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© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Stochastic ordering plays an important role in reliability theory, statistical inference, information science, and other
pplied probability areas. An important example is the study of lifetime of the k-out-of-n systems, where many interesting
esults have been obtained. See, for instance, Pledger and Proschan (1971), Proschan and Sethuraman (1976), Khaledi and
ochar (2000), Kochar and Xu (2007), Da et al. (2010), Joo and Mi (2010), Torrado and Kochar (2015), Cheng and Wang
2017), among others. For a comprehensive survey of stochastic ordering, see Shaked and Shanthikumar (2007).

Despite for the many progresses made in the study of stochastic ordering in a parallel system, there are long-standing
pen problems in this field. One of them, documented in Balakrishnan and Zhao (2013), concerns the likelihood order
omparison of the lifetime of a parallel systems of two exponential components. Specifically, let T (λ1, λ2) and T (µ1, µ2)
e the lifetimes of two parallel systems with two exponential components whose hazard rates are (λ1, λ2) and (µ1, µ2),
espectively. Here the lifetime distribution of an exponential component with hazard rate λ is λe−λt . And let fT (λ1,λ2)(t)
nd fT (µ1,µ2)(t) be their probability density functions, respectively. We say that T (λ1, λ2) is larger than T (µ1, µ2) in the
ikelihood ratio order, denoted as T (λ1, λ2) ≥lr T (µ1, µ2), if fT (λ1,λ2)(t)/fT (µ1,µ2)(t) is an increasing function of t .

Assume λ1 ≤ λ2, µ1 ≤ µ2, and λ1 < µ1. When λ1 = λ2 = λ, a well-known result is, when λ ≤ µ1 ≤ µ2,
(λ1, λ2) ≥lr T (µ1, µ2). So, in this paper, we assume that λ1 < λ2.
Write (µ1, µ2) − (λ1, λ2)

sgn
= (1, b), where A

sgn
= B if and only if A = kB for a positive k. When b = −1, Dykstra et al.

1997) showed that

T (λ1, λ2) ≥lr T (µ1, µ2). (1.1)
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Zhao and Balakrishnan (2011) showed that (1.1) holds for −1 ≤ b ≤ 0. Yan et al. (2013) proved, under the condition
1 ≤ µ1 ≤ λ2, that b can be extended to −1 ≤ b ≤ 1. Balakrishnan and Zhao (2013) showed by an example that, if
= 70, (1.1) does not hold. They went ahead and posted an open problem (Open Problem 1, Balakrishnan and Zhao

2013)) on whether we can extend the range of b for which (1.1) holds.
The objective of this paper is to show that (1.1) holds for −1 ≤ b ≤ 10 but does not hold for b ≥ 12. The paper is

rganized as follows. The main result and its proof are presented in Section 2, together with a counter-example showing
hat the likelihood ratio ordering fails. A short discussion is provided in Section 3.

. Results and proofs

heorem 2.1. Assume λ1 < λ2, µ1 ≤ µ2, and λ1 < µ1. Write (µ1, µ2) − (λ1, λ2)
sgn
= (1, b). Then, for −1 ≤ b ≤ 10,

(λ1, λ2) ≥lr T (µ1, µ2).

roof of Theorem 2.1. Let X = T (λ1, λ2) and Y = T (µ1, µ2). The probability density function of X is fX (t) =

1e−λ1t + λ2e−λ2t − (λ1 + λ2)e−(λ1+λ2)t , and that of Y is fY (t) = µ1e−µ1t +µ2e−µ2t − (µ1 +µ2)e−(µ1+µ2)t . By the definition
f likelihood ratio order, X ≥lr Y , if and only if, that fX (t)/fY (t) is increasing in t > 0, which, in turns, is equivalent to

f ′

X (t)
fX (t)

−
f ′

Y (t)
fY (t)

≥ 0,

here,

f ′

X (t)
fX (t)

= −
λ2
1e

−λ1t + λ2
2e

−λ2t − (λ1 + λ2)2e−(λ1+λ2)t

λ1e−λ1t + λ2e−λ2t − (λ1 + λ2)e−(λ1+λ2)t

= −
λ2
1e

λ2t + λ2
2e

λ1t − (λ1 + λ2)2

λ1eλ2t + λ2eλ1t − (λ1 + λ2)
.

For 0 < x1 ≤ x2, define

Φ(x1, x2) =
x21e

x2 + x22e
x1 − (x1 + x2)2

x1ex2 + x2ex1 − (x1 + x2)
=

x2b(x1) + x1b(x2) − 2
b(x1) + b(x2)

,

here b(x) = (ex − 1)/x. Then, to prove Theorem 2.1, it suffices to show that Φ(x1, x2) is increasing in the direction of
(1, 10). In fact, by Dykstra et al. (1997), ∇(1,−1)Φ > 0, and thus for any −1 < b < 10,

∇(1,b)Φ =
10 − b
11

∇(1,−1)Φ +
1 + b
11

∇(1,10)Φ > 0.

Since

▽(1,10)Φ =
∂Φ

∂x1
+ 10

∂Φ

∂x2
sgn
= (x2 − x1)b′(x1)b(x2) + b(x1)b(x2) + b2(x2) + 2b′(x1)

+ 10(x1 − x2)b′(x2)b(x1) + 10b(x1)b(x2) + 10b2(x1) + 20b′(x2)

= b(x + t){tb′(x) + 11b(x)} + b2(x + t)

+ b′(x + t)
{
−10tb(x) + 20

}
+

{
10b2(x) + 2b′(x)

}
.

Here we reparametrize (x1, x2) as (x, x + t) for t ≥ 0.
Plugging in b′(x) = (xex − ex + 1)/x2,

▽(1,10)Φ =
exet − 1
x + t

{
tb′(x) + 11b(x)

}
+

(exet − 1)2

(x + t)2

+
(x + t)exet − exet + 1

(x + t)2

{
−10tb(x) + 20

}
+

{
10b2(x) + 2b′(x)

}
sgn
= (exet − 1)2 + (x + t)(exet − 1)

{
tb′(x) + 11b(x)

}
+

{
(x + t)exet − exet + 1

}{
−10tb(x) + 20

}
+ (x + t)2

{
10b2(x) + 2b′(x)

}
sgn
= e2t + et

{
α2(x)t2 + α1(x)t + α0(x)

}
+ β2(x)t2 + β1(x)t + β0(x)

∆
= Jx(t),

where

α (x) = e−x{b′(x) − 10b(x)
}
, α (x) = e−x{xb′(x) + 21b(x) − 10xb(x) + 20

}
,
2 1
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Table 1
Coefficients of θj(t).

Interval of x (α2j, α1j, α0j) (β2j, β1j, β0j)

U1 = (3, 3.4] (−2.94, −2.32, 12.16) (0.81, 5.36, 8.7)
U2 = (3.4, 3.8] (−2.64, −3.19, 11.96) (0.66, 4.96, 9.17)
U3 = (3.8, 4.2] (−2.38, −3.86, 11.76) (0.56, 4.58, 9.45)
U4 = (4.2, 4.7] (−2.16, −4.46, 11.57) (0.46, 4.19, 9.64)
U5 = (4.7, 5.15] (−1.941, −4.97, 11.40) (0.37, 3.82, 9.78)
U6 = (5.15, 5.65] (−1.78, −5.36, 11.28) (0.31, 3.51, 9.86)
U7 = (5.65, 6.25] (−1.62, −5.75, 11.17) (0.25, 3.18, 9.92)
U8 = (6.25, 7.00] (−1.47, −6.12, 11.09) (0.21, 2.85, 9.96)
U9 = (7.00, 8.00] (−1.31, −6.50, 11.04) (0.16, 2.50, 9.98)
U10 = (8.00, 9.50] (−1.141, −6.90, 11.01) (0.11, 2.10, 9.99)
U11 = (9.50, 11.95] (−0.96, −7.33, 11.00) (0.07, 1.67, 9.99)
U12 = (11.95, 16.65] (−0.761, −7.80, 11.00) (0.03, 1.20, 9.99)
U13 = (16.65, 26.5] (−0.55, −8.25, 11.00) (0.01, 0.75, 9.99)
U14 = (26.5, 36.35] (−0.35, −8.50, 11.00) (0.00, 0.00, 9.99)
U15 = (36.35, 46.2] (−0.25, −8.57, 11.00) (0.00, 0.00, 9.99)
U16 = (46.2, ∞) (−0.20, −9, 11.00) (0.00, 0.00, 9.99)

α0(x) = e−x{11xb(x) + 20x − 22
}
, β2(x) = e−2x{b′(x) + 10b2(x)

}
,

β1(x) = e−2x{3xb′(x) − 21b(x) + 20xb2(x)
}
,

β0(x) = e−2x{10x2b2(x) + 2x2b′(x) − 11xb(x) + 21
}
.

To prove Jx(t) > 0, we consider the case x > 3 and 0 ≤ x ≤ 3 separately.
For x > 3, by Lemma 2.2, α2(x), β0(x) are increasing, while α1(x), α0(x), β2(x), and β1(x) are decreasing. In addition,

α2(∞) = 0, α1(∞) = −9, α0(∞) = 11, β2(∞) = 0, β1(∞) = 0, and β0(∞) = 10. We decompose interval (3, ∞) as a
disjoint union of 16 subintervals Uj, j = 1, . . . , 16 given in Table 1. When x ∈ Uj, by the monotonicity of αi(x), βi(x), we
an find αij, βij such that αi(x) ≥ αij, βi(x) ≥ βij, i = 2, 1, 0, and thus

Jx(t) ≥ e2t + et
(
α2jt2 + α1jt + α0j

)
+ β2jt2 + β1jt + β0j

∆
= θj(t). (2.1)

able 1 provides the list of αij and βij, i = 2, 1, 0 associated with interval Uj, j = 1, . . . , 16.
Similar to the case when x > 3, we decompose interval (0, 3 ] as a disjoint union of 15 subintervals Vj, j = 1, . . . , 15

given in Table 2. By Lemma 2.2, γ2(x) is increasing, γ1(x) and β2(x) are decreasing. Function γ0(x) increases on (0, 0.5) and
decreases on (0.7, 3), and is greater than 10 on (0.5, 0.7). Function 0.5β1(x) increases on (0, 1.5) and is greater than 2.8
on (1.5, 3). Thus, when x ∈ Vj, we can find γij such that γi(x) ≥ γij, i = 2, 1, 0, β2(x) ≥ δ1j, and 0.5β1(x) ≥ δ0j. Thus

Hj(t) ≥ e2t + et
(
γ2jt2 + γ1jt + γ0j

)
+ δ1jt + δ0j

∆
= φj(t). (2.2)

Table 2 provides the list of γ2j, γ1j, γ0j, δ1j, and δ0j, associated with interval Vj, j = 1, . . . , 15.
We claim that all θj(t) defined in (2.1) and all φj(t) defined in (2.2) are positive when t > 0. Due to limitation of space,

we prove θ12(t) > 0 as an illustration for the following two reasons. First, all θj(t) and φj(t) have similar graphs, starting
at a positive value at t = 0, increasing first, and then decreasing, and then increasing again all the way to ∞ (Fig. 1
displays the graph of θ12(t)). Second, since the minimal value of θ12(t), about 0.016, is the smallest among θj(t) and φj(t),
the positivity of θ12(t) is the most difficult to prove.

By Table 1,

θ12(t) = e2t + et (−0.761t2 − 7.8t + 11) + 0.03t2 + 1.2t + 9.99.

When 0 < t ≤ 1.5, since −0.261t2 − 6.8t + 12 > 0, we have

θ12(t) > et (0.5t2 + t + 1) + et (−0.761t2 − 7.8t + 11) + 0.03t2 + 1.2t + 9.99

= et (−2.61t2 − 6.8t + 12) > 0.

When t > 1.5, reparametrizing t as s + 1.5 in θ12(t),

θ12(t) = e2s+3
+ es+1.5[

−0.761s2 − 10.083s − 2.41225
]
+ 0.03s2 + 1.29s + 11.8575

sgn
= e2s + es

[
−0.761e−1.5s2 − 10.083e−1.5s − 2.41225e−1.5]

+ 0.03e−3s2 + 1.29e−3s + 11.8575e−3

> e2s + es
[
−0.1699s2 − 2.2499s − 0.5383

]
+ 0.00149s2 + 0.06422s + 0.5903

∆
= ϑ1(s).

For 0 ≤ s ≤ 0.4, ϑ (s) > es(0.33s2 − 1.2499s + 0.4617) > 0. Equivalently, for 1.5 ≤ t ≤ 1.9, θ (t) > 0.
1 12
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Fig. 1. Plot of θ12(t).

Table 2
Coefficients of φj(t).

Interval of x (γ2j, γ1j, γ0j) (δ1j, δ0j)

V1 = (0, 0.5] (−4.75, 4.93, 9.5) (6.39, −10.5)
V2 = (0.5, 0.7] (−3.73, 3.34, 10) (5.37, −1.73)
V3 = (0.7, 1.2] (−3.40, 0.36, 9.98) (3.49, 0.07)
V4 = (1.2, 1.5] (−2.74, −0.84, 9.19) (2.75, 2.41)
V5 = (1.5, 1.9] (−2.43, −1.97, 8.09) (2.04, 2.80)
V6 = (1.9, 2.2] (−2.10, −2.57, 7.31) (1.66, 2.80)
V7 = (2.2, 2.4] (−1.89, −2.89, 6.82) (1.45, 2.80)
V8 = (2.4, 2.55] (−1.77, −3.08, 6.48) (1.32, 2.80)
V9 = (2.55, 2.65] (−1.69, −3.20, 6.27) (1.24, 2.80)
V10 = (2.65, 2.75] (−1.64, −3.31, 6.06) (1.17, 2.80)
V11 = (2.75, 2.80] (−1.59, −3.36, 5.96) (1.13, 2.80)
V12 = (2.80, 2.85] (−1.56, −3.40, 5.86) (1.10, 2.80)
V13 = (2.85, 2.90] (−1.53, −3.45, 5.77) (1.07, 2.80)
V14 = (2.90, 2.95] (−1.52, −3.49, 5.67) (1.04, 2.80)
V15 = (2.95, 3.00] (−1.491, −3.526, 5.586) (1.014, 2.80)

For s > 0.4, reparametrizing s as w + 0.4 in ϑ1(s), by the same process, we have

ϑ1(s) = e2w+0.8
+ ew+0.4(−0.1699w2

− 2.38582w − 1.465444)

+ 0.00149w2
+ 0.065412w + 0.6162264

sgn
> e2w + ew(−0.113888w2

− 1.599263w − 0.982317)

+ 0.000669w2
+ 0.029391w + 0.276888

∆
= ϑ2(w),

where A
sgn
> B means A > cB for some c > 0.

By the fact that ϑ
(6)
2 (w) > 0 and ϑ

(k)
2 (0) > 0 for k = 3, 4, 5, we conclude that ϑ

(3)
2 (w) > 0.

We claim that ϑ ′

2(w) has exactly one zero over interval (0, ∞). Otherwise, assume ϑ ′

2(w) has more than one zero.
Noticing that ϑ ′

2(0) < 0 and ϑ ′

2(∞) > 0, we conclude that ϑ ′

2(w) has at least three zeros, and thus, ϑ
(3)
2 (w) has at least

one zero, which contradicts the fact that ϑ (3)(w) > 0, which we just proved.
Since ϑ ′

2(w) has exactly one zero and ϑ ′

2(0) < 0, ϑ ′

2(0.63) = −0.0121917 < 0, then in (0, 0.63), ϑ ′

2(w) < 0, and
thus ϑ2(w) is decreasing. Therefore, when 0 ≤ w ≤ 0.63, ϑ2(w) > ϑ2(0.63) > 0.5 × 10−5 > 0. Equivalently, when
1.9 ≤ t ≤ 2.53, θ12(t) > 0.

For w > 0.63, reparametrizing w by u + 0.63,

ϑ2(w)
sgn
> e2u + eu(−0.060656u2

− 0.928181u − 1.083855)

+ 0.000189u2
+ 0.008575u + 0.083867 ∆

= ϑ3(u).

Taylor expansion yields ϑ3(u) =
∑

∞

n=0 αntn, where α0 = 0.000012, α1 = −0.003461, α2 = 0.4694245.
For n ≥ 3, it is easy to prove by the Mathematical Induction Principle that

αn =
1 [

2n
− 0.060656n(n − 1) − 0.928181n − 1.083855

]
> 0.
n!
4
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hus, ϑ3(u) ≥ α2u2
+α1u+α0. Since the determinant ∆ = α2

1 −4α2α0 = −1.055385×10−5 < 0 and α2 > 0, we conclude
that, ϑ3(u) > 0 for all u ≥ 0. Equivalently, when t ≥ 2.53, θ12(t) > 0.

To sum up, we have proved that θ12(t) > 0 for all t > 0 as claimed. □

emma 2.2. Let αj(x), βj(x), γj(x), j = 0, 1, 2, be defined in the proof of Theorem 2.1. Then,

1. 1 + α0(x) + β0(x) > 0 for x > 0.
2. When x > 3, α2(x), β0(x) increase, α1(x), α0(x), β2(x), and β1(x) decrease.
3. When 0 < x ≤ 3, γ2(x) increases, γ1(x) and β2(x) decrease; γ0(x) increases on (0, 0.5), decreases on (0.7, 3); and

γ1(x) > 10 on (0.5, 0.7); 0.5β1(x) increases on (0, 1.5), and is larger than 2.8 on (1.5, 3).

The proof of Lemma 2.2 is routine and hence is omitted.

Example 2.3. Recall fX (t) = λ1e−λ1t +λ2e−λ2t −(λ1+λ2)e−(λ1+λ2)t , fY (t) = µ1e−µ1t +µ2e−µ2t −(µ1+µ2)e−(µ1+µ2)t . Denote
D(t) = f ′

X (t)fY (t) − fX (t)f ′

Y (t). Choose (λ1, λ2) = (1, 2), (µ1, µ2) = (1.1, 3.2), D(1.2) = −0.047 < 0, which indicates that
T (1, 2) ≱lr T (1.1, 3.2). Thus, in the direction (1, 12), there is no likelihood ratio order between T (λ1, λ2) and T (µ1, µ2).

3. Discussion

Determining the direction (1, b)
sgn
= (µ1, µ2) − (λ1, λ2) in which T (λ1, λ2) ≥lr T (µ1, µ2) is an extremely challenging

problem with a best previous record of b = 1. If likelihood ratio ordering holds for a direction (1, b) with b > −1, then
it also holds for any direction (1, b′) with −1 < b′ < b. In fact, by assumption we have ∇(1,b)Φ > 0, and by Dykstra et al.
(1997) we have ∇(1,−1)Φ > 0, and thus ∇(1,b′)Φ =

b−b′

b+1 ∇(1,−1)Φ +
1+b′

b+1 ∇(1,b)Φ > 0. The above observation also implies,
y the contradiction argument, that if likelihood ratio ordering does not hold for a direction (1, c) for some c > −1, then
t does not hold for any direction (1, c ′) with c ′ > c neither. Thus, there must exist a unique b∗ > 0 such that likelihood
atio ordering holds for −1 ≤ b < b∗ but does not hold for all b > b∗ (the case when b = b∗ has to be discussed separately
ince b∗ is a critical point). Our results imply that 10 ≤ b∗ < 12, while the best result before us was 1 ≤ b∗ < 70. This
indicates that our paper greatly improves the existing result.

The main difficulty of this type of problems is to prove that a non-monotonic function is positive. We propose
a systematic method to handle this challenge. The main idea is to divide the domain into small intervals and use
reparametrization to localize the function around zero where et can be well approximated by a quadratic polynomial
whose positiveness is easy to verify. We did not spend effort to optimizing our decompositions in Tables 1 and 2, which
means, with finer decompositions, the conclusion could be further strengthened. Our numerical explorations indicated
that the largest b∗ is around 10.78. Furthermore, we believe the theoretical result presented in this paper can provide
some kinds of guidance to compare the qualities or reliabilities of two parallel systems. It can also be useful in testing
hypothesis concerning these systems.

CRediT authorship contribution statement

Jiantian Wang: Conceptualization, Methodology, Writing - original draft. Bin Cheng: Methodology, Validation, Writing
- original draft, Writing - review & editing.

Acknowledgments

The authors would like to thank Editor Xiao, the Associate Editor, and two anonymous reviewers for their comments.

References

Balakrishnan, N., Zhao, P., 2013. Ordering properties of order statistics from heterogeneous populations: a review with an emphasis of some recent
developments. Probab. Engrg. Inform. Sci. 27, 403–443.

Cheng, B., Wang, J., 2017. Stochastic comparison of parallel systems with heterogeneous exponential components. J. Appl. Probab. 54, 970–976.
Da, G., Ding, W., Li, X., 2010. On hazard rate ordering of parallel systems with two independent components. J. Statist. Plann. Inference 140, 2148–2154.
Dykstra, R., Kochar, S.C., Rojo, J., 1997. Stochastic comparisons of parallel systems of heterogeneous exponential components. J. Statist. Plann. Inference

65, 203–211.
Joo, S., Mi, J., 2010. Some properties of hazard rate functions of systems with two components. J. Statist. Plann. Inference 140, 444–453.
Khaledi, B., Kochar, S., 2000. Some new results on stochastic comparisons of parallel systems. J. Appl. Probab. 31, 1123–1128.
Kochar, S.C., Xu, M., 2007. Stochastic comparisons of parallel systems when components have proportional hazard rates. Probab. Engrg. Inform. Sci.

21, 597–609.
Pledger, P., Proschan, F., 1971. Comparison of order statistics and of spacings from heterogeneous distributions. In: Rustagi, J.S. (Ed.), Optimizing

Methods in Statistics. Academic Press, New York, pp. 89–113.
Proschan, F., Sethuraman, J., 1976. Stochastic comparisons of order statistics from heterogeneous populations, with applications in reliability. J.

Multivariate Anal. 6, 608–616.
Shaked, M., Shanthikumar, J.G., 2007. Stochastic Orders. Springer, New York.
Torrado, N., Kochar, S.C., 2015. Stochastic order relations among parallel systems from Weibull distributions. J. Appl. Probab. 52, 102–116.
Yan, R., Da, G., Zhao, P., 2013. Further results for parallel systems with two heterogeneous exponential components. Statistics 47, 1128–1140.
Zhao, P., Balakrishnan, N., 2011. Some characterization results for parallel systems with two heterogeneous exponential components. Statistics 45,

593–604.
5

http://refhub.elsevier.com/S0167-7152(21)00080-8/sb1
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb1
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb1
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb2
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb3
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb4
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb4
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb4
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb5
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb6
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb7
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb7
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb7
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb8
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb8
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb8
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb9
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb9
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb9
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb10
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb11
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb12
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb13
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb13
http://refhub.elsevier.com/S0167-7152(21)00080-8/sb13

	On likelihood ratio ordering of parallel systems with heterogeneous exponential components
	Introduction
	Results and proofs
	Discussion
	CRediT authorship contribution statement
	Acknowledgments
	References


