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1. Introduction

The research on stochastic comparison of lifetimes of parallel systems has a long his-
tory, and many interesting results have been established. See, for instance, Proschan and
Sethuraman (1976), Dykstra, Kochar, and Rojo (1997), Khaledi and Kochar (2000),
Kochar and Xu (2007), Kochar and Xu (2011), Zhao and Balakrishnan (2011), Yan, Da,
and Zhao (2013), Torrado and Lillo (2013), Torrado and Kochar (2015), and a survey
article of Balakrishnan and Zhao (2013).

The stochastic comparison of lifetimes of parallel systems with multiple components
is technically challenging. In fact, this issue has not been well investigated even for the
simplest case of exponential components. In this paper, we study the likelihood ratio
ordering of parallel systems with exponential components.

For a parallel system consisting of n components whose lifetimes are X; ~ exp (4;),

where /; is the hazard rate of ith component, i =1, ---,n, its lifetime is defined as
Xyn = max{Xj, -+, X} = T(41, -+, An). By symmetry, in the sequel, we assume A; <
-++ < Ay. Similar notation for Y., = max{Yy, ---, Y} = T(py, -+, 1,)-

Dykstra, Kochar, and Rojo (1997) showed that

(41, 42) = (s 1) = T(215 22) 21 T(pys )5
and Boland, El-Neweihi, and Proschan (1994) constructed an example showing that
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where ;1- stands for the majorization order, and >, for the likelihood ratio order. Since
then, there has been a long lasting interest about what kind of order of hazard rate vec-
tors of components can guarantee T(A;, -+, 4,) =5 T(Lys =+ 5 1hy)-

Some results on special cases have been established. For instance, when u, =y, =
.-+ =, = i, Mao and Hu (2010) showed that when u > 1, where Z is the arithmetic
average of Ay, -+, Ay, T(A1, =+ 5 An) >0 T(pys -5 1)-

It is well known that when A; = y; there is no likelihood ratio order between
T(Z1, -+ +>An) and T(u,, ---,u,). Hence, a necessary condition for T(Ay, -+, 4,) >
T(pys =5 pty) B8 Ay < gy

For lifetime X ~ exp (1), smaller 1 implies longer lifetime. Consider a parallel system
with four components with hazard rate vector (41, 43,43, 44). If the hazard rate vector
changes in the direction (1,1,1,1), which indicates that each component’s lifetime gets
shorter, we can expect the lifetime of the system also gets shorter. If the hazard rate
vector changes in the direction (1,1, — 1, — 1), which indicates the best two compo-
nents become worse while the other two become better, we can expect the lifetime of
the system to be shorter. If the hazard rate vector changes in the direction (1, — 1, — 1,
—1), indicating that the best component becomes worse while the others become better,
it is unclear how the lifetime of the system changes.

Inspired by these observations, we introduce the concept of l-order for the hazard
rate vectors. A vector v = (vq,v,, - -+, v,) with v; = 1 is called a basic I-vector if there
exists an integer p, 1 < p < n, such that, for i < p, v;is 1 or 0 while for i>p, v; is —1
or 0, and the number of 1’s is no less than that of —1’s. For instance, (1,0,1,0, — 1)
and (1,1,1, — 1, — 1) are basic l-vectors, but (1, — 1,0, — 1) and (1,1, — 1, — 1, — 1)
are not.

We say vector u is a positive linear combination of vectors vy, -+, v, if u=
aivy + -+ + amVy, with g; > 0. Two vectors a and b are said to be equal, if a = kb for
some k > 0.

A vector is called an [-vector if it is a positive linear combination of basic I-vectors.

I
For two vectors a and b, we say a is l-larger than b, denoted as @ > b, if b—a is an
I-vector.

In the case of n=2, (41, 4,) g (U, 1) is equivalent to (uy, ) — (A1, 42) = (1, — 1).
Dykstra, Kochar, and Rojo (1997) showed that
(A 22) = (s 12) = T (215 22) 21 Ty 1a)-

Zhao and Balakrishnan (2011) established that when Ay < pu; <, < 4, and 4; + 4, <
W+t T(A1, 22) =1 T(1ys ). Yan, Da, and Zhao (2013) showed that, when 4; < p; <
Ja <y and A + uy, <y + A, T(A1, 22) =1 T(py, ). Noticing that for n =2, the basic
l-vectors are (1, — 1), (1, 0), and (1, 1), the three results mentioned above can be con-
solidated as

I ,
(;ul,iz) - (Hp ,uz) = T(/ll’ /LZ) Zlr T(lul’ ,le> (1)

This motivates us to conjecture that the above result holds for general n. That is,
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The main objective of this paper is to prove this conjecture for n < 5. Our computer
simulations show that the conjecture should hold for #» < 10. But a proof for general n
is not currently available.

The paper is organized as follows. Section 2 provides the proof of the main result.
Section 3 is a short discussion. The proofs of the auxiliary results are relegated to
the Appendix.

2. Main result and proof
Theorem 2.1. For n < 5,
i \
(J"la o "/’{n) -~ (lub T ),un) = T(/’{l’ e ;/Ln) Zl?’ T(.up o ",un)~

Proof. Let X=T(Ay, -+ 2n), Y = T(py, - > 1,)- The ratio of the reversed hazard rate
function of X over that of Y is

) it
o rl(t) . Z?zl 1/1eefi.il A go(l; t)

Con(t) oy et o(p;t)’

i=1 1—e Mt

W ()

where A2 B means A is denoted as B. By Theorem 1.C.4 of Shaked and Shanthikumar
(2007), to show X >, Y, we just need to show /'(¢) > 0.

For convenience, we denote A2 B if the signs of A and B are the same. We have,

V() E ol ) t) — o(4; )@l (u;t)
sgn @ (4;t)  @y(mit)
p(4t)  o(mt)’

where

n Jietit

Jretit
(p;(}v7 t) Zi:l (1,6—}.,‘[)2 B Z?:l (e)‘it71)2
o P T
(P(l, t) Z?:l ;iee—).:z Z?:l e;'i/;fl

and similarly for ~2-2

@ (1)
o(mt)
Let

> oib(xi)d(x:)
Pl -om) == )

where b(x) = x/(e* — 1),d(x) = xe*/(e* — 1). Since
@1 (4 1)
@(4;1)

we conclude that /'(t) > 0 is equivalent to
O(uyt, -5 put) — D(Agt, -+, Aut) >0

0<x <xp <--- < xp.

=t Oyt -, Ant),
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for any t > 0. Therefore, to prove Theorem 2.1, it suffices to demonstrate that function
®(xy, - -+, x,) is increasing in [-vector directions.

Let u = (1,uy, -+, u,) be a given basic I-vector. We first consider the case where u;
is either 0 or 1, i =2, ---,n. It is easy to see that such an [-vector can be written as a
positive linear combination of d; = (1,0, ---,0) and Jx, whose first element is 1, kth
element is 4, and all others are zero, k = 2, - - -, n. For instance, when n=>5,

5
(LLLLDEY & (1,1,0,0,0) £ 35, +d,.

Thus, we only need to show that the function @ increases in the vectors é;,i =1, - - -, n.
Calculating

D sgn
%i b/ (xi)d(x:) + b(x:)d (%) Zb(xJ - (x Zb x;)d(x;),
and noticing that d’(x) > 0 and ¥'(x) < 0, we have

sgn oD

Vs ®E e = [b/(x1)d(x1) + b(x1)d (x1) Zb(x,) —b/( xl);b( )d(x;)
> b’(xnd(xl);b(xj) - b’<x1>;b<x»d<x;>
_ b’(xl)zn;b(xj) [d(x) — d(x))] > 0.
In the direction 0y, k :]; -+, n, we have
V5 0E g—j +4 SZ
~ [¥ () + b<xl>d'<x1>}j§";b<xj> - b'(xnj;b(x»d(xj)
+ 4[b' (xx)d(xx) + b(xx)d' (xx) Zb ) — 4b' (x ]Zn;b(x])d(x])
= Y 1b(s).
where J

1(j) = b (x1)d(x1) + b(xy)d (x1) + 4b (xi)d(xi) + 4b(xi)d (x) — [B/(x1) + 46 (xi) | d(x5).

Since d(x) is an increasing function and ¥'(x) < 0, I(j) increases with j. We have,

I(1) = V' (x1)d(x1) + b(x1)d' (x1) + 46 (xi)d(xx) + 4b(xi)d (x) — [V (x1) + 4 (x) ] d(x1)
= b(x1)d (x1) + 4b(x)d (xx) + 4 (xi)[d(xx) — d(x1)]-

From Lemma A.2 with («, ) = (4,4), we know I(1) > 0, and hence, V5 ® > 0.
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Now we consider the case when the basic /-vector contains components of —1. When

n < 5, after suppressing the zero elements and renaming the subscripts, a basic I-vector
must be one of the following 6 vectors: v; = (1, — 1),v, = (1,1, — 1),vs = (1,1,1, — 1),

ve=(1,1,1,1, —1),vs=(1,1, = 1, — 1), and v = (1,1,1, — 1, — 1).
Let v = (1,v,, - - -, v,) be a basic I-vector with some elements of —1. Write

V,0 = Zn:vlax
Sg“zvl [6/(xi)d (i) + blxi)d (x; Z sz x,Z x)d(x;)

= j=
= 3 R()bL),
j=1
where

Zv, b (x;)d(x;) + b(x;)d' xz Zv, x;)d(x;)
= Zv,b’ xi) [d(x;) sz x;)d (x;)

Since —b'(x) is decreasing, we can see that for any of the 6 above-mentioned basic
l-vectors, — > v;b/(x;) is positive. Noticing that d(x) is increasing, so, R(j) is increases
with j. Thus, to prove V,® > 0, it suffices to show R(1) > 0

For v = v, since b(x)d'(x) and b(x) are decreasing,

R(l) = Zvib/(xi)[d(x, xl + sz xz z

= b(x1)d (x1) — b(x)d (x2) — b’ (xz)[d(xz) —d(x)]
> 0.

For v = v,,

:Zvib/(xi)[d(xi) X1 +ZV1 xl l

= b(x;)d (x1) + b(x2)d (x;) — b( 3)d (x3)
+ ' (x2)[d(x2) — d(x1)] — V' (x3)[d(x3) — d(x1)]
> b(x1)d (x1) + V' (x2)[d(x2) — d(x1)] > 0,

where the last inequality is by Lemma A.2 with (o, f) = (0,1).
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For v =3,

1= ivib’<xi)[d<xi> —dx)]+ Y bl ()

= b(xy)d (x1) + b(x2)d (x2) + b(x3)d (x3) — b(x4)d' (x4)
+b'(x2) [d(x2) — d(x1)] + b (x3)[d(x3) — d(x1)] — V' (x4)[d(x4) — d(x1)]
> b(x))d (x1) + b(x2)d (x3) + ' (x2)[d(32) — d(x1)] + b (x3)[d(x3) — d(x1)]

2 %{b(xl)d'(xl) +b(x)d (x2) +2b' (%) d(x2) — d(x1)]}

—

+3 {b(x1)d (x1) + b(x3)d (x3) + 20 (x3)[d(x3) — d(x1)]}-

By Lemma A.2 with (a, f) = (1,2), we obtain R(1) > 0.

For v = vy,
Zv, xi)[d(x:) — d(x1)] + zn:wb(xi)d,(xi)
= 2 _b0a)d () + 3 b (xi)[d (i) — d(x1)] = blxs)d (xs) — b/(s)[d(xs) — 1))

>

B

b(x;)d (x;) + Zb/(xi)[d(xi) —d(x1)].

i=1

From Lemma A.3, K > 0, we get R(1) > 0 holds.
For v = vs,

= Y ) ldx) — dls)) + Y bl ()

= b(ox))d (x1) + b(x2)d' (x,) — b(x3)d’(x3) b(xy)d' (x4)
+ 6 (x2)[d(x2) — d(x1)] — b (x5)[d(x3) — dx1)] — ' (x)[d(x4) — d(1)]
> b(x;)d (x1) + b'(x2) [d(x2) — d(x1)] — bx3)d (x3) — b (x3)[d(x3) — d(x1)] > 0.

The last inequality follows from I > 0 in Lemma A.3.

For v = v,
R(1) = f:v,b (x)[d(x;) — d(x1)] + Zv b(x)d (x;)
= b(x1)d (x1) + b(x2)d (x2) + b(x3)d' (x3) — b(xa)d () — b(x5)d (x5)
+ V' (x2)[d(x2) — d(x1)] + b (x3)[d(x3) — d(x1)]
= V' (xa)[d(xa) — d(x1)] — ' (x5) [d(x5) — d(x1)]
> b(x1)d’(xl) + b()Q)d/(XZ) ( ) ( )
+ V' (x2)[d(x2) — d(x1)] + b (x3)[d(x3) — d(x1)] = b (xa)[d(xa) — d(1)]-

From Lemma A.3, ] > 0, we get R(1) > 0 in this case.
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In summary, we have showed that the function @ is increasing in the direction of
these [-vectors. The theorem is thus proved.

3. Discussion

In this paper, we propose a new concept of l-order for parallel systems with »n exponen-
tial components and conjecture that l-order implies the likelihood ratio order. We have
proved the conjecture for n < 5. As can be seen from the proof, our result can be gen-
eralized to parallel systems consisting of other components, such as Weibull compo-
nents. The conjecture for general n components remains open, although computer
simulations seem to confirm its validity.
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Then, for a fixed x>0, as function of y, G(x, y) has a unique zero, denoted as y,, and when
0 <y <yo G(x, y) is positive and decreasing while when y > y,, G(x,y) < 0.

Proof. We first prove that G(x,y) = 0 has one unique solution. In G(x, y), replace y by x, x by
x; and rename the resulted function as

G(x) = b(x)d'(x) + V' (x)[d(x) — d],
where d = d(x;). The following is the graph of G(x) when x; = 0.2.
Yy
0.4
0.3
0.2
0.1

n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | .

B
1 2 3 4 : 7 8
)

First,
G(0") = b(0")d'(07) + B/ (0")[d(0%) — d] = 1 x %— % 0—d = (1+d)/2>0.

Write

where
Fx) = e [* — 2+ d)x +d] + e[ + (2 +d)x —2d)| +d.

When x is big enough, F(x) > 0 and thus G(x) < 0. It is enough to show that F(x) has one
unique zero.
Write F'(x) = ¢*H(x), where

H(x) = e"[aoxz + box + co] +x2+ (44 dx+2—d,
with ag = 2,by = —2(1 + d),¢p = (d — 2). Calculating
H(x) = ex[aoxz + (2ag + bo)x + (bo + co)] +2x+ (4 +4d),
H'(x) = e’“[aox2 + (4ag + bo)x + (2ay + 2by + co)} +2,

we get H'(0) =by+cy+4+d=0, and H'(0) = 2a¢ + 2by + ¢cp + 2 = —3d < 0.
For k > 3, the kth derivative of H(x) is

H® (x) = ex(akxz + brx + Ck))

where a, = 2, by = 4k — 2 — 2d, ¢y = 2k*> — (4 + 3d)k +d — 2.

Let ky = (1 +d)/2,4k, = 4+ 3d + V/9d*> 4 16d + 32. When k > ky, by > 0. When k > k., ¢x >
0. Clearly, k. > k;, so, when k > k., both by and ¢, are non negative.

Let k, be the smallest number of k such that by > 0 and ¢, > 0. Then, H(ko’l)(x) is increasing.
Notice H®~1(0) = ¢, < 0, H*~(x) has one zero point. Denote the zero point as t,, then,
for 0 < x < to, H%2)(x) decreases. Since H*~2)(0) <0, we know H% 2 (x) <0 for 0 < x <
ty. For x > ty, H%~?)(x) increases. Thus, for x > to, H*~?)(x) has one zero point. Therefore, we
finally arrive at the conclusion that F(x), and hence G(x), has only one zero point over x > 0.
Since G'(x) also have one zero, we conclude that G(x) has the properties depicted in the Lemma
and showed in the picture. 0
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Lemma A.2. For given constants o, [} >0, define P, g(x,y) = b(x)d (x) + ob(y)d' (y) + p¥'(y)
[d(y) — d(x)]. Then, when (o,f)=(0,1),(1,1),(1,2),(2,2),(2,3),(3,3),(4,4), Py p(x,y) >0 for
any x,y > 0.

Proof. From the fact that b(y)d'(y) >0, we only need to check the cases of (x,f8) =
(0,1),(1,2),(2,3), and (4, 4).

First, we show that P, g(x,y) > 0 holds for small x. Since b(x)d'(x) is decreasing, d(x) is
increasing, and b'(x) < 0, so when x is in the range of (0, xo),

Py p(xy) = bx)d'(x) + ab(y)d (y) + Bb'(y) [d(y) - d(x)]
> b(xo)d (x0) + ob(y)d (y) + B¥'(y) [d(y) — d(0")]
= b(x0)d (x0) + ob(y)d'(y) + B/ (y) [d(y) — 1)]
£ Quply).

We will show that for (o, ) = (0,1), (1,2), we can take xo = 1; while (o, §) = (2,3),(4,4),
we can take xg = 0.4, to guarantee that P, p(x,y) > 0 holds for 0 < x < x¢ and y > 0.
Since b(1)d’(1) > 0.38 and b(0.4)d’'(0.4) > 0.46, we have,

Qi) = Qui(y) =038+ 5 (y)[dly) - 1)),

Q) = Qia(y) = 038+ b(y)d (y) +26' () [d(y) — D],
Q)£ Qu3(y) = 046 + 2b(y)d (y) + 36 () [d(y) — 1),
Qu(y) = Qua(y) = 046 + 4b(y)d (y) + 46/ (y) [d(y) — 1)].

By Lemma B.2, Q;(y) > 0 for y > 0,i = 1,2,3,4. Hence, P, g(x,y) > 0 for 0 < x < xo.

Now, we prove P, g(x,y) > 0 when x > xo. Noticing that d(x) is increasing and V'(x) <0,
thus P, p(x,y) >0 when 0 <y <x, we only need to prove P,p(x,y) >0 when y>x > x.
Hence, it suffices to prove that Q, g(x,y) > 0 when y > x > x.

Denote a = b(x)d'(x),d = d(x), and write Q, g(x,y) simply as Q(y). Recalling that b(x) =
x/(e* —1),d(x) = x¢*/(e* — 1), and d'(x) = [¢*(¢* — 1 — x)]/(e* — 1)*, we have

y @ —1-y) ye)’—e}’—kl{yey ]
=a+o — —d(x
Q) P a4
Lae¥ + ¥ [—py* + (o + p + pd)y — (Bd + 3a)]
+ & [~oy? — (o + B+ Bd)y + 2pd + 3a] + (—pd — a)
A
=J(y)s
and J'(y) = &J;(y), where
Ji(y) = 3ae? + & [—2By* +2(x + Bd)y + o+ p — pd — 6a]
— oy — (3a+ f+ pd)y — (x+ B — pd — 3a).
Let y =x+ t,t > 0. Denote J;(y) = Ji(x + t) by H(¢). Clearly, at t=0, H;(0) > 0. We have
Hi(t) = 306 4 e ag(x + £)> + bo(x + 1) + co] + do(x + £)* + eo(x +t) + fo,
B2 1 ef(aot® + bot + o) + dot® + eot + fo
£ Hy(1),
Hy(t)E e + (i + byt +c1) + dit + e = H3(t),

where
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1 1 1 1

a) = 5(10, bl = E (2(10 + b()), = E (b() + C()), dl = do, ey = 560,

ap = ay/(3ae’), by = (2apx + b))/ (3ae"), o = (apx* + byx + c,)/(3ae"),
do = dy/(3ae™), ey = (2dyx + ¢))/(3ae™), fo = (dpx* + ehx + f})/(3ae™),

with ay = —28,b) =2(o. + fpd),cy = (a+ f — pd — 6a),dy = —a, ey = —(3a+ f + pd), and f} =
—ao — f + fd + 3a. Specifically,

_ B
a = —5 >
3ae*
b — —4fx — 4f + 20+ 2pd
e 6ae* ’
—2Bx* + (20 — 4B + 2Bd)x + 30+ B + Bd — 6a
= ,
! 6ae*
o
d=—-——,
! 3ae?*
_ 2ox+3u+ f+ Bd
a=- 6ae?* '

We show in Lemma B.3 that H,(0) =1+ ¢y +fo > 0. To prove this lemma, we just need to
show H;(t) > 0 for (o, f) = (0,1),(1,2),(2,3), (4,4).

We first investigate the properties of functions aj, by, c1,d; and e, appeared in H;(t). Since
ae* = d(x)d'(x) is increasing, a,, d; are both increasing, so, to show e, is increasing, it is enough
to show e(x) = (20x + 3o + Bd) /(ae?) is decreasing. In fact,

¢ (x) B (2u + pd)dd — (20x + 30+ pd)(d'’2 + dd" + dd')
< (20 + pd')dd — (20x + 30 + Bd)(d'2 + dd')
2o+ pd)d — (20x + 30+ pd)(d + d)
= —ad — 2axd — 2axd — 3ad' — pd® < 0.
It turns out that function ¢, is decreasing for the cases of (o, §) = (1,2),(2,3),(3,4) but not

monotone for («, f) = (0,1), which will be dealt with first.
For the case of («, ) = (0,1), we have

Hs(t) = Zikt’:
k=0

where Jg =1+¢; +e, A =2+ by + e +di, 2, =2+a; + by +3e;, and for k > 3,
ﬂ*2k+ Lo, 1
R s TR I DTN
sgn

Sk atk(k—1) + bik +cy.

We show, for k > 0, 4 > 0. The proofs of 1o > 0,4; >0, and 4, > 0 go to Lemma B.4. For
k >3, to show Zx > 0 by induction, we just need to show Iy(x) = 2K + 2a,k + b; > 0, which, in
turn, just need to show 2k 4+ 2a; > 8+ 24 LLAVE a; > 0. This is easy to confirm. So, the case of
(o, f) = (0,1) is checked.

The proof that ¢;(x) decreases in the cases of (a,f) =(1,2),(2,3), and (3, 4) is not so
straightforward, we relegate it to Lemma B.6.

Now we study function b;. Since d(0") =1,d'(07) = 1/2, and when x — o0o,d(x) —x — 0.
Hence, b;(07) = (2o — 2f8)/3, and b;(c0) = —f/3.

Function b;(x) — b1 (c0) behaves like the function G(x) in Lemma A.l. We show in Lemma
B.5 that, when (o, f) = (1,2), b1(x) > —1.25; when (o, §) = (2,3),b1(x) > —1.75; when (o, ) =
(4,4),b1(x) > —2. Furthermore, b;(x) decreases in (0, 1) and increases in (2,0).
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Table 1. Interval and coefficients of 0(t) for (o, ) = (1,2).

X Interval a; b, [ dq e

(1, 2.5] -0.64 -1.25 -0.25 -0.12 -0.60
(2.5, 3.2] -0.29 -1.10 -0.37 -0.02 -0.10
(3.2, ) -0.23 -1.02 -0.67 -0.01 -0.05

To prove Hj(t) > 0 for any x > xo, we divide the interval (xo,00) into subintervals and on
each of them we find a function 0(t) such that

Jo(t) = & +e'[a) (%) + by (x)t + c1(x)] + di(x)t + e1 (x)
>t mt +bit+o| +dit+e
£0(t)
holds on that interval. The proof of this lemma is completed once we show the positiveness of
those functions 0(t).
The coefficients ay, by, ¢1,dy,e; of function 60(t) are presented in Tables 1-3, corresponding to

the cases (o, f) = (1,2),(2,3),(3,3), respectively. The proofs of the positiveness of these 0(¢)
functions go to Lemma B.1. O

Lemma A.3. For any 0 < x; < x, < x3 < x4, denote
I=b(x)d (x1) + V' (x2)[d(x2) — d(x1)] = blxs)d' (x3) = b (x3)[d(x3) — (1)),
J = b(x1)d (x1) + b(x2)d (x2) + V' (x2) [d(x2) — d(x1)] + b (x3) [d(x3) — d(x1)]
= b(xa)d (x4) = V' (xa)[d(xs) — (1)),
K = b(x;)d (x1) + b(x2)d (x2) + b(x3)d' (x3)
+ V' (x)[d(x2) — d(x1)] + b/ (x3)[d(x3) — dx1)] + 6 (xa) [d(x4) — (1))
Then, I > 0,] > 0,K > 0.

Proof. Consider function
G(x) = b(x)d (x) + V' (x)[d(x) — d(x1)], x>x > 0.

Clearly, G(x;) > 0. By Lemma A.1, for large x, G(x) < 0, and G(x) has a unique zero. Thus, for any
point x, > x;, if G(x;) <0, then G(x) < 0 for x > x,; if G(x;) > 0, then G(x) < G(x;,) for x > x,.
We have

I =b(x)d (x1) — b(x2)d (x2) + G(x2) — Glx3).

If G(x;) > 0, then G(x;) — G(x3) > 0, and clearly I > 0. Otherwise, if G(x;) < 0, then G(x3) <
0, and thus

I>b(x)d (x1) — b(x2)d (x2) + G(x2)
= b(x1)d (x1) + ' (x2) [d(x2) — d(x1)] > 0,
where the last inequality is by Lemma A.2.
For J, in case of G(x4) > 0, since G(x) is positive and decreasing in (x;, x4), we have
J = G(x1) + G(x2) + G(x3) — G(x4) — b(x3)d (x3)
= b(x)d' (x1) — b(x3)d' (x3) + G(x2) + G(x3) — G(x4) > 0.

In the case of G(x4) <0, denote my = b'(x,)[d(x2) — d(x1)], m3 = V' (x3)[d(x3) — d(x1)], and
m = min{my, mz}. If m = my, then,

J = bx)d (x1) + b(x2)d (x2) + b (x2) [d(x2) — d(1)] + b (x3) [d(x3) — d(x1)]
> b(x1)d (x1) + b(xa)d (x2) + 26 (x2) [d(x2) — d (1))
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Table 2. Interval and coefficients of 0(t) for (o, ) = (2,3).

X Interval a; b, [ dq e
(0.4, 0.5] -1.46 -1.44 1.89 —0.66 -2.32
(0.5, 0.6] -1.36 -1.52 1.71 -0.55 -2.03
(0.6, 0.8] -1.26 -1.52 1.38 —0.46 -1.77
(0.8, 1.0] -1.10 -1.68 1.10 -0.33 -1.36
(1.0, 1.4] -0.96 -1.75 0.65 -0.24 -1.05
(1.4, 2.1] -0.75 -1.75 0.14 -0.13 -0.63
(2.1, 3.1] -0.52 -1.63 -0.24 —-0.05 -0.27
(3.1, 4.0] -0.35 -1.48 -0.41 -0.02 -0.09
(4.0, 00) -0.27 -1.37 -0.84 —-0.01 -0.03
Table 3. Interval and coefficients of 0(t) for (o, 5) = (4,4).

X Interval a b, < d e
(0.40, 0.46] -1.95 -1.25 4.05 -1.31 -3.92
(0.46, 0.55] -1.86 -1.39 3.79 -1.18 -3.62
(0.55, 0.68] -1.74 -1.55 3.42 -1.01 -3.21
(0.68, 0.82] -1.59 -1.69 3.06 -0.81 -2.70
(0.82, 0.90] -1.44 -2.00 2.87 -0.64 -2.25
(0.90, 1.05] -1.37 -2.00 2.55 -0.56 -2.03
(1.05, 1.35] -1.24 -2.00 1.99 -0.44 -1.67
(1.35, 1.90] -1.03 -2.00 1.26 -0.27 -1.14
(1.90, 3.00] -0.77 -2.00 0.45 -0.12 -0.58
(3.00, 4.50] -0.48 -1.83 -0.02 -0.03 -0.16
(4.50, 7.00] -0.31 -1.67 -0.28 -0.01 -0.03
(7.00, oo) -0.20 -1.53 -0.67 -0.01 -0.01

If m = ms, then,

] > b(x1)d (x1)
> b(x1)d (x1)
2 b(xl)d'(xl)

By Lemma A.2, we know, ] > 0 holds.
For K, denote my = b'(x4)[d(x4) — d(x1)]. Still, we denote m = min{m,, ms, m4}.

If m = my, then,

K = b(x))d (x1) + b(x2)d' (x2) + b(x3)d' (x3)
+ b () [d(x2) — d(x1)] + b (x3)[d(x3) — doer)] + b'(xa) [d(xa) — 1))
> b(xl)d'(xl) + Zb(X4)d/(X4) + 3h,(X4)[d(X4) — d(xl)]

If m = m;, then,

By Lemma A.2, K > 0 holds in these cases.

If m = m,, consider function T(x) = b'(x)[d(x) — d(x1)]. Similar to Lemma A.1, we can show
that function T’(x) has a unique zero, and hence starting at x;, T(x) goes down monotonically
from zero to negative and goes up monotonically after reaching its minimal value, approaching

the x-axis as its asymptotes. Below is the graph of T(x) when x; = 0.5.

—~

x3) — d(x1)]
X3) — d(xl)]

%)d (x2) + V' (x2)[d(%2) — d(x1)] + &' (x3) [d (x3) — d(x1)]
d (x) + 26 (x3)[d
X3 d’(x3) —+ Zb,(X3

K > b(xl)d'(xl) + Zb(X3)dl(X3) + 3b,(X3)[d(X3) — d(xl)]
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In this case, we have T(x4) > T(x3) > T(x2), and hence,
K > b(xl)d'(xl) + b(xz)d'(xz) + b(X3)dl(X3)
+V(x0)[d(x2) — d(x)] + 2b'(x3)[d(x3) — d(x1)]

= é{b(xl)d/(xl) +2b(xy)d (x2) + 3b'(x,)[d(x2) — d(x1)]}
+ é {b(x1)d' (x1) + 2b(x3)d' (x3) + 36’ (x3)[d(x3) — d(x1)]}
+ % {b(x1)d' (x1) 4 b(x2)d (x2) + b(x3)d' (x3) + 36 (x3)[d(x3) — d(x1)]}

2K + K+ K.

By Lemma A.2, K; > 0,K; > 0, and noticing that b(x;)d' (x2) + b(x3)d' (x3) > 2b(x3)d' (x3), we

conclude that K5 > 0 again by Lemma A.2, and hence K > 0.

Lemma B.1. For any 5-tuple (ay, by, c1,dy, e;) listed in Tables 1-3 in the proof of Lemma A.2,
0t) = + e {mt +bit+c] +dit+e >0
for all t > 0.

Proof. Since the proofs for other cases are similar, we prove the following two cases as

demonstration
0(t) = e + '[—0.641> — 1.25¢ — 0.25] — 0.12¢ — 0.60 > 0,
0,(t) = é* + e'[—1.441> — 2.00t + 2.87] — 0.64t — 2.25 > 0,

which correspond to Table 1, row 1 and Table 3, row 5, respectively.
Write

0,(t) = ¥ + e'[—0.641> — 1.25¢ — 0.25] — 0.12¢ — 0.60
> (052 + t + 1) + €'[—0.64t> — 1.25¢ — 0.25] — 0.12¢ — 0.60
> ¢'[~0.14¢% — 0.25¢ + 0.75] — 0.12¢ — 0.60.
When 0 < ¢ < 1, — 0.14£> — 0.25t + 0.75 > 0, and thus

0,(t) > [—0.14¢> — 0.25¢ 4 0.75] — 0.12t — 0.60
= —0.14t> — 0.37t + 0.15.

When 0 < t < 0.3, — 0.14t2 — 0.37t + 0.15 > 0, and thus 6,(¢) > 0. When ¢ > 0.3, replace t by

t+0.3,

0,(t 4 0.3) = 206 4 03[ 0.64(t + 0.3)> — 1.25(¢ + 0.3) — 0.25] — 0.12(¢ + 0.3) — 0.60
sn o | 0.64 1634 0.6826] 0.12 0.636
e” +e

03 e0-3 e0-3 0.6 e0-6

For 4, (¢),

91(t) > €'[0.025¢2 — 0.22t 4 0.49] — 0.066¢ — 0.35
> 0.025¢> — 0.286t + 0.15.

When 0 < t < 0.5,0.025¢t2 — 0.286t + 0.15 > 0, and hence 9, (¢) > 0. For t > 0.5, replace t by

t+0.5,
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V1(t +0.5) = 1 4 e05[-0.475(t + 0.5)* — 1.22(¢ 4 0.5) — 0.51] — 0.066(t + 0.5) — 0.35
= 1 4 e 105[0.475¢ — 1.695¢ — 1.23875] — 0.066t — 0.383
> ¢ + ¢[—0.297 — 1.03t — 0.76] — 0.025¢ — 0.141
> ¢'[0.21£% — 0.03t + 0.24] — 0.025¢ — 0.141
> 0.21£* — 0.055t 4 0.099 > 0,

which completes the proof of 0(t) > 0.
For Hz(t),

05(t) > €'[—0.94t> — t + 3.87] — 0.64t — 2.25.
Since when 0 < t < 1, — 0.94¢> — t +3.87 > 0, and
0,(t) > —0.94t> — 1.64t +1.62 > 0
holds for 0 < t < 0.5. Thus, 0,(¢) > 0 holds for 0 < t < 0.5. For t > 0.5, replace t by ¢+ 0.5,

sgn
0,(t +0.5) > e + ¢'[—0.88> — 1.48¢ + 0.91] — 0.24t — 0.95

A

=(1),

where A >%" B means A > ¢B for some ¢ > 0.
For ¥,(t), when 0 < t < 0.8,

V(1) > e'[—0.38> — 0.48t + 1.91] — 0.24¢ — 0.95
> —0.38t* — 0.72t + 0.96.

So, for 0 < t < 0.8,1,(¢) > 0. For t > 0.8, replace t by ¢+ 0.8,
V(t 4 0.8) = 16 4 03[ 0.88( + 0.8)” — 1.48(¢ + 0.8) + 0.91] — 0.24(¢ + 0.8) — 0.95
2 1 ¢'[-0.402 — 1.30t — 0.38] — 0.05¢ — 0.24

> ¢'[0.10£2 — 0.30t + 0.62] — 0.05¢ — 0.24
> 0.10£2 — 0.35¢t + 0.38 > 0.

Lemma B.2. Define

Q) =038+ (y[dy) —1)],
Q(y) =038+ b(y)d' (y) +2b'(y)[d(y) — 1)],
Qs(y) = 0.46 + 2b(y)d'(y) + 3V (y) [d(y) — 1)),
) = )]-

Qu(y) = 0.46 + 4b(y)d'(y) + 4V (y) [d(y) — 1)
Then, Q;(y) > 0 for y > 0,i=1,2,3,4.

Proof. All Qi(y)’s are special case of Q(y) = a + ab(y)d' (y) + B (y)[d(y) — 1)]. Calculate

Q) = a+oab(y)d (y) + B’ (y)[d(y) — 1)]
e ol
(e —1) (@ -1 lo—1

Lae” + 7 [—py* + (2 +2B)y — 3a— B
+e [~y — (x+2B)y+3a+28] — (a+p)

Q).

=a+ua

[I>
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Q) E3a” + &' [~y +2(x+ )y — 6a +
+ [~oy? — (Bu+2B)y + 3a — o

A A

=QW).
Q'(y) = 6ae” + & [—By* + 20y — 6a + 3a + 2f]

— 20y — (3o + 2P)

Q”(y) = 12ae¥ + & [~ By* +2(o — B)y — 6a + 50+ 2] — 2.

We have, Q(0)=0,Q(0) =0, Q/(O) =0, Q”(O) =6a+30+2f>0. So, we just need to show
Q//(y) >0 for y > 0. The Ql»/(y) corresponds to the Q;(y), i = 1,2,3,4, are

Q(t) = 4.56¢ + e[ — 2t — 0.28],
Q,(t) = 4.56¢* + e'[—22 — 2t + 6.72] — 2,
Q5(t) = 5.52¢* + '[—32 — 2t + 13.24] —
Q) (t) = 5.52¢* + ¢'[—4r> +25.24] — 8.
The proof that CAQII-/(t) > 0 is similar to that of the Lemma B.1. =]

Lemma B.3. Let the functions cy and fy as defined in the proof of Lemma A.3. Then, Hy(0) =
1+ co +fo > 0.

Proof. We have
Hy(0)=1+c+/fo
= 1+ (agx® + box + ¢)/(3ae*) + (dox® + epx + f) / (3ae™)
306> + e (a)x® + blx + &) + d)x* + éyx + f)
= 3ae™ + & [-2p* +2(a+ pd)x + (2 + f — pd — 6a)]
—ox? — 3o+ B+ pd)x — o — B+ pd + 3a
=3 ex}i o e"[e;ex—_(ll; )l e + e"{—Zﬁx2 + 20x + 2ﬁxexxix

g .e"[e"—(l—i-x)}}

ef—1 -1 (e—1)

1+a+ﬁ

e
—ox® — (304 B)x + Px xx
o —

x e = (1 +x)]
R 1)’
B 3xe™ e — (1+x)] + e [—2px% + 20x + o + f] (¢F — 1)°
+ 2832 (¢ — 1)° — Pxe® (e — 1) — 6xe*[e" — (1 + x)]
+ [~ — Ba+ B)x — o — ] (e — 1)°
— BxPe* (¢ — 1)% + Pxe (e — 1)* + 3xe*[e" — (1 4 x)]
= e"[(20 — B+ 3)x + a + f]
+ e [(=3 — o+ B)x* + (92 + 2B — 3)x — 4(x + p)]
+ e[ (30 — 2B)x* + (150 4+ 9)x + 6(cx + f)]

—“—ﬁ+ﬁexxex
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+ & [(=30+ B+ 3)x% + (—11a — 2B + 3)x — 4(o+ )]
+ox® + B+ f)x+a+f
A
=p().

The proofs for p(x) > 0 for the four cases are quite the same. So, let us just check the case of
(o, B) = (4,4). In this case,

p(x) = e*(7x + 8) + &*(—3x* — 31x — 32)
+ €™ (4x® + 69x + 48) + €*(—5x* — 49x — 32) + 4x* + 16x + 8.

We have,
P (x) = e™(28x + 39) + &*(—9x* — 99x — 127)
+ ¥ (8x% + 146x + 165) + €*(—5x* — 59x — 81) + 8x + 16
= xq(x) + r(x),
where,

q(x) = e*(28) + & (—9x — 99) + €™ (8x + 146) + €*(—5x — 59) + 28,
r(x) = e*(39) + e (—127) + **(165) + €(—81) + 16.

It is easy to prove r(x) > 0 and q(x) > 0. In fact,

2]
ag
=}

e — 2.443¢* +2.11¢* — 0.52,

*
R
v

L L L L
@
ag
=

»
ag
=}

= = = = <<

e — 11.63¢* + 0.70,

ﬁ
=
Y

.
V&

e" —0.82 > 0.
112e* + &**(—27x — 306) 4 €*(16x + 300) — 5x — 64,

‘
=

=

3
aQ
=}

336¢™ + e**(—54x — 639) + €*(16x + 316) — 5,

1008 + ¢*(—108x — 1332) + 16x + 332

B2 1 ¢*[(—108/1008)x — (1332/1008)] + (16/1008)x + (332/1008)
> e* + ¢*(—0.11x — 1.322) + 0.015x + 0.329,

% =
€ |
=1

sgn
g > e 4 ¢°(—0.055x — 0.716) 4 0.007 > 0.

Since at x=0, all the functions are non negative, we conclude that r(x) > 0 and g(x) > 0, and
hence p'(x) > 0 and p(x) > 0, and thus H,(0) > 0 as claimed. O

Lemma B.4. Denote Pi(x) =1+c;+e,Py(x) =2+by+e +di,P3(x) =2+a; + by +3ep.
Then, in the case of (, f) = (0,1),P;(x) >0, i=1, 2, 3.

Proof. We have,
P1(X) =14c+e
—2x*+ (—4+2dx)+14+d—6a —-1-d
6ae* 6ae2*
Lae™ + e [—267 + (—4+2dx) + 1 +d — 6a] — (1+d)
> 6ae”™ + e [—4x+1+d—6al — (1+d)
> 6ae* + e [—4x+1—6a] — 1

éPl(x))
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and,

sgn

P (x) =6(d +2a)e" + (—4x — 3 — 6a — 64') 2 41 ().
For P,(x), we have,
Py(x)=2+4+b+e +d;
—4x—442d —-1-d
6ae* 6ae>*
E12ae* + ¢ |—4x — 4 +2d] — (1 +4d)
> 12ae* + ¢ [—4x —4+d] —1

=2+

A
=pa2(x),
and,
Py(x) B 12(a +20)* + (—4x—8+d+d) 2 (%)

For P;(x), we have,

1
P3(x) =2+ a, + bl +561
1 +—4x—4+2d 1+d
3ae* 6ae* 12ae*
B 24ae™ + ¢*|—8x — 12+ 4d] — (1 + d)

> 240¢% + ¢ [—8x — 12 + 3d] — 12 ps(x),
and,
23(x) £ 24(d’ + 2a)€" + (—8x — 20 + 3d + 3d') 2 g3 (x).
It is easy to confirm that p;(0") > 0. So, it is enough to prove that g;(x) > 0 for i=1, 2, 3.
Recall that a = e*(e* — 1) L@’ = e*(¢* — 1), where,
I=x(e" —1)[e" — (14 x)] = xe* — x(2 +x)e" + x(1 + x)
J 1—x)e

X
( Ve 4+ (2x% — 2x — 2)e" + (& + 3x + 1).

Hence,
gi(x) = 6(a’ +2a)e* + (—4x — 3 — 6a — 64’)
=6e™(ef —1)*(J+2I) + (—4x —3) —6e(e" — 1) I —6e*(e* — 1)
B 6e™(J +21) + (—4x — 3)(e* — 1)* — 66T — 6¢*]
= ¥ (2x 4 3) + &*(—20x — 6) + e*(6x* + 24x)
+ e (—12x* — 8x + 6) + (—4x — 3),
qo(x) = 12(d' +2a)e* + (—4x — 8+ d + d')
=126 — 1) '+ 2I) 4 (—4x — 8) + xe* (" — 1) " + e — (1 +x)](eF — 1)
1262+ 20) + (—4x — 8) (e — 1) +xe (¢ — 1)° + &[¢* — (1 + x)](e" — 1)
= e*(9x +5) + *(—60x + 5) + €”(36x* + 41x — 33)
+€e*(12x + 31) + (—4x — 8),

and similarly,
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43 (%) £ e (19x 4 7) + € (—124x + 23) + ¥(72x* + 87x — 87)
+ e*(26x + 77) + (—8x — 20).

The proofs of the positiveness of these functions are similar and we check g3(x) >0 as an
example. We have

4y (x) E ™ (76x + 47) + *(—372x — 55) 4 ¥ (144x* + 318x — 87)
+ ¢*(26x +103) — 8,
45 (x) E e (304x + 264) + €2 (—1116x — 537) + ¢*(288x% + 924x + 144)
+26x + 129,
q"(x) E ¥(912x + 1096) + €2*(—2232x — 2190) + ¢*(288x> + 1500x + 1068) + 26,
a3 (x) E e2(2736x + 4200) + ¢*(—4464x — 6612) + (288x% + 2076x + 2568)
2x(

B 2(2.736x 4 4.200) + € (—4.464x — 6.612) + (0.288x> + 2.076x + 2.568)

> P(2.7x + 4.2) + ¢ (—4.5x — 6.7) + 2x + 252 1(x).

Since
' (x) = e¥(5.4x + 11.1) + €*(—4.5x — 11.2) + 2
r(x) = e(10.8x + 27.6) + €*(—4.5x — 15.7) > 0,
and r(0) = 0,7/(0) = 1.9 > 0, we conclude that r(x) > 0, and hence g;(x) > 0. |

Lemma B.5. Let the functions bi(x) as defined in the proof of Lemma A.2. Then, by(x) has the
properties as mentioned.

Proof. We show the case of (o, f) = (4,4) as an example. That is, b;(x) > —2, or, by(x) +2 >
0. We have,
—4fx — 4 + 200+ 2f3d
6ae~
£12dd — 8x— 8+ 8d

sgn

> 12dd’ — 8x = 3dd — 2x
B3 —1—x)—2(e" —1)°
=& 4+ 3(1 — x)e** — 6¢* + 2,

bh+2=2+

which can be easily proved to be > 0. 0O

Lemma B.6. The function c; defined in the proof of Lemma A.2 decreases over x>0 for

(o, B) = (1,2),(2,3), (4,4).

Proof. The proofs for the three cases are quite similar, and hence we just prove the case
of (o, f) = (4,4).

Denote the numerator and denominator of ¢; as N and D, respectively, where N =
—2fx* + (20 — 4 + 2Bd)x + 30+ f + fd — 6a and D = dd'.

Recalling a = bd,a' = V'd +bd",d(x) = xe*/(e" — 1),d'(x) = e*[e" — (1 4+ x)]/(e* — 1)}, d" =
e*le"(x — 2) + (x +2)]/(e* — 1), and noticing & > 0,d” > 0, and x — d < 0, we have
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¢ EN'D - ND
= [~4Px + (20 — 4P) + 2Bd + 2pxd + pd — 6d'|dd
+ [2Bx% — (200 — 4f)x — 2fdx — 30 — f — fid + 6a|(d'2 + dd").
Notice 2Bx* — 2fdx < 0, we thus have,

¢ S%n [—4Bx + (20 — 4B) +2pd + 2pxd + pd — 6(V'd + bd")|dd'
+ [~ (20— 4B)x — 30— B — pd + 6bd'] (d'2 + dd")
=8+,
where
S = [—4px + (20 — 4f) + 28d + 2pxd ) dd’ + (4f — 20)x(d'2 + dd"),
S;=—Bo+ p)(d2+dd") — pd*d’ + 6d'2(bd — b'd).
For S,, we have,
S, =—Bo+ p)(d2+dd") — pd*d" + 6d'2(bd — b'd)
< —(3o+ p)(d'2+dd") + 6d'2(bd — b'd)
= —16(d'2 + dd") + 6d'2(bd' — b'd)
£ —8(d2+dd") +3d2(bd — b'd)
=d2[-8+3(bd —b'd)| —8dd" <0,
which holds due to the fact that —8 + 3(bd’ — b'd) < 0.
For Sy, plugging dd' = xe**(e* — 1 — x)(e* — 1)73 and
d2 +dd" = [ + e (o6* — 4x — 2) + (2% + 4x + 1)]
into S;, we obtain,
1 E [—4Px + (20— 4P) + 2Bd + 2Bxd | x(e" — 1)(e* — 1 — x)
+ (4 — 20)x[e™ + ¢ (x® — 4x — 2) + (2% + 4x + 1)]
Bl ox—1+d+xd)x(ef —1)(e" — 1 —x)
+x[e¥ + (¥ —4x —2) + (2% +4x + 1)]
Cx— 14 xe* +xe"(e"— 1—x) .
e —1 (e — 1)2
+ x[e¥ + & (® —4x —2) + (2% +4x + 1)]
B [(—2x — 1)(eF — 1) + xe*(e* — 1) + xe*(e" — 1 — x)] (¢ — 1 — x)
+ (¢ = 1) [e¥ + e (6* — 4x — 2) + (24 + 4x + 1)]
= [~ + & (=2 + 20 +2) + (—2x — 1)][¢" — (1 + )]
+ (e —1) [ + e (x* —ax —2) + (2% + 4x + 1)]
= —xe® + (¥ + 2x)e" — x

s

= —[ez" — (x2 +2)e + 1].

(e"—1)(e"—1—x)

By regular derivative method, it is easy to show e** — (x> +2)e* + 1 > 0. m]
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