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Molecularly targeted agents and immunotherapies have prolonged adminis-
tration and complicated toxicity and efficacy profiles requiring longer toxicity
observation windows and the inclusion of efficacy information to identify the
optimal dose. Methods have been proposed to either jointly model toxicity and
efficacy, or for prolonged observation windows. However, it is inappropriate to
address these issues individually in the setting of dose-finding because longer
toxicity windows increase the risk of patients experiencing disease progression
and discontinuing the trial, with progression defining a competing event to toxi-
city, and progression-free survival being a commonly used efficacy endpoint. No
method has been proposed to address this issue in a competing risk framework.
We propose a seamless phase I/II design, namely the competing risks continual
reassessment method (CR-CRM). Given an observation window, the objective
is to recommend doses that minimize the progression probability, among a
set of tolerable doses in terms of toxicity risk. In toxicity-centered stage of the
design, doses are assigned based on toxicity alone, and in optimization stage of
the design, doses are assigned integrating both toxicity and progression infor-
mation. Design operating characteristics were examined in a simulation study
compared with benchmark performances, including sensitivity to time-varying
hazards and correlated events. The method performs well in selecting doses with
acceptable toxicity risk and minimum progression risk across a wide range of
scenarios.
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1 INTRODUCTION

New classes of anticancer agents, such as molecularly targeted agents (MTAs) and immunotherapy, have brought chal-
lenges to the development of new oncology drugs, particularly in the setting of dose-finding trials, because designs have
long relied on assumptions based on the cytotoxic chemotherapy paradigm.1-4 The mechanism of action of these new
classes of drugs differs from cytotoxic chemotherapy, leading to prolonged administration and different toxicity and
efficacy profiles.3,5 The longer periods of administration have been associated with late-onset toxicities. Thus, longer
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toxicity observation windows have been advocated for dose-finding trials of these agents.1,4,6-10 Moreover, while monotone
increasing dose-efficacy relationships are assumed with cytotoxic agents, MTAs and immunotherapies can potentially
exhibit non-monotone dose-efficacy relationships. Therefore, the paradigm of selecting the highest dose that can be tol-
erated in the hope of achieving maximum efficacy, namely the maximum tolerated dose (MTD), has been questioned,
and the choice of a so-called optimal dose has been advocated.1,11,12 While methods have been proposed to address these
issues individually, they are closely related given that subjects enrolled in oncology dose-finding trials generally are those
with poor prognosis, and longer toxicity windows are associated with a greater risk of patients experiencing disease pro-
gression. Disease progression or progression-free survival is indeed a relevant efficacy endpoint that has been frequently
used in phase II trials, and has recently gained interest in phase I/II trials for novel agents in oncology.13 In the conduct
of trials, for ethical reasons, study protocols usually allow treatment discontinuation after progression to propose alterna-
tive therapies if available. Similarly, patients who experience toxicity are generally dose reduced or discontinued and are
inconsistently followed for efficacy or progression. Therefore, toxicity and progression are mutually exclusive, since both
result in trial or treatment discontinuation. While this is a common issue in planning and managing oncology dose-finding
trials, it has been traditionally handled in an ad hoc manner and has been scarcely addressed in the literature.

Most dose-finding designs rely on the full observation of a binary toxicity endpoint in all patients (3+ 3 design, con-
tinual reassessment method,14 escalation with overdose control [EWOC],15 modified toxicity probability interval design
[mTPI],16 Bayesian optimal interval design [BOIN]17). Therefore, progression with subsequent trial discontinuation
within the toxicity window results in mandatory patient replacement. Time-to-event designs, such as the time-to-event
CRM (TITE-CRM), allow for partial observations to be used for sequential MTD estimation and dose assignments during
the trial.18 This leaves room to some practical strategies to handle discontinued partial observations due to progression
and to avoid excluding them altogether.19 However, we showed that the operating characteristics of the design remain
impacted to some extent, with decreased performances in correctly selecting the MTD and limiting overdose selection,
while progression is considered as an independent censoring event with no use made of this efficacy information.19

We found that accounting for any discontinuation event as informative censoring, using the cumulative incidence of
dose-limiting toxicities (DLT) in a survival CRM setting improved the design operating characteristics compared with the
binomial TITE-CRM.20

Phase I/II designs have been proposed incorporating efficacy to toxicity for dose finding, with binary or continuous
endpoints21-23 and time-to-event endpoints.24 These designs mostly assume that both toxicity and efficacy can be observed
within the time frame of the trial. However, in the context of these novel agents, it may not be possible to accommo-
date this requirement due to the lack of a reliable surrogate efficacy endpoints or the short time to progression relative
to the toxicity observation window.25 Nevertheless, as we discussed above, progression and toxicity usually result in trial
discontinuation and informative censoring of one another, reciprocally. Overall, patients’ outcomes within the trial are:
DLT, disease progression, or completed observation window without DLT nor progression. As we were finalizing our
method, Zhang et al26 recently proposed a dose finding phase I/II design in this setting, relying on a multinomial dis-
tribution for these outcomes, combined with piecewise cause-specific hazards for DLT and progression, imputation of
incomplete observations during the trial and a utility function for identifying the optimal dose. A comprehensive method
for incorporating competing toxicity and progression as censored time-to-event outcomes has not been proposed.

In this article, we propose a novel seamless phase I/II design which we call competing risks continual reassessment
method (CR-CRM), that can estimate a dose or a set of doses that satisfies traditional toxicity thresholds while minimizing
time to progression under the more realistic competing risks framework for time-to-event endpoints whereby both toxicity
and progression can lead to treatment or trial discontinuation and only one of them is observed. This work was motivated
by a phase I trial in unresectable sarcoma or malignant peripheral nerve sheath tumors, which is further discussed below.

2 MOTIVATING EXAMPLE

The present work was motivated by a dose-finding trial in patients with unresectable sarcoma or malignant peripheral
nerve sheath tumors that was recently completed at Columbia University Irving Medical Center (Clinical Trials Identifier:
NCT02584647). The goal of the trial was to identify the maximum tolerated dose (MTD) out of five doses of interest.
The trial was designed as a phase I trial, using the time-to-event CRM (TITE-CRM)18 with a sample size of 24 patients
and a prespecified target DLT probability of 0.25. DLT was defined as any grade 3 or higher nonhematologic toxicity or
grade 4 or higher hematologic toxicity in the first two cycles of treatment (ie, 8 weeks). The TITE-CRM was selected to
allow for enrollment before fully observed outcomes at the end of 8 weeks. However, given a median progression-free
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survival (PFS) of 6 weeks under standard of care,27 we expected almost 50% of discontinuation due to progression by
the end of the 8-week toxicity observation window. Ad hoc rules were used to handle progression events that occurred
during DLT window using the TITE-CRM design.19 Moreover, a phase II trial is currently on-going, directly following the
phase I trial, to evaluate the drug efficacy, using progression-free survival as the main endpoint (Clinical Trials Identifier:
NCT02584647). A seamless phase I/II design that selects the dose with the minimum progression risk while satisfying a
prespecified toxicity threshold would have been ideal in this setting.

3 METHODS

We consider dose-finding trials where patients are followed through an observation window [0, t⋆] defined for safety
assessment by observation of DLTs, and where there is a non negligible risk of disease progression, resulting in treatment
discontinuation in this window and therefore precluding complete safety assessment. Disease progression, in the same
manner as DLTs, can be defined in the trial protocol, as an aggravation of the patient status, related to the progression of
the malignancy, which results in trial discontinuation, so that the patient can be proposed alternative therapy, for ethical
reasons. At the same time, we assume that the occurrence of a DLT also results in treatment discontinuation or dose
reduction, rendering the assessment of progression challenging and hence to assign a given dose level. In other words,
DLT and progression under treatment are mutually exclusive events within [0, t⋆]. By time t⋆, a patient may have one
and only one of the three different states or outcomes: DLT under treatment, progression under treatment, treated with
neither DLT nor progression.

These considerations lead us to consider a competing risks framework in the dose-finding setting.28 Additionally, we
propose using a time-to-event approach which allows accommodating a longer follow-up time t⋆ and straightforwardly
handling right-censored observations, including those at interim dose-assignment analyses during the trial.

3.1 General notations for censored data

For a patient in a dose-finding trial, let t⋆ be the prespecified DLT follow-up time. Treatment with a particular drug
dose will usually be discontinued or altered (treatment failure) following the occurrence of two events: DLT or disease
progression (or non-toxicity-related death). For simplicity, given the framework of oncology dose-finding trials, we will
assume no other cause of treatment discontinuation and no censoring due to lost-to-follow-up, since, generally, patients
are followed very closely.

Let K indicate the cause of failures, with K = 1 failure due to DLT and K = 2 failure due to progression. Following
notations in Putter et al (2006),28 let T be the time to failure and define

hk(t) = lim
Δt→0

Prob(t ≤ T < t + Δt,K = k|T ≥ t)
Δt

,

the cause-specific hazard of failing from a given cause k= 1 or 2, and

Hk(t) = ∫
t

0
hk(s)ds,

the cause-specific cumulative hazard. The event-free survival at time t can then be defined as follows

S(t) = exp

{
−

2∑
k=1

Hk(t)

}
,

which is the probability of not having experienced a failure from any cause at time t, that is, in our setting, remaining
on treatment without DLT or disease progression. The cumulative incidence function of cause k, pk(t), is the probability
Prob(T ≤ t, K = k), which can be estimated from the cause-specific hazards as

pk(t) = ∫
t

0
hk(s)S(s)ds. (1)
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Of note, we see that pk(t) depends on all underlying competing process through S(t), not only on cause k and that pk(t)
is an improper probability distribution, for pk(∞)=Prob(K = k)< 1.

For any given set of cumulative incidences pk(t) resulting from k competing processes, cause-specific hazards can be
estimated from the observed data under the hypothesis of independence between the competing events and censoring
processes.28-30

Consider a dose-finding trial with N patients. For each included patient i, i= 1, … , N, we observe the data (Ui, Y i),
where Ui = min{Ti, t⋆}, Y i =KiI(Ti ≤ t⋆). Here I(⋅) is the indicator function.

3.2 Objective

With immunotherapies and other anticancer agents, which may not have a monotone dose-efficacy profile, the aim of
a dose finding trial will be to identify a dose which optimizes efficacy outcomes among tolerable doses. In our setting,
optimizing the efficacy outcome corresponds to maximizing the time to progression or progression-free survival (death
usually included as a disease progression event).

Define Fk(t, d) = 1 − exp{−Hk(t, d)} the cause-specific cumulative distribution of event k at time t with dose d.
Under the assumption that events are independent conditional on the drug dose, Fk(t, d) can be interpreted as the
marginal or “potential”30 probability of event k at time t, in the hypothetical situation where there is no competing
event(s).28 We propose to use probabilities Fk(t, d) for dose finding, under the working assumption that toxicity and
progression are independent consistent with previous work.13,31 The appropriateness of this assumption is evaluated in
simulations.

First, we define tolerable doses as those with a marginal probability of DLT by time t⋆, F1(t⋆, d), no more than a
prespecified threshold 𝜋DLT (eg, 0.25), defining maximum tolerable toxicity risk. The set of tolerable doses is

 = {d ∶ F1(t⋆, d) ≤ 𝜋DLT}. (2)

Then, we incorporate information on the time to progression to identify the most desirable dose. Among set , we
rely on F2(t⋆, d), the marginal probability of progression by time t⋆, to identify the best dose(s), d𝜈 , as the one(s) with
minimum progression risk:

d𝜈 = arg min
d∈

{
F2(t⋆, d)

}
. (3)

In some situations, with non-monotone or flat dose-progression relationships, and given the limited sample size of
phase I/II trials, the definition of best dose may be too stringent. We therefore define a set D𝜈 of good doses, as those
among tolerable set  which are sufficiently close to the minimum progression risk:

𝜈 = {d ∈  ∶ F2(t⋆, d) − F2(t⋆, d𝜈) ≤ 𝛿P, 𝛿P ≥ 0}, (4)

where 𝛿P is a fixed known parameter that can be tuned based on clinical considerations related to the progression risk
under standard of care, and depending on the planned trial sample size.

3.3 Working models

Let D be a drug dose assigned to a patient, and  = {d1, … , dJ} be the set of doses that are investigated in the
trial. We introduce the drug dose as a covariate in the competing risks framework presented above. Both events,
DLT and progression, may depend on the drug dose and we propose to model the corresponding cause-specific haz-
ards as functions of D. For simplicity, we model both competing event processes with constant hazard exponential
distributions.32,33

Let h1(t, D) be the cause-specific hazard for DLT and h2(t, D) the cause-specific hazard for progression. We assume a
monotone increasing dose-toxicity relationship on the cause-specific hazard

h1(t,D) = exp(𝛽1D). (5)
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In the setting of immunotherapy and MTA, we allow for a non-monotone dose-progression relationship on the
cause-specific hazard h2 and we define

h2(t,D) = h2(D) = exp(𝛽20 + 𝛽21D + 𝛽22D2). (6)

Of note, exp(𝛽20) represents the cause-specific hazard for progression under standard-of-care.
Given 𝜽 = (𝛽1, 𝛽20, 𝛽21, 𝛽22) and N included patients, the model likelihood can be written as

L(𝜽|U, Y, D) =
N∏

i=1
f1(Ui|𝜽,Di)I(Yi=1)f2(Ui|𝜽,Di)I(Yi=2)S(Ui|𝜽,Di)I(Yi=0),

where fk(t|𝜽,D) = dpk(t|𝜽,D)∕dt = hk(𝜽(k),D)S(t|𝜽,D) are potentially improper density functions in the competing risks
framework.33 The likelihood therefore reduces to

L(𝜽|U, Y, D) =
N∏

i=1
h1(𝜽(1),Di)I(Yi=1)h2(𝜽(2),Di)I(Yi=2)S(Ui|𝜽,Di).

Inference on cause-specific hazards can be performed separately for toxicity and progression, from the log-likelihood
which factors into two distinct pieces. Defining the cause specific parameters vectors, 𝜃(1) = 𝛽1 and 𝜃(2) = (𝛽20, 𝛽21, 𝛽22),
h1(𝜃(1),D) and h2(𝜃(2),D) can be estimated separately.28,32,33

3.4 Dose-finding algorithm

The proposed design, CR-CRM, is conducted in three stages: trial initiation, toxicity-centered stage, optimization stage.
The first two stages aim at identifying safe doses (Equation (2)), while allowing accumulating data; the last stage incorpo-
rates information on the dose-progression relationship to find the best dose among those which are safe (Equation (3)).
Throughout the trial, patients are dose-assigned in cohorts of size m.

3.4.1 Trial initiation

Initially, doses are assigned in a ruled-based fashion until at least one DLT has been observed, with cohort size m= 1.
Given that patient i was assigned dose dj ∈ , patient i+ 1 is assigned as follows:

1. dose level dj, if patient i experienced neither DLT nor progression by t⋆;
2. dose level dmin{J, j+1}, if patient i experienced progression before t⋆;
3. if patient i experienced a DLT, the trial moves to the next stage and the dose for patient i+ 1 is assigned according to

the toxicity working model (see next section).

The initial stage requires completion of the observation window for a given patient, unless an event occurs, Ti ≤ t⋆.
In case the first patient experiences a DLT, the design transitions directly to the next stage, the survival exponential

working model allowing maximum likelihood estimation and model-based dose-assignment for the next patient.

3.4.2 Toxicity-centered stage

At that early point in the trial, at least one DLT has been observed (nevertheless, information may not be sufficient to
estimate the dose-progression relationship within our model in Equation (6)). This model-based stage therefore relies on
the toxicity working model (5) only. During this stage, we allocate an upcoming cohort of patients (i+ 1)th similarly to
the CRM algorithm34, in the following manner:

di+1
j = arg min

d∈
|F̂1(t⋆, d) − 𝜋DLT|.
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This working model is used exclusively until a fraction r of the total planned sample size N has been included, that is up
to n1 = rN included patients. At the extremes, setting r = 1 defines a toxicity-centered design, similar to the TITE-CRM.18

Setting r = 0 skips the toxicity-centered stage and directly includes the progression endpoint in dose-finding; it is not
recommended as information is very limited at beginning of the trial which precludes robust estimation of progression
working model (equation 6).

3.4.3 Optimization stage

Starting from the (rN + 1)th patient, where r ∈ (0, 1) is a design parameter to be prespecified on planning the trial, we
incorporate information on the dose-progression relationship in the dose-assignment process.

After the ith patient being included, i ≥ rN, we define the estimated set of acceptable doses as:

⋆
i =

{
dj ∈  ∶ dj ≤ arg min

d∈
|F̂1(t⋆, d) − 𝜋DLT|} .

The dose di+1
j for patient i+ 1 (or cohort) is assigned based the minimization of the progression risk among the set ⋆

i .
Given the uncertainty on the dose-progression relationship in the setting of sparse data, we use adaptive randomization
for dose assignment at this stage.13,22,23,35 Among the set ⋆

i of tolerable doses, a randomization probability Rj of each
tolerable dose, dj ∈ ⋆

i , is computed based on the estimate risk of progression, F̂2(t⋆, dj), as follows:

Rj =
1 − F̂2(t⋆, dj)∑

dj∈⋆
i

1 − F̂2(t⋆, dj)
.

3.4.4 Trial termination

When the maximum sample size N has been reached and the follow-up completed for every patient, the final estimate of
the tolerable set, ⋆

N , is identified.
We obtain the estimated best dose(s) d̂𝜈 as the dose(s) associated with the minimum progression marginal risk,

among ⋆
N :

d̂𝜈 = arg min
d∈⋆

N

{F̂2(t⋆, d)}. (7)

In most cases, a unique best dose is estimated, given the progression working model (Equation (6)). The estimate of
the good doses set 𝜈 is then estimated as the dose levels among ⋆

N which are associated with an estimated marginal
progression probability F̂2(t⋆) lying within a range 𝛿P of the minimum estimated:

̂𝜈 = {d ∈ ⋆
N ∶ F̂2(t⋆, d) − F̂2(t⋆, d̂𝜈) ≤ 𝛿P}. (8)

4 SIMULATION STUDY

4.1 Setting

We conducted a simulation study in this setting to evaluate the operating characteristics of the proposed CR-CRM, in
comparison with benchmark performances, in the setting of our motivating example. The observation window was t⋆ = 8
weeks (with day-level precision) and we considered a setting with K = 5 candidate dose levels, a target maximum tolerable
probability of DLT by t⋆: 𝜋DLT = 0.25, and a threshold 𝛿P = 0.10 to define the good doses close to the minimum progression
risk.

Simulated trials were initiated with the first dose level. The cohort size was 1 patient and no dose skipping was allowed
during dose-escalation. We compared total sample sizes of included patients N = (50, 70), for the proposed phase I/II
CR-CRM design, consistently with current practice in planning oncology early phase trials36.
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4.2 Calibration of model parameters

The CR-CRM design was calibrated both on the dose skeleton and on the sample size n1 for the toxicity stage of the design.
Both aspects impact the design performance and require tuning.

The dose skeleton was calibrated using the indifference interval approach.37 We applied this approach to the toxicity
working model, which estimates the marginal cumulative incidence of toxicity at the end of the observation window, t⋆,
for each dose: F1(d, 𝛽1) = 1 − exp

{
−t⋆ exp(e𝛽1 d)

}
.

Given 𝜋DLT the target probability of toxicity at t⋆, we define Θ =
[
b1, bJ+1

]
the parameter space for the working

model (parameter 𝛽1), and the intervals 𝜃1 = [b1, b2), 𝜃j = (bj, bj+1), for j= 2, … , J − 1, such as bj verifies F1(t⋆, dj−1; bj) +
F1(t⋆, dj; bj) = 2𝜋DLT. In case the MTD coincides with the dose with minimal progression risk among tolerable doses, the
desired d𝜈 can be obtained using backward substitution: d𝜈 = F−1

1 (t⋆, d𝜈 ; 𝛽0) = 𝜋DLT with F1(t⋆, d𝜈 ; 𝛽0) = 𝜋DLT, where 𝛽0
denotes the prior mean of 𝛽1. If an indifference interval of length 2𝛿 is desired, dose levels d𝜈−1 and d𝜈+1 can be obtained
from the following equations:

F1(t⋆, d𝜈−1; b𝜈) + F1(t⋆, d𝜈 ; b𝜈) = 2𝜋DLT,F1(t⋆, d𝜈 ; b𝜈+1) + F1(t⋆, d𝜈+1; b𝜈+1) = 2𝜋DLT,

F1(t⋆, d𝜈−1; b𝜈) = 𝜋DLT − 𝛿 and F1(t⋆, d𝜈+1; b𝜈+1) = 𝜋DLT + 𝛿.

To compute the initial guesses of the probabilities of toxicity by dose, (p̃1, … , p̃J), with F1(t⋆, d; 𝛽0) our exponential
working model, we used the following equations:

dj−1 = log
[
−log {1 − (𝜋DLT − 𝛿)}

t⋆

]
× 1

ebj
,

for j = 𝜈, … , J − 1

dj+1 = log
[
−log(1 − (𝜋DLT + 𝛿))

t⋆

]
× 1

ebj+1

for j = 1, … , 𝜈, with p̃j = 1 − exp{− exp(e𝛽1 dj)t⋆}, for j= 1, … , J.
We implemented the algorithm described in Lee and Cheung (2009)37 to calibrate the width of the indifference inter-

vals in our trial setting, with J = 5 dose levels, and target toxicity probability 𝜋DLT = 0.25. The probability of correct
selection (PCS) with the CR-CRM design was estimated over a range of candidate widths of indifference intervals defining
the dose skeleton, and over simulation scenarios, by total sample size N = (50, 70).

We also calibrated the design on the size of stage 1, n1, given N. Specifically, for N = 70, we evaluated
n1 = (20, 25, 30, 35, 40), and for N = 50, n1 = (15, 20, 25, 30). For each tuning combination (indifference interval width and
n1), 2000 simulated trials were performed.

Overall, in our settings, the optimal length of the indifference interval was .06 and optimal n1 corresponded to
0.5N, respectively 25 and 35, for total N of 50 and 70. Detailed results of calibration are reported in Supporting Web
Materials.

4.3 Simulation scenarios

The design was evaluated in different toxicity scenarios defined by the MTD location assuming accrual was of a rate of
two patients per observation window. Different scenarios of dose-progression relationship were also considered, covering
possible configurations of relationship between the dose-toxicity curve and the dose-progression curve, including mono-
tone decreasing dose-progression relationship, plateau, and U-shape. Overall, we performed simulations in 12 scenarios,
combining the various dose-toxicity and dose-progression relationships (Figure 1). We describe scenarios by the latent
marginal cause-specific cumulative incidences of toxicity and progression at t⋆, F1(t⋆, d) and F2(t⋆, d), respectively. Corre-
sponding observed cumulative incidences pk(t) can be obtained following (1). The progression probability F2(t⋆, d) ranged
from 0.60 to 0.27, depending on dose, corresponding to an improvement in progression-free survival (PFS) from a median
of 6 to 18 weeks at best. As a sensitivity analysis, we also evaluated scenarios with a smaller effect size in progression risk,
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F I G U R E 1 Simulations scenarios: Marginal probability of DLT (dashed line) and progression (solid line) at time t⋆ by dose. Simulated
trials included J = 5 candidate dose levels. For each scenario, the best dose is shaded in gray and the good doses are framed with a solid black
line

with F2(t⋆, d) ranging from 0.60 to 0.37, the latter corresponding to a median PFS of 12 weeks (Supporting Web Materials,
Figure S4).

As per the design objective, the best dose level was that with minimal progression risk among doses with tolerable
toxicity risk (Equation (3)); the good doses were those with minimal or close to (𝛿P = 0.10) minimal progression risk
among doses with tolerable toxicity risk (Equation (4)).

For data generation, the instantaneous cause-specific hazards of both events, at each dose level, h1(t) and h2(t), were
back computed from the marginal cumulative incidence values, under the assumptions of independence between events
and time-constant hazards, and using exponentially distributed event times. Following Beyersmann et al (2009)38 for
competing risks data simulations, observations were then sampled from an exponential model for the time to the first
event T (event-free survival), with all-cause hazard h1k(t)+ h2k(t) and event cause at the sampled time Ti determined
by a random draw from a Bernoulli distribution with probability h1(Ti)

h1(Ti)+h2(Ti)
for toxicity (otherwise progression), which

is constant over time in the case of exponentially distributed event times. Last, administrative censoring was applied at
t⋆ = 8 to mimic the trial observation window.

To assess the robustness of our proposed method, sensitivity simulations were also conducted using different
approaches to generate observations. First, we used time-dependent hazards, using Weibull distributions. Given t⋆ = 8,
we set the Weibull shape parameter at 0.3 or 3, to simulate time-decreasing or increasing hazard, respectively (Supple-
mentary material, Table S1 and Figure S5). In each scenario, the scale parameter was then obtained based on the shape
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parameter and the marginal event incidence values at t⋆ = 8. Observations were then generated following the procedure
described above.38 We examined the different combinations of time-decreasing or increasing hazards for toxicity and
progression. Furthermore, we also evaluated our method in the case of correlated time-to-events, using Clayton’s model
for time-to-event data.24 Details are available in Supporting Web Materials.

For each scenario, we performed 10 000 simulations and estimated: the probability of correct selection as the best
dose, the probability of correct selection as good dose, the probability of DLT and progression per trial, the probability
of allocation per dose level. Trial algorithm and computations were implemented using R statistical platform, with the
L-BFGS-B optimizer for the dose-progression model maximum likelihood estimation. Code for the proposed design and
methods is available on GitHub platform: https://github.com/luciebiard.

4.4 Alternative methods

As an indicator of the difficulty of the scenario, given the sample size and our trial objective, we computed bench-
mark performances in selecting best and good doses using an optimal benchmark nonparametric approach for dose
finding.39 Specifically, since our trial objective relied on two endpoints (toxicity and progression), we used an approach
similar to that of Cheung (2014)40 for complex designs, also accounting for the time to event outcomes.41 While
trial designs only use observed outcomes under the doses assigned during the trial, the benchmark uses complete
information on patients’ outcomes under each dose, hence providing an optimal performance for the dose-finding
objective.39

Basically, for a given sample size, we first generated the complete outcome for each patient under each dose. Then we
estimated the marginal cumulative incidence of toxicity and progression by dose using the nonparametric Kaplan-Meier
estimator using the complete data and applied the trial objective to determine the best dose (Equation (7)). Details of the
benchmark approach we applied to our setting are provided in Supporting Web Material.

For comparative purposes in dose selection performances, we also implemented the simulation scenarios with Wages
and Tait (2015)’s design.22 Since the design considers toxicity and activity as binary endpoints, both evaluable within
the trial timeframe t⋆, marginal latent probabilities of toxicity and activity (absence of progression) at time t⋆ were used
for scenarios definition (Figure 1). In line with our motivating example, the target DLT rate was 25% and the minimum
acceptable activity rate was 40% based on an expected 60% rate of progression within 8 weeks under standard of care (see
Section 2). The cohort size was 1, the maximum sample size was 70 and we did not implement any stopping rule based
on the number of patients treated at one dose. A safety stopping rule relied on the exact binomial 95% confidence interval
of the probability of toxicity at dose level 1: if the lower bound of the interval exceeded the target toxicity rate 𝜋DLT, the
trial was stopped. Similarly, in the maximization phase of the design, a futility stopping rule defined that the trial was
stopped if the upper bound of the 95% exact binomial confidence interval of activity probability was lower than the target
activity rate for the estimated optimal dose level22. The starting dose level was level 1. We used the available online RShiny
application (http://uvatrapps.uvadcos.io/wtdesign/) to obtain simulations results. We ran 5000 replicates simulations for
each scenario.

4.5 Operating characteristics

Table 1 summarizes the dose finding performance with a total sample size of 70 patients (first stage n1 = 0.5N = 35) and
constant hazards of events. For each scenario, 1 to 12, the table reports the probability of selecting a good dose, the
probability of correctly selecting the best dose (PCS) and the probability of selecting a toxic dose (probability of over-
dose selection, POS), estimated over simulated trials implementing the proposed CR-CRM design and the benchmark
approach.

In these settings, CR-CRM correctly selected the best dose in more than 60% of cases in all scenarios. The design’s
performance was consistent with the difficulty of scenarios as assessed by the benchmark. The PCS for the CR-CRM
ranged from 63.1% to 99.6%, while the benchmark PCS ranged from 81.0% to 100%. In cytotoxic scenarios (monotone
decreasing dose-progression, scenarios 1, 5, and 9), the CR-CRM performed slightly better when the MTD was at the
extremes of the dose range: 63.1% in scenario 1 when the MTD is dose level is 3 vs 90.7% and 72.4% in scenarios 5
and 9 when the MTD is dose level 1 and 5, respectively. In plateau scenarios (3, 7, 10, and 11), our design selected
the best dose in more than 75% of cases, wherever the location of the true MTD. In U-shape progression scenarios

https://github.com/luciebiard
http://uvatrapps.uvadcos.io/wtdesign/
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T A B L E 1 Simulation results: Percent of selecting good, best, or toxic dose, for the proposed CR-CRM design compared
with benchmark performances and Wages and Tait’s design (W&T)

Probability of picking (percent)

Scenario MTD Good Best Method Good dose Best dose Toxic dose

S1 3 2, 3 3 CR-CRM 82 63 10

Benchmark 90 81 10

W&T 72 39 3

S2 3 1, 2, 3 1, 2, 3 CR-CRM 94 94 6

Benchmark 99 99 1

W&T 99 99 1

S3 3 2, 3 2, 3 CR-CRM 92 92 6

Benchmark 98 98 2

W&T 86 86 2

S4 3 2, 3 3 CR-CRM 93 69 4

Benchmark 100 91 0

W&T 83 42 1

S5 1 1 1 CR-CRM 91 91 9

Benchmark 87 87 13

W&T 56 56 4

S6 1 1 1 CR-CRM 95 95 5

Benchmark 97 97 3

W&T 80 80 2

S7 2 2 2 CR-CRM 76 76 8

Benchmark 89 89 3

W&T 73 73 3

S8 1 1 1 CR-CRM 91 91 9

Benchmark 90 90 10

W&T 70 70 6

S9 5 4, 5 5 CR-CRM 93 72 n/a

Benchmark 100 91 n/a

W&T 40 18 n/a

S10 5 3, 4, 5 3, 4, 5 CR-CRM 100 100 n/a

Benchmark 100 100 n/a

W&T 77 77 n/a

S11 5 5 5 CR-CRM 80 80 n/a

Benchmark 93 93 n/a

W&T 25 25 n/a

S12 2 2 2 CR-CRM 71 71 9

Benchmark 83 83 8

W&T 63 63 5

Note: Simulated trials with targeted maximum toxicity = 25% and N = 35+ 35.
Abbreviation: n/a, not applicable.
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T A B L E 2 Simulation results: average percent of DLT or progression per trial, of patients treated at toxic
doses with the proposed CR-CRM design

Average percent per trial of

Scenario MTD Good Best DLT Progression Toxic assignment

S1 3 2, 3 3 18 41 18

S2 3 1, 2, 3 1, 2, 3 17 24 14

S3 3 2, 3 2, 3 19 26 15

S4 3 2, 3 3 18 30 15

S5 1 1 1 20 50 20

S6 1 1 1 24 23 17

S7 2 2 2 21 30 18

S8 1 1 1 22 42 20

S9 5 4, 5 5 15 31 n/a

S10 5 3, 4, 5 3, 4, 5 14 28 n/a

S11 5 5 5 15 37 n/a

S12 2 2 2 20 35 18

Note: Simulated trials with targeted maximum toxicity = 25% and N = 35+ 35.
Abbreviation: n/a, not applicable.

(4, 8, and 12), the PCS for the CR-CRM ranged from 68.6% to 90.7%. The CR-CRM outperformed the W&T design except
in scenario 2.

The CR-CRM correctly picked a good dose in more than 70% of cases, ranging from more than 94% in scenarios 2
and 10 with three good doses to 71.4% in scenario 12 with a single good dose, while the benchmark ranged from 100% to
83.4%. The CR-CRM performed slightly better than the benchmark in scenarios 5 and 8 when the MTD is at dose level 1,
combined with decreasing progression risk from dose level 1 to 3.

In terms of risk to the patient, the probability of selecting a toxic dose at the end of the trial was lower than 10.2%
across all scenarios for the CR-CRM (Table 2). During the trial, the probability of treating a patient with a toxic dose was
lower than 20.5% and the probability of a DLT ranged from 13.9 (scenario 10) to 24.2% (scenario 6). The probability of
progression during the trial ranged from 23.2% to 50.3% which remained lower than the assumed reference probability
of progression without the evaluated drug.

With a smaller total sample size N = 50, the probability of selecting the best dose was slightly impaired but remained
greater than 50% in all scenarios (Web Figure S6). In the case of a smaller effect size of the drug, decreasing from 60% to
37% (instead of 27%) in the marginal probability of progression at 8 weeks, results were similar. The PCS slightly decreased
(less than 10%) compared with the scenarios in Table 1, except in scenarios 5, 6, and 8 where the design performed slightly
better (Web Figure S7).

Results of sensitivity analyses on observations with time-varying hazards or correlated events are available in Sup-
porting Web Materials (Figures S8 and S9). In case of late-onset events (increasing hazards), the PCS was maintained, but
the POS increased. In case of early onset events (decreasing hazards), while POS was consistently improved compared
with constant hazards, PCS decreased except in scenarios with a flat dose-progression relationship (scenarios 2 and 3) or
when the true MTD is dose level 1 (scenarios 5, 6, and 8). PCS was mostly robust to data generated with correlated times
to toxicity and progression, but POS increased.

Of note, in case patients safety is a major concern, the CR-CRM can be modified. The CRM algorithm chooses for
dose assignment the dose level with the closest DLT probability to the target 𝜋DLT with the motivation to avoid treating
patients at low and inefficacious dose levels,14,34 which we similarly applied in the CR-CRM to define the tolerable set.
Nevertheless, our method can be modified to restrict the tolerable set to dose levels with DLT probability lower than or
equal to the target 𝜋DLT. Performances of such a modified CR-CRM (mCR-CRM) are shown in Table S2 in Supporting Web
Material; this lead to more conservative dose selection, closer to W&T design. The mCR-CRM was even more conservative
in scenarios 7 and 12, choosing safer dose level 1 more frequently.
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5 DISCUSSION

In this article, we propose a seamless phase I/II design named competing risks CRM (CR-CRM) for novel anticancer drugs
such as immunotherapies, with the purpose to identify doses with acceptable toxicity risk and minimum progression
risk. This design is particularly useful for immunotherapy dose-finding trials whereby there is a nonnegligible risk of dis-
ease progression during the desired toxicity observation window. Using a competing risks framework with cause-specific
time-to-event working models for the dose-toxicity and dose-progression relationships, the design accounts for the prac-
tical fact that disease progression and DLT are mutually exclusive events in a trial, since both usually result in treatment
discontinuation, while making use of the progression information in the dose-finding setting, rather than handling it
as noninformative censoring and replacing patients. A competing risks time-to-event framework also allows continuous
enrollment of patients, prolonged observation windows, and the inclusion of progression as an efficacy endpoint.

The CR-CRM design performs well in selecting an optimal dose, as well as selecting a set of tolerable good doses within
a small range of the dose with the minimum progression risk, particularly in cases with non-monotone dose-progression
relationship, where conventional dose-finding designs relying on toxicity only may not apply. The design also offers some
flexibility by allowing for the specification of a threshold to define the selection of doses sufficiently close to the minimum
progression risk, and the sample sizes split between the toxicity centered and optimization stage. The progression thresh-
old should be specified based on clinical considerations of a clinically meaningful effect size. Based on our simulations,
the sample size for toxicity centered stage should be similar to that of the optimization stage.

The proposed CR-CRM outperformed the benchmark in some scenarios, in terms of dose selection. In fact, this has
been observed previously for the benchmark approach with a binary endpoint compared with the original CRM.34 In
sparse settings such as phase I clinical trials, parametric working models may outperform the nonparametric benchmark
in capturing the dose-response relationship(s) since they allow sharing information across dose levels. The CR-CRM
also outperformed the W&T design in most of the selected scenarios, in terms of dose selection. Moreover, via the use
of right-censored endpoints, the CR-CRM allows continuous enrollment of patients, contrary to W&T design and other
designs relying on binary endpoints which require complete observation of a cohort before including the next one. How-
ever, it should be noted that the definition of tolerable doses differs slightly between the designs. For the W&T design,
the tolerable set comprises of dose levels with probability of DLT strictly lower than the target threshold,22 whereas the
CR-CRM includes dose levels with DLT probability lower, as well as, closer to the target rate, to avoid overly conservative
dose-assignments as the CRM34. Therefore, as expected, the W&T design has lower rates of overdose selection and per-
forms better in scenarios with toxic dose level(s) and flat dose-progression relationship, such as our scenario 2. In case
safety of patients is a major concern, the CR-CRM can be modified to accommodate the more conservative definition of
the tolerable set. Similarly, the designs differ in the definition of acceptable doses in efficacy. While the W&T design sets a
minimum acceptable activity threshold and rely on candidate efficacy skeletons to identify the dose-efficacy relationship,
the CR-CRM targets the dose level with maximum efficacy (minimum progression) and allows the specification of a tol-
erance below (above) it. Therefore, using our definition, poorer performances in selecting good doses are to be expected
using the W&T design.

We compared the CR-CRM to the W&T design because it was closer to our design, which targets the marginal latent
incidences of events (toxicity and progression). Conversely, Zhang et al’s recently proposed design targets the observed
incidence of outcomes and has therefore a different dose-finding objective.26 We believe our objective is closer to the
current practice in dose finding and more realistic. However, there are pros and cons to either approach defining the
dose-finding target, and a formal comparison is difficult, given the different targets.

Sensitivity simulations showed that the CR-CRM performances were mostly robust to time-varying hazards or cor-
related events. The probability of overdose selection tended to increase in case of late-onset events, especially when the
MTD was among the lower dose levels while the dose-progression relationship favored higher levels. Rules for early trial
termination for safety could be defined for practical implementation of the design to limit overdose exposure and selec-
tion. Moreover, the proposed working model uses exponential distributions for the cause-specific hazards of toxicity and
progression, with time-independent effect of the dose. This allows limiting the number of parameters to be estimated.
While these simplified models assume constant and proportional hazards, they support our aim in dose-finding which is
to identify the optimal dose, rather than meticulously modeling the dose-response relationships. More complex models
might perform better in the setting of time-varying hazards, although their operating characteristics would need further
evaluation, in comparison with parsimonious working models.

While the design is proposed along with a calibration procedure for the dose skeleton and a benchmark perfor-
mance evaluation, both were adapted from existing methods to the present setting of censored endpoints, toxicity and
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progression. The calibration procedure relied on the toxicity working model to obtain working dose levels. The procedure
could therefore be further adapted to more comprehensively account for progression in the calibration of the design. Fur-
thermore, we have proposed the design in a likelihood framework with stages based on the heterogeneity of the outcome
data. The implementation of the proposed design using a Bayesian estimation approach would allow for fewer stages and
is the subject of further research.

With the increasing number of early stage clinical trials evaluating immunotherapies and MTAs, it is important to
start incorporating both late-onset toxicities and efficacy information which are often collected as mutually exclusive
events into the identification of optimal doses. This article is a first attempt at using a comprehensive competing risks
framework to solve this complex issue in the context of dose-finding clinical trials.
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