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ABSTRACT
Two dissimilarity indices are introduced to measure the disharmony of
a human body system by mimicking the population bioequivalence and
the individual bioequivalence concepts. Hypotheses for the treatment effect
of a traditional Chinese medicine are formulated based on the two indices
and then tested under the proposed designs by reverting an approximate
confidence upper bound. The proposed methods can also be used when
a drug product has multiple components or a trial has multiple endpoints.
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1. Introduction

In recent years, as more and more innovative drug products are going off patent protection, the
search for new medicines that treat critical and/or life-threatening diseases such as cardiovascular
diseases and cancer has become the center of attention of many pharmaceutical companies and
research organizations such as National Institute of Health (NIH). This leads to the study of the
potential use of promising traditional Chinese medicines (TCM), especially for critical and/or life-
threatening diseases. Bensoussan et al. (1998) used randomized clinical trial (RCT) to assess the
effect of Chinese herb medicine in treating the Irritable Bowel Syndrome. However, RCT is not in
common use when studying TCM. There are fundamental differences between Western medicines
and TCM in terms of diagnostic procedures, therapeutic indices, medical mechanism, medical
theory, and practice (Chow et al. 2006; Chow 2015; Zhou et al. 2012). Besides, TCM often consists
of multiple components with flexible dose.

Chinese doctors believe that all of the organs within a healthy subject should reach the so-called
global dynamic balance and harmony among organs. Once the global balance is broken at certain
sites such as heart, liver, or kidney, some signs and symptoms will appear to reflect the imbalance at
these sites. The collective signs and symptoms are then used to determine what disease that the
individual has. An experienced Chinese doctor usually assesses the causes of global imbalance before
a TCM with flexible doses is prescribed to fix the problem. This approach is sometimes referred to as
a personalized (or individualized) medicine approach. In practice, TCM consider inspection, aus-
cultation and olfaction, interrogation, and pulse taking and palpation as the primary diagnostic
procedures. The scientific validity of these subjective and experience-based diagnostic procedures
has been criticized due to lack of reference standards and anticipated large evaluator-to-evaluator
(i.e., Chinese doctor-to-Chinese doctor) variability. For a systematic discussion of the statistical
issues of TCM, see Chow (2015).

In this paper, we attempt to propose a unified approach to developing two composite dissimilarity
indices under the concept of global dynamic balance among organs. Dynamic balance among organs
are formulated as hypotheses using the dissimilarity indices. Following the concept of testing

CONTACT Bin Cheng bc2159@cumc.columbia.edu Department of Biostatistics, Columbia University, New York, NY 10032
© 2020 Taylor & Francis

JOURNAL OF BIOPHARMACEUTICAL STATISTICS
https://doi.org/10.1080/10543406.2020.1726368



bioequivalence or biosimilarity, if the 95% confidence upper bound is less than some health limit, we
conclude that the treatment achieves dynamic balance among the organs of the subject hence is
considered as efficacious. If we fail to reject the null hypothesis, we conclude that the treatment is
not efficacious since there is still a signal of illness, i.e., some of signs and symptoms are still out of
the health limit. Although developed with TCM applications in mind, the proposed methods can be
utilized in any clinical trials where multiple drug components and/or multiple endpoints are
involved.

The article is organized as follows. Two approaches are proposed to assessing the effect of a TCM.
Section 2 introduces the population similarity approach where the population dissimilarity index is
defined, and a population similarity test is constructed. Section 3 defines the individual dissimilarity
and based on which an individual similarity test is constructed. The performances of the approx-
imate tests are evaluated via simulation studies and reported in Section 4, followed by a brief
discussion in Section 5.

2. Population similarity approach

TCM cares about the harmony among different parts of the human body. The measure of these
different parts consists of the health profile of a subject, denoted as X ¼ ðX1; . . . ;XkÞ. The compo-
nents Xi of a health profile could be either continuous or ordinal. The dimension of the health
profile k is potentially high.

One approach to assessing the treatment effect of a TCM is to enroll a group of patients who will
undergo the TCM treatment, follow them for a prespecified period of time, and compare the health
profiles of these patients at the end of the study with those of a group of healthy subjects, possibly
matched by age, gender, and other characteristics. If the health profiles of the two groups are
reasonably close, then the TCM is considered as efficacious. This approach is called the population
similarity approach as it involves both the treatment group and a healthy control group, and is often
used in the development of precision medicines.

2.1. Population dissimilarity index

Let XT ¼ ðXT1; . . . ;XTkÞ and XH ¼ ðXH1; . . . ;XHkÞ be the k-dimensional health profiles of a subject
who has undergone treatment of TCM and of a subject who is a healthy control, respectively. Under
this formulation, a TCM treatment is considered efficacious if the health profile of subjects who
receive treatment is not significantly different from the one of a healthy subject, possibly age and
gender matched if needed. To this end, we define an index θ as a pseudo distance between the profile
of a treated subject and the profile of a healthy subject. Specifically, let μT and μH be the mean health
profiles of a treated subject and a healthy subject, respectively, and let ΣT and ΣH be the covariance
matrices of a treated subject and a healthy subject, respectively. Let λ1ðΣÞ be the largest eigenvalue of
a symmetric matrix Σ. We define the population dissimilarity index as

θ ¼ ðμT � μHÞTðμT � μHÞ þ λ1ðΣTÞ � λ1ðΣHÞ
maxfσ20; λ1ðΣHÞg ; (1)

where σ20 is a known constant.
We point out that the above index is invariant under scale change, a prerequisite for an index to be

reasonable. In addition, the above dissimilarity index has an interesting connection with principal compo-
nent analysis. To see this, image that XT and XH are multivariate normal. Then, ðμT � μHÞTðμT � μHÞ is
the squared mean of the first principal component of XT � XH , λ1ðΣTÞ is the variance of the first principal
component ofXT , and λ1ðΣHÞ is the variance of the first principal component ofXH . A small θ implies two
things. First, it implies a small difference between the mean health profiles μT and μH , relative to the
maximal variance of a healthy profileXH . Second, it implies that themaximal variance of the diseased profile
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XT is at least not much greater than the maximal variance of the healthy profile XH . Therefore, a small
dissimilarity index can be viewed as evidence for efficacy of a treatment. Chervoneva, Hyslop, and Hauck
(2007) propose a testing procedure onmultivariate population bioequivalence using trace of the covariance
instead of the largest eigenvalue as we do.

The efficacy of a treatment could be formulated as a test for equivalence with the health profile of
a healthy control. Let XT denote the health profile of a diseased subject at the completion of the
treatment. The efficacy is claimed if a test rejects the following H0

H0 : θ � � versus H1 : θ< �; (2)

where � is a given threshold.

2.2. Assessing treatment effect through population dissimilarity index

Let

γ ¼ ðμT � μHÞTðμT � μHÞ þ λ1ðΣTÞ � λ1ðΣHÞ � �maxfσ20; λ1ðΣHÞg: (3)

Then, testing (2) is equivalent to testing

H0 : γ � 0; versus H1 : γ< 0: (4)

We construct an asymptotic test via the duality between hypothesis test and confidence interval.
Specifically, we construct a 95% approximate confidence upper bound for γ based on two indepen-

dent random samples XTi ¼ ðXT1i; . . . ;XTkiÞT ; i ¼ 1; . . . ; nT , XHj ¼ ðXH1j; . . . ;XHkjÞT , j ¼ 1; . . . ; nH ,
and reject the H0 if this 95% confidence upper bound for γ is smaller than 0.

Let B be a k� k orthogonal matrix such that

BT qΣT þ SHð ÞB ¼ diagfη1; . . . ; ηkg;
where q ¼ nH=nT and define

ν ¼ ðν1; . . . ; νkÞT ¼ BðμT � μHÞ:
Let μ̂a and bΣa be the sample means and sample covariances for a ¼ T;H, respectively. Let B̂ be a
k� k orthogonal matrix such that

B̂T qbΣT þ bΣH

� �
B̂ ¼ diagfη̂1; . . . ; η̂kg:

Define

bν ¼ ðν̂1; . . . ; ν̂kÞ ¼ B̂ðμ̂T � μ̂HÞ:
Then, parameter γ can be rewritten as

γ ¼
Xk
i¼1

ν2i þ λ1ðΣTÞ � λ1ðΣHÞ � �maxfσ20; λ1ðΣHÞg:

It is easily seen that as nH !1, ν̂i, i ¼ 1; . . . ; k, are asymptotically independent and normally

distributed as Nðνi; ηiÞ. A 95% confidence upper bound for
Pk

i¼1 ν
2
i is

Xk
i¼1

ν̂2i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
i¼1

jν̂ij þ z0:05

ffiffiffiffiffiffi
η̂i
nH

s !2

� ν̂2i

24 352
vuuut ;

where z0:05 is the 95%th percentile of the standard normal distribution.
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Let l1;T be the largest eigenvalue of bΣT . Then, by Anderson (2003), an asymptotic 95% confidence
upper bound for λ1ðΣTÞ is

l1;T

1� z0:05

ffiffiffiffiffiffiffiffiffiffi
2=nT

p :

Similarly, an asymptotic 95% confidence lower bound for λ1ðΣHÞ is
l1;H

1þ z0:05

ffiffiffiffiffiffiffiffiffiffiffi
2=nH

p :

If λ1ðΣHÞ � σ20, then γ in (3) reduces to

γ ¼
Xk
i¼1

ν2i þ λ1ðΣTÞ � ð1þ �Þλ1ðΣHÞ: (5)

Since ν̂i‘s, l1;T , and l1;H are independent, then, using the idea in Howe (1974) and Graybill and Wang
(1980), we construct an approximate 95% confidence upper bound for γ as

γ̂U;1 ¼
Xk
i¼1

ν̂2i þ l1;T � ð1þ �Þl1;H þ
ffiffiffiffiffi
Δ1

p
; (6)

where

Δ1 ¼
Pk
i¼1

jν̂ij þ z0:05

ffiffiffiffi
η̂i
nH

q� �2

� ν̂2i

" #2
þ l1;T

1�z0:05

ffiffiffiffiffiffiffi
2=nT

p � l1;T

� �2

þð1þ �Þ2 l1;H

1þz0:05

ffiffiffiffiffiffiffiffi
2=nH

p � l1;H

� �2

:

If λ1ðΣHÞ< σ20, then γ in (3) reduces to

γ ¼ δ þ λ1ðΣTÞ � λ1ðΣHÞ � �σ20: (7)

An approximate 95% confidence upper bound for γ is

γ̂U;2 ¼
Xk
i¼1

ν̂2i þ l1;T � l1;H � �σ20 þ
ffiffiffiffiffi
Δ2

p
; (8)

where

Δ2 ¼
Pk
i¼1

jν̂ij þ z0:05

ffiffiffiffi
η̂i
nH

q� �2

� ν̂2i

" #2
þ l1;T

1�z0:05

ffiffiffiffiffiffiffi
2=nT

p � l1;T

� �2

þ l1;H

1þz0:05

ffiffiffiffiffiffiffiffi
2=nH

p � l1;H

� �2

:

To test (4) or (2) at level 0.05, we reject H0 if and only if l1;H � σ20 and γ̂U;1 < 0, or l1;H < σ20 and
γ̂U;2 < 0. Specifically, we claim that testing rule

ϕ ¼ Iðγ̂U;1 < 0; l1;H � σ20Þ þ Iðγ̂U;2 < 0; l1;H < σ20Þ (9)

has an approximate level of 0.05 for testing H0. This test will be referred to as the population
similarity test subsequently in this paper.
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3. Individual similarity approach

3.1. Individual dissimilarity index

The approach we adopt in the previous section is a population bioequivalence approach. It is
therefore most relevant when the main purpose is to establish treatment effect of a TCM at the
population level. It is of interest to develop methods to assess the TCM effect when no healthy
controls are required or available. In such cases, each subject acts as his or her own control by
comparing with the health profiles when he or she was in good health. This approach is called the
individual similarity approach. Since it is often true that the between subject variations are large in
TCM studies, the individual similarity approach is particularly appealing in the development of
individualized (or personalized) TCM.

Specifically, consider a design where each patient i has three healthy profiles
XHi ¼ ðXH1i; . . . ;XHkiÞ, XH0i ¼ ðXH01i; . . . ;XH0kiÞ, and XH00i ¼ ðXH001i; . . . ;XH00kiÞ, measured at three
different time points prior to the TCM treatment when the subject is known as in good health, and
one post treatment profile XTi ¼ ðXT1i; . . . ;XTkiÞ measured at the completion of treatment,
i ¼ 1; . . . ; n. We consider the following random effects model

Xai ¼ Ei þWai; a ¼ H;H0;H00;T;

where Ei; i ¼ 1; . . . ; n, are the independent and normally distributed subject random effects with
zero mean and covariance ΣE, WHi;WH0i;WH00i; i ¼ 1; . . . ; n, are independent and normally distrib-
uted random vectors with mean μH and covariance ΣH , and WTi; i ¼ 1; . . . ; n, are independent and
normally distributed random vectors with mean μT and covariance ΣT .

Mimicking the conception of individual bioequivalence, we define the individual dissimilarity
index as

# ¼ ðμT � μHÞTðμT � μHÞ þ λ1ðΣT þ ΣHÞ � 2λ1ðΣHÞ
maxfσ20; λ1ðΣHÞg ;

and consider testing the following

H0 : # � ε versus H1 : #< ε; (10)

where ε > 0 is a prespecified threshold. Individual efficacy of the TCM is established if H1 in (10) is
rejected.

3.2. Assessing treatment effect through individual dissimilarity index

Define

� ¼ ðμT � μHÞTðμT � μHÞ þ λ1ðΣT þ ΣHÞ � 2λ1ðΣHÞ � εmaxfσ20; λ1ðΣHÞg: (11)

Then, testing (10) is equivalent to testing

H0 : � � 0; versus H1 : �< 0: (12)

Let dμT � μH and dΣT þ ΣH be the sample mean and sample variance of XTi � XHi; i ¼ 1; . . . ; n. Let bC
be a k� k orthogonal matrix such that

ĈT dΣT þ ΣH

� �
Ĉ ¼ diagfζ̂1; . . . ; ζ̂kg;

and

ϕ̂ ¼ ðϕ̂1; . . . ; ϕ̂kÞ ¼ Ĉð dμT � μHÞ:
Similarly, let C be a k� k orthogonal matrix such that
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CT ΣT þ ΣHð ÞC ¼ diagfζ1; . . . ; ζkg;
and define

ϕ ¼ ðϕ1; . . . ;ϕkÞ ¼ CðμT � μHÞ:
Rewrite � as

� ¼
Xk
i¼1

ϕ2
i þ λ1ðΣT þ ΣHÞ � 2λ1ðΣHÞ � εmaxfσ20; λ1ðΣHÞg:

It is easily seen that ϕ̂i, i ¼ 1; . . . ; k, are asymptotically independent and normally distributed as

Nðϕi; ζ iÞ. Then, a 95% confidence upper bound for
Pk

i¼1 ϕ
2
i is

Xk
i¼1

ϕ̂2i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
i¼1

jϕ̂ij þ z0:05

ffiffiffiffiffiffi
ζ̂ i
nH

s0@ 1A2

� ϕ̂2i

24 352
vuuut ;

where z0:05 is the 95%th percentile of the standard normal distribution.
Let l1;TH ¼ maxifζ̂ig be the largest eigenvalue of dΣT þ ΣH . Then, an asymptotic 95% confidence

upper bound for λ1ðΣT þ ΣHÞ is
l1;TH

1� z0:05

ffiffiffiffiffiffiffiffi
2=n

p :

Similarly, an asymptotic 95% confidence lower bound for λ1ðΣHÞ based on
XH0i � XH00i; i ¼ 1; . . . ; n, is

l1;H

1þ z0:05

ffiffiffiffiffiffiffiffiffiffiffi
2=nH

p :

If λ1ðΣHÞ � σ20, then � reduces to

� ¼
Xk
i¼1

ϕ2i þ λ1ðΣT þ ΣHÞ � ð2þ εÞλ1ðΣHÞ: (13)

Since ϕ̂i‘s, l1;TH , and l1;H are independent, we construct an approximate 95% confidence upper bound
for � as

�̂U;1 ¼
Xk
i¼1

ϕ̂2
i þ l1;TH � ð2þ εÞl1;H þ

ffiffiffiffiffiffi
Ψ1

p
; (14)

where

Ψ1 ¼
Pk
i¼1

jϕ̂ij þ z0:05

ffiffiffiffi
ζ̂ i
nH

q� �2

� ϕ̂2i

" #2
þ l1;TH

1�z0:05

ffiffiffiffiffiffi
2=n

p � l1;TH

� �2

þð2þ εÞ2 l1;H

1þz0:05

ffiffiffiffiffiffi
2=n

p � l1;H

� �2

:

If λ1ðΣHÞ< σ20, then � reduces to

� ¼
Xk
i¼1

ϕ2
i þ λ1ðΣT þ ΣHÞ � 2λ1ðΣHÞ � εσ20: (15)

An approximate 95% confidence upper bound for � is
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�̂U;2 ¼
Xk
i¼1

ϕ̂2i þ l1;TH � 2l1;H � εσ20 þ
ffiffiffiffiffiffi
Ψ2

p
; (16)

where

Ψ2 ¼
Pk
i¼1

jϕ̂ij þ z0:05

ffiffiffiffi
ζ̂ i
nH

q� �2

� ϕ̂2i

" #2
þ l1;TH

1�z0:05

ffiffiffiffiffiffi
2=n

p � l1;TH

� �2

þ l1;H

1þz0:05

ffiffiffiffiffiffi
2=n

p � l1;H

� �2

:

We propose to reject H0 in (12) or (10) at level 0.05. If and only if l1;H � σ20 and �̂U;1 < 0, or
l1;H < σ20 and �̂U;2 < 0. This test will be referred to as the individual similarity test subsequently in this
paper.

4. Simulation

It is easily seen that the constructions of the two tests in Sections 2.2 and 3.2 are very similar. Therefore,
without loss of generality, we only conduct simulation for the population similarity test in Section 2.2.

In our simulation, we set k ¼ 10, and since γ depends on μT and μH only through their difference
μT � μH , we assume

μT ¼ ða; ar; ar2; . . . ; ar9Þ; μH ¼ ð0; 0; 0; . . . ; 0Þ;

where a�0; r � 0. For the covariance matrix, we set

ΣT ¼ σ1I5 0
0 σ2I5

� �
� RT � σ1I5 0

0 σ2I5

� �
;

where I5 is a 5� 5 identity matrix, σ1 is the standard deviation of the first 5 components of XT and
σ2 is the standard deviation of the last 5 components of XT , and RT is the 10� 10 correlation matrix.
Similarly, we set

ΣH ¼ τ1I5 0
0 τ2I5

� �
� RH � τ1I5 0

0 τ2I5

� �
;

where τ1 is the standard deviation of the first 5 components of XH and τ2 is the standard deviation of
the last 5 components of XH , and RH is the 10� 10 correlation matrix.

For illustration, we choose � ¼ 2:0; σ0 ¼ 0:5. Two types of correlation patterns are considered:
compound symmetric (CS) correlation and the autoregressive of order 1 (AR(1)) correlation, where
the parameter for RT and RH are ρT and ρH , respectively. All estimations are based on 10,000
simulation runs and z0:025 is used in the test.

The simulated sizes of the test under CS and AR(1) correlations are summarized in Tables 1
and 2, respectively. The size is controlled in all the CS and AR(1) scenarios.

The simulated powers of the test under CS and AR(1) correlations are summarized in Tables 3 and 4,
respectively. A balance design, i.e., nT ¼ nH , typically yield a higher power than the case where more
healthy controls are used, i.e., nH > nT . The simulation indicates that for an effect size of γ ¼ �2:00,
a sample size of 120 in each group would be adequate to achieve 80% power.

In Tables 5 and 6, more scenarios were considered to investigate how the γ value changes and
what is the impact on the power under various total sample sizes and ratio q choices.
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5. Discussion

Two approaches to assessing the treatment effect of a TCM have been introduced based on different
bioequivalence concepts. Generally, the population similarity approach is recommended if the health
profiles of healthy controls are easy to obtain and the main interest is to establish the TCM effect at
the population level as in the case of a randomized clinical trial. Otherwise, if the primary interest is
to establish the treatment effect at the individual level and it is feasible to obtain multiple historical

Table 1. Estimated sizes based on 10,000 simulation runs, assuming � ¼ 2:0; σ0 ¼ 0:5 and compound symmetric correlation.

(a, r) (σ1, σ2,ρ1) (τ1, τ2,ρ2) γ (nT, nH) Size

(1.45, 0.25) (1.10, 1.00, 0.10) (1.00, 1.00, 0.05) 0.00 (50, 100) 0.0019
(1.45, 0.25) (1.10, 1.00, 0.10) (1.00, 1.00, 0.05) 0.00 (50, 100) 0.0019
(1.45, 0.25) (1.10, 1.00, 0.10) (1.00, 1.00, 0.05) 0.00 (75, 75) 0.0116
(1.45, 0.25) (1.10, 1.00, 0.10) (1.00, 1.00, 0.05) 0.00 (80, 160) 0.0018
(1.45, 0.25) (1.10, 1.00, 0.10) (1.00, 1.00, 0.05) 0.00 (120, 120) 0.0086
(0.00, 0.00) (1.71, 1.00, 0.10) (1.00, 1.00, 0.05) 0.00 (50, 100) 0.0001
(0.00, 0.00) (1.71, 1.00, 0.10) (1.00, 1.00, 0.05) 0.00 (75, 75) 0.0017
(0.00, 0.00) (1.71, 1.00, 0.10) (1.00, 1.00, 0.05) 0.00 (80, 160) 0.0002
(0.00, 0.00) (1.71, 1.00, 0.10) (1.00, 1.00, 0.05) 0.00 (120, 120) 0.0027

Table 2. Estimated sizes based on 10,000 simulation runs, assuming � ¼ 2:0; σ0 ¼ 0:5 and AR(1) correlation.

(a, r) (σ1, σ2,ρ1) (τ1, τ2,ρ2) γ (nT, nH) Size

(1.45, 0.25) (1.10, 1.00, 0.10) (1.00, 1.00, 0.05) 0.00 (50, 100) 0.0019
(1.33, 0.24) (1.10, 1.00, 0.10) (1.00, 1.00, 0.05) 0.00 (50, 100) 0.0010
(1.33, 0.24) (1.10, 1.00, 0.10) (1.00, 1.00, 0.05) 0.00 (75, 75) 0.0180
(1.33, 0.24) (1.10, 1.00, 0.10) (1.00, 1.00, 0.05) 0.00 (80, 160) 0.0011
(1.33, 0.24) (1.10, 1.00, 0.10) (1.00, 1.00, 0.05) 0.00 (120, 120) 0.0143
(0.00, 0.00) (1.67, 1.00, 0.10) (1.00, 1.00, 0.05) 0.00 (50, 100) 0.0000
(0.00, 0.00) (1.67, 1.00, 0.10) (1.00, 1.00, 0.05) 0.00 (75, 75) 0.0005
(0.00, 0.00) (1.67, 1.00, 0.10) (1.00, 1.00, 0.05) 0.01 (80, 160) 0.0000
(0.00, 0.00) (1.67, 1.00, 0.10) (1.00, 1.00, 0.05) 0.01 (120, 120) 0.0016

Table 3. Estimated powers based on 10,000 simulation runs, assuming � ¼ 2:0; σ0 ¼ 0:5 and compound symmetric
correlation.

(a, r (σ1, σ2,ρ1) (τ1, τ2,ρ2) γ (nT, nH) Power

(0.30, 0.08) (1.10, 1.00, 0.10) (1.00, 1.00, 0.05) −1.99 (50, 100) 0.2895
(0.30, 0.08) (1.10, 1.00, 0.10) (1.00, 1.00, 0.05) −1.99 (75, 75) 0.6309
(0.30, 0.08) (1.10, 1.00, 0.10) (1.00, 1.00, 0.05) −1.99 (80, 160) 0.6193
(0.30, 0.08) (1.10, 1.00, 0.10) (1.00, 1.00, 0.05) −1.99 (120, 120) 0.8378
(0.00, 0.00) (1.19, 1.00, 0.10) (1.00, 1.00, 0.05) −2.00 (50, 100) 0.2399
(0.00, 0.00) (1.19, 1.00, 0.10) (1.00, 1.00, 0.05) −2.00 (75, 75) 0.6075
(0.00, 0.00) (1.19, 1.00, 0.10) (1.00, 1.00, 0.05) −2.00 (80, 160) 0.5957
(0.00, 0.00) (1.19, 1.00, 0.10) (1.00, 1.00, 0.05) −2.00 (120, 120) 0.8486

Table 4. Estimated powers based on 10,000 simulation runs, assuming � ¼ 2:0; σ0 ¼ 0:5 and AR(1) correlation.

(a, r (σ1, σ2,ρ1) (τ1, τ2,ρ2) γ (nT, nH) Power

(0.00, 0.08) (1.10, 1.00, 0.10) (1.00, 1.00, 0.07) −1.99 (50, 100) 0.5794
(0.00, 0.08) (1.10, 1.00, 0.10) (1.00, 1.00, 0.07) −1.99 (75, 75) 0.9599
(0.00, 0.08) (1.10, 1.00, 0.10) (1.00, 1.00, 0.07) −1.99 (80, 160) 0.9627
(0.00, 0.08) (1.10, 1.00, 0.10) (1.00, 1.00, 0.07) −1.99 (120, 120) 0.9996
(0.00, 0.00) (1.00, 1.00, 0.10) (1.00, 1.00, 0.04) −2.03 (50, 100) 0.8102
(0.00, 0.00) (1.00, 1.00, 0.10) (1.00, 1.00, 0.04) −2.03 (75, 75) 0.9920
(0.00, 0.00) (1.00, 1.00, 0.10) (1.00, 1.00, 0.04) −2.03 (80, 160) 0.9960
(0.00, 0.00) (1.00, 1.00, 0.10) (1.00, 1.00, 0.04) −2.03 (120, 120) 0.9999
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health profiles when a patient was in good health, then the individual similarity approach is
suggested.

The construction of the individual similarity test in Section 3.2 requires three healthy profiles and
one post-TCM profile for each patient. This requirement is not necessary but it makes it easier to
derive the test. When only one or two healthy profiles are available for each patient, it is difficult to
derive a test for (10) and the bootstrap test may be utilized instead.

The health profiles are assumed to have multivariate normal distributions. If part or all the
components of a health profile are not normally distributed, the proposed methods remain approxi-
mately valid as long as the sample sizes are large.

Our dissimilarity index focus on the largest eigenvalue of the covariance matrix, hence is
associated with the principal component method. When the largest eigenvalue can only explain
a fraction of the total variation, then the proposed method will suffer loss in power. Some other
methods, for example, one similar to Chervoneva, Hyslop, and Hauck (2007), should be derived and
utilized instead.

The sample size determination is quite complicated for bioequivalence test due to the fact that the
null and alternative distributions are dependent on the unknown parameter and may differ under
null and the alternative. Some recent work includes Chiang et al. (2014). Further research is justified
on this topic.

In this article, the dimension of the health profile k is implicitly assumed to be not large compared
with the sample size. If this is not the case, that is, if k is comparable to the sample size, then the
methods for sparse principal component analysis, such as Zou et al. (2006) or Johnstone and Lu
(2009), should be used and the corresponding 95% confidence upper bound could be constructed via
the bootstrap method.

The dissimilarity indices defined in this paper measures the closeness between two health
profiles using both mean and variance information. However, the causal relationship among the
k components X1; . . . ;Xk, are not modeled. Per TCM theory, alternative models incorporating
causal information may be considered. Future research on this alternative approach is thus
warranted.

Finally, we reemphasize that the proposed methods are applicable not only in TCM studies but
also in any clinical trial where multiple drug components and/or multiple endpoints are involved.

Table 5. Estimated powers based on 10,000 simulation runs, assuming � ¼ 2:0; σ0 ¼ 0:5 and compound symmetric
correlation.

(a, r) (σ1, σ2,ρ1) (τ1, τ2,ρ2) γ (nT, nH) Power

(0.30, 0.09) (1.10, 1.00, 0.10) (1.00, 1.00, 0.05) −1.82 (50, 100) 0.2175
(0.30, 0.09) (1.10, 1.00, 0.10) (1.00, 1.00, 0.05) −1.82 (75, 75) 0.5270
(0.30, 0.09) (1.10, 1.00, 0.10) (1.00, 1.00, 0.05) −1.82 (80, 160) 0.4991
(0.30, 0.09) (1.10, 1.00, 0.10) (1.00, 1.00, 0.05) −1.82 (120, 120) 0.7345
(0.00, 0.00) (0.30, 1.00, 0.10) (1.00, 1.00, 0.05) −2.93 (50, 100) 0.9890
(0.00, 0.00) (0.30, 1.00, 0.10) (1.00, 1.00, 0.05) −2.00 (75, 75) 0.9993
(0.00, 0.00) (0.30, 1.00, 0.10) (1.00, 1.00, 0.05) −2.00 (80, 160) 0.9999
(0.00, 0.00) (0.30, 1.00, 0.10) (1.00, 1.00, 0.05) −2.00 (120, 120) 0.9999

Table 6. Estimated powers based on 10,000 simulation runs, assuming � ¼ 2:0; σ0 ¼ 0:5 and AR(1) correlation.

(a, r) (σ1, σ2,ρ1) (τ1, τ2,ρ2) γ (nT, nH) Power

(0.00, 0.09) (1.10, 1.00, 0.10) (1.00, 1.00, 0.07) −1.99 (50, 100) 0.5794
(0.00, 0.09) (1.10, 1.00, 0.10) (1.00, 1.00, 0.07) −1.99 (75, 75) 0.9599
(0.00, 0.09) (1.10, 1.00, 0.10) (1.00, 1.00, 0.07) −1.99 (80, 160) 0.9627
(0.00, 0.09) (1.10, 1.00, 0.10) (1.00, 1.00, 0.07) −1.99 (120, 120) 0.9996
(0.00, 0.00) (1.00, 1.00, 0.10) (1.00, 1.00, 0.05) −1.97 (50, 100) 0.7594
(0.00, 0.00) (1.00, 1.00, 0.10) (1.00, 1.00, 0.05) −1.97 (75, 75) 0.9878
(0.00, 0.00) (1.00, 1.00, 0.10) (1.00, 1.00, 0.05) −1.97 (80, 160) 0.9895
(0.00, 0.00) (1.00, 1.00, 0.10) (1.00, 1.00, 0.05) −1.97 (120, 120) 0.9999
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