
Contents lists available at ScienceDirect

Contemporary Clinical Trials

journal homepage: www.elsevier.com/locate/conclintrial

Limb-Leaf designs for adaptive exploration of the dose-response curve

John Spivacka,*, Bin Chengb, Bruce Levinb

a Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
b Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York 10032, USA

A R T I C L E I N F O

Keywords:
Adaptive design
Dose-response curve
Nonmonotonicity
Dose addition
Closed testing principle

A B S T R A C T

We propose a two-stage strategy, called the Limb-Leaf method, to explore the dose-response curve using dose
promotion and addition in the context of adaptive seamless Phase II/III trials. Strong control of the overall type 1
familywise error rate of the proposed method is enforced by the closed testing principle. The design constants are
determined to minimize the risk-adjusted expected total sample size while maintaining a target power. In the
case of a nonmonotonic dose response curve where more doses are required to adequately explore the curve,
substantial savings in sample size are achieved compared with a traditional strategy which offers only selection
and promotion from among initial first stage doses.

1. Introduction

The traditional process of drug development generally consists of
four phases: Phase 1, to find which doses can be tolerated, particularly
the maximum tolerated dose (MTD); Phase 2, to determine the biolo-
gical activity and adverse event rates of the tolerated doses; Phase 3, to
determine efficacy of a selected dose; and Phase 4, after regulatory
approval of the drug, as a review of safety and other long-term results.
Traditionally, Phase 3 is run and analyzed independently of Phase 2,
i.e., the Phase 2 results are not used in the final determination of effi-
cacy.

One method of reducing the large costs in time, money, and patient
exposure of this process is to merge phases together and to eliminate
the gaps and delays between them. In general, a seamless design
combines the objectives of multiple phases of the development process
into a single trial. In particular, it is often possible to meet the objec-
tives of Phases 2 and 3 within one less costly, combined study.

An adaptive seamless design is one that: (1) combines the objectives
of different stages, (2) allows modification of the trial based on emer-
ging data, and (3) is inferentially seamless in the sense that the final
analysis combines data from before and after any adaptation while
maintaining control over the type 1 error rate. A landmark two-stage
adaptive seamless design was proposed by Thall et al. [19] (henceforth,
the TSE Design). There a first stage is used to select the best (or ap-
parently best) of several candidate treatments and the second stage
focuses only on the selected treatment. Both stages include a control
arm and the data from both stages are pooled for the final comparison
between control and selected arm. This design in its original

formulation applies only to binary outcomes, however the TSE template
is easily modified to other outcome distributions, for instance normal
outcomes as described by Jennison and Turnbull [7,8]. An important
generalization that includes multiple stages and the use of a test based
on the score statistic was proposed by Stallard and Todd [16], and Todd
and Stallard [20]. This method accommodates a general endpoint,
which, for instance, could be normal, binary, or a time to an event.

Another route for the development of adaptive seamless designs has
been through the adaptive P-value combination tests used by Bauer and
Köhne [2]. This approach allows information from earlier stages to be
combined with that of later stages, and treatment selection at adaptive
interim analyses to be based on all previous information from inside
and outside the trial. Midtrial modifications are possible without in-
flating the familywise type 1 error rate. The key ideas are: the con-
struction of P-values with conditionally (sub)uniform distributions
given the previous stages of the experiment, the pooling of evidence
across stages using prespecified combination rules, and the use of a
closed testing procedure to control the familywise error rate for the
multiple hypotheses under study. The method of adaptive combination
tests is very general and [14] shows how it includes group sequential
tests, the two stage TSE design, and further generalizations as special
cases.

2. A proposal for adaptive exploration

Experiments can benefit from a more structured exploration
strategy when the dose-response curve is not assumed to be monotonic,
particularly so in the case where it is still assumed to be unimodal. This
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possibility is especially plausible when dealing with a combined effi-
cacy/toxicity or benefit/cost endpoint, or when dealing with a combi-
nation therapy such that no single ordering of the doses may be pos-
sible. We present the following example of a real-world setting in which
such an exploration strategy might be applied.

2.1. An example based on the QALS trial

The U.S. Food and Drug Administration has approved only one
drug, Riluzole, for the treatment of the devastating neurodegenerative
disease Amyotrophic Lateral Sclerosis (ALS). Benefits in patient func-
tion and survival are small and safety and tolerability of Riluzole
especially in regard to liver toxicity are major considerations. There is
hope that the progression of ALS may one day be slowed or stopped by
new medications or combinations of drugs.

Methods of action of Riluzole or other possible therapies are not
fully elucidated; they are complex and may involve multiple mechan-
isms as reported, for instance, by Hubert et al. [5], Noh et al. [15], and
Beal et al. [3]. In such settings the expectation that an investigational
drug would have a monotonic dose response curve with increasing
patient benefit up to a well-defined maximum tolerated dose is espe-
cially problematic. Indeed an incorrect assumption of monotonicity in
the dose response is a favored explanation for the failure of a recent
major ALS study as reported by Ludolph and Jesse [12].

The QALS trial published by Kaufmann et al. [9] was undertaken to
investigate high doses of Coenzyme Q10 as a possible therapy for ALS.
It was not assumed that the dose response would be monotonic and
toxicity was carefully monitored. The study was designed in two stages,
a selection stage followed by a futility test, also known as a non-su-
periority test (see, e.g., [10]). Two doses of CoQ10 (1800 and 2700 mg
per day) together with a placebo arm began the first stage of the study.
After an interim analysis the apparently better performing dose was
selected to continue and additional recruitment to that arm and the
placebo arm took place in the second stage. The final test statistics
involved data pooled over both stages under appropriate control for
selection bias and type 1 error.

The outcome of the first stage of the trial was that the higher dose
did better than the lower dose on the outcome measure (ALSFRSr, the
ALS functional rating scale, revised) and had high tolerability. After
continuation into the second stage the test statistic associated with this
higher dose was nominally sufficient to avoid a declaration of futility.
The investigators nevertheless did not consider the evidence promising
enough to give it full endorsement. Further details are given in
Kauffman et al. [9].

Notwithstanding the importance of certain key differences of the
QALS trial, especially its aim to test a futility hypothesis rather than a
superiority hypothesis, it is easy to imagine that in this or a similar
study, a conventional superiority hypothesis might instead be the goal.
In such a case, for example, it might have been considered worthwhile
to allow further exploration in the second stage around the apparently
better first stage dose. Specifically, had there been an option to add
higher doses beyond 2700 mg per day or to explore both above and
below this dose level, this freedom and flexibility might have been at-
tractive to investigators. It is perhaps possible that an efficacious dose
might have been among those added, and good enough to earn a full
endorsement. We would like to make such further options available to
investigators by design in especially difficult disease areas like ALS.

2.2. Stagewise adaptive exploration

In exploring the dose-response relationship, particularly a non-
monotonic one, it is important to distinguish between d*, a dose with
the maximum possible effect, and ̂d *, its estimated value. The corre-
sponding effects of these doses, θd* and ̂θd *, say, could be different in a
meaningful way, with ̂ <θ θd d* *. Similarly, if d* denotes a dose with a
given desired effect (not necessarily maximum), ̂ −θ θ| |d d* * could be

undesirably large. On the other hand, at least heuristically, the more
closely ̂d * approximates d* the greater the chance that the study will
reject the global null hypothesis, H0 : θd ≤ 0 for all doses d, and more
importantly, the closer the final recommended dose will be to that
which gives patients the desired (or maximum) benefit. These con-
siderations provide strong motivation to better explore the dose-re-
sponse curve in adaptive seamless designs.

One possibility for better exploration of a non-monotonic dose-re-
sponse curve in a single-stage selection strategy like the TSE Design
would be to include a large number of closely spaced doses in the first
stage. However, there are reasons to expect performance to suffer with
this approach. First, the true d* may be hard to identify because it will
have many competitors, some with nonzero effects. Also, a large
number of first stage patients will have to be randomized to areas of the
dose response curve that are not relevant to the final recommendation.
Second, under the global null hypothesis of no treatment effect at any
dose, many patients will have been treated before an early stopping
decision can be made. We note that under either hypothesis, treating an
excessive number of patients with an ineffective treatment or with in-
effective doses of an otherwise worthwhile treatment is ethically un-
desirable. Some of these issues are mentioned by Thall et al. [19], but
they play less of a role in the case where there are only a few possible
doses to consider with broad spacing between them.

In this paper we introduce a two-stage selection procedure called
the “Limb-Leaf” design in which second stage doses not only are pro-
moted from a modest number of first stage candidates but also may be
added in response to first stage results. We aim to improve the esti-
mation of d* and to use resources more efficiently, this being particu-
larly so under the global null hypothesis, where the probability of early
stopping should be large. Such promotion and addition decisions can be
based on all the available information, including efficacy and toxicity,
whether it comes from within the study or from an outside source.

Although the Limb-Leaf design we present here achieves pre-spe-
cified performance characteristics in the case of a non-monotonic dose-
response curve, it actually comprises a more general approach to
structured exploration of response functions.

3. Method

Below we assume without essential loss of generality that the data
are normal with variance σ2 known. Extensions to other data types are
mentioned with further detail given in the Appendix.

3.1. The TSE method

The TSE design has two stages; the first stage assigns subjects to all
candidate doses plus the control, and the second stage studies only the
best performing dose from the first stage against the control. There is an
option to stop for futility using a cutoff value after the first stage, and
the final decision is made by whether the combined measure of effect of
the selected treatment exceeds a second cutoff value.

A version of the TSE design using normal outcomes is described as
follows. Let the test doses in the experiment be denoted as d1,…,dI, with
effects relative to control dose d0 of θ1,…,θI. We assume that at either
stage, the outcomes at a given dose dj are independent and identically
distributed (i.i.d.) as a normal random variable with mean μj and var-
iance σ2, j=0,1,…,I. The design proceeds in two stages:

Stage 1. Randomize (I+1)n1 patients equally to d0,d1,…,dI. Let
T1=max1≤i≤I T1,i, where for each i, = −T X X σ( )/ 2i i1, 1, 1,0

2 , X1,0 is
the sample mean for the control d0, and X i1, is the sample mean for
dose di, i=1,…,I at stage 1. If T1> y1, then continue by selecting
the treatment, di* having the greatest observed effect, T i1, *, into a
second stage. If T1 ≤ y1 then stop and accept H0 of no effect on any
dose.
Stage 2. Randomize 2n2 additional patients equally to di* and d0. Let
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If T2> y2 then reject ≤H θ: 0i i0, * * and conclude that >θ 0i* ; if T2 ≤
y2 then do not reject H i0, *.

Notably, the design can stop early for futility but allows a new
treatment to be judged superior to the control only after a second stage,
based upon data from 2(n1+n2) patients. The design constants n1,n2,y1,
and y2 are determined by minimizing the risk-adjusted expected total
sample size and maintaining a target power under a least favorable
dose-response scenario. More details will be given in Section 5.

3.2. The Limb-Leaf design

3.2.1. Limb-Leaf structure and locatable effect
Let = …d d{ , , }I1D be a prespecified collection of test doses to be

investigated as in a TSE design. A Limb-Leaf structure for D is a re-
labelling of the doses in D as

= … … …L l l L l l{ , , , ; ; , , , },m K K K m1 1,1 1, ,1 , K1D

where for each “limb” dose Lk, k=1,…,K, there is an associated
neighborhood also including mk leaf doses, …l l, ,k k m,1 , k. Let ΘD , called
the dose-response configuration, be the collection of effects associated
with Limb-Leaf system D . That is,

= … … …θ θ θ θ θ θΘ { , , , ; ; , , , }.L l l L l lm K K K mK1 1,1 1, 1 ,1 ,D

Generally, the effects …θ θ, ,l lk k mk,1 , on the respective leaves
…l l, ,k k m,1 , k would be assumed to be somewhat similar but not identical

to that of their associated limb dose Lk.
In this paper, we assume that the dose-response configuration under

investigation has a “locatable” effect, whose definition is as follows.
Definition 1. A dose-response configurationΘD is defined to have a
locatable effect with respect to the Limb-Leaf
System = … … …L l l L l l{ , , , ; ; , , , }m K K K m1 1,1 1, ,1 , K1D and the response levelsδ=
(δ1,δ2,δ3), with δ1< δ2< δ3, where δ3is considered to be the smallest
desired level of effect, if the following two conditions hold:

1 The effects on each limb,θLk, for k=1,…,K, are either less than or equal
to δ1, or greater than or equal to δ2, with at least one k such
that ≥θ δL 2k .

2 For any limb Lkwith ≥θ δL 2k , each effect in its neighborhood is either
greater than or equal to δ3or less than or equal to δ2with at least one
effect greater than or equal to δ3.

Intuitively, a dose-response configuration ΘD with a locatable effect
means that the shape of the dose response curve should permit ex-
ploration in stages, the first on a coarse level and the second for finer
level adjustments, in order to successfully identify a dose of desired
effect level δ3 or better.
Proposition 1. Any given dose-response configurationΘDhas a locatable
effect with respect to the Limb-Leaf System = … …L l l L l{ , , , ; ; , ,m K K1 1,1 1, ,11D
… l, }K m, K and some vector of response levels δ=(δ1,δ2,δ3), with
δ1< δ2< δ3.

The proof of this result is given in the Appendix. It follows that for
prespecified , ΘD D , and δ, failure to meet the definition of locatability
may be considered as a misspecification of δ, which is a useful per-
spective in examining the performance of the Limb-Leaf approach
under violations of assumptions. This does not, however, mean that
selection decisions forD and δ are unimportant; a selection ofD and δ
that are not only formally correct but appropriate to the underlying
dose-response relationship is key for a design to have good performance
characteristics. Guidance on howD and δmay be chosen and sources of
information for this decision are offered in Sections 5 and 6.

3.2.2. The plan of a Limb-Leaf design
A Limb-Leaf method proceeds as follows:

Step 1. Prespecify a vector c=(c1,c2), c1< c2, representing different
levels of a test statistic, and a vector of weights (w1,w2) such
that w1,w2 ≥ 0, with + =w w 11

2
2
2 .

Step 2. Randomize n1L patients to each limb and control. Let
̂ = −θ X XL L L1, 1, 1,k k 0 denote the first stage estimate and

̂=Z θL L
σ

n1, 1,
2

k k L

2

1
denote the first stage test statistic of the

effect of dose Lk, k=1,…,K. The limb with the greatest first
stage statistic, denoted by Lk*, will have an estimate denoted by

̂θ L1, k* and a test statistic denoted by Z L1, k*. Note that k* is a
random variable.

Step 3. There are 3 possibilities.

(i) If ̂ ≤θ cL1, 1k* , then the study stops for futility.
(ii) If ̂< ≤c θ cL1 1, 2k* the experiment continues to Stage 2
with Lk*, its leaves …l l, ,k k m*,1 *, k*, and the control dose L0.
Randomize n2L patients to each of Lk* and control L0, and n2l
patients to each of …l l, ,k k m*,1 *, k*.

Let ̂ = −θ X XL L L2, 2, 2,k k* * 0,
̂

=Z L
θ

2, k
Lk

σ
n L

*
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ject ≤H θ: 0L L0, k k* * and estimate ̂d * as Lk* if and only if
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Here Z l2, k k*,( ) is the kth smallest order statistic of
…Z Z{ , , }l l2, 2,k k mk*,1 *, *

and it is understood that for k=0 the
maximum in the second term reduces to that over Z L2, k*
alone. The function FK is the cdf of …Z Zmax{ , , }L L1, 1, K1 under

= ⋯= =H θ θ: 0L L0 K1 ; GLimb+k is the cdf of
…Z Z Zmax{ , , , }L l l2, 2, 2,k k k k* *,1 *, under = = ⋯=H θ θ: L l0 k k* *,1

=θ 0lk k*, , conditional on the present adaptation decision (ii);
and zα is the (1−α)×100-th percentile of the standard
normal distribution.
If, for some ̂ ̂ ̂= = …l θ θ θ l m*, max { , , 1, , }l L pooled l k2, 2, *k l k k l*, * * *, ,

then we reject ≤H θ: 0l l0, k l k l*, * *, * and claim ̂ =d l*
k l*, * if and

only if

(a) + >− −
+w F Z w G Z Z zΦ { ( )} Φ { [max( , )]} ,K L Limb m L l α1

1
1, 2

1
2, 2,k k k k l* * * *, *

(b) + >−
≤ ≤ −

−w F Z w G Z zΦ { min [ ( )]} Φ { ( )}k K k L m l α1
1

1 1 1, 2
1

2,k k k l( ) * *, * ,
and

(c) >− G Z zΦ { ( )}m l α
1

2,k k l* *, * ,
where Z L1, k( ) is the kth smallest order statistic of

…Z Z{ , , }L L1, 1, K1 and Gmk* is the cdf of …Z Zmax{ , , }l l2, 2,k k mk*,1 *, *
under = = ⋯= =H θ θ θ: 0L l l0 k k k mk* *,1 *, *

, conditional on the
present adaptation decision (ii).

(iii) If ̂ >θ cL1, 2k* then Lk* and the control dose only should
proceed into the second stage. Randomize n2L′ patients to Lk*

and to the control. Let =
−

′

Z L
X X

2, k
Lk L

σ
n L

*
2, * 2, 0

2 2

2

. We reject

≤H θ: 0L L0, k k* * and claim ̂ =d L*
k* if and only if

+ >−w F Z w Z zΦ { ( )} .K L L α1
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We note that the selection of the final second stage dose using
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̂θL pooledk* is consistent with the seamless quality of the design: in-
formation across both stages is used for this decision. Hypothesis
testing, however, may not be done directly in terms of ̂θL pooledk* .
Stagewise combination rules, as described in the next section, are
needed to make valid inference.

The Limb-Leaf design is not limited to normal outcomes with known
variance. Extensions to practical cases such as those of a large sample
with consistently estimated nuisance parameters, and normally dis-
tributed data with unknown variance are presented in the Appendix.
The design extends similarly to cases such as that of testing a location-
shift hypothesis for continuous distributions using rank sum tests, and
that of testing a difference in proportions for binary data using exact
tests. These will be presented in later work.

3.2.3. Closed testing procedure and justification of the Limb-Leaf method
The search strategy outlined above entails selection over multiple

dose levels, which calls for control of the familywise error rate (FWER)
with respect to the collection of hypotheses ≤ ∈H θ d{ : 0, }d d0, D , where
FWER is the probability of rejecting any true null hypothesis. Control of
the FWER for a given procedure means that FWER ≤ α where the
significance level α is prespecified. Furthermore, as argued by Tamhane
et al. [18] among others, the appropriate form of familywise type 1
error control should be strong control, such that the FWER ≤ α re-
gardless of which hypotheses or how many hypotheses from the col-
lection ≤ ∈H θ d{ : 0, }d d0, D are true. In other words we require that
given a Limb-Leaf SystemD , ≤ αFWER(Θ )D regardless of the shape of
the underlying dose-response configuration ΘD . We emphasize that in a
design that allows addition of doses as well as their promotion, control
of the FWER only under the global null (weak control) does not imply
the needed strong FWER control and is insufficient.

The closed testing procedure of Marcus et al. [13] guarantees strong
control of the FWER with respect to a prespecified family of hypotheses
which is closed under intersection. For a given set of hypotheses {H0,j :
j=1,…,J} the construction is as follows: For each subset S of {1,…,J}
define the intersection hypothesis H0,S=∩j∈SH0,j with corresponding
level α test ϕS assumed to exist for each S. Then the closed testing
principle requires that any hypothesis H0,j be rejected if and only if H0,S

is rejected by ϕS for every set S that contains j. The proof of strong
control of the FWER is immediate: Let S* be the set of the indices of all
true null hypotheses and assume S* is non-empty (or else there is
nothing to prove). For a familywise error to be committed, H S0, * must be
rejected at level α, which occurs with probability no greater than α.

The Limb-Leaf procedure uses the following tests for hypotheses
H0,D. If D contains any limb, then reject the null if and only if

= + ≥−
∈

−
∈

Z w F Z w G Z zΦ { ( max { })} Φ { ( max { })} .D D
d D

d D
d D

d α1
1

1, 2
1

2,

Otherwise, reject the null if and only if

= ≥−
∈

Z G Z zΦ { ( max { })} .D D
d D

d α
1

2,

Here Zi,d is the test statistic for H0,d : θd ≤ 0 based on the ith stage
data from dose d and control if dose d appears at Stage i, i=1,2. FD is
the cdf of maxd∈D{Z1,d} under θd=0, d ∈ D, and GD is the cdf of
maxd∈D{Z2,d} under θd=0, d ∈ D, conditional on the first stage data
and thus on adaptation decisions based on them. If no dose d ∈ D ap-
pears in the second stage, we set ZD ≡−∞, as their corresponding
doses have been deemed irrelevant after review of first stage data. It is
emphasized that w1 and w2, + =w w 11

2
2
2 , must be prespecified at the

design stage in order for the test to be valid, and that the second form
given is a special case of the first with w1=0.

The following result provides a theoretical justification of the Limb-
Leaf procedure. The proof is given in the Appendix.
Theorem 1. For any dose-response configurationΘD , the Limb-Leaf method
specified inSection 3.2.2yields strong control of the FWER at level α.

Further flexibility in the Limb-Leaf design may be allowed. Selection

of a dose other than the best performing at either stage does not un-
dermine the validity of the familywise type 1 error rate control but may
incur a power penalty that can be partly offset by a more complicated
evaluation of all relevant intersection hypotheses. Dose selections can
incorporate other information such as toxicity, cost or external data.
Interim re-calculation of sample sizes, for instance to increase condi-
tional power, would also be possible without undermining the validity
of the trial. Finally, another potentially important type of flexibility
would be in the definition of leaf doses; their exact dose levels or other
aspects of their formulations could be finalized at the interim analysis
without compromising the conditional sub-uniform distribution of their
associated P-values and the procedure's validity.

The validity of the Limb-Leaf design under other types of data is
addressed by Theorem 2, also proved in the Appendix.
Theorem 2. The Limb-Leaf design extends to practical cases such as: 1)
Normally distributed data with unknown variance σ2, and 2) Large sample
inference with consistently estimated nuisance parameters.

4. Power and optimization

For a given Limb-Leaf System D and a vector of effect thresholds δ,
we must prespecify the parameters n1L,n2L,n2L′,n2l, c=(c1,c2), and
weight w1. To do this we minimize a risk-adjusted expected sample size
under constraints on the power to identify and confirm an effect under
specified alternatives.

4.1. Unfavorable configurations

Similar to Thall et al. [19], we choose certain unfavorable config-
urations (test configurations) in which we want to enforce adequate
power. These are instances of locatable effects with respect to δ that are
unfavorable to identification and confirmation of an effect on the cor-
rect target. One such configuration, the unfavorable limb effect con-
figuration, ΘLimb, would satisfy the conditions:

= = ⋯= =θ θ θ δL l l 1k k k mk,1 , for k≠k*, =θ δL 3k* , and
= ⋯= =θ θ δl l 2k k mk*,1 *, *

for some limb dose Lk*. Analogously, we define
an unfavorable leaf effect configuration ΘLeaf as satisfying the condi-
tions = = ⋯= =θ θ θ δL l l 1k k k mk,1 , for k≠k*, =θ δL 2k* , =θ δl 3k l*, * , and

=θ δl 2k l*, for l≠l*, for some limb dose Lk* and leaf dose lk l*, *.
The intuition of these choices is clear but a full characterization of

the configurations that minimize the power would depend on as-
sumptions concerning the construction of stagewise tests, combination
rules, and interim dose selection rules. We do not address a full solution
in this paper. Thus we call ΘLimb and ΘLeaf“ unfavorable” rather than
“least favorable” configurations.

4.2. Power and risk adjusted expected sample size

Let the risk-adjusted expected sample size, a form of Bayes' risk, be
defined as

= + +E N π E N π E N π E N( ) ( ) ( ) ( ),π 0 0 Θ Θ Θ ΘLimb Limb Leaf Leaf

where E N E N( ), ( )0 ΘLimb , and E N( )ΘLeaf denote the expected total sample
sizes under the global null, unfavorable limb, and unfavorable leaf
configurations, respectively, and π π,0 ΘLimb, and πΘLeaf denote their as-
sociated prior probabilities. Conservative values for early to mid-stage
drug development would be = =π π0.8, 0.10 ΘLimb , and =π 0.1ΘLeaf , for
instance.

The design constants n1L,n2L,n2L′,n2l, c=(c1,c2), and w1 are selected
to minimize Eπ(N), subject to power constraints

≥ −P L β(Confirm the treatment effect on limb ) 1 ,kΘ *Limb

and

≥ −P l β(Confirm the treatment effect on leaf ) 1 .k lΘ *, *Leaf

J. Spivack et al. Contemporary Clinical Trials 64 (2018) 210–218

213



In general a nonlinear optimization procedure is required to find a
possibly non-unique optimizer, or an approximate minimum can be
found by a grid search over potential parameter values.

5. Simulation studies

We consider two schemas for comparison of a Limb-Leaf approach
with a traditional TSE-style design. Both schemas are simple cases that
could be used in practice. We compare performance characteristics over
ranges of the δ1,δ2,δ3 parameters. In addition, robustness of the Limb-
Leaf type design is considered in the following subsection. Without loss
of generality we assume that the outcome of a patient on dose d is
distributed as N(θd,1), and the outcome of a control patient is dis-
tributed as N(0,1). All optimizations were conducted using computa-
tionally intensive grid-search algorithms. More efficient computational
methods under development will be described in Section 6.

5.1. Schema A: A single limb

One of the simplest possible Limb-Leaf schemas (hence forth,
“Schema A”) is as follows. There are 3 testing doses of interest, orga-
nized as: limb L1 and leaves l1,1,l1,2. Stage 1 compares L1 to control L0
where each arm would have sample size n1L. Depending on the results
of this first stage comparison, we might: i) terminate the study, ii)
continue the study with further recruitment to L0 and L1 of n2L′ subjects
each in the second stage, or iii) continue with recruitment of n2L sub-
jects each to L0 and L1 as well n2l subjects each to leaves l1,1 and l1,2. In
case iii) we will allow selection of the optimal dose by comparison of
overall sample means; although the inclusion of the first stage subjects
in the sample mean of L1 is not completely unbiased, in practice this
information may improve the probability of correct selection of the best
dose. Evaluation of the results would be by the closed testing procedure
utilizing pre-specified combination tests as described in Section 3. This
could correspond, for instance, to a situation where investigators want
the option to introduce interim modifications of their initial test dose L1
in case first stage results lead them to believe that either an increment
or a decrement to the dose level might be necessary to optimize per-
formance.

The corresponding TSE design would include L0 and L1,l1,1,l1,2 as
first stage doses, each with sample size n1. If the first stage result of the
best performing test dose ̂d * exceeds the preset threshold y1, d* would
continue recruitment in the second stage along with control dose L0
with n2 subjects per arm. The efficacy of ̂d * relative to L0 would then be
determined by whether the overall sample mean of subjects assigned to

̂d * exceeds the pre-specified y2.
The design constants to be set for the Limb-Leaf design are then

n1L,n2L,n2L′,n2l, c=(c1,c2), as well as the combination rule weights w1

and w2. Their values will be determined to minimize Eπ(N) defined in
Section 4.2 with = =π π0.8, 0.10 ΘLimb , and =π 0.1ΘLeaf . Specifically, for
given δ=(δ1,δ2,δ3), we let ΘLimb be given by

= = =θ δ θ δ θ δ{ , , }L l l3 2 21 1,1 1,2 , and ΘLeaf be given by
= = =θ δ θ δ θ δ{ , , }L l l2 2 31 1,1 1,2 . Numerical optimization of the criterion

Eπ(N) subject to contraints of 0.9 power in both ΘLimb and ΘLeaf con-
figurations determines the design constants.

The corresponding TSE-type design will require the design constants
n1,n2,y1, and y2. Since the TSE-type design does not recognize a dis-
tinction between limb and leaf doses, both ΘLimb and ΘLeaf may be ex-
pressed as ΘTSE, given by = = =θ δ θ δ θ δ{ , , }L l l3 2 21 1,1 1,2 . The previous
criterion, Eπ(N) then reduces to +E N E N0.8 ( ) 0.2 ( )0 ΘTSE . The power
constraints similarly reduce to the single restriction of 0.9 power in the
ΘTSE configuration.

Below we present two tables, of optimized parameter values and
performance characteristics for the two designs over ranges of δ=
(δ1,δ2,δ3) for Schema A (Tables 1 and 2). Where this simple case assigns
the same values of ΘLimb,ΘLeaf, and ΘTSE for several values of δ, the

optimization is unaffected by which one is chosen and the results are
combined.

5.2. Schema B: Two limbs

A slightly more complex Limb-Leaf schema could include 6 doses of
interest: limbs L1 and L2 each with two associated leaves, l1,1,l1,2 and
l2,1,l2,2, respectively. Stage 1 includes L1,L2 and control L0 where each
arm would have sample size n1L. Depending on the results of this first
stage comparison, we might: i) terminate the study, ii) continue the
study with further recruitment to L0 and Lk* (the best performing limb
in the first stage) of n2L′ subjects each in the second stage, or iii) con-
tinue with recruitment of n2L subjects each to L0, and Lk* as well n2l
subjects each to leaves lk*,1 and lk*,2. In case iii) we again allow final
selection of the optimal dose by comparison of overall sample means,
possibly across both stages. Evaluation of the results would be by the
closed testing procedure utilizing pre-specified combination tests as
described in Section 3. This could correspond, for instance, to a situa-
tion where investigators have a prior belief that one of two chosen
doses may provide sufficient efficacy, however, they also want the
option to further explore around the dose level that appears promising
in order to fine tune towards an optimal dose.

The corresponding TSE design includes L0,L1,l1,1,l1,2,L2,l2,1,l2,2 as
first stage doses, each with sample size n1. If the first stage result of the
best performing test dose d* exceeds the preset threshold y1, d* would
continue recruitment in the second stage along with control dose L0
with n2 subjects per arm. The efficacy of d* relative to L0 would then be
determined by whether the overall sample mean of subjects assigned to
d* exceeds the pre-specified y2.

The design constants to be set for the Limb-Leaf design are as before
n1L,n2L,n2L′,n2l, c=(c1,c2), and the weights w1 and w2. We minimize
Eπ(N) defined in Section 4.2 with = =π π0.8, 0.10 ΘLimb , and =π 0.1ΘLeaf .
In this case, for given δ=(δ1,δ2,δ3), we let ΘLimb be given by

= = = = = =θ δ θ δ θ δ θ δ θ δ θ δ{ , , , , , },L l l L l l1 1 1 3 2 21 1,1 1,2 2 2,1 2,2

and ΘLeaf be given by

= = = = = =θ δ θ δ θ δ θ δ θ δ θ δ{ , , , , , }.L l l L l l1 1 1 2 2 31 1,1 1,2 2 2,1 2,2

Numerical optimization of the criterion Eπ(N) subject to contraints
of 0.9 power in both ΘLimb and ΘLeaf configurations determines design
constants.

The corresponding TSE-type design constants n1,n2,y1, and y2 are set
as before. The previous criterion, Eπ(N) then reduces to

+E N E N0.8 ( ) 0.2 ( )0 ΘTSE , where ΘTSE is either ΘLimb or ΘLeaf given in the
previous paragraph. The power constraints similarly reduce to the
single restriction of 0.9 power in the ΘTSE configuration. Numerical
optimization subject to the power constraint then determines values of

Table 1
TSE design constants under Schema A.

δ1 δ2 δ3 n1 n2 y1 y2 Eπ(NTSE)

0.0 0.2 1.0 20 5 0.575 0.525 82.7
0.2 0.4 1.0 20 10 0.500 0.500 125.0
0.4 0.6 1.0 40 5 0.625 0.125 162.1
0.6 0.8 1.0 125 5 0.700 0.300 502.0

Table 2
Limb-Leaf design constants under Schema A.

δ1 δ2 δ3 n1L n2L n2L′ n2l c1 c2 w1 Eπ(NLL)

0.0 0.2 1.0 13 33 27 15 −0.475 1.275 0.025 132.6
0.2 0.4 1.0 12 34 35 5 −0.350 1.500 0.150 138.8
0.4 0.6 1.0 14 34 41 30 −0.150 1.700 0.100 136.8
0.6 0.8 1.0 35 107 154 24 0.275 1.925 0.275 225.0
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n1,n2,y1, and y2.
Below we present two tables of optimized parameter values and

performance characteristics for the two designs over ranges of δ for
schema B (Tables 3 and 4).

5.3. Interpretation

Interpretation of the comparison between designs is aided by the
following tables. The key figure is Eπ(NLL)/Eπ(NTSE), the ratio of risk
adjusted expected total sample size between the Limb-Leaf and TSE
designs. Where this ratio is less than 1, the comparison favors the Limb-
Leaf approach. As in Section 5.1, cells of Schema A which are redundant
in terms of ΘLimb,ΘLeaf, and ΘTSE are combined (Tables 5 and 6).

We observe such a favorable ratio across both schemas for δ=(0.0,
0.6, 1.0), (0.0, 0.8, 1.0), (0.2, 0.6, 1.0), (0.2, 0.8, 1.0), and (0.4, 0.8,
1.0). These schemas correspond to situations where a Limb-Leaf
strategy as presented in Section 3 would be appropriate: The initially
chosen limb dose achieves 60% or more of the desired signal; a further
fine-tuning of the dose level is then possible to maximize performance.
A subtle departure from this pattern occurs in Schema B with δ=
(0.6,0.8,1.0). If a first stage selection is necessary between two limbs,
too small a separation between their response levels will require a large
first stage sample size, disproportionately hurting the performance of
the Limb-Leaf approach.

We acknowledge some limitations to the proper setting for the
Limb-Leaf design, especially that prior knowledge or informed judge-
ment are needed to guide the selection of limbs, leaves, and to support

the selection of design constants appropriate for the locatable effect
assumption.

In practice, we would expect to use a maximum of three limbs and
no more than two leaves per limb. Sufficient basis should exist from
preliminary clinical and pre-clinical studies, pharmacokinetic and
pharmacodynamics considerations, and/or expert judgement from re-
lated research to guide the choices of the limb doses and to motivate the
leaf doses as clinically meaningful modifications of their respective
limbs.

Such considerations are equally important in the selection of the
vector δ. As in any trial, δ3, as the effect level desired to detect, should
be plausible and planners should avoid over-optimism. The component
δ2 should be chosen from a balanced judgment of possibilities such that
an effect of level δ2 should indicate a region of promising activity for
finding an effect within it of magnitude δ3. On the other hand, δ1 should
represent a baseline level of effect that would not itself identify an
especially promising region. We advise that in planning to use a Limb-
Leaf design one should give careful explanation in detail of these design
choices and provide justification and citation of sources of information
on which these design decisions are based. Guidance for making con-
servative choices that are robust to moderate misspecifications is given
in Section 5.4.

5.4. Robustness against distortions for selected configurations

Recall that in Sections 5.1 and 5.2, for any given δ=(δ1,δ2,δ3) two
unfavorable configurations, ΘLimb and ΘLimb, are chosen as alternatives.
We denote them here as ΘLimb(δ) and ΘLeaf(δ), respectively, to empha-
size their dependence on δ. Under these alternatives the Limb-Leaf
design constants are calculated to achieve a 90% power. In this section,
we study the robustness of the Limb-Leaf design against misspecifica-
tions of these two unfavorable alternatives. Specifically, for any given δ
in Tables 2 and 4, we investigate how far we can modify each com-
ponent into a possible δ′ such that the designs specified in Tables 2 and
4 maintain at least 85% or 80% power under the two modified con-
figurations ΘLimb(δ′) and ΘLeaf(δ′). We focus on five favorable cases for
both schemas with δ values of (0.0,0.6,1.0),(0.0,0.8,1.0),(0.2,0.6,1.0),
(0.2,0.8,1.0), and (0.4,0.8,1.0). As in Section 5.1, under Schema A re-
dundant cells are combined (Tables 7 and 8).

We remark that in all cases where power was maintained, the
overall change in risk adjusted expected sample size was within 10% of
the unperturbed value (results not shown).

The design is seen to be robust to variation in δ1′, and especially so
for δ1′ less than δ1. Since the true underlying δ is unknown to the in-
vestigator, a conservative design specification would set a value for δ1
close to the upper limit of what is assumed possible. The design is
sensitive at least in some scenarios to values of δ2′ greater than δ2,
however it is robust to values of δ2′ that are less than δ2; a conservative
specification would choose δ2 near the upper limit of its assumed
plausible range. Instances where δ3′ is less than δ3 represent the
greatest threat to the power of the design. For example, with the

Table 3
TSE design constants under Schema B.

δ1 δ2 δ3 n1 n2 y1 y2 Eπ(NTSE)

0.0 0.2 1.0 18 12 0.525 0.550 134.9
0.0 0.4 1.0 20 12 0.475 0.550 149.4
0.0 0.6 1.0 36 2 0.575 0.400 252.9
0.0 0.8 1.0 122 2 0.650 0.575 854.8
0.2 0.4 1.0 22 22 0.425 0.525 165.7
0.2 0.6 1.0 36 2 0.575 0.375 292.9
0.2 0.8 1.0 124 2 0.650 0.375 868.8
0.4 0.6 1.0 38 4 0.550 0.150 267.9
0.4 0.8 1.0 122 4 0.675 0.325 855.6
0.6 0.8 1.0 122 4 0.675 0.150 855.6

Table 4
Limb-Leaf design constants under Schema B.

δ1 δ2 δ3 n1L n2L n2L′ n2l c1 c2 w1 Eπ(NLL)

0.0 0.2 1.0 85 52 42 22 −0.225 0.675 0.050 426.0
0.0 0.4 1.0 33 40 37 14 −0.050 1.100 0.050 216.3
0.0 0.6 1.0 28 36 48 31 0.125 1.350 0.125 178.7
0.0 0.8 1.0 37 112 156 65 0.350 1.750 0.275 266.5
0.2 0.4 1.0 97 40 59 37 0.125 0.825 0.200 367.3
0.2 0.6 1.0 44 51 55 44 0.200 1.300 0.1125 218.7
0.2 0.8 1.0 39 111 148 12 0.325 1.575 0.175 275.5
0.4 0.6 1.0 90 54 88 36 0.200 1.050 0.325 352.0
0.4 0.8 1.0 50 108 178 6 0.350 1.625 0.075 294.5
0.6 0.8 1.0 143 130 188 28 −0.450 1.300 0.275 1064.7

Table 5
Sample size comparison of Limb-Leaf design and TSE design under Schema A.

δ1 δ2 δ3 Eπ(NTSE) Eπ(NLL) Eπ NLL
Eπ NTSE

( )
( )

0.0 0.2 1.0 82.7 132.6 1.6
0.2 0.4 1.0 125.0 138.8 1.1
0.4 0.6 1.0 162.1 136.8 0.8
0.6 0.8 1.0 502.0 225.0 0.4

Table 6
Sample size comparison of Limb-Leaf design and TSE design under Schema B.

δ1 δ2 δ3 Eπ(NTSE) Eπ(NLL) Eπ NLL
Eπ NTSE

( )
( )

0.0 0.2 1.0 134.9 426.0 3.2
0.0 0.4 1.0 149.4 216.3 1.4
0.0 0.6 1.0 252.9 178.7 0.7
0.0 0.8 1.0 854.8 266.5 0.3
0.2 0.4 1.0 165.7 367.3 2.2
0.2 0.6 1.0 292.9 218.7 0.7
0.2 0.8 1.0 868.8 275.5 0.3
0.4 0.6 1.0 267.8 352.0 1.3
0.4 0.8 1.0 855.6 294.5 0.3
0.6 0.8 1.0 855.6 1064.7 1.2

J. Spivack et al. Contemporary Clinical Trials 64 (2018) 210–218

215



assumed value of δ=(0.0,0.8,1.0), a δ3′ value corresponding to a 2.5%
reduction in δ3 is associated with a 5% reduction in power while a 5%
reduction in δ3 is associated with a 10% reduction in power. On the
other hand, values of δ3′ greater than δ3 are not associated with ne-
gative impacts on power. For design purposes, an initial estimate of δ3
on the low end of its assumed range would be a conservative choice.

6. Discussion

The proposed Limb-Leaf procedure is a structured exploration
strategy that builds on earlier adaptive designs such as those proposed
in Bauer and Keiser [1] and Bauer and Köhne [2]. It is a generalization
of the design by Thall et al. [19] targeted to improve performance
under a possibly non-monotonic dose-response relationship. These have
become more relevant in recent years as new therapies often entail
increasingly complex mechanisms of action and combination therapies
may not allow a clear ordering among their dosage levels. When δ=
(δ1,δ2,δ3) is chosen appropriately, for example when δ2 is at least 60%
of δ3, the saving in total sample size using a Limb-Leaf design is sub-
stantial compared with the TSE design. Limitations on the proper set-
ting for the Limb-Leaf design and the prior knowledge and judgement
needed to implement it were discussed in Section 5.3. Guidance on
robust parameter choices was given in Section 5.4.

The Limb-Leaf design can be generalized to allow greater flexibility.
For example, it can permit different numbers of leaves for different
limbs or leaves shared by more than one limb. Furthermore, the precise
location (or formulation) of leaves need not be specified in full detail
ahead of the second stage; error is controlled and a valid design is
achieved as long as we account for their existence. Theoretically, at
least, this allows the Limb-Leaf design to consider a larger class of doses
than could ever be tested in a TSE-style design — in fact a countably
infinite class. In addition, other combination rules besides the weighted

inverse normal rule used in this paper for stage-wise Z-values are pos-
sible. Fisher's combination rule, for instance, may be a robust choice if
some doses are expected to perform especially poorly and one wants to
limit their impact on tests of effect of unrelated leaf doses. Further study
on combination rules for robustness and efficiency is warranted. Along
with different combination rules, different rules for stochastic curtail-
ment may be employed. The efficiency gain of group sequential con-
tinuation [14] as well as dropping poorly performing treatment arms at
potentially earlier interim points is worth investigation as is the com-
parison of relative benefit in a TSE-style approach.

To accomplish point and interval estimation in the context of Limb-
Leaf designs existing methods based on bias adjusted estimators [17],
test inversion to form confidence regions, and median unbiased point
estimators are applicable [4,6,8,11]. The specific implementation of
these methods and comparison of their performance will be treated in
future research.

A final issue is the computational complexity of parameter optimi-
zation in a Limb-Leaf type design. An R program developed by Mr. X. Lu
using simulated annealing for nonlinear optimization appears to offer
substantially improved speed over a basic grid search method such that
a design can be optimized in less than one hour on a Windows desktop
computer with 3 GHz processing speed. A preliminary version of this
software is available from the authors upon request. A full version is
planned for public release as an R package.
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Appendix A

Proof of Proposition 1. For simplicity assume that the effects of no two doses are identical. By renumbering the limbs as necessary, we may take the
limb effects = …θ k K, 1, ,Lk , as forming an increasing sequence. Choose δ1 such that < <−θ δ θL L1K K1 . Then, the effects of all leaf doses associated
with θLK may be written as an increasing sequence …θ θ, ,l lk k mk,1 ,

There are then two subcases. The first applies if >θ θl Lk mk K, . Choose δ2 such that < =δ δ θL1 2 K . Let = >i i θ θ* min{ : }l Lk i K, , the lowest leaf dose
whose effect exceeds that of LK. We may then choose δ3 such that < <θ δ θL l3K K i, *. The conditions for a locatable effect with respect to δ=(δ1,δ2,δ3)
are then satisfied.

If <θ θl Lk mk K, then let = −γ δ θ θmax{ , , }l L1 k mk K, 1 . Choose δ2 and δ3 such that < < <γ δ δ θL2 3 K . The conditions for a locatable effect with respect to
δ=(δ1,δ2,δ3) are similarly satisfied.

This construction may be modified to produce other solutions and to allow perfect ties between dose effects although the notation becomes more
complicated.

Table 7
Allowed ranges of δ′=(δ1′,δ2′,δ3′) for the Limb-Leaf designs under schema A.

Ranges maintaining 85% power Ranges maintaining 80% power

δ1 δ2 δ3 δ1′ δ2′ δ3′ δ1′ δ2′ δ3′
0.2 0.6 1.0 (−∞,0.60] [0.29,0.67] [0.95,∞) (−∞,0.60] [0.21,0.72] [0.91,∞)
0.4 0.8 1.0 (−∞,0.80] [0.60,0.83] [0.97,∞) (−∞,0.80] [0.55,0.86] [0.95,∞)

Table 8
Allowed ranges of δ′=(δ1′,δ2′,δ3′) for the Limb-Leaf designs under schema B.

Ranges maintaining 85% power Ranges maintaining 80% power

δ1 δ2 δ3 δ1′ δ2′ δ3′ δ1′ δ2′ δ3′
0.0 0.6 1.0 [−0.58,0.18] [0.47,0.69] [0.95,∞) [−0.68,0.28] [0.41,0.73] [0.90,∞)
0.0 0.8 1.0 [−0.50,0.43] [0.61,0.83] [0.98,∞) [−0.56,0.52] [0.56,0.86] [0.95,∞)
0.2 0.6 1.0 [−0.48,0.33] [0.50,0.73] [0.91,∞) [−0.57,0.38] [0.45,0.77] [0.88,∞)
0.4 0.8 1.0 [−0.49,0.44] [0.59,0.83] [0.98,∞) [−0.57,0.52] [0.55,0.86] [0.95,∞)
0.4 0.8 1.0 [−0.43,0.51] [0.65,0.84] [0.97,∞) [−0.53,0.57] [0.62,0.86] [0.95,∞)
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Proof of Theorem 1. We demonstrate that when ̂H d0, * is rejected, so are all the intersection hypotheses that contain it. Given data, we use zi,d to
denote the observed Zi,d and relabel doses as necessary for convenience of notation.

Suppose ̂< ≤c θ cL1 1, 2k* and ̂ =d L*
k*. A composite hypothesis including H L0, k* may be written as H0,D where

= ∪ ⎧
⎨⎩

… ⎫
⎬⎭

∪ ⎧
⎨⎩

… ⎫
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* 1

Here ≠L Lj k*, K′≤ K−1, and ≤ ≤′m m0 j j, j=1,…,K′. For K′ or ′mj equal to zero, the corresponding terms in braces are counted as empty. Let
∈ …′′k m{0 }k* denote the number of leaves in D that were utilized (randomized to) after the interim decision. Then the relations
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imply the rejection of HD. It follows from their definitions that ≥ ∀+ ′F x F x x( ) ( ) ,K K1 and that ≥ ∀+ +′′G x G x x( ) ( )Limb k Limb mk* , given any first stage
data. The second inequality is assumed from the rejection of H L0, k*

Suppose ̂< ≤c θ cL1 1, 2k* and ̂ =d l*
k l*, * for some k*,l*. We consider D in three cases.

Case 1. If D contains Lk*, using the same notations as above,

= +
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where the last inequality is a rejection condition for H l0, k l*, *.

Case 2. If D does not contain Lk* but contains some other limb, we write

= … ∪ … ∪ … ∪ …∪ …′ ′ ′ ′ ′
′

′D L L l l l l l l{ , , } { , , } { , , } { , , }K k k m m K K m1 *,1 *, 1,1 1, ,1 ,k K
* 1

using the previous notations. Then,
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The first inequality holds since, given any first stage data, ≥ ∀′′G x G x( ) ,k mk* , from their definitions. The second inequality is a rejection
condition for H l0, k l*, *.

Case 3. If D does not contain any limbs, we write

= … ∪ … ∪ …∪ …′ ′ ′ ′
′

′D l l l l l l{ , , } { , , } { , , }.k k m m K K m*,1 *, 1,1 1, ,1 ,k K
* 1

Then,

= ≥ >− −′′z G zΦ { ( )} Φ {G (z )} z ,D k l
1

2,
1

m 2,l αk l*, * k* k*,l*

The second inequality is a rejection condition for H l0, k l*, *.

Finally, suppose ̂ >θ cL1, 2k* . We write

= ∪ ⎧
⎨⎩

… ⎫
⎬⎭

∪ ⎧
⎨⎩

… ⎫
⎬⎭

∪ ⎧
⎨⎩

… ⎫
⎬⎭

∪ …∪⎧
⎨⎩

… ⎫
⎬⎭

′ ′ ′ ′ ′
′

′D L L L l l l l l l{ } , , , , , , , , .k K k k m m K K m* 1 *,1 *, 1,1 1, ,1 ,k K
* 1

Since

= + ≥ + >−
+

−′z w F z w z w F z w z zΦ { ( )} Φ { ( )} ,D K L L K L L α1
1

1 1, 2 2, 1
1

1, 2 2,k k k k* * * *

where the second inequality is assumed from the rejection of H L0, k*, H0,D is rejected. This concludes the proof of the theorem.

Proof of Theorem 2.

1. For normally distributed outcomes with unknown σ2, let ̂
= −Z X X( )L L L

σ

n1, 1, 1,
2

k k
Lk
L0

1,
2

1
denote the first stage test statistic of the effect of dose Lk,

k=1,…,K, where ̂σ L1,
2

k is the pooled estimate of σ2 in the control arm and arm Lk from stage 1. Instead of being normal with known variance, each
Z L1, k now follows a t-distribution with 2(n1L−1) df under its associated null hypothesis of no treatment effect.

Similarly, let
̂

= −Z X X( )L L L
σ

n2, 2, 2,
2

k k
Lk
L* * 0

2, *
2

2
or

̂
− ′X X( )L L

σ

n
2, 2,

2
k

Lk

L
* 0

2, *
2

2
as required denote the second stage test statistic for the effect of dose

Lk*, where ̂σ L2,
2

k is the pooled estimate of σ2 in the control arm and arm Lk* in stage 2. Z L2, k* follows a t-distribution with 2(n2L−1) df under its

associated null hypothesis. We may also define ̂= − +Z X X σ( ) (l l L l n n2, 2, 2, 2,
2 1 1

)k l k l k l L*, *, 0 2 2
, = …l m1, , k*, where ̂σ l2,

2
k is the pooled estimate of σ2 in

the control arm and arm lk l*, in stage 2, such that under the associated null hypothesis it follows a t-distribution with (n2L+n2l−2) df.
For prespecified values of n1L, n2L, n2L′and n2l, the functions FK, Gmk*, +GLimb mk* are then well defined under each adaptation; they can be
calculated or approximated by Monte-Carlo simulation from the reference case of unit variance since the parameter σ2 has been removed by
invariance. Subject only to these changes in interpretation, the design of Section 3.2.2 applies and the proof of Theorem 1 applies to guarantee
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control of the FWER at level α.
The Satterthwaite approximation may be used as usual to accommodate unequal variances.

2. A general method to draw inferences about parameters of interest in large samples is based on the calculation of the score statistic and observed
Fisher information. The method is valid for general endpoints under regularity conditions satisfied, for instance, when the response distribution
belongs to an exponential family; nuisance parameters are accommodated through use of consistent estimators. Details are given by Stallard and
Todd [16]. Theoretical justification is given by Whitehead [21].
Let θd be a measure of the superiority of treatment d relative to control with θd>0 indicating superiority, and let Si,d and Vi,d denote the efficient
score and observed Fisher Information for θd at stages i=1,2, (evaluated at θd=0). It may be shown that the asymptotic joint distribution of the

= … =Z Z, ,L
S
V L

S
V1, 1,

L

L K
LK
LK

1
1, 1
1, 1

1,

1,
is multivariate normal with mean proportional to the vector of assumed effect sizes and fixed covariance matrix.

Similarly, given any adaptation decision applied in the second stage, = = … =Z Z Z, , ,L
S

V l
S

V l
S

V2, 2, 2,k
Lk

Lk
k

lk

lk
k mk

lk mk
lk mk

*
2, *

2, * *,1
2, *,1

2, *,1
*, *

2, *, *
2, *, *

have an asymptotic

distribution with mean proportional to the vector of assumed effect sizes and fixed covariance matrix. Stagewise effect estimates may be cal-

culated as ̂ =θ L
Z
V1, k

Lk
Lk

*
1, *
1, *

, ̂ =θ L
Z
V2, k

Lk
Lk

*
2, *
2, *

, and ̂ =θ l
Z

V2, k l
lk l

lk l*,
2, *,

2, *,
, = …l m1, , k*.

It follows that the plan of a Limb-Leaf Design of Section 3.2.2 can be implemented with the above new meanings for the symbols ̂θ L1, k*, ̂θ L2, k*, and
̂θ l2, k l*, , = …l m1, , k*, as well as …Z Z, ,L L1, 1, K1 and …Z Z Z, , ,L l l2, 2, 2,k k k mK* *,1 *, *

. The functions FK, Gmk*, +GLimb mk* are then well defined. Subject only to
these changes in interpretation, the design of Section 3.2.2 applies and the proof of Theorem 1 shows that the FWER is controlled approximately
at level α in large samples.
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