1 − 1/μ1
λ2

2(t), . . . , −
1/μk0 − 1/λk0

1/λ1 − 1/μ1
λ2

k0
(t), 0, . . . , 0

)
,

which satisfies the form required by Theorem 3.1 with

πi = 1/μi − 1/λi

1/λ1 − 1/μ1
≥ 0 for i ≥ 2

because
n∑

i=2

πi =
n∑

i=2

1/μi − 1/λi

1/λ1 − 1/μ1
=

k0∑
i=2

1/μi − 1/λi

1/λ1 − 1/μ1

= 1

1/λ1 − 1/μ1

( n∑
i=2

1

μi

−
n∑

i=2

1

λi

)

= 1

1/λ1 − 1/μ1

(
1

λ1
− 1

μi

)

= 1,

where the second to last equality is by condition (3.1) for k = k0. Therefore, by Theorem 3.1,
�(λ) ≥ �(μ), or Xn : n(λ) >mrl Xn : n(μ).

If such a k0 does not exist, that means that

n∑
i=1

1

μi

<

n∑
i=1

1

λi

. (3.3)

Choose μ∗
1 such that

1

μ∗
1

+
n∑

i=2

1

μi

= 1

λ1
+

n∑
i=2

1

λi

. (3.4)

By assumption (1.2), μk ≤ λk, k ≥ 2, thus,

n∑
i=2

1

μi

≥
n∑

i=2

1

λi

. (3.5)
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976 B. CHENG AND J. WANG

In view of (3.3)–(3.5), we have μ1 > μ∗
1 ≥ λ1. Point μ∗ = (μ∗

1, μ2, . . . , μn) is on manifold

n∑
i=1

1

xi

=
n∑

i=1

1

λi

, λ1 ≤ μ∗
1.

Therefore, we have shown that we can start from λ and travel along a vector field a(x) on this
manifold to reach μ∗, and then along vector (1,0, …, 0) to reach μ. Thus,

�(λ) ≥ �(μ∗) ≥ �(μ),

which implies that Xn : n(λ) >mrl Xn : n(μ). �

4. Discussion

First, in proving Theorem 3.2, condition (1.2) seems crucial. Note that when n = 2,
condition (1.2) becomes λ1 ≤ μ1 ≤ μ2 ≤ λ2, which is the condition imposed by [3], [8],
and [9]. Therefore, condition (1.2) can be considered as a high-dimensional analogy of λ1 ≤
μ1 ≤ μ2 ≤ λ2.

Second, we believe the following inequality holds:

∇�(x2
1 ,±π2x

2
2 ,...,±πnx2

n)(x) ≤ 0

in Theorem 3.1. If the above conjecture is correct then condition (1.2) can be weakened.
Finally, similar to [7], the result in this paper can be readily extended to parallel systems

whose components follow proportional hazard models. That is, the survival function of Xi

satisfies F̄Xi
(t) = eλiR(t), where R(t) is a baseline cumulative hazard function.
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