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a b s t r a c t

This paper considers screening of adaptive interventions or adaptive treatment strategies
embedded in a sequential multiple assignment randomized trial (SMART). As a SMART
typically consists of numerous adaptive interventions, inferential procedures based on
pairwise comparisons of all interventions may suffer substantial loss in efficiency after
accounting for multiplicity. We propose simultaneous confidence intervals that compare
the values of interventions of interest to that of the unknown best intervention by
generalizing the method in Edwards and Hsu (1983). The multiple comparison with
the best (MCB) intervals are applied as screening tool: an intervention with MCB
interval excluding zero will be declared as inferior to the true best at a pre-specified
confidence level, and hence excluded from further exploration. Simulation studies show
that the proposed method outperforms the multiple comparison procedures based on
Bonferroni’s correction in terms of width of confidence intervals for estimation. The
method is applied to analyze data from the CODIACS trial in patients with depression.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

An adaptive intervention (AI) is a sequence of treatment decisions made based on a patient’s own historical clinical
information, such as the treatment history and responses to the previous treatments, with the hope to improve or
optimize treatment effect. A sequential multiple assignment randomized trial (SMART) consists of a collection of AIs
randomly assigned to patients, providing information for the estimation of the optimal AIs (Murphy, 2005). The optimal
AIs embedded in a SMART trial may be consistently selected by comparing the estimated values of all AIs, using
procedures such as the G-computation under structural nested models (Robins, 1986; Lavori and Dawson, 2007) and
the inverse probability weighted estimation under the marginal mean models (Murphy et al., 2001; Orellana et al.,
2010). This approach entails multiple pairwise comparisons of AIs. As the number of AIs embedded in a SMART is
often large, the pairwise comparison procedures, such as the Bonferroni’s adjustment, are known to be conservative.
To partially address this issue, gate-keeping approaches whereby pairwise comparisons of AIs will be made only after the
hypothesis of no difference among the AIs of interest is rejected by an omnibus test have been proposed by Orellana et al.
(2010), Nahum-Shani et al. (2012), Ogbagaber et al. (2016), Zhong et al. (2019).
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This article addresses the inferential problem of multiple comparison of AIs in a SMART by generalizing a simultaneous
confidence intervals procedure proposed by Edwards and Hsu (1983). Specifically, we adopt the approach of multiple
comparison with the best (MCB), a concept originated in the ranking and selection literature to address the subset selection
problem (Hsu, 1981, 1984). The idea is to compare each treatment with the unknown best treatment, using a multiple
comparison with the best confidence interval: treatments with multiple comparison with the best interval excluding
zero (equivalently, upper limit less than zero) will be declared inferior and excluded from further investigation; while a
treatment whose interval has 0 as its upper limit will be declared the best. The concept of multiple comparison with the
best is appealing for a SMART where a typical goal is to identify one or several promising or near-best AIs and eliminate the
inferior ones. The proposed method generalizes Edwards and Hsu (1983) in several respects. First, Edwards and Hsu (1983)
considered non-adaptive interventions under parallel group designs where the correlation matrix among the intervention
effects is known, while in our cases the interventions are adaptive under SMART and the correlation matrix among the AIs
is both unknown and less than full rank (i.e., degenerate). Second, Edwards and Hsu (1983) required that the outcomes to
be normally distributed with equal variance, while in this paper the outcomes are only required to be from an exponential
family distribution.

Under the multiple testing framework, Ertefaie et al. (2016) proposed a method to construct a confidence set for
the best adaptive intervention embedded in a sequential multiple assignment trial, a first attempt to address multiple
comparisons of AIs via confidence set. However, there are some limitations of their work. First, they fail to realize that
the asymptotic covariance of the AIs is not of full rank, which will cause loss of efficiency when ignored. Second, their
proposed confidence set, which is an intermediate step of both our method and the original method proposed by Hsu
(1984), yields a high false positive rate. Third, their method, which does not produce simultaneous confidence intervals,
can not screen out inferior AIs as our method can do.

The rest of this article is organized as follows. Section 2 sets up notations, introduces an asymptotic distribution of
the AIs, and proposes the method of building the MCB confidence intervals for comparing multiple AIs. The proposed
simultaneous confidence intervals are evaluated using simulation in Section 3, and illustrated using a depression trial
data set. This article ends with a discussion in Section 4. Technical detail is relegated to Appendix.

2. Method

For simplicity, we consider SMART designs with two-stage AIs. Suppose that there are I treatment options T1, . . . , TI
at Stage 1, and under treatment Ti, there are Ji possible intermediate responses, denoted by Ri1, . . . , RiJi for i = 1, . . . , I .
Next suppose that for a subject who receives treatment Ti at Stage 1 and has an intermediate response of Rij, there are Kij
treatment options, namely Sij1, . . . , SijKij , at Stage 2. An AI can be written in the form of di;ki1,...,kiJi

= (Ti; Si1ki1 , . . . , SiJikiJi ),
where (ki1, . . . , kiJi ) is an element of the product set

∏Ji
j=1{1, . . . , Kij}. Under this AI, a subject receives treatment Ti at Stage

1, and will receive treatment Sijkij at Stage 2 if an intermediate response of Rij is observed, where j = 1, . . . , Ji, i = 1, . . . , I .
Let Ul denote the Stage-1 treatment received by subject l, Xl the intermediate response at the end of Stage 1 such that

pr(Xl = Rij|Ul = Ti) = pij. Let Vl be the Stage-2 treatment, and Yl the primary outcome of interest for l = 1, . . . , n. Let
πi = pr(Ul = Ti) be the randomization probability of assigning Ti to subject l at Stage 1, and πijk = pr(Vl = Sijk|Ul =

Ti, Xl = Rij) be the randomization probability of assigning treatment Sijk to patient l given history of Stage-1 treatment
and response (Ul = Ti, Xl = Rij). The randomization scheme of a two-stage SMART is thus completely specified by the set
of randomization probabilities {πi, πijk: i = 1, . . . , I; j = 1, . . . , Ji; k = 1, . . . , Kij}. The data obtained from the lth subject
who has completed a SMART can be summarized as (Ul, Xl, Vl, Yl) for l = 1, . . . , n, where Yl|(Ul = Ti, Xl = Rij, Vl = Sijk) is
assumed to have a probability density function f

(
yl|φijk, τijk

)
, φijk is the parameter of interest, and τijk, possibly a vector,

is a nuisance parameter.
Let

pi = (pi1, . . . , piJi )
T , φij = (φij1, . . . , φijKij )

T , φi = (φT
i1, . . . , φ

T
iJi )

T .

The value θi;ki1,...,kiJi
of an AI di;ki1,...,kiJi

is defined as the marginal expected outcome Y under di;ki1,...,kiJi
, and can

be expressed as θi;ki1,...,kiJi
=

∑Ji
j=1 pijφijkij . Let θi be the vector of θi;ki1,...,kiJi

’s, arranged in the lexicographical order in
(ki1, . . . , kiJi ). Then,

θi = AiΛi(pi)φi = AiΓi(φi)pi, (1)

where

Ai = (IKi1 ⊗ 1Ki2 ⊗ · · · ⊗ 1KiJi
|1Ki1 ⊗ IKi2 ⊗ · · · ⊗ 1KiJi

|· · · |1Ki1 ⊗ · · · ⊗ 1Ki(Ji−1) ⊗ IKiJi ),

is a Gi × mi matrix with ⊗ denoting the Kronecker product with Gi =
∏Ji

j=1 Kij and mi =
∑Ji

j=1 Kij, Ik is the k × k identity
matrix, 1k the k × 1 matrix of 1’s, and Λi(pi) = bdiag{pijIKij; j = 1, . . . , Ji} is an mi × mi block diagonal matrix and
Γi(φi) = bdiag{φij; j = 1, . . . , Ji} is an mi × Ji block diagonal matrix with ‘‘bdiag{·}’’ denoting a block diagonal matrix.
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As an illustration of Eq. (1), consider a SMART design with I = 2, J1 = J2 = 2, Kij ≡ 2 and consider i = 1. Then,

θ1 =

⎛⎜⎝ p11φ111 + p12φ121
p11φ111 + p12φ122
p11φ112 + p12φ121
p11φ112 + p12φ122

⎞⎟⎠ =

⎛⎜⎝ 1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

⎞⎟⎠
⎛⎜⎝ p11 0 0 0

0 p11 0 0
0 0 p12 0
0 0 0 p12

⎞⎟⎠
⎛⎜⎝ φ111

φ112
φ121
φ122

⎞⎟⎠
= A1Λ1(p1)φ1,

where

A1 =

⎛⎜⎝ 1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

⎞⎟⎠
is as given by the formula on the previous page.

Now define Σpi = π−1
i

(
diag{pi} − pipTi

)
, Σφi = bdiag{Σφi1 , . . . , ΣφiJi

},

Σφij =
(
πipijπijk

)−1 bdiag
{
σ 2(φijk, τijk); k = 1, . . . , Kij

}
,

and σ 2(φijk, τijk) =

(
ıφijkφijk − ıTφijkτijk

· ı−1
τijkτijk

· ıφijkτijk

)−1
, where(

ıφijkφijk ıTφijkτijk
ıφijkτijk ıτijkτijk

)
is the block Fisher information matrix of distribution f (y|φijk, τijk).

Zhong et al. (2019) establish the following asymptotic distribution for the AIs.

Theorem 2.1. Let θ = (θ T
1 , . . . , θ T

I )
T . Assume the following regularity conditions:

(C1) The true value θ is an interior point of Θ , the collection of all feasible parameters.
(C2) The second derivatives of f (yl|φijk, τijk) are continuous as function of θ , and for any fixed interior point θ0, there is a

δ > 0 such that

sup
∥θ−θ0∥≤δ

∥∇
2f (yl|φijk, τijk)∥ ≤ hθ0 (yl),

∫
hθ0 (yl)dyl < ∞,

and

sup
∥θ−θ0∥≤δ

∥∇
2 log f (yl|φijk, τijk)∥ ≤ Hθ0 (yl), E

{
Hθ0 (Yl)

}
< ∞,

where ∇ denotes the gradient operator with respect to θ .

Then, as n → ∞,
√
n(θ̂ − θ )

d
−→ N (0, Σ) , (2)

where Σ = bdiag{Σθ1 , . . . , ΣθI }, Σθi = Ai
{
Γi(φi)ΣpiΓi(φi)T + Λi(pi)ΣφΛi(pi)

}
AT
i , and rank

(
Σθi

)
=

∑Ji
j=1 Kij − Ji + 1 =

mi − Ji + 1, i = 1, . . . , I .

We make three remarks. First, it can be easily verified that when f (yl|φijk, τijk) forms an exponential family, the
regularity conditions (C1) and (C2) in Theorem 2.1 are satisfied. Second, the asymptotic covariance matrix Σθi is obtained
via the delta method and the fact that the asymptotic covariance matrix of φ̂i, which is the MLE of φi, is the inverse of
the Fisher information matrix. Third, it is interesting to note that the covariance matrix Σ is not of full rank. It is because
the AIs are linearly dependent. To see this, consider a SMART with two Stage-1 treatment options, binary intermediate
response, and three Stage-2 treatment options given any intermediate response. The total number of treatment sequences
is 12 but the number of AIs is 18. Therefore, the values of AIs embedded in this SMART are linearly dependent, and their
estimates are asymptotically linearly dependent, which means the asymptotic covariance matrix would have less than
full rank.

We now describe a method to construct simultaneous confidence intervals for comparing AIs by extending the MCB
idea in Edwards and Hsu (1983). For each g = 1, . . . ,G, let Dg be a (G − 1) × G contrast matrix such that its gth column
is a (G−1) vector of 1’s, and its jth column is a (G−1)-vector whose jth entry is −1 and other entries are 0’s if j ≤ g −1;
whose (j − 1)-th entry is −1 and other entries are 0’s if j ≥ g + 1. Then as n → ∞,

Dg
√
n(θ̂ − θ )

d
−→ N

(
0, DgΣDT

g

)
.
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Let σ 2
ig be the ith diagonal entry of DgΣDT

g . Then, the asymptotic variance can be expressed in terms of the correlation
coefficient matrix Rg :

DgΣDT
g = diag{σig} · Rg · diag{σig}.

For a given α, define δg (α) > 0 be the unique solution to the following equation

pr
{
|Zig |≤ δg (α); i = 1, . . . ,G − 1

}
= pr

{
max

i∈{1,...,G−1}
|Zig |≤ δg (α)

}
= 1 − α,

where
(
Z1g , . . . , ZG−1,g

)T
∼ N(0, R̂g ) and R̂g is a consistent estimator of Rg .

To obtain R̂g , observe that Rg is a continuous function of pi, φi, Σpi , Σφi , i = 1, . . . , I . We know from Theorem 2.1
that the MLEs of p̂i, φ̂i, Σ̂pi , Σ̂φi are consistent. By the continuous mapping theorem, the plug-in estimator R̂g will be
consistent of Rg . Furthermore, from Theorem 2.1, we know that Σ and hence Rg is not of full rank. In fact, from the rank
of Σ we conclude that the G −

∑I
i=1 mi +

∑I
i=1 Ji − I smallest eigenvalues of Rg must be 0. To improve efficiency of R̂g ,

the G −
∑I

i=1 mi +
∑I

i=1 Ji − I smallest eigenvalues of R̂g are forced to be 0 to match those of Rg . Specifically, consider
eigendecomposition R̂g = V̂ ÊV̂ T , where Ê is the diagonal matrix of eigenvalues of R̂g and V̂ an orthogonal matrix of
eigenvalues. Let Ẽ be the diagonal matrix by replacing the G −

∑I
i=1 mi +

∑I
i=1 Ji − I smallest eigenvalues of Ê by 0’s.

Then, R̃g = V̂ ẼV̂ T is an improved estimator of Rg upon the original R̂g .
We remove α from δg (α) in the subsequent text for brevity. Let

G =

{
g : θ̂g − θ̂i + δg σ̂ig/

√
n > 0, for all i ̸= g

}
,

where n is the total sample size of the study and σ̂ig is the plug-in estimator of σig , the standard deviation of the ith
diagonal entry of DgΣDT

g . The MCB interval [Li,Ui] for the ith AI is calculated as

Li = min
g∈G

Lig and Ui = max
g∈G

Uig ,

where

Lig =

{
0, if g = i,
θ̂i − θ̂g − δg σ̂ig/

√
n, if g ̸= i,

and Uig =

{
0, if g = i,

min
{
0, θ̂i − θ̂g + δg σ̂ig/

√
n
}

, if g ̸= i.

Theorem 2.2. As n → ∞, the intervals [Li,Ui], i = 1, . . . ,G, constructed above is a set of 100(1 − α)% asymptotic
simultaneous confidence intervals for θi − maxj∈{1,...,G} θj, i = 1, . . . ,G. Furthermore, when there is a unique g∗ such that
θg∗ > θi, i ̸= g∗, the asymptotic coverage of the above simultaneous confidence interval is exactly 1 − α; otherwise, the
asymptotic coverage is > 1 − α.

Theorem 2.2, whose proof is given in the Appendix, implies that the proposed intervals [Li,Ui] are for comparison with
the truly best maxj θj without assuming the knowledge of which AI is the true best. By construction, no upper limit Ui can
be positive, that is, Ui ≤ 0 for all i. An AI whose corresponding upper limit Ui is negative is considered inferior to optimal
with confidence. Furthermore, if the set G = {g∗

} is a singleton, the MCB interval associated with that AI must be [0, 0],
that is, Lg∗ = 0. Conversely, it can be shown that if Lg ′ = 0 for some g ′, then the set G = {g ′

} is a singleton.

3. Numerical studies

3.1. Simulation

Three two-stage SMART designs are considered in the simulation (Fig. 1). The first design structure (DS1) mimics the
situation in CODIACS (cf. Table 1, which pertains to the data to be analyzed in Section 3.2) and many other situations
where there are two treatment options at each decision making point, that is, Ti, Sijk ∈ {0, 1}, and binary intermediate
response, that is, Rij ∈ {0, 1} for i, j, k = 1, 2. As a result, there are eight possible AIs embedded in DS1. Under DS2 and
DS3, there are also two treatment options at Stage 1. However, randomization at Stage 2 may be restricted for patients
with certain intermediate responses, resulting in 4 and 3 embedded AIs in DS2 and DS3, respectively.

Under each design structure, a SMART design is completely specified by the set {πi, πijk} of randomization probabilities
defined in Section 2. In the simulation, we considered three sets of randomization probabilities. First, we considered
balanced randomization (BR), that is, pr(U = 1) = 0.5 and pr(V = 1|U, X) = 0.5 whenever there is an option of
randomization at Stage 2. Second, we considered an unbalanced randomization (UBR) scheme, where pr(U = 1) = 0.7
and pr(V = 1|U, X) = 0.7 whenever there is an option of Stage-2 randomization. Third, we considered pr(U = 1) = 0.5
at Stage 1, pr(V = U |U, X = 0) = 0.3 and pr(V = U |U, X = 1) = 0.7, whenever there is an option of second stage
randomization. Under this scheme, Stage 2 implements an adaptive randomization (AR) rule for the situations where the
first and the second stage treatment options are identical. In summary, the three design structures (DS1, DS2, DS3) and the
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Fig. 1. Design structures in the simulations.

Table 1
Multiple comparison of adaptive interventions embedded in CODIACS study. The MCB intervals for AI g compares it with the true
(unknown) best AI, whereas the Bonferroni’s intervals compare with the observed best. sd: asymptotic standard deviation of θ̂g (from
inverse of Fisher information matrix); Med: Medication; PST: Problem-solving therapy.

AI (g) Stage-1 Stage-2 Treatment for θ̂g (sd) δg 80% confidence intervals

Treatment non-response response MCB Bonferroni

1 Med Med Med 6.3 (1.1) 1.98 [−19.7, 0.0] [−25.7, 7.3]
2 Med Med PST 3.3 (1.2) 1.99 [−22.7, −0.3] [−28.7, 4.5]
3 Med PST Med 10.7 (0.6) 2.04 [−15.2, 0.0] [−21.1, 11.8]
4 Med PST PST 7.8 (1.1) 1.98 [−18.2, 0.0] [−24.2, 8.8]
5 PST Med Med 15.45 (6.0) 1.71 [−7.6, 0.0] –
6 PST Med PST 9.5 (1.0) 2.00 [−16.3, 0.0] [−22.2, 10.2]
7 PST PST Med 14.2 (6.1) 1.71 [−8.9, 0.0] [−3.8, 1.4]
8 PST PST PST 8.2 (1.1) 1.98 [−17.6, 0.0] [−23.6, 9.1]

three randomization schemes (BR, UBR, AR) yielded 9 SMART designs under which the multiple comparison procedures
were evaluated.

Under each SMART design with n subjects, the treatment assignment (Ul, Vl) of the lth patient was generated according
to one of the three randomization schemes. The intermediate response rate was set as pr(Xl = 1|Ul = Ti) = 1/3
for Ti ∈ {0, 1}. Given the lth subject’s treatment history and intermediate response (Ti, Rij, Sijk), his or her outcome Yl
was randomly generated from a normal distribution with mean φijk = φ(Ti, Rij, Sijk) and variance σ 2

= 100, where the
conditional mean φijk was specified as

φ(Ti, Rij, Sijk) = β0 + β1Ti + β2Rij + β3Sijk + β4TiRij + β5TiSijk + β6RijSijk + β7TiRijSijk

for Ti, Rij, Sijk ∈ {0, 1}. The parameter β = (β0, β1, β2, β3, β4, β5, β6, β7)T was chosen so that the true AI values θi;ki1,...,kiJi
’s

would follow the patterns displayed in Fig. 2. Under Value Pattern 1 (VP1), AIs with the same Stage-1 treatment had the
same values; under VP2, the values of the AIs were uniformly higher if their Stage-1 treatment was U = 1; under VP3,
the best AI had Stage-1 treatment U = 1 while the second best had Stage-1 treatment U = 0, and so on and so forth,
following an alternating pattern. The value of β was chosen so that the effect size ∆, which measures the heterogeneity
among the AIs, was either 0.05 or 0.10. The β ’s used in the simulation scenarios are given in Table 2.
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Fig. 2. Value patterns of AIs in the simulations.

Table 2
Values of (β0, β1, β2, β3, β4, β5, β6, β7) used in the simulations.
Scenario (β0, β1, β2, β3, β4, β5, β6, β7)

∆ = 0.05 ∆ = 0.10

DS1-VP1 (0.00, 4.48, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) (0.00, 6.33, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
DS1-VP2 (0.00, 3.63, 0.00, 2.62, 0.00, 0.00, 0.00, 0.00) (0.00, 5.13, 0.00, 3.70, 0.00, 0.00, 0.00, 0.00)
DS1-VP3 (0.00, 1.86, 0.00, 3.73, −9.32, 1.86, −0.93, 0.00) (0.00, 2.64, 0.00, 5.82, −13.20, 2.64, −1.32, 0.00)

DS2-VP1 (0.00, 4.48, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) (0.00, 6.33, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
DS2-VP2 (0.00, 0.00, 0.00, 2.88, 12.00, 0.00, 0.00, 0.00) (0.00, 0.00, 0.00, 4.13, 17.70, 0.00, 0.00, 0.00)
DS2-VP3 (0.00, −1.21, 0.00, 4.82, 4.82, 1.21, 0.00, 0.00) (0.00, −1.72, 0.00, 6.87, 6.87, 1.72, 0.00, 0.00)

DS3-VP1 (0.00, 4.48, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) (0.00, 6.33, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)
DS3-VP2 (0.00, 1.29, 0.00, 3.88, 0.00, 0.00, 0.00, 0.00) (0.00, 1.82, 0.00, 5.47, 0.00, 0.00, 0.00, 0.00)
DS3-VP3 (0.00, 0.00, 0.00, −4.46, 0.00, 6.69, 0.00, 0.00) (0.00, 0.00, 0.00, −6.36, 0.00, 9.54, 0.00, 0.00)

Our multiple comparison procedure applies the MCB confidence intervals for the purpose of treatment screening: AIs
with MCB intervals excluding zero will be declared inferior to the optimal AI and removed from further considerations.
To anticipate the clinical context where there are many candidate treatments (AIs) and the goal is to move forward
with a subset, we may consider applying the MCB intervals at a confidence level less than 95% so as to afford a higher
differentiating power. Specifically, we consider 80% confidence in this subsection.



X. Zhong, Y.K. Cheung, M. Qian et al. / Journal of Statistical Planning and Inference 211 (2021) 143–153 149

Table 3
Properties of 80% MCB intervals and simultaneous confidence intervals using Bonferroni’s adjustment with n = 200: coverage probability (cov) and
average width of intervals (wid).
Scenario ∆ = 0.05 ∆ = 0.10

MCB Bonferroni MCB Bonferroni

cov wid cov wid cov wid cov wid

DS1-VP1-BR 0.927 6.63 0.918 5.42 0.920 6.95 0.918 5.42
DS1-VP1-UBR 0.941 7.07 0.927 6.31 0.925 7.47 0.927 6.31
DS1-VP1-AR 0.929 7.13 0.920 5.72 0.921 7.52 0.920 5.72
DS1-VP2-BR 0.901 6.64 0.915 8.63 0.867 7.10 0.915 8.65
DS1-VP2-UBR 0.913 7.24 0.924 9.52 0.873 7.73 0.921 9.53
DS1-VP2-AR 0.907 7.13 0.917 9.57 0.876 7.67 0.916 9.59
DS1-VP3-BR 0.936 6.64 0.905 8.81 0.903 7.30 0.903 8.99
DS1-VP3-UBR 0.960 7.70 0.919 9.63 0.946 8.37 0.915 9.75
DS1-VP3-AR 0.942 7.10 0.904 9.74 0.914 7.77 0.901 9.90

DS2-VP1-BR 0.881 4.95 0.866 3.90 0.880 5.09 0.866 3.90
DS2-VP1-UBR 0.885 5.36 0.864 4.80 0.870 5.54 0.864 4.80
DS2-VP1-AR 0.883 5.28 0.858 3.82 0.877 5.44 0.858 3.82
DS2-VP2-BR 0.858 5.00 0.889 5.75 0.848 5.19 0.893 5.88
DS2-VP2-UBR 0.865 5.30 0.878 6.02 0.846 5.48 0.879 6.11
DS2-VP2-AR 0.838 5.37 0.877 6.47 0.835 5.65 0.882 6.60
DS2-VP3-BR 0.872 4.97 0.873 5.67 0.857 5.23 0.876 5.72
DS2-VP3-UBR 0.886 5.35 0.876 5.98 0.867 5.67 0.880 6.03
DS2-VP3-AR 0.856 5.30 0.869 6.41 0.840 5.61 0.872 6.45

DS3-VP1-BR 0.806 3.52 0.843 4.00 0.805 3.47 0.841 4.00
DS3-VP1-UBR 0.813 4.31 0.852 4.79 0.808 4.23 0.852 4.79
DS3-VP1-AR 0.807 3.70 0.843 4.17 0.805 3.64 0.843 4.17
DS3-VP2-BR 0.821 3.66 0.846 4.01 0.815 3.62 0.846 4.02
DS3-VP2-UBR 0.839 4.55 0.854 4.80 0.828 4.58 0.854 4.82
DS3-VP2-AR 0.821 3.75 0.848 4.19 0.818 3.74 0.850 4.20
DS3-VP3-BR 0.809 3.67 0.841 4.02 0.798 3.66 0.840 4.03
DS3-VP3-UBR 0.815 4.33 0.845 4.81 0.801 4.39 0.844 4.83
DS3-VP3-AR 0.821 3.94 0.833 4.19 0.800 3.93 0.829 4.21

Table 3 gives the coverage probabilities of the 80% MCB intervals under various designs and outcome scenarios
based on 5000 simulation runs, which will yield an estimated standard error of accuracy to the second decimals. In
addition, we point out our estimators, being MLEs, are asymptotically efficient, which implies that their standard errors
should be smallest asymptotically. To be more concise, each probability pertained to simultaneous coverage, and was
calculated as the proportion of simulated trials under which the gth MCB interval covers the corresponding true values
of θg − maxi∈{1,...,G} θi for all g = 1, . . . ,G. Recall that G = 8, 4, 3 under DS1, DS2, and DS3, respectively. For comparison
purposes, we also considered simultaneous confidence intervals based on Bonferroni’s correction: For each pair of AIs,
a confidence interval for the difference of their values was evaluated with confidence level 100 [1 − 0.2/{G(G − 1)/2}] %
so that the overall nominal coverage is 80%. The coverage probability of the Bonferroni intervals was calculated as the
proportion of simulated trials under which all G(G − 1)/2 intervals covered the corresponding true differences. While
we note that the Bonferroni’s simultaneous confidence intervals address a different estimation problem than the MCB
intervals, both methods are valid in that their corresponding coverage probabilities were at least 80% in all scenarios.
Indeed, both methods appeared to be conservative, especially under DS1 where there were many AIs. For MCB intervals,
the conservativeness was due to the asymptotic approximation: simulation with larger sample size showed that the
coverage probability approaches the nominal 80% as n increased.

We also calculated the average widths of the confidence intervals as a measure of efficiency. For the MCB method, the
average width was taken over the G MCB intervals. For the Bonferroni’s pairwise intervals, the average width was taken
over the G intervals that compared to the observed best AI. We note that this comparison was unfair against MCB intervals
in two ways due to the interpretation of the intervals. First, the MCB intervals did not assume the knowledge of the true
best AI, and the calculation of MCB intervals implicitly accounted for variability induced due to this unknown parameter. In
contrast, the Bonferroni’s method avoided estimating the unknown true best AI by comparing all AIs against a known and
observed best, and thus was addressing an easier inferential problem. Second, by definition of the Bonferroni pairwise
intervals, the observed best when compared to itself would have a width of zero, which would artificially shrink the
average width towards a smaller value. However, we opted to use the Bonferroni’s intervals as a benchmark to evaluate
how the MCB intervals perform under different scenarios. Having noted the difference in interpretation of the two interval
estimation procedures and the average widths, we observe that the 80% MCB intervals had smaller average width than
the average of the G corresponding Bonferroni’s intervals under value patterns VP2 and VP3, but had larger average width
under VP1. And the MCB intervals were narrower than the Bonferroni ones under the third design structure irrespective
of the value pattern. As discussed above, since the MCB intervals implicitly account for the variability in estimating
what the true best AI is, we expect larger variability when the true best AI is not unique and thus difficult to estimate,
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Table 4
The probability of an AI being declared inferior using 80% MCB intervals under balanced randomization (BR) and a sample size n = 200.
AI ∆ = 0.05 ∆ = 0.10

DS1-VP1 DS1-VP2 DS1-VP3 DS1-P1 DS1-VP2 DS1-VP3

Value Prob. Value Prob. Value Prob. Value Prob. Value Prob. Value Prob.

(0;0,0) 0.00 0.382 0.00 0.461 0.00 0.197 0.00 0.781 0.00 0.857 0.00 0.460
(0;0,1) 0.00 0.391 0.87 0.324 0.93 0.098 0.00 0.785 1.23 0.709 1.32 0.236
(0;1,0) 0.00 0.379 1.74 0.227 2.49 0.038 0.00 0.778 2.47 0.533 3.52 0.080
(0;1,1) 0.00 0.381 2.62 0.156 3.42 0.025 0.00 0.785 3.70 0.361 4.84 0.046
(1;0,0) 4.48 0.014 3.63 0.122 −1.24 0.343 6.33 0.015 5.13 0.299 −1.76 0.726
(1;0,1) 4.48 0.013 4.50 0.050 0.31 0.115 6.33 0.015 6.36 0.111 0.44 0.334
(1;1,0) 4.48 0.015 5.38 0.015 2.49 0.034 6.33 0.017 7.60 0.046 3.52 0.074
(1;1,1) 4.48 0.017 6.25 0.001 4.04 0.005 6.33 0.019 8.83 0.000 5.72 0.005

AI DS2-VP1 DS2-VP2 DS2-VP3 DS2-VP1 DS2-VP2 DS2-VP3

Value Prob. Value Prob. Value Prob. Value Prob. Value Prob. Value Prob.

(0;0,1) 0.00 0.667 0.00 0.734 0.00 0.549 0.00 0.943 0.00 0.976 0.00 0.885
(0;1,1) 0.00 0.663 1.92 0.440 3.21 0.119 0.00 0.945 2.77 0.759 4.58 0.191
(1;0,1) 4.48 0.033 4.00 0.234 0.40 0.442 6.33 0.034 5.90 0.462 0.57 0.773
(1;1,1) 4.48 0.041 5.92 0.001 4.42 0.008 6.33 0.041 8.67 0.000 6.30 0.003

AI DS3-VP1 DS3-VP2 DS3-VP3 DS3-VP1 DS3-VP2 DS3-VP3

Value Prob. Value Prob. Value Prob. Value Prob. Value Prob. Value Prob.

(0;0,1) 0.00 0.830 0.00 0.820 0.00 0.401 0.00 0.987 0.00 0.983 0.00 0.630
(0;1,1) 0.00 0.835 2.59 0.492 −2.97 0.830 0.00 0.987 3.65 0.748 −4.24 0.982
(1;1,1) 4.48 0.000 5.17 0.000 2.23 0.001 6.33 0.000 7.30 0.000 3.18 0.000

i.e., under VP1. In practice, scenarios such as VP1 where many AIs have the same value are conceivably less likely than
the other patterns, especially when the AIs consist of components of different treatment types (i.e., pharmacological vs.
behavioral).

Table 4 presents the probability of an AI being declared inferior using 80% MCB intervals under balanced randomization
(BR) with n = 200, based on 5000 simulation runs. As ∆ increased from 0.05 to 0.10, the truly inferior AIs were correctly
identified with increasing probabilities. Specifically, under ∆ = 0.10 with n = 200, the MCB method identified the true
worst AI as inferior with probabilities between 73% and 98%. Similar results were obtained for the other two types of
randomization (data not shown).

3.2. Example of the CODIACS trial for depression

Cheung et al. (2015) analyzed data in a subset of patients enrolled to the CODIACS trial with an objective to further
determine which stepped care depression management regimens should be used and which should be discontinued in
an implementation stage. A specific task may thus be formulated as eliminating inferior AIs from further practice based
on reduction of Beck Depression Inventory at 6 months, which was the primary endpoint in the original study. In other
words, the value of an intervention in this application is the expected reduction of the depression score. Furthermore,
each AI would adapt to an initial response at 8 weeks defined as no increase in depression. Table 1 shows the 80% MCB
intervals for the eight possible two-stage AIs embedded in the study. This analysis identified an inferior AI, namely, the AI
with g = 2 that would start with medication, stay with it upon a non-response, and switch to problem-solving therapy
upon a response. We emphasize that this analysis was not intended to estimate the true best AI with statistical confidence.
Rather, the utility of this analysis is to exclude the inferior AI from further practice from a quality assurance viewpoint.

As a comparison, we applied the pairwise confidence intervals with Bonferroni’s correction described above. Table 1
also lists the intervals that compare each AI with the observed best, and shows that the Bonferroni’s correction failed to
differentiate any AIs. From an estimation viewpoint, the MCB intervals give more precise estimates than Bonferroni’s:
the average widths of the 8 MCB intervals were shorter than that of the 7 Bonferroni’s intervals. Note that there was
no Bonferroni interval for g = 5. This is because for the Bonferroni method, we treated, although unreasonably, the
observed optimal AI g = 5 (for θ̂5 is the largest) as the true optimal and the confidence intervals were constructed for
the remaining 7 AIs by comparing them against g = 5. So, g = 5, being considered as the true optimal AI, had itself no
confidence interval associated with it.

4. Discussion

In many situations, it is appropriate to view a SMART as a study in a series of experimental studies that lead to a
confirmatory trial (Murphy, 2005). In the early phase where there are potentially many treatment options, a relevant
clinical objective would be to eliminate inferior AIs (or non-adaptive interventions) so that the clinical investigation can
quickly zero in on the promising interventions. The concept of screening has been well-studied in the contexts of clinical
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trials and multiple comparison in experimental designs (Bechhofer et al., 1995). A contribution of this article is to extend
the screening concept to the evaluation of adaptive interventions, thus enhancing the practicality of SMARTs.

The proposed method generalizes Edwards and Hsu (1983) in several respects. First, Edwards and Hsu (1983)
considered non-adaptive interventions under parallel group designs where the correlation among the intervention effects
are known, while in our cases the interventions are adaptive under SMART and the correlation among the adaptive
interventions are both unknown and less than full rank (i.e., degenerate). Second, Edwards and Hsu (1983) required that
the outcomes to be normally distributed with equal variance, while in this paper the outcomes are only required to be
from an exponential family distribution. In fact, as long as the joint asymptotic distribution of the AIs can be obtained (Cf.
Theorem 2.1), the proposed method will remain valid. These are certainly topics for further study. Having said that, we
note that the results in this article are derived under weak assumptions on the (conditional) distribution of the outcome
Y , with the exponential family being the most prominent example that the theory is applicable to. Thus, the specific
procedures studied in this article shall have applications in very broad settings.

Finally, when there are multiple optimal AIs, the simultaneous confidence interval provided in Theorem 2.2 is shown
to be conservative. Further research is needed to improve the performance in these situations.

CRediT authorship contribution statement

Xiaobo Zhong: Methodology, Writing - original draft. Ying Kuen Cheung: Methodology, Data curation, Writing -
original draft. Min Qian: Methodology, Writing - review & editing. Bin Cheng: Conceptualization, Methodology, Writing
- original draft, Writing - review & editing.

Acknowledgments

We thank the reviewers for detailed and insightful comments.

Appendix

Proof of Theorem 2.2. Let g∗
= argmaxi∈{1,...,G}θi, where ties can be broken in any fashion without affecting the validity

of the proof. Consider

E =

{
θ̂i − θi − δg∗ σ̂ig∗/

√
n ≤ θ̂g∗ − θg∗ ≤ θ̂i − θi + δg∗ σ̂ig∗/

√
n; i ̸= g∗

}
.

By the construction of δg∗ ,

lim
n→∞

pr(E) = 1 − α.

Since

θ̂g∗ − θg∗ ≥ θ̂i − θi − δg∗ σ̂ig∗/
√
n

for all i ̸= g∗ is equivalent to

θ̂g∗ − θ̂i + δg∗ σ̂ig∗/
√
n ≥ θg∗ − θi ≥ 0

for all i ̸= g∗, we conclude that g∗
∈ G.

From

θ̂g∗ − θg∗ ≤ θ̂i − θi + δg∗ σ̂ig∗/
√
n,

we have

θi − θg∗ ≤ θ̂i − θ̂g∗ + δg∗ σ̂ig∗/
√
n,

and noticing that θi − θg∗ ≤ 0, we conclude that

E ⊆

{
g∗

∈ G, θi − θg∗ ≤ min
(
0, θ̂i − θ̂g∗ + δg∗ σ̂ig∗/

√
n
)

, i ̸= g∗

}
⊆

{
θi − θg∗ ≤ Ui, i = 1, . . . ,G

}
.

Similarly,

E ⊆

{
g∗

∈ G, θi − θg∗ ≥ θ̂i − θ̂g∗ − δg∗ σ̂ig∗/
√
n, i ̸= g∗

}
⊆

{
θi − θg∗ ≥ Li, i = 1, . . . ,G

}
.
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Thus,

E ⊆

{
Li ≤ θi − θg∗ ≤ Ui, i = 1, . . . ,G

}
,

and

pr
(
Li ≤ θi − max

j∈{1,...,G}

θj ≤ Ui, i = 1, . . . ,G
)

= pr
(
Li ≤ θi − θg∗ ≤ Ui, i = 1, . . . ,G

)
≥ pr(E).

Therefore,

lim inf
n→∞

pr
(
Li ≤ θi − max

j∈{1,...,G}

θj ≤ Ui, i = 1, . . . ,G
)

≥ lim
n→∞

pr(E) = 1 − α.

Now we proceed to prove the claims on asymptotic coverage. First, consider the case when there exists a single g∗ such
that θg∗ > θi, i ̸= g∗. That is, when the optimal AI is unique. In this case, recalling the construction of the simultaneous
confidence intervals and the consistency of θ̂j’s, we conclude that, when n large enough, the simultaneous confidence
interval for θi − θg∗ , i ̸= g∗, becomes

[Li,Ui] =

{
{0} if i = g∗,[

θ̂i − θ̂g∗ − δg∗ σ̂ig∗/
√
n, θ̂i − θ̂g∗ + δg∗ σ̂ig∗/

√
n
]

if i ̸= g∗.

Thus, the asymptotic coverage is

lim
n→∞

pr
(
θi − θg∗ ∈

[
θ̂i − θ̂g∗ − δg∗ σ̂ig∗/

√
n, θ̂i − θ̂g∗ + δg∗ σ̂ig∗/

√
n
]
, for all i ̸= g∗

)
= pr

{
|Zig∗ |≤ δg∗; i ̸= g∗

}
= pr

{
max
i̸=g∗

|Zig∗ |≤ δg∗

}
= 1 − α,

by the definition of δg∗ .
Now consider the case when the optimal AI is not unique. Without loss of generality, assume that there exists a

k ≤ G − 2 such that max{θ1, . . . , θk} < θk+1 = · · · = θG. That is, there are G − k ≥ 2 optimal AIs. By the construction of
the simultaneous confidence intervals, we conclude that, when n large enough, the confidence interval for θi − maxj{θj}
is {0} if i ∈ {k + 1, . . . ,G}; and when i ∈ {1, . . . , k}, [Li,Ui], the confidence interval for θi − maxj{θj}, becomes[

min
g∗∈{k+1,...,G}

{
θ̂i − θ̂g∗ − δg∗ σ̂ig∗/

√
n
}

, max
g∗∈{k+1,...,G}

{
θ̂i − θ̂g∗ + δg∗ σ̂ig∗/

√
n
}]

.

The asymptotic coverage is

lim inf
n→∞

pr
(

min
g∗∈{k+1,...,G}

{
θ̂i − θ̂g∗ − δg∗ σ̂ig∗/

√
n
}

≤ θi − θg∗

≤ max
g∗∈{k+1,...,G}

{
θ̂i − θ̂g∗ + δg∗ σ̂ig∗/

√
n
}

, i = 1, . . . , k
)

≥ lim inf
n→∞

pr
(
θ̂i − θ̂G − δGσ̂iG/

√
n ≤ θi − θG ≤ θ̂i − θ̂G + δGσ̂iG/

√
n, i = 1, . . . , k

)
= pr

(
max

i∈{1,...,k}
|ZiG|≤ δG

)
> pr

(
max

i∈{1,...,G−1}
|ZiG|≤ δG

)
= 1 − α,

as claimed. □
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