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ABSTRACT
We discuss an alternative approach to measuring bias and fairness
in machine learning: Counterfactual evaluation. In many practical
settings, the alternative to a biased algorithm is not an unbiased
one, but another decision method such as another algorithm or
human discretion. We discuss statistical techniques necessary for
counterfactual comparisons, which enable researchers to quantify
relative biases without access to the underlying algorithm or its
training data. We close by discussing the usefulness of transparency
and interpretability within the counterfactual orientation.

1 INTRODUCTION
The question of algorithmic bias is inherently causal. If a company
uses a new algorithm, will the change cause outcomes to be more
biased or unbiased? If we use one algorithm rather than the status
quo, will this cause fewer women and minorities to be approved for
loans?

The question of algorithmic bias is also inherently marginal and
counterfactual. In many settings, the use of a new algorithm will
leave lots of decisions unchanged. A new algorithm for approving
loans may select and reject many of the same candidates as a human
process. For these non-marginal candidates, the practical effect of a
new algorithm on bias is zero. To measure an algorithm’s impact on
bias, researchers must isolate marginal cases where choices would
counterfactually change with the choice of selection criteria.

This white-paper discusses quantitative empirical methods to
assess the causal impact of new algorithms on fairness outcomes.
The goal of total fairness and unbiasedness may be an impossi-
bly high computational and statistical hurdle for any algorithm.
Practitioners often need to deploy new algorithms iteratively and
measure their incremental effects on fairness and bias, even if the
underlying method is an uninterpretable black box. Researchers
should focus on interventions that measurably decrease bias and
increase fairness incrementally, even if they do not take bias and
unfairness to zero. This requires a distinct quantitative toolkit.

Our approach does not require access to the underlying algo-
rithm or its training data, and do not require transparency or in-
terpretability in the usual sense. To the contrary, the methods can
be used to study black-box machine learning algorithms and other
black-box tools for selection (such as expert judgement or human
discretion). We evaluate the merits of interpretability and trans-
parency (as traditionally defined) in our counterfactual orientation.

∗This white-paper is contains ideas from a longer article by the authors ti-
tled Algorithmic Bias: Economics and Machine Discrimination [6]. Bo Cowgill
(bo.cowgill@columbia.edu) is an Assistant Professor at the Columbia Business School
in New York, NY. Catherine Tucker (cetucker@mit.edu) is the Sloan Distinguished
Professor of Management Science at MIT Sloan School of Management, Cambridge,
MA, and Research Associate at the NBER.

Working Paper: NSF Trustworthy Algorithms, December 2017, Arlington, VA

2 STATISTICS OF COUNTERFACTUAL
EVALUATION

Modern causal inference methods were pioneered by Rubin [12],
and are popular for measuring the effects of interventions in a vari-
ety of fields (medicine, economics, political science, epidemiology
and others). In this paper, the introduction of an algorithm is an
“intervention” or a “treatment” – akin to a government changing
policies or a patient taking a pill – whose causal effects can be
measured. A full discussion of these methods are beyond the scope
of this two-page whitepaper, but we give a brief overview below.

Suppose we have a choice variable X ∈ (0, 1). As an example, X
can represent whether or not to extend a loan to an applicant. The
bank may have two methods deciding how to set X which we can
call A and B. Suppose that A is the status quo, and a policymaker
must evaluate adopting B. Either A or B could be machine learning
algorithms, or both or neither could be. Applicants are indexed by i .
XAi represents whether method A would grant a loan to applicant
i , XBi represents the choice method B would take.

For many practical settings, researchers may find it useful to
know what percentage of decisions would change givenA vs B, and
what covariates were correlated with agreement and disagreement.
For example: Do A and B mostly agree on male applicants, but
disagree on females? Do they agree onwhite rejections, but disagree
about white acceptances? Measuring the quantity and location of
these disagreements will offer early clues about how much a new
algorithm will affect racial biases (compared to the status quo).

Even these simple comparisons are missing from most of the
current literature on algorithmic bias. For example: In 2016, ProPub-
lica produced an influential analysis [1] of the COMPAS recidivism
guidance tool, alleging the COMPAS algorithm was biased against
black defendants. Data from this example have been extensively
studied in the subsequent academic literature [2, 3, 8].

Even if COMPAS were racially biased, it may not have affected
defendants’ outcomes. If judges were already predisposed to sen-
tence in a COMPAS-like way – e.g., they agreed independently with
COMPAS – the tool would have no effect. This seems likely, given
that COMPAS was trained on data that judges could view indepen-
dently.1 As we discuss later in this paper, it’s possible that a biased
algorithm is an improvement upon a status quo counterfactual with
greater bias. To our knowledge, only one paper [5] has attempted
to measure how often judges (A) and COMPAS (B) would agree or
disagree if each made independent evaluations.

Beyond measuring disagreement, causal inference methods offer
guidance on establishing which method is right. Suppose we have
a “payoff” variable Y . For this exposition, suppose that Y ∈ (0, 1)
representing if the loan is paid back.2 The choice of Y may reflect
inherently subjective policy priorities. For example: If the bank

1In addition, the COMPAS training data incorporated historical judicial behavior as
part of the modeled phenomena.
2If payment sizes vary, Y could be extended beyond zero and one to give greater payoff
when a larger loan is repaid.
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valued a diverse loan portfolio, then Y could be coded to give larger
payoffs to the bank’s utility if minorities receive a loan.

Note that payoffs Y depend on whether the loan is extended (X ).
We can thus extend the notation to YAi and YBi , representing the
different payoffs depending on which selection algorithm is used.

The problem of evaluating two algorithms is that for many set-
tings, YBi is unknown. Historical observational data would contain
outcomes only for A (and for where A and B agree). The critical
data – what would happen if B overrodeA in cases of disagreement
– is missing data.

To overcome this problem, the causal inference literature has re-
quired researchers to collect new data by finding a random sample
of YBi outcomes. In our example, we could implement a field ex-
periment overriding A with B randomly, and observing YBi . Unlike
experiments in other fields, algorithmic evaluation experiments can
be relatively easy and safe for the subjects. Researchers generally
know what happens if a candidate is not interviewed – the payoff
for that candidate to the employer is zero. Thus no experimentation
is necessary for rejections.

Instead, a employer simply needs to extend additional interviews
to a random set of applicants who would be approved in regime B
(but not A) and score these interviews’ outcomes. By comparison
with many experiments, this is incredibly easy and safe for the
subjects and researchers.3 In addition, researchers studying bias do
not need to access the algorithm, its functional form, input variables,
numerical weights or training data.

3 RELATED EMPIRICAL LITERATURE
Although causal inference methods are widely used in other disci-
plines (including most experimental sciences), few empirical com-
puter science papers have used these methods to examine algorith-
mic bias and fairness. Those that have find positive effects, even
when the algorithms have been trained on historical data poten-
tially containing bias. [4] studies a field experiment in the use of
machine learning for hiring, and finds positive effects on under-
represented groups – including groups underrepresented in the
training data.

[9] develops an algorithm for predicting criminal recidivism,
and constructs simulated counterfactual outcomes by exploiting
the random assignment of judges to cases. The authors’ findings
“suggest potentially large welfare gains: a policy simulation shows
crime can be reduced by up to 24.8% with no change in jailing rates,
or jail populations can be reduced by 42.0% with no increase in
crime rates.” They also show that “the algorithm is a force for racial
equity,” even though it was trained on historical criminal data.

It may sound counterintuitive that an algorithm may be less
biased than the underlying training data. [4] proposes a theoretical
model to explain the mechanism for for this outcome. The model
shows that even if training data is biased, supervised machine
learning can produce less biased judgements (if not fully unbiased)
than the training data – if the training data exhibits sufficient noise
and inconsistency in addition to bias. The noise plays a positive

3By comparison, subjects in randomized drug trials have to agree to take potentially
fatal experimental drugs. Then, they must comply with treatment regimes that are
sometimes burdensome to follow. Then, the drug company must wait months or years
for health outcomes to be realized. By comparison, the experiments suggested above
are must simpler and shield subjects from most of the risk.

role in decreasing bias by providing positive training examples for
underrepresented groups. In this sense, noisy training data is a
useful input to machine learning algorithms attempting to decrease
bias.

4 TRANSPARENCY AND INTERPRETABILITY
Transparency and interpretability in machine learning has many
definitions [7]. To some observers, sharing the data described above
would provide helpful transparency about what an algorithm does,
and who is affected (compared to the status quo). It would also
provide interpretable forecasts of how the new algorithm would
cause changes in outcomes if it replaced a status quo method.

However, many requests for “transparency and interpretability”
ask developers to publish an algorithm’s functional form, input
variables and numeric weights. However, simply examining code
to evaluate and potentially exclude sensitive variables as inputs to
algorithms does not guarantee fair, unbiased scoring. Other vari-
ables correlated with these sensitive variables – particularly in
combination with each other – can still produce a biased evalua-
tion. For example, [11] show examples of algorithms attempting
to infer ethnic affinity based on affection for certain cultural prod-
ucts. However, these algorithms ultimately conflate income with
ethnic affinity, because income is also correlated with tastes for
these products. Similarly, [10] show the tendency of commercial
ad-serving algorithms to show STEM job ads to women is distorted
by competition from other advertisers bidding for female eyeballs.
In both these cases, the source of the distortion is unclear from
examining the algorithm’s code.

For counterfactual evaluation, transparency and interpretability
are less directly helpful. The goal of counterfactual evaluation is
to measure how outcome would change under different selection
regimes. Knowing details about how method scores candidates
doesn’t provide insights about the difference between two selection
regimes. Even if both new and old regimes are algorithms, rather
than the more common case of an algorithm replacing human
judgement, then “transparency” may not be directly helpful in
evaluating disagreements.

For example, suppose we implement an algorithm that evalu-
ates job applicants to replace human evaluators. [4] contains a
real-world example of this: The resume screening algorithm in the
paper appeared to give negative weight to candidates from non-elite
schools. However, the candidates benefitting from the algorithm
included disproportionately non-elite graduates. Human evaluators
assessed these credentials even more negatively. These marginal
non-elite graduates – candidates from non-elite schools who were
favored by the algorithm but rejected by humans – performed ex-
tremely well in subsequent job-related performance evaluations
(better than the average candidate selected by the humans).

The same effect works in the opposite direction. An algorithm
that appears to help a certain group (based on its numeric weights)
might actually have a negative effect on that group. For example:
Suppose an algorithm predicts a loan applicant’s probability of
repaying a loan successfully, and places a strong weight (directly
or indirectly) on being African American. If loan officers (or the
status quo regime) place higher weight on this attribute, then the
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introduction of the algorithm may reduce minority lending despite
the positive weight.

These examples demonstrate how transparency and interpretabil-
ity provide misleading intuition about the effects of an algorithm.

5 CONCLUSION
Decision-making algorithms arose partly because of the growing
availability of cheap, detailed datasets. These same datasets allows
researchers, policymakers and businesses to measure and quantify
bias in an unprecedented way.

Bias in machine learning applications may be a particularly at-
tractive measurement target. These applications arise naturally
in data-rich settings, and are codified. However, status-quo, non-
algorithmic mechanisms may be equally or more biased, even if
they are more difficult to measure, analyze or codify.

A more careful study of these counterfactuals may suggest that
few decision methods are truly free of all bias, particularly if guided
by historical examples or data. The incumbent framework for reg-
ulating discrimination is mostly based on zero bias. These frame-
works may discourage adoption of new technologies that reduce
bias.

This paper has introduced empirical methods from causal infer-
ence for quantifying changes in bias from a new algorithm versus a
counterfactual – even if this counterfactual is not itself algorithmic.

The counterfactual orientation of this paper raises new policy
questions. If regulators embrace algorithms that reduce (but not
eliminate) bias, they may also want to introduce incentives to speed

the reduction of bias.What policies encourage algorithm developers
to continue prioritizing reducing bias? Without these, algorithm de-
velopers may become complacent with incremental improvements
on the status quo, when larger decreases in bias may be possible
with effort. □
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