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A B S T R A C T

This article proposes a method to overcome limitations in current methods that address multiple comparisons of
adaptive interventions embedded in sequential multiple assignment randomized trial (SMART) designs. Because a
SMART typically consists of numerous adaptive interventions, inferential procedures based on pairwise compar-
isons of all may suffer a substantial loss in power after accounting for multiplicity. Meanwhile, traditional methods
for multiplicity adjustments in comparing non-adaptive interventions require prior knowledge of correlation
structures, which can be difficult to postulate when analyzing SMART data of adaptive interventions. To address
the multiplicity issue, we propose a likelihood-based omnibus test that compares all adaptive interventions si-
multaneously, and apply it as a gate-keeping test for further decision making. Specifically, we consider a selection
procedure that selects the adaptive intervention with the best observed outcome only when the proposed omnibus
test reaches a pre-specified significance level, so as to control false positive selection. We derive the asymptotic
distribution of the test statistic on which a sample size formula is based. Our simulation study confirms that the
asymptotic approximation is accurate with a moderate sample size, and shows that the proposed test outperforms
existing multiple comparison procedures in terms of statistical power. The simulation results also suggest that our
selection procedure achieves a high probability of selecting a superior adaptive intervention. The application of the
proposed method is illustrated with a real dataset from a depression management study.

1. Introduction

An adaptive intervention (AI) is a multi-stage treatment strategy
consisting of a sequence of treatment selections, one per stage of treat-
ment, by which the selection can be adjusted repeatedly according to a
patient's ongoing clinical information, such as the treatment history and
responses to the previous treatments. AIs have been widely used for
treating chronic diseases (e.g., depression). Sequential multiple assign-
ment randomized trial (SMART) is a clinical trial design that randomly
assigns patients to a collection of AIs. In many situations, SMART can be
viewed as an early-phase developmental trial design leading trialists to
the confirmatory trial [1]. Therefore, a natural clinical question in
SMART is whether an AI should be selected for further investigation.

By virtue of randomization upon observing the treatment history and
tailoring response, the AI values can be consistently estimated using
methods such as G-computation estimation [2] and inverse probability
weighted estimation (IPWE) [3]. Thus, an optimal AI may be selected by
comparing the estimated values of all AIs, which entails multiple pairwise

comparisons. In a randomized clinical trial with a primary concern to
protect against false-positive findings [4], a versatile approach that can be
directly applied to pairwise comparisons of AIs in a SMART is Bonferroni's
adjustment, which is known to be conservative as the number of AIs in-
creases. Meanwhile, most traditional statistical methods for adjusting
multiplicity in comparing non-adaptive interventions, such as methods
proposed by Tukey [5] and Hsu [6], require known correlation structures.
Since the correlation between estimates derived based on SMART data is
typically unknown a priori, we cannot directly apply those methods in
SMART settings. Another challenge in analyzing SMART data is “curse of
dimensionality”: the number of AIs in SMART typically increases drama-
tically as the design structure becomes more complex. Consequently, the
inferential procedure may suffer a substantial loss in power after ac-
counting for multiplicity, and the sample size calculation based on pair-
wise comparison may lead to a conservative design.

We propose a likelihood-based gate-keeping method to account for
multiplicity whereby an AI selection will be made only after the null
hypothesis of no difference among the AIs is rejected. A similar IPWE-
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based omnibus test was used by Ogbagaber, Karp, and Wahed [7] for
sample size calculation in designing SMARTs under three specific de-
sign structures. In this article, we derive the asymptotic properties of
the proposed test under very general design structure. In addition, our
theoretical results leverage the fact that the variance-covariance matrix
of the estimator is less than full rank, which leads to an increase in
power when compared to the existing test. We will illustrate the pro-
posed method using the CODIACS depression management trial data
[8]. Briefly, in this trial, each patient was given medication or problem-
solving therapy at baseline and was potentially re-assigned another
treatment based on the response intermediately. The objective was to
maximize the depression reduction measured by Beck Depression In-
ventory over a 6-month period. Table 1 lists all AIs embedded in this
example, along with some analytical results. We will revisit this ex-
ample with additional details in Application.

2. Methods

2.1. Setting, notation, and model

For brevity in exposition, we consider general SMART designs with
two-stage AIs as depicted in Fig. 1(A), although the results can be readily
extended to SMART with more than 2 stages. Suppose that there are I
treatment options T1, …, TI at Stage 1, and under treatment Ti, there are Ji
possible intermediate response categories, denoted by Ri1, …, RiJi. Next,
suppose that for a patient who receives treatment Ti at Stage 1 and has an
intermediate response of Rij, there are Kij treatment options, namely Sij1, …,
SijKij, at Stage 2. Let Uz, Xz, Vz and Yz denote the Stage-1 treatment, the
intermediate outcome, the Stage-2 treatment and the primary outcome for
the zth patient in a SMART, where z=1, …, n. Here z is the patient in-
dicator and n is the total sample size. Let πi=Pr (Uz=Ti) be the rando-
mization probability of assigning Ti to patient z at Stage 1, and
πijk=Pr (Vz= Sijk|Uz=Ti,Xz=Rij) be the randomization probability of
assigning Sijk to patient z given the history of (Uz=Ti,Xz=Rij). The ran-
domization scheme of a two-stage SMART is thus completely specified by

= … = … = …i I j J k K{ , : 1, , ; 1, , ; 1, , },i ijk i ij

where πi and πijk are two vectors of randomization probabilities for Stages 1
and 2. The data obtained from the zth patient who has completed a SMART
can be summarized as (Uz,Xz,Vz,Yz) and are assumed to be independent
and identical with the following distributions:

= = = …U T i IPr( ) ; 1, , ;z i i

= = = = … = …X R U T p j J i IPr( | ) ; 1, ; 1, , ;z ij z i ij i

= = = = = … = …

= …

V S U T X R k K j J i
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1, , ;
z ijk z i z ij ijk ij i

= = =Y U T X R V S f y( , , ) ( | , ),z z i z ij z ijk z ijk ijk

where ϕijk is the parameter of interest, and τijk, possibly a vector, is the
nuisance parameter. We assume that f(yz|ϕijk,τijk) satisfies the regularity
conditions specified in Theorem 5.39 in van der Vaart (1998) [9], which
guarantee the asymptotic efficiency of the maximum likelihood estimator
(MLE) of (ϕijk,τijk). We denote an AI by

= ……d T S S( ; , , )i k k i i k iJ k; , , 1i iJi i i iJi1 1

under which a patient receives Ti at the Stage 1, and receives Sijkij at the
Stage 2 if the intermediate response Rij is observed. The value θi; ki1, …, kiJi of
an AI di; ki1, …, kiJi is

=…
=

p ,i k k
j

J

ij ijk; , ,
1

i iJi

i

ij1

where kij=1,…, Kij, j=1,…, Ji, and i=1,…, I. In the common situations
where ϕijk is the conditional mean of Y given a patient's clinical history in
the trial, called “treatment sequence”. The value of an AI can be interpreted
as the marginal expected outcome Y across all the possible treatment se-
quences under this AI. An AI is said to be the best among all the AIs if it has
the greatest value among all. We note that there could be more than one
truly best AI embedded in a SMART. The goal of our method is to select the
unique best AI, or a truly best AI in cases where multiple AIs have the same
value.

2.2. Maximum likelihood estimation

We consider the MLE of an AI value, …i k k; , ,i iJi1 , obtained by plugging
in the MLEs of intermediate response rates pij’s and sequence-specific
means of the primary outcome ϕijkij’s, where pij and ijkij

can be esti-
mated by maximizing the joint distribution of (Uz,Xz,Vz,Yz), where
z=1, …, n.

Let = …( , , )G
T

1 be the AI values listed in lexicographical order of
{i;ki1,…,kiJi}, and G be the total number of AIs embedded in a SMART.
Here, the term “lexicographical order” means the alphabetical order of
elements with multiple indices. For example, suppose in a two-stage
SMART with Stage-1 treatment options {T1,T2}, intermediate outcomes
{R11,R12,R21,R22}, and Stage-2 treatment options {S111,S112,S121,
S211,S212,S221}, we denote an AI value by θi; ki1, ki2 and thus can list
these AIs as (θ1; 1, 1,θ1; 2, 1,θ2; 1, 1,θ2; 2, 1) in lexicographical order as
done in a dictionary. Considering that an AI value is defined as the
weighted sum of the sequence-specific means with the intermediate
response rates as the weights in Section 2.1, we can obtain the joint
distribution of the MLEs of the intermediate response rates and the
MLEs of the sequence-specific means, and then derive the asymptotic
distribution of the MLEs of AI values by using the Delta method. In fact,
it can be proved that under the regularity conditions given in Theorem
5.39 in van der Vaart [9], as n→∞,

n N 0( ) ( , ),
d

where is a block diagonal matrix whose ith block, i, is the covariance

Table 1
MLEs and P values of pairwise comparison between each AI with the observed best AI (g=5) in CODIACS trial caption.

Stage-2 treatment for

AI (g) Stage-1 treatment Non-response Response g (se) P-value

1 Medication Medication Medication 6.3 (1.1) 0.135
2 Medication Medication Problem-solving therapy 3.3 (1.2) 0.049
3 Medication Problem-solving therapy Medication 10.7 (0.6) 0.434
4 Medication Problem-solving therapy Problem-solving therapy 7.8 (1.1) 0.210
5 Problem-solving therapy Medication Medication 15.5 (6.0) –
6 Problem-solving therapy Medication Problem-solving therapy 9.5 (1.0) 0.320
7 Problem-solving therapy Problem-solving therapy Medication 14.2 (6.1) 0.201
8 Problem-solving therapy Problem-solving therapy Problem-solving therapy 8.2 (1.1) 0.236

se: estimated asymptotic standard error of g .
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matrix of i, the MLEs of the values of AIs sharing Ti, i=1, …, I. Im-
portantly,

= +
=

K Jrank( ) 1.i
j

J

ij i
1

i

The details of derivations and proofs are shown in Appendix.
In summary, the distribution of MLE i is asymptotically normal

and the asymptotic covariance matrix i is not of full rank when Ji≥2.
This is a surprising but fundamental distributional result on which we
build the Wald test in next section. For an intuitive explanation about
why the asymptotic covariance matrix is less than full rank, note that
any AI value is a linear combination of the sequence-specific endpoints.
In a typical SMART, the number of embedded AIs is larger than the
number of treatment sequences. For example, in a SMART with two
Stage-1 treatment options, binary intermediate response, and three
Stage-2 treatment options given any intermediate response, i. e.,
{Ti,Rij,Sijk; i=1,2; j=1,2;k=1,2,3}, the total number of treatment
sequences is 12, but the number of AIs is 18. Therefore, the values of
AIs embedded in a SMART are linear dependent. Thus, their estimates
are asymptotically linearly dependent, i.e., the asymptotic covariance is
less than full rank.

2.3. Wald test and its asymptotic distributions

For ease of exposition, we use θg to denote the gth component of ,
where g=1, …, G and G is the total number of AIs embedded in a
SMART. We consider a statistical test for the following hypotheses:

= =H H: versus : ’s are not all equal.G g0 1 1 (1)

Let C=(1G−1|−IG−1) be a (G−1)×G contrast matrix such that
the 1st column is a (G−1) vector of 1’s and the jth column is a (G−1)
vector in which the (j−1)th entry is −1 and other entries are all 0’s for

2≤ j≤G. For example, the contrast matrix for a SMART with 4 AIs
embedded in is

=C
1 1 0 0
1 0 1 0
1 0 0 1

.

Let be the covariance matrix of , and be the plug-in estimator
of by replacing pij, ϕijk, τijk with their MLEs p , ,ij ijk ijk, respectively.
Then a Wald-type test statistic can be written as

=Q n C C C C( ) ( ) ( ),T T (2)

where M− denotes a generalized inverse of a square matrix M. Under
H0 in (1) and as n→∞ , Q follows a chi-squared distribution with de-
grees of freedom

= +
= = =

K J I 1.
i

I

j

J

ij
i

I

i
1 1 1

i

(3)

In addition, under a sequence of local alternatives { }n such that

= >n C C C Clim ( ) ( ) ( ) 0,
n

n
T T

n

Q follows a noncentral chi-squared distribution of ν degrees of
freedom and noncentrality parameter λ∗. Therefore, an asymptotic level
α test rejects H0 if Q > χν, α

2, the (1− α)th percentile of a chi-squared
distribution with ν degrees of freedom. Interestingly, in the special case
of comparing non-adaptive intervention sequences, rank =( ) 1i and
the test reduces to the regular Wald test.

2.4. Sample size determination

A formal sample size calculation formula is derived based on the
proposed Wald test. In designing a SMART aiming to select the best AI
to move forward to further clinical investigation, the sample size

Fig. 1. (A) General scheme of a two-stage SMART design and (B) three design structures considered in simulation.
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determination may proceed prescriptively as follows:
General approaches to calculate the sample size for a SMART
Step 1. For a given design structure of {Ti,Rij,Sijk}, where i=1, …,

I; j=1, …, Ji; k=1, …, Kij, calculate the degrees of freedom ν ac-
cording to (3).

Step 2. For a prespecified type I error rate α and a targeted sta-
tistical power, determine the noncentrality parameter λ∗ required under
the alternative hypothesis by solving

=( ) (0),power
2

,
2

(4)

where χν, power
2(λ∗) denotes the (1− power)th percentile of a non-

central chi-squared distribution with ν degrees of freedom and the
noncentrality parameter λ∗.

Step 3. For given design parameters {πi,πijk}, assumed inter-
mediate response probabilities {pij} and primary outcome parameter
values {ϕijk,τijk} for the conditional outcome distribution f, calculate the
targeted AI values and its covariance , so that standardized overall
effect size, Δ, can be calculated according to

= C C C C( ) ( ) ( ).T T (5)

Step 4. The total number of patients needed for a SMART is

=n . (6)

The values of λ∗ under some commonly used type I error rates and
statistical powers in clinical trials are given in the Table 2. Generally,
smaller type I error rates, larger statistical powers, larger degrees of
freedom (which reflect the number of treatment options and the
number of intermediate response categories) require a larger λ∗, and
hence a larger sample size per Step 4 above.

2.5. Gate-keeping approach for AI selection

We apply the proposed Wald test as a gate-keeping method: if the test
fails to reject H0 in (1), we stop further comparison and conclude that
there is no sufficient evidence to support any AI being better than the
others. Otherwise, if H0 is rejected, we proceed to select the AI with the
highest estimated value, and recommend it for further clinical evaluation.

The gate-keeping approach is proposed for selecting the best AIs upon

rejecting the null hypothesis of no difference in a developmental trial. The
idea is to screen a family of candidates under the strict control of false
positive finding, so as to quickly select one AI that can potentially be more
effective than the others and move it to next phase of investigation, which
is a confirmatory trial to compare the selected best AI with a appropriate
control.

3. Simulations

Having established the gate-keeping approach for AI selection in the
previous section, we evaluate its performances in finite sample size
settings using simulation in this section. The properties of the Wald test
and the gate-keeping method are examined under a variety of SMART
designs and outcome scenarios.

3.1. SMART designs

Fig. 1(B) describes three design structures of two-stage SMARTs con-
sidered in the simulation. The first design structure (DS1) mimics CODIACS
(cf. Table 1) and many other situations where there are two treatment
options at each decision making point, that is, Ti, Sijk∈ {0,1}, and binary
intermediate response, that is, Rij∈ {0,1} for i, j, k=1, 2. As a result, there
are eight possible AIs embedded in DS1. Under DS2 and DS3, there are also
two treatment options at Stage 1. However, randomization at Stage 2 may
be restricted for patients with certain intermediate responses; as a result,
there are 4 and 3 embedded AIs under DS2 and DS3, respectively.

With a given design structure, a SMART design will be completely
specified by the set {πi,πijk} of randomization probabilities defined in
Methods. In the simulation, we considered three sets of randomization
probabilities for each design structure as shown in Fig. 1(B). First, we
considered balanced randomization (BR), that is, Pr(U=1)=0.5 at
Stage 1 and Pr(V=1|U,X)= 0.5 whenever there is an option of ran-
domization at Stage 2. Second, we considered an unbalanced randomi-
zation (UBR) scheme, where Pr(U=1)=0.7 and Pr(V=1|U,X)= 0.7
whenever there is an option of Stage-2 randomization. Third, we con-
sidered Pr(U=1)=0.5 at Stage 1, Pr(V=U|U,X=0)=0.3 and Pr
(V=U|U,X=1)=0.7, whenever there is an option of second stage
randomization. Under this scheme, Stage 2 implements a randomized
play-the-winner (RPTW) rule for the situations where the first and the
second stage treatment options are identical.

In summary, three design structures (DS1, DS2, DS3) and three
randomization schemes (BR, UBR, RPTW) yield a total of 9 SMART
designs under which the proposed method is evaluated.

3.2. Outcome scenarios

In a simulated SMART, the treatment assignment (Uz,Vz) of the zth
patient was generated in accordance with the randomization schemes
described in Section 3.1. The intermediate response rate was set as Pr
(Xz=1|Uz= Ti)= 1/3 for Ti ∈ {0,1}. Given the zth patient's treatment
history and intermediate response (Ti,Rij,Sijk), the primary outcome Yz
was randomly generated from a normal distribution with mean ϕijk=ϕ
(Ti,Rij,Sijk) and variance σ2=100, where the conditional mean ϕijk was
specified by

= + + + + + + +T R S T R S T R T S R S T R S( , , )i ij ijk i ij ijk i ij i ijk ij ijk i ij ijk0 1 2 3 4 5 6 7 (7)

for Ti, Rij, Sijk ∈ {0,1}. The parameters

= ( , , , , , , , )T
0 1 2 3 4 5 6 7

was chosen so that the true values θi; ki1, …, kiJi’s would follow the patterns
displayed in Fig. 2. Under Value Pattern 1 (VP1), AIs with the same
Stage-1 treatment had the same values; under VP2, the values of the AIs
were uniformly higher if their Stage-1 treatment was U=1; under VP3,
the best AI had Stage-1 treatment U=1 while the second best AI had
Stage-1 treatment U=0, and so on and so forth, following an alternating
pattern. The value of β was chosen so that the effect size was Δ=0.05 or

Table 2
Non-centrality parameters (λ∗) calculated by solving Eq. (4) in Section 2.4
under degrees of freedom (ν), type I error (α), and statistical power commonly
used in trials. The calculated value of λ∗ is to be used in Eq. (6) in Section 2.4
for the determination of sample size.

(α,power)

Degrees of
freedom (ν)

(0.01,
0.10)

(0.01,
0.20)

(0.05,
0.10)

(0.05,
0.20)

(0.10,
0.10)

(0.10,
0.20)

2 17.42 13.88 12.65 9.63 10.45 7.71
3 19.24 15.45 14.17 10.90 11.79 8.80
4 20.73 16.75 15.41 11.94 12.88 9.68
5 22.02 17.87 16.47 12.83 13.81 10.44
6 23.18 18.87 17.42 13.62 14.65 11.13
7 24.23 19.78 18.28 14.35 15.41 11.75
8 25.20 20.63 19.08 15.02 16.11 12.32
9 26.12 21.42 19.81 15.65 16.76 12.86
10 26.98 22.17 20.53 16.24 17.38 13.36
11 27.79 22.88 21.20 16.80 17.96 13.84
12 28.57 23.56 21.83 17.34 18.52 14.30
13 29.31 24.21 22.44 17.85 19.05 14.74
14 30.03 24.83 23.02 18.34 19.56 15.16
15 30.71 25.43 23.58 18.81 20.06 15.56
16 31.38 26.01 24.13 19.27 20.53 15.95
17 32.02 26.57 24.65 19.71 20.99 16.33
18 32.65 27.11 25.16 20.14 21.43 16.69
19 33.25 27.64 25.65 20.56 21.87 17.05
20 33.84 28.16 26.13 20.96 22.29 17.39
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0.10. For example, under VP1, β0= β2=⋯= β7=0 and β1=4.48 and
6.33 yielded Δ=0.05 and 0.10, respectively. Table 3 provides the values
of β′s to generate all value patterns in the simulation studies. Details
about how to choose β for each value pattern are provided in Appendix B.

3.3. Results

We first studied the actual type I error rate and empirical power of
the proposed Wald test and compared it with a pairwise test adjusted for
multiplicity. We applied this Wald test as the gate-keeping test for AI
selection. The top row of Fig. 3 gives the type I error rates of the pro-
posed Wald test at 5% nominal level under the 9 scenarios described in
Section 3.1. The vertical axis is the actual type I error rate calculated as
the proportion of simulated trials in which the Wald test led to the
conclusion of significance among 5000 simulation replicates. This out-
come scenario was generated by setting β=(0,0,0,0,0,0,0,0)T in (7).
Under each SMART design, the actual type I error rates of the proposed
Wald test achieved the nominal level of 0.05. For comparison purposes,
we also considered the pairwise testing procedures comparing AIs with
Bonferroni's corrections, that is, using adjusted significance level for each
individual test according to the number of comparisons under each DS
(28, 6, and 3 for DS1, DS2, and DS3, respectively). Specifically, we would
reject the H0 in (1) if any pairwise test had a P-value less than 0.0018,
0.0083, and 0.0167 under DS1, DS2, and DS3, respectively. The simu-
lation results indicated that the Bonferroni's correction was conservative,
especially under DS1 where many comparisons were accounted for.

Rows 2–4 of Fig. 3 show the statistical powers under 3 value patterns
(cf. Fig. 2) in 3 design structures (cf. Fig. 1B) given Δ=0.05. The vertical
axis is the empirical power calculated by the proportion of simulated

trials in which the testing procedure led to the conclusion of significance
among 5000 simulation replicates. By comparing the theoretical and
empirical powers of the proposed Wald test under different outcome
scenarios, we verified that the asymptotic approximation discussed in
Section 2.3 is accurate with a moderate sample size n=200. It also
displays that the proposed Wald test was generally more powerful than
the Bonferroni's adjusted pairwise tests. In addition, the pairwise testing
procedure had a sharp drop in power under DS1 when compared with
the other design structures, likely due to the needs to adjust for many
comparisons. While the Wald test also had lower power under DS1 than
under DS2 and DS3, the drop was much less substantial. This demon-
strated that an omnibus test was advantageous over a pairwise com-
parison procedure because the former attenuated the impact of a large
number of AIs on the power of a SMART study.

Table 4 compares the proposed Wald test and an alternative test based
on inverse probability weighted estimators (IPWE) described in Ogba-
gaber, Karp, and Wahed (2016) [7]. We extracted the scenarios and results
of the IPWE-based omnibus test from Table I in Ogbagaber, Karp, and
Wahed [7], and then calculated the corresponding sample size required by
formula (6) in the Methods Section, and obtained the corresponding em-
pirical power of the proposed Wald test using simulation. The proposed
method generally required a smaller sample size while achieved compar-
able power given the IPWE-based omnibus test due to two reasons: first,
our reference distribution was derived based on asymptotic theory of the
MLEs; second, our method accounts for the fact that the asymptotic cov-
ariance matrix of is generally less than full rank, which has substantial
impact when the design structure get more complicated.

Table 5 gives the results of selecting the best AI(s) using the pro-
posed gate-keeping approach based on the Wald test across 9 SMART

Fig. 2. Value patterns of AIs considered in the simulation.
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designs under balanced randomization with moderate sample size
(n=200). When all the true AI values embedded in a SMART are equal
(Δ=0), the probability that the gate-keeping approach leading to a
significant conclusion is close to the nominal level of 0.05. Importantly,
we found that the probability of each AI being selected as the best given
a certain design is close to uniform. That is to say, in a situation that no
AI is truly better than the others, the gate-keeping approach does not
select a certain AI with higher probability than any of the others.

When the AI values under a SMART design are different, as ex-
pected, AIs with higher true values were selected more often then those
with lower values, and the selection accuracy improved as the effect
size Δ became larger. Interestingly, under VP1 where an AI had either a
value of 0 or a positive value, we found that the probability of selecting
an AI with a value of 0 was negligible, which indicated wrong selection
by the gate-keeping approach after rejecting H0 is rare. Also, the
probabilities of those AI with the positive value being selected are fairly

Table 3
Values of (β0,β1,β2,β3,β4,β5,β6,β7) used in simulations.

(β0,β1,β2,β3,β4,β5,β6,β7)

Design structure Value pattern Δ=0.05 Δ=0.10

DS1 VP1 (0, 4.48, 0, 0, 0, 0, 0, 0) (0, 6.33, 0, 0, 0, 0, 0, 0)
DS1 VP2 (0, 3.63, 0, 2.62, 0, 0, 0, 0) (0, 5.13, 0, 3.70, 0, 0, 0, 0)
DS1 VP3 (0, 1.86, 0, 3.73, −9.32, 1.86, −0.93, 0) (0, 2.64, 0, 5.82, −13.20, 2.64, −1.32, 0)
DS2 VP1 (0, 4.48, 0, 0, 0, 0, 0, 0) (0, 6.33, 0, 0, 0, 0, 0, 0)
DS2 VP2 (0, 0, 0, 2.88, 12, 0, 0, 0) (0, 0, 0, 4.13, 17.70, 0, 0, 0)
DS2 VP3 (0, −1.21, 0, 4.82, 4.82, 1.21, 0, 0) (0, −1.72, 0, 6.87, 6.87, 1.72, 0, 0)
DS3 VP1 (0, 4.48, 0, 0, 0, 0, 0, 0) (0, 6.33, 0, 0, 0, 0, 0, 0)
DS3 VP2 (0, 1.29, 0, 3.88, 0, 0, 0, 0) (0, 1.82, 0, 5.47, 0, 0, 0, 0)
DS3 VP3 (0, 0, 0, −4.46, 0, 6.69, 0, 0) (0, 0, 0, −6.36, 0, 9.54, 0, 0)

Details of design structures (DS) and value patterns (VP) are given in Sections 3.1 and 3.2.

Fig. 3. Type I errors and statistical powers of proposed Wald test and pairwise tests adjusted for Bonferroni's correction.
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close, which indicates that when there are multiple best AIs existing,
the gate-keeping approach will not make a recommendation in favor of
any intervention.

4. Application

Cheung, Chakraborty and Davidson (2015) analyzed data in the
CODIACS trial with an objective to determine which adaptive interven-
tion should be selected in a depression treatment program based on the
reduction of depression at 6months post baseline [8]. The depression
level was measured as Beck Depression Inventory (BDI) and the inter-
vention leading to higher BDI reduction was regarded as more effective.

Each intervention for depression management would adapt to an initial
response at 8weeks defined as no increase in BDI. Precisely, the value of
an intervention in this application was the expected reduction of BDI
reduction at 6months. Table 1 gives the MLEs of all eight AI values cal-
culated based on the data of 108 patients, along with the standard errors.

Suppose the goal of our study is to select the best AI for depression
management to be assessed in a confirmation trial in which the selected AI
will be compared with the standard care. We applied the proposed two-
stage gate-keeping approach for this selection. At Step 1, we conducted the
Wald test under Hypothesis (1) with total number of AIs G=8 and ob-
tained the test statistics Q=36.0 per Formula (2). As the null distribution
of the test statistic was a chi-squared distribution with 5 degrees of

Table 4
Comparison of the proposed Wald test versus the IPWE Wald test.

Required sample size Actual power

Pr (X=1|U=0) Pr (X=1|U=1) Pr (V=1|U,X=1) Nominal Power IPWE Proposed IPWE Proposed

0.5 0.5 0.5 0.80 70 63 0.84 0.84
0.5 0.5 0.7 0.80 79 70 0.85 0.83
0.5 0.5 0.5 0.90 89 80 0.92 0.95
0.5 0.5 0.8 0.90 120 107 0.92 0.95
0.5 0.2 0.5 0.80 83 75 0.83 0.82
0.5 0.2 0.7 0.80 92 81 0.83 0.84
0.5 0.2 0.5 0.90 106 96 0.90 0.94
0.5 0.2 0.8 0.90 134 117 0.92 0.94
0.7 0.5 0.5 0.80 62 56 0.85 0.84
0.7 0.5 0.7 0.80 71 63 0.85 0.85
0.7 0.5 0.5 0.90 79 71 0.92 0.95
0.7 0.5 0.7 0.90 91 81 0.92 0.94
0.2 0.7 0.5 0.80 72 65 0.84 0.83
0.2 0.7 0.7 0.80 82 70 0.84 0.84
0.2 0.7 0.5 0.90 92 83 0.91 0.94
0.2 0.7 0.7 0.90 104 90 0.92 0.92

Table 5
The distribution of selected AI by the gate-keeping method after the Wald test (at 5% level) under balanced randomization and a total sample size of n=200.

Δ=0.00 Δ=0.05 Δ=0.10

DS1-Null DS1-VP1 DS1-VP2 DS1-VP3 DS1-VP1 DS1-VP2 DS1-VP3

AI Value Prob. Value Prob. Value Prob. Value Prob. Value Prob. Value Prob. Value Prob.

(0;0,0) 0.00 0.006 0.00 0.000 0.00 0.000 0.00 0.001 0.00 0.000 0.00 0.000 0.00 0.000
(0;0,1) 0.00 0.006 0.00 0.000 0.87 0.000 0.93 0.005 0.00 0.000 1.23 0.000 1.32 0.001
(0;1,0) 0.00 0.006 0.00 0.000 1.75 0.001 2.49 0.045 0.00 0.000 2.47 0.000 3.52 0.033
(0;1,1) 0.00 0.006 0.00 0.000 2.62 0.007 3.42 0.209 0.00 0.000 3.70 0.001 4.84 0.300
(1;0,0) 0.00 0.006 4.48 0.169 3.63 0.018 −1.24 0.000 6.33 0.241 5.13 0.009 −1.76 0.000
(1;0,1) 0.00 0.006 4.48 0.168 4.50 0.068 0.31 0.000 6.33 0.251 6.36 0.053 0.44 0.000
(1;1,0) 0.00 0.006 4.48 0.166 5.38 0.119 2.48 0.027 6.33 0.231 7.60 0.120 3.52 0.014
(1;1,1) 0.00 0.006 4.48 0.167 6.25 0.458 4.04 0.385 6.33 0.228 8.83 0.759 5.72 0.598

Δ=0.00 Δ=0.05 Δ=0.10

DS2-Null DS2-VP1 DS2-VP2 DS2-VP3 DS2-VP1 DS2-VP2 DS2-VP3

AI Value Prob. Value Prob. Value Prob. Value Prob. Value Prob. Value Prob. Value Prob.

(0;0,1) 0.00 0.012 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000
(0;1,1) 0.00 0.012 0.00 0.000 1.92 0.003 3.21 0.181 0.00 0.000 2.77 0.000 4.59 0.170
(1;0,1) 0.00 0.013 4.48 0.380 4.00 0.076 0.40 0.000 6.33 0.488 5.90 0.042 0.57 0.000
(1;1,1) 0.00 0.013 4.48 0.381 5.92 0.678 4.42 0.576 6.33 0.489 8.67 0.932 6.31 0.806

Δ=0.00 Δ=0.05 Δ=0.10

DS3-Null DS3-VP1 DS3-VP2 DS3-VP3 DS3-VP1 DS3-VP2 DS3-VP3

AI Value Prob. Value Prob. Value Prob. Value Prob. Value Prob. Value Prob. Value Prob.

(0;0,1) 0.00 0.0016 0.00 0.000 0.00 0.000 0.00 0.057 0.00 0.000 0.00 0.000 0.00 0.023
(0;1,1) 0.00 0.0016 0.00 0.001 2.59 0.034 −2.96 0.000 0.00 0.000 3.65 0.012 −4.24 0.000
(1;1,1) 0.00 0.0019 4.48 0.807 5.17 0.776 2.22 0.761 6.33 0.985 7.30 0.972 3.18 0.962
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freedom according to Formula (3), we got P < 0.001 and concluded that
the values of AIs were significantly different at 5% level. Consequently, we
continued to Step 2 and selected the AI that started with problem-solving
therapy followed by medication (AI with g=5) as the recommendation
for further investigation. Alternatively, we could use pairwise testing ap-
proach to compare each AI against the observed best intervention (AI with
g=5): one comparison had a P value less than 0.05 (AI with g=2 and
P=0.049); however, multiplicity adjustment would require a P value less
than 0.0018 according to Bonferroni's method. Thus, the pairwise testing
approach would have failed to declare the overall difference among the
AIs and no AI would be selected for further study.

5. Discussions

We have proposed an omnibus test for comparing several AIs in a
SMART, and derived a sample size determination procedure based on the
test. Traditional hypothesis tests of comparing AIs embedded in a SMART
focused on pairwise comparisons of AIs. Murphy proposed a hypothesis
test for comparing two non-overlapping AIs in a SMART [1]. In this
comparison, data collected from patients followed two AIs are statisti-
cally independent, and thus the sample size can be determined in a si-
milar fashion to a two-sample t-test. Oetting and colleagues [10] further
discussed Murphy's sample size formula and proposed an algorithm to
select the best AI embedded in a SMART, assuming the best two AIs can
be correctly identified at the design stage. Dawson and Lavori [11]
provided a sample size formula based on the nested structure estimation
for SMART with continuous outcomes. The covariance between two AIs
was obtained by combining the stage-specific variance inflation factor
(VIF) and sequence-specific variance. To deal with two AIs that are
overlapped in the early stages, Dawson and Lavori further proposed a
conservative approach to estimate the VIF by stage-specific regression
[12]. Hypothesis tests for comparing two AIs with survival outcomes
were studied in Feng and Wahed [13], and Li and Murphy [14].

In addition, we have explored applying the proposed test as a gate-
keeping method for AI selection. While the literature of ranking and se-
lection procedures can be traced back to 1970's [15–17], these methods
have not been widely used in clinical trials, where selection of treatment
may occur only when there is an adequate level of statistical evidence
concerning the differences among the treatments. A gate-keeping test is a
common approach to evaluate the extent of statistical evidence. For ex-
ample, Dunnett [18] proposed a gate-keeping procedure in the presence of
a control. Using this method, when and only when the null hypothesis of
the ANOVA F test is rejected, pairs of difference will be identified by
comparing each treatment with the control group. More recently, gate-
keeping procedures have been proposed to handle multiple hierarchical
objectives in clinical trials comparing non-adaptive interventions. Westfall
and Krishen [19] proposed a serial gate-keeping procedure, where a family
of null hypotheses defines a serial gate-keeper, that is, it requires rejecting
all the null hypotheses before making further tests. Demitrienko, Offen,
and Westfall [20] proposed a parallel gate-keeping paradigm whereby a
family of null hypothesis defines parallel gate-keepers, so that rejecting at
least one null will suffice for further comparisons. These two gate-keeping
approaches was later unified into a general tree gate-keeping procedure
[21]. As far as the authors are aware, this is the first proposal of using a
gate-keeping procedure in SMART. It would be interesting to further
pursue applying the above-mentioned hierarchical gate-keeping methods
in SMART. Numerous non-gate-keeping methods for treatment selections
have also been suggested. Whitehead proposed a Bayesian selection trial
design, by which several experimental treatments are first evaluated, and
the most promising one will then be compared to a standard treatment
[22]. Thall and colleagues proposed a two-stage procedure to identifying
the best of the experimental interventions and determining whether it is
superior to a control with an objective to minimize the expected total
sample size under the null [23]. Cheung [24] proposed a class of se-
quential selection boundaries for multi-armed clinical trial for selecting a
treatment in comparison with a control. A contribution of this article is the

extension of the selection paradigm concept to the context of adaptive
interventions in a SMART. As a result of the selection paradigm, one can
substantially reduce the sample size of a SMART by powering the study
based on a gate-keeping test, and thus improving the feasibility of con-
ducting a SMART. The simulation study shows that the power of the
proposed omnibus test is affected by the number of embedded AIs to a
lesser extent than pairwise comparison with multiplicity adjustments. As
the “curse of dimensionality” is a major concern in evaluating AIs em-
bedded in a SMART, especially if we consider more than two stages and
multiple response categories, performing such an omnibus test as a gate-
keeping test is a reasonable approach in light of feasibility.

From a practical viewpoint, the proposed method facilitates clear
clinical decisions at the end of a trial. Specifically, in this article, we
consider an approach whereby an AI is selected upon rejecting the null of
no difference. We note that the goal of a selection trial is not to select the
best intervention with high probability, but rather select a superior in-
tervention in that it is not a “bad” one [25]: The two objectives coincide in
scenarios where no AI falls in the “indifference zone”. Indifference zone is
a notion developed in the ranking and selection literature, and generally
refers to a region of the parameter space where selection properties are not
explicitly calibrated due to insufficient separation of the parameters (va-
lues) of interest; and therefore, the inferential procedure is indifferent to
the selection decision. For example, under VP1 when the effect size Δ is
0.10, where there are two possible AI values (0 vs. 6.33), it is apparent that
AIs having a value of 6.33 is the best, and there is no ambiguity as to what
would constitute a correct selection (assuming a difference of 6.33 is of
clinical significance). In contrast, in VP2 or VP3, the best AI is separated by
the second-best AI by a small difference (VP2 8.83 vs. 7.60; VP3 5.62 vs.
4.84). It may not be of sufficient practical relevance to power the study to
differentiate the two at the cost of a large sample size, and it is not an
incorrect decision to select the second-best AI, although it has a slightly
smaller value than the best AI; that is, the second-best AI falls in the in-
difference zone. See further discussion and examples of indifference zone
in Bechhofer, Santner, and Goldsman [26] and Cheung [27].

The proposed omnibus test can be coupled with other clinical decision
rules such as identifying inferior interventions, as long as these rules are pre-
specified. In this article, we focus on selecting the best AI after the null
hypothesis of the gate-keeping test is rejected. Depending on the trial's
objective, the omnibus test can also be used in conjunction with AI elim-
ination instead of selection. In this case, we would be interested in keeping
the probability of correctly elimination of an inferior AI with high prob-
ability. To illustrate, the re-analysis of CODIACS (cf. Table 1) shows that
several AIs (g=3, 7) had estimated values close to the observed best
(g=5), whereas some were clearly inferior to these promising AIs. In order
to identify AIs for elimination, one might perform unadjusted pairwise tests
against the observed best—when the null hypothesis of the gate-keeping test
in (1) is rejected: interventions that had significantly different values than
the observed best would be eliminated. In the CODIACS re-analysis, the AI
with g=2 would have been declared inferior according to this procedure.

We have explored the distributional results of MLEs for the AI values
under general SMART designs. Interestingly, we noted that the limiting
covariance of the MLE is less than full rank, which we believe is true
also for other estimators (e.g., IPWE), because each AI is a linear
combination of potentially overlapping treatment sequences embedded
in a SMART, as explained in Section 2.2. This is a key result that allows
us to establish an efficient omnibus test with a null reference dis-
tribution with the degrees of freedom ν < G−1 and propose the ad-
vanced sample size calculation method for designing a SMART. Without
this result, one might naturally conjecture a null distribution with
G−1 degrees of freedom, which would lead to a conservative test.

A potential limitation of using the MLE is that it will require the full
specification of the model, and it may be perceived as restrictive in the
application. We, however, note that under normality, the MLE is
asymptotically identical to the IPWE, which suggests a certain degree of
robustness of the MLE, at least for continuous outcomes. Furthermore,
the proposed gate-keeping procedure is not tied to MLE. Ogbagaber,
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Karp, and Wahed (2016), for example, construct an omnibus test based
on IPWE [7]. As long as we can obtain a consistent estimator for the AI
value and the asymptotic variance-covariance of these estimators, we
will be able to apply the gate-keeping method. These are certain topics
for further study. Having said that, we note that the results in this ar-
ticle are derived under rather general conditions on the distribution of
final primary outcome, with the exponential family being the most
prominent example that the theory is applicable to. While we have
focused on evaluating the proposed method with continuous outcome,
simulation studies using binary outcome data (not reported here) show
similar performance. Thus, the specific procedure studied in this article

shall have applications in very broad settings.
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Appendix

Appendix A

Proof of Asymptotic Distribution of
The log-likelihood function based on {(Uz,Xz,Vz,Yz);z=1,…,n} is

= = = =

+ = = = +

= = = =

= = = =

L p I U T X R V S f y

I U T X R V S p

log ( , , ) ( , , ) log ( | , )

( , , ) log constant.

ij ijk ijk
z

n

i

I

j

J

k

K

z i z ij z ijk z ijk ijk

z

n

i

I

j

J

k

K

z i z ij z ijk ij

1 1 1 1

1 1 1 1

i ij

i ij

The MLEs can be derived by solving the score equations based on the first and second derivatives of the log-likelihood function. Specifically, the
MLE for pij is

=
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whereas the MLEs for ϕijk and τijk, denoted as ijk and ijk respectively, generally have no closed form expression.
For an AI indexed by i, its value θi; ki1, …, kiJi is determined by

= = =
p

p
p , , ,i

i

iJ
ij

ij

ijK
i

i

iJ

1 1 1

i ij i

for which we use p ,i i to denote their MLEs. Then, let θi be the vector of θi; ki1, …, kiJi’s, arranged in the lexicographical order in (ki1,…,kiJi). We
express θi in two equivalent forms as

= =A p A p( ) ( ) ,i i i i i i i i i (A.1)

where

=A I 1 1 1 I 1 1 1 I( | | | )i K K K K K K K K Ki i iJi i i iJi i i Ji iJi1 2 1 2 1 ( 1) (A.2)

is a Gi×mi matrix with ⊗ denoting the Kronecker product, Gi=∏j=1
JiKij, and mi=∑j=1

JiKij; also, Ik denotes the k× k identity matrix, 1k the k×1
matrix of 1's, and = = …p j Jp I( ) bdiag{ ; 1, , }i i ij K iij is an mi×mi block diagonal matrix and = = …j J( ) bdiag{ ; 1, , }i ij i is a Gi× Ji block diagonal
matrix with “bdiag{⋅}” denoting a block diagonal matrix.

The two expressions of MLE of θi in (A.1) can be respectively expressed as

= =A p A p( ) ( ) .i i i i i i i i

Now define = p p p(diag{ } )i i i i
T

p
1

i , = …{ }bdiag , ,i i iJi1 ,

= = …p k K( ) bdiag{ ( , ); 1, , },i ij ijk ijk ijk ij
1 2

ij

and σ2(ϕijk,τijk)= (iϕijkϕijk
− iϕijkτijk

T ⋅ iτijkτijk
−1 ⋅ iϕijkτijk)
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i i
i i

T
ijk ijk ijk ijk

ijk ijk ijk ijk

is the block Fisher's information matrix of distribution f(y|ϕijk,τijk).
Let = …bdiag{ , , }I1 , where = +A p p A( ( ) ( ) ( ) ( ))i i i i i i

T
i i i i i

T
pi i . Assume that f(yz|ϕijk, τijk) satisfies the regularity conditions as spe-

cified in Theorem 5.39 of van der Vaart (1998) [9]. We first prove the asymptotic distribution of in Section 2.2. Noticing that under the standard
regularity conditions, we have

( )n N
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0
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where pi and i are given above. By the delta-method and using the two equivalent expressions of θi in (A.1),

= +

+ =
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We establish two lemmas:

Lemma 1. Let A and B be two k× k real symmetric matrices. Assume A is positive definite and B is positive semi-definite. Then,

+ = = kA B Arank( ) rank( ) .

Proof: For the positive semi-definite matrix A BA1
2

1
2 , there exist an orthogonal matrix C such that
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where λi≥0, i=1, …, k, are the eigenvalues of A BA1
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Lemma 2. Let Ai be defined as in Eq. (A.2). Then,
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Proof: We apply the principle of mathematical induction to Ji. For such purpose, we write Ai as Ai(Ki1,…,KiJi). If Ji=2, then
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which, after some elementary operations for block matrices, becomes
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Suppose the conclusion holds for Ji, consider now the case of Ji+1. Denote
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which proves the claim for Ji+1.
By Lemma 1,

+ = mp prank( ( ) ( ) ( ) ( )) ,i i i i i i i i ipi i

hence of full rank. Then, by Lemma 2,
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Proof of Degrees of Freedom ν
We have proved that Q

d 2 under the null hypothesis of (1). By a contiguity argument, under the local alternatives { }n which satisfies

= >n C C C Clim ( ) ( ) ( ) 0,
n

n
T T

n

Q ( )
d 2 . We now verify that the degrees of freedom formula (3). Let G=∑i=1

IGi and m=∑i=1
Imi. Define an G×m matrix A as

= = …i IA Abdiag{ ; 1, , }.i

Without loss of generality, consider an (G−1)×G contrast matrix

= IC 1( | ).G G1 1

By subtracting the first row from the remaining (G−1) rows in A, and then subtracting the first column from the remaining columns (all of these
are elementary operations), A is converted to

( )1 0
0 B ,

and check that (0 | B)= CA holds. Then,

= + = +A B CArank( ) 1 rank( ) 1 rank( ).

Therefore, the degrees of freedom of χν
2 test is
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Appendix B

Specification of ϕijk’s in the Simulation
We provide an example of generating the sequence-specific mean outcome ϕijk in the simulations under design structure 1 (DS1) and balanced

randomization scheme (BR) with value pattern 1 (VP1). There are 8 possible treatment sequences in this setting and the sequence-specific means
ϕijk’s can be expressed as a set of linear functions of β as follows,

=
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= + + + + + + + .
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The value of an AI in this setting is

= +p p ,i k k i i k i i k; , 1 1 2 2i i i i1 2 1 2

where ki1 ∈ {0,1} and ki2 ∈ {0,1} for i=1, 2. Thus, the targeted AI values are
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We add the subscript β to in the above formula to indicate that the value of given (pi1,pi2) only depends on the values of β. With VP1, we
have

= = = < = = = .1;1,1 1;1,2 1;2,1 1;2,2 2;1,1 2;1,2 2;2,1 2;2,2

Thus, we know that any set of β satisfying β1 > 0 and β2= β3= β4= β5= β6= β7= 0 can be used to build a SMART with VP1 and under DS1.
We proceed to calculate the covariance between two AI values as
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where i, i′, ki1, ki2, ki′1, ki′2 = 1, 2; I(E)= 1 when event E occurs and I(E)= 0 otherwise. The values of I(.)’s depend on the relationship between the
two given AIs di; ki1, ki2 and di′; ki′1, ki′2. For example, when the two AIs are completely overlapped, we have I(Ti= Ti′) = I(Si1ki1 = Si′1ki′1) = I
(Si2ki2 = Si′2ki′2)= 1 so that the above formula is the variance of an AI. When both AIs adopt the same Stage-1 treatment but different treatments for
either responders or non-responders at Stage 2, we have I(Ti= Ti′) = 1 and I(Si1ki1 = Si′1ki′1) = I(Si2ki2 = Si′2ki′2) = 0. By this means, we can write in
(5) as a function of {πi,πijk,pi1,pi2,ϕijk,σijk}, where πi= πijk=0.5, = ( )p p( , ) ,i i1 2

2
3

1
3 and σijk=10, for i, j, k=1, 2. The value of now only depends

on β. Let Δ=0.05, consider equation

=C C C C( ) ( ) ( ) 0.05,T T (B.1)

where the contrast matrix

=C

1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1

.

By solving (B.1), we obtain a set of

= (0,4.48,0,0,0,0,0,0),

which will be used to simulate the SMART data under DS1 and BR, with VP1 and Δ=0.05. In each simulated SMART data based on
β=(0,4.48,0,0,0,0,0,0)T, there are 8 possible sequences and the sequences-specific mean vector is (0,0,0,0,4.48,4.48,4.48,4.48)T. The solution to
equation (B.1) is not unique. However, for the purpose of simulation, any set of solution β to equation (B.1) can be used. We fix β0= 0 in all
simulations.
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