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We would like to congratulate Professors Jiang, Song, Li, and Zeng (JSLZ)
on their stimulating article on dynamic treatment regimes (DTR), in which they
make an interesting connection between the entropy loss and the optimal DTR.
We found the article enjoyable to read, and we thank the editors for the oppor-
tunity to discuss it.

DTRs employ treatment decision rules that can be used to tailor a treatment
based on a patient’s needs over time. Current methods for estimating DTRs can
be classified into two branches: the indirect approach (e.g., Q-learning; see Mur-
phyl (2005))), and the direct approach. The direct approach requires that we deal
with a nonconvex optimization problem, owing to the existence of an indicator
loss, and a surrogate loss is often used (e.g., the hinge loss used in Zhao et al.
(2015)). JSLZ proposed replacing the indicator loss with a smooth surrogate
entropy loss, and obtained asymptotic normality results for the estimated pa-
rameters and value functions for inferences. Below, we first discuss the inference
problem and the conditions. Then, we examine the problem from a risk bound
point of view.

Inferences are critical in DTRs, because they help researchers to decide on
the best treatment for each patient with a measure of confidence. However, it is
challenging to make inferences when the data present around the decision bound-
ary (Robins| (2004); |[Laber et al.| (2014)). In a linear decision boundary setting,
following JSLZ’s notation, this means that | X;7 3?| has a nonnegligible probabil-
ity mass around zero. Indeed, the asymptotic normality results in JSLZ rely on
a low-noise condition, namely that | X;7 37| is bounded away from zero in prob-
ability (Assumption A3). The same problem occurs in the (indirect) Q-learning
setting. [Laber et al.| (2014) showed that the parameters are asymptotically nor-
mal when |X;73?| is bounded away from zero, and nonnormal otherwise; an
adaptive procedure was proposed to solve this problem. From a treatment deci-
sion point of view, for a patient with X} = x}, because the treatment decision is
based on the sign of z;7 3, it is essential to test whether z;73Y = 0. Thus, the
behavior of X;“Tﬁt around zero is of great interest. As such, we wish to address
the nonregularity issue in the entropy learning framework.
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Interestingly, the low-noise condition is also related to the convergence rate,
in terms of the risk bounds. Below, we establish two risk bounds for the entropy
loss function, following |Bartlett, Jordan and McAuliffe (2006). We demonstrate
these bounds in the single-stage decision setting. However, the results for the
multi-stage setting are similar.

Let X be a random vector containing patient pre-treatment variables, A €
{—1,1} be the treatment assignment, and R be a positive scalar outcome that
is bounded from above. Let m(X) 2 P(A = 1|X) denote the known treatment
randomization probability. The value function for a treatment decision rule D :
X — {—1,1}, namely V(D), is defined as the expected outcome if the study
population follows the decision rule. The goal is to estimate the optimal decision
rule D" that maximizes V(D). It is easy to see that

V(D) = [ RI(A=D(X)) } .
(An(X) + (1 - A)/2)
Thus, maximizing V(D) is equivalent to minimizing E[R I(A # D(X))/(An(X)+
(1—A)/2)]. JSLZ proposed replacing the indicator loss I(A # D(X)) with a sur-
rogate entropy loss h : {—1,1} x R — R™, defined as h(a,y) = —(a + 1)y/2 +
log(1 + e¥). Define

Rh(A f(X))
R =2 [y v )
Minimizing Ry, (f) yields fP'(x) = argmins.x_g Ri(f) = log(E(Y|X =z, A =
1)/E(Y|X = x,A = —1)). It can be shown that D% (X) = sign(fP(X)).
The following theorem connects the excess value, V(DP) — V (D), to the excess
entropy risk, Ry (f) — Ru(fP!). The proof is similar to that of [Bartlett, Jordan
and McAuliffe| (2006), and thus is omitted.

Theorem 1. Suppose R is positive and bounded from above by a constant B > 0.
Then, for any f: X = R and D : X — {—1,1}, such that D(X) = sign(f(X)),
we have

¢ (V(D?') = V(D)) < Ru(f) — Ru(f), (1.1)
where ¢ : RT — R is defined as

a 2B 0+ B
w(ﬁ)—(9+2B)log<9+2B + (0 + B)log 5 )
Furthermore, if there exists § > 0 and ¢ > 0 such that, for all ¢ > 0,
PO<|E(Y|X,A=1)—EY|X,A=-1)] <e) < cé, (1.2)

then we have
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(V (D) — V(D)) 0+
2c

J {V(DOpt) _ V('D)}ﬁ/l+ﬂ¢{

for some ¢ > 0.

The risk bounds provide a way to evaluate the performance of the estimated
decision rules. This type of result has been provided in |Qian and Murphy| (2011)
for indirect learning, and in [Zhao et al. (2012, 2015|) for direct learning meth-
ods. The left-hand side of risk bounds and characterize the distance
between the estimated decision rule and the optimal decision rule in terms of
value. The right-hand side, Ry, (f) — Ru(f°P!), describes the asymptotic behav-
ior of the entropy risk. To see that, we replace f and D in the above theorem
with the estimates f(X) 2 X*T3 and D(X) £ sign(X*T ), respectively, where
X* = (1,XT)7T, and ﬁ is obtained by minimizing the empirical entropy risk.
Then, Ry (f) — Ra(f") can be decomposed as

Ru(f) = Ru(f7") = [Ru(f) = Ra(f*)] + [Ra(f*) = Ru(F)], (1.4)
where f*(X) £ X*T3* minimizes the entropy risk Ry (f) in the linear decision
space. The second term in , Ri(f*) — Ru(fPt), is the approximation error,
which measures the distance between the model and the truth. The first term,

Ru(f) —Rp(f*), is the estimation error. Using Taylor’s expansion, we can verify
that Rp,(f) — Ru(f*) = O((8 — 5*)?), which is O,(n~"), as shown in JSLZ.

Owing to the convexity of v(-), it is easy to verify that the risk bound in
always gives an equivalent or better rate than that in . The low-
noise condition plays a critical role here. Note that is a variant of
Assumption A3 in JSLZ. Intuitively, when it is less likely to have point mass
around the decision boundary, we would expect to learn the optimal decision
rule more quickly and thus, experience a faster rate of convergence.

In summary, when a nonnegligible noise presents around the decision bound-
ary (i.e., the low-noise condition is violated), there are difficulties in both learning
the optimal decision rules and making statistical inferences under the null for var-
ious direct and indirect learning methods. An interesting research direction in
this area would be to combine the inference with machine learning in order to
improve the learning efficiency at the decision boundary.
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