
SEFAiR SO FAR

BEN GOODRICH (BGOKGM@GMAIL.COM)

For more information on FAiR (including installation instructions) go to

http://wiki.r-project.org/rwiki/doku.php?id=packages:cran:fair

1. INTRODUCTION

This paper introduces a new estimation technique called semi-exploratory factor analysis (SEFA). SEFA can more-

or-less be seen as a generalization of confirmatory factor analysis (CFA) in the direction of exploratory factor analysis

(EFA). In CFA, the analyst uses prior theory to specify which coefficients are fixed — usually to zero — and estimates

the remaining coefficients. In SEFA, the analyst specifies how many coefficients are zero for each factor, but the

locations of these exact zeros are estimated along with the values of the corresponding non-zero coefficients using an

optimization algorithm that has not been applied to factor analysis problems before.

This ongoing project synthesizes three Big Ideas that are most certainly not new, but some of them may be new to

many practitioners of factor analysis. The first Big Idea is a philosophy of factor analysis, which is inspired by Yates

(1987), although it differs in almost all of the operational details. For a largely favorable book review, see MacCallum

(1989), but in brief, Yates (1987) argues that the traditional work-flow of EFA — extract factors, test whether the

number of factors is sufficient, transform using quartimin or varimax — renders EFA merely another form of cluster

analysis, a descriptive tool for describing how in-sample outcomes relate to each other. Yates (1987) aims to restore

factor analysis’s original purpose as a scientific tool for inferring the relationships between latent factors and outcomes

in the population and proposes new algorithms for extracting and transforming factors to promote the invariance of

the solution to moderate changes in the battery. I argue these goals are more attainable through SEFA.

The second Big Idea is a free, libre, open source software (FLOSS) philosophy. All of the estimation techniques

referenced here are implemented in a package for the R language (see R Core Development Team 2007) called FAiR

that can be downloaded and used for free. R has been quite popular among statisticians for a few years but is only

slowly gaining influence in psychometrics. For example, de Leeuw and Mair (2007) guest edited a special edition of

the Journal of Statistical Software dedicated to “Psychometrics in R”, Structural Equation Modeling published Fox

(2006) on using R to estimate structural equation models (including CFA), and Doug Bates, who is part of the R Core

I would like to thank Jas Sekhon for his advice and for extensively modifying RGENOUD to make this paper possible, Mike “Combo” Kellerman for
solving some combinatorics problems and commenting on an application of these methods, and the participants at the Applied Statistics Workshop
at Harvard University and the Psychology Methods Group at the University of Rhode Island for valuable comments.
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Development Team is scheduled to present a workshop on the use of R to estimate mixed-effects models at the 2008

International Meeting of the Psychometric Society.

FAiR, like R itself, is licensed under the General Public License (GPL), which gives everyone the right to use

FAiR for any purpose, to view all the source code, and redistribute modifications under the same license.1 This license

is designed to foster collaboration and hopefully a sizeable group of people will eventually contribute to FAiR’s

development. As far as I know, no other major software package for factor analysis is currently covered by a GPL-

compatible license, aside from the scattered tools for factor analysis that have already made it into R or R packages.2

The third Big Idea is a philosophy of optimization and is related to the second because the main estimation tech-

niques that are (or will be) implemented in FAiR essentially require the use of other GPL software, such as a genetic

optimization algorithm called RGENOUD (see Mebane and Sekhon 2007) or eventually the headers in a Markov Chain

Monte Carlo library called MCMCpack (see Martin and Quinn 2007). Difficult factor analysis problems can be solved

with FAiR because of RGENOUD’s unique ability to find the global optimum of a nonlinear and / or discontinuous

function with many local optima and plateaus, possibly subject to inequality constraints on the parameters.

There are three main sections in this paper, written in sharply increasing order of difficulty to understand. The next

section discusses the common factor analysis model in the population and contrasts SEFA with the two most popular

ways to estimate it, CFA and EFA. Anyone who is familiar with EFA and CFA will be able to understand the simple

examples that are given. This paper, however, does not cover how to use FAiR to estimate the SEFA model.

The following section explains how RGENOUD works in general and specifically for SEFA. RGENOUD represents

a fundamental departure from traditional optimization algorithms that are used for factor analysis. It is unnecessary to

have a deep understanding of RGENOUD in order to use FAiR, but it is important to understand how constraints are

operationalized. I do not discuss the possibility of using Markov Chain Monte Carlo (MCMC) to estimate the SEFA

model, but doing so is reasonably straightforward in some cases.

The final major section discusses some of the “advanced” features of SEFA. In particular, the recurring topics

in Yates’ (1987) discussion of EFA — like Thurstone’s (1935) definition of simple structure, the positive manifold,

suppressor variables, the distinguishability of factors, the invariance of the solution, etc. — are reexamined in light of

SEFA. In short, I believe FAiR can accomplish Yates’ (1987) goals much better than Yates’ (1987) EFA algorithms

could. However, as with any new estimation technique, a lot more simulations, as well as improvements to the code

and the theory, need to be done in order to determine SEFA’s full potential.

1See http://www.fsf.org/licensing/licenses/gpl.html for the license terms.
2For descriptions of existing tools, see http://cran.r-project.org/src/contrib/Views/Psychometrics.html or Mair and Hatzinger (2007) for a static
version of the same document. In particular, Bernaards and Jennrich (2005) is the basis for the GPArotation package; Revelle (2007) is a package
providing tools with an emphasis on personality research; Husson, Josse, Le, and Mazet (2007) is a package that focuses on components but also
has tools for factor analysis; and Falissard (2007) is a package that emphasizes tools for measurement. Bill Rozeboom recently agreed to license
HYBALL under the GPL so that parts of it might eventually be included in FAiR.
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2. THE COMMON FACTOR ANALYSIS MODEL IN THE POPULATION AND A NEW WAY TO ESTIMATE IT

This section briefly introduces some notation for the factor analysis model. I assume the reader has seen the

equations for factor analysis before but restate a couple here. For a full treatment, see Harman (1976) or another

textbook on factor analysis. EFA, CFA, and SEFA only differ in how they estimate the same population model.

For j = 1, 2, . . . , n outcome variables (also called manifest variables or tests), p = 1, 2, . . . , r � n common

factors, and i = 1, 2, . . . , N units of observation, the common factor analysis model in the population can be written

as a linear regression model

Yij =
r∑

p=1

βjpXip + ΘjEij ,

where Yij is an observable score on outcome j, Xip is a score on an unobserved common factor with effect βjp, Eij

is a score on an unobserved factor that is unique to the jth outcome with effect Θj , and all variables are expressed as

deviations from their expectations. If the unique factors are independent of each other and the common factors, this

model implies that

Σ.
n×n

= β
n×r

Φ.
r×r

β′
r×n

+ .Θ2
.

n×n
,

where Σ is a covariance matrix among outcomes, β is the primary pattern matrix of coefficients, Φ is the correlation

matrix among common factors, and Θ2 is a diagonal matrix with unique variances along the diagonal (in this paper).3

Let S be an estimate of Σ that is derived from a sample of data with N observations. If the common and specific

factors are normally distributed, S is distributed Wishart with E [S] = βΦβ′ + Θ2 and N − 1 degrees of freedom.

Let tr (•) be the trace function. The Wishart log-likelihood of can be written as

`
(
β̃, Φ̃, Θ̃2

)
∝ −N − 1

2

(
ln
∣∣∣S̃∣∣∣+ tr

(
SC̃−1

))
,

where C̃ = β̃Φ̃β̃
′
+ Θ̃2 is a proposal for the optimum. Most software actually optimizes a monotonic function of `

instead of ` itself, but FAiR primarily uses this log-likelihood function. I do not discuss other discrepancy functions in

this paper, but others are (or will be) available in FAiR. Some of the limitatations of maximum likelihood estimation of

factor analysis models can be mitigated with SEFA, as may become clear in the last section. One feature of maximum

likelihood is that it is scale invariant, and S can thus be taken as a correlation matrix for most purposes.

If at least r2 restrictions are placed on the factor analysis model, then the remaining parameters can be estimated

without rotational indeterminacy. EFA and CFA differ in the nature of the restrictions they impose. There are several

kinds of restrictions. “Identification conditions” have the effect of choosing one solution over all others with the same

3At present, FAiR does not allow Θ2 to be non-diagonal, but adding this feature will be straightforward.
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value of ̂̀. “Exclusion restrictions” specify cells of β are exactly zero. I do not discuss restrictions where cells of

β are assigned non-zero value, but such restrictions are supported in FAiR. I also do not discuss restrictions where

multiple cells of β are constrained to be equal, and such restrictions are not currently supported in FAiR. “Inequality

restrictions”, which are discussed in the last section and are fundamental in FAiR, are conditions where some parameter

or function of parameters is greater than or less than another parameter, a function of parameters, or a threshold that the

analyst specifies. Inequality restrictions are generally not “binding” in the sense that if some set of parameters satisfies

an inequality restriction, then a small perturbation of those parameters will also satisfy that inequality restriction.

When estimating a CFA model, the analyst imposes at least r2 restrictions on β and Φ that reflect substantive

beliefs about the population and then tests whether the restrictions were reasonable, perhaps relative to another CFA

model. A useful theorem on rotational indeterminacy is proven in / paraphrased from Howe (1955, p.87):

Theorem 1. A set of sufficient conditions for eliminating rotational indeterminacy is that, after eliminating rows of β

that contain all zeros,

(i) Φ is a full-rank correlation matrix, imposing r restrictions that the common factor scores have unit variance.

(ii) At least r−1 cells in each of the r columns of β are zero, which imposes at least r (r − 1) exclusion restrictions.

(iii)
p

β is of rank r − 1, where
p

β is the submatrix of β with exact zeros in the pth column.

Theorem 1, which can also be extended to estimates of β, is said to be “minimally satisfied if the identification

condition given in (i) holds and exactly r − 1 cells in each of the r columns of β are fixed at zero such that condition

(iii) holds. There are slightly fewer than 1
r!

∏r−1
p=0

{(
n

r−1

)
− p
}

unique ways to minimally satisfy theorem 1, all of

which yield the same Ĉ, and hence the same ̂̀at the optimal estimates of β, Φ, and Θ2 (denoted by ̂). Thus, there

is no statistical way to decide among different CFA models that minimally satisfy theorem 1 in different ways.

The CFA tradition presumes that the the exclusion restrictions are chosen a priori based on theory. In SEFA, the

number of exclusion restrictions is specified a priori but the locations of the zeros in β̂ chosen a posteriori by the

algorithm. In other words, SEFA asserts that theorem 1 holds in a non-minimal fashion and “specifies” that a given

number of exclusion restrictions are located wherever they, along with the corresponding free parameters, maximize `

(possibly subject to other restrictions), which can be restated as a corollary of theorem 1:

Corollary 1. A set of sufficient conditions for eliminating the rotational indeterminacy for β̂ is that, after eliminating

rows of β̂ that contain all zeros,

(i) Φ̂ is a full-rank correlation matrix,

(ii) r − 1 cells in each of the r columns of β̂ are zero,

(iii)
p

β̂ is of rank r − 1, where
p

β̂ is the submatrix of β̂ with exact zeros in the pth column,

(iv) At least one additional binding restriction is imposed.
4



TABLE 1. The 16 “Unique” Configurations of the Primary Pattern Matrix that Satisfy Corollary 1
when There Are Five Outcomes, Two Factors, and Two Required Zeros per Factor

0 X 0 X 0 X 0 X 0 X 0 X X 0 X X
0 X 0 X 0 X X 0 X 0 X X 0 X 0 X
X 0 X 0 X X 0 X 0 X 0 X 0 X 0 X
X 0 X X X 0 X 0 X X X 0 X X X 0
X X X 0 X 0 X X X 0 X 0 X 0 X 0
0 X 0 X 0 X 0 X 0 X 0 X X 0 X 0
X 0 X 0 X X X 0 X 0 X X 0 X 0 X
X 0 X X X 0 X 0 X X X 0 X X X X
0 X 0 X 0 X X X X 0 X 0 0 X X 0
X X X 0 X 0 0 X 0 X 0 X X 0 0 X

Note: X signifies a non-zero coefficient. It is possible to switch the columns and /or reflect factors to
obtain additional configurations, but these additional configurations are not substantively important.

This corollary is really just a special case of theorem 1 applied to an estimate of β, but it is important to note that

schemes that minimally satisfy theorem 1 do not satisfy corollary 1 due to condition (iv). Typically, condition (iv) is

satisfied with at least one more exclusion restriction, but there are some other possibilities as well.

If corollary 1 is satisfied, ̂̀is not guaranteed to be unique, but it typically seems to be in practice in well-constructed

research designs (up to sign changes and reorderings of the factors). Nevertheless, Millsap (2001), Bollen (1989), and

Bollen and Jöreskog (1985) have generated CFA examples where rotational indeterminacy is eliminated but some

parameters remain unidentified. Following most of the literature, I will ignore this inconvenient truth and proceed

“as if” corollary 1 were sufficient to ensure ̂̀ is unique.4 It is always possible to verify whether there is at least local

identification in a SEFA model by simply checking whether the information matrix is invertible at the optimum.

Let the number of zeros per factor required for a SEFA model be b ≥ r−1 to define an r-dimensional hyperplane in

common factor space. In geometric terms, SEFA estimates the locations the hyperplane edges as part of the optimiza-

tion algorithm. The most straightforward way to satisfy conditions (ii) and (iv) of corollary 1 is to set b = r, which

corresponds to the second of Thurstone’s (1935, 1947) rules of thumb for assessing the probable uniqueness of β̂.

When corollary 1 is satisfied such that b = r, I will refer to the model as a “vanilla” SEFA model. Table 1 enumerates

the 16 vanilla configurations of β̃ that satisfy corollary 1 when there are n = 5 outcomes and r = 2 factors.

It would be straightforward to obtain CFA estimates of the free parameters for each of these 16 vanilla config-

urations and then analyze the results for the model where ̂̀was the largest among the 16. One can conceptualize

SEFA estimates as the CFA estimates with the largest ̂̀among all CFA models that could have been estimated with

b exclusion restrictions per factor. However, the SEFA algorithm does not literally estimate all such CFA models by

4The problematic examples in Millsap (2001) occur when theorem 1 is minimally satisfied, which is insufficient for SEFA. Thus, SEFA models
appear to handle the examples in Millsap (2001) well, although I believe there is some rounding error in the covariance matrices presented in tables
1 and 3 of Millsap (2001). The problematic example in Bollen and Jöreskog (1985) does satisfy corollary 1. However, I am not aware of an example
where rotational indeterminacy is eliminated, some parameters are not identified, there are at least as many zeros per factor as there are factors, and
there are at least three non-zeros per factor.
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TABLE 2. Three Primary Pattern Configurations for Harman’s Data on Eight Physical Variables

Solution Transformed EFA Pretty Good CFA SEFA
Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2

height 0.871 0.079 0.912 0.850 0.126
arm span 0.970 −0.055 1.005 −0.123 0.945
forearm 0.935 −0.049 0.970 −0.115 0.913

lower leg 0.874 0.042 0.895 0.853 0.090
weight −0.005 0.957 −0.024 0.967 0.954
bitro −0.005 0.800 −0.023 0.811 0.798
girth −0.065 0.793 0.758 −0.060 0.788
width 0.130 0.609 0.676 0.130 0.615

Factor 1 1.000 0.476 1.000 0.542 1.000 0.427
Factor 2 0.476 1.000 0.542 1.000 0.427 1.000

ˆ̀ −199.464 −204.285 −199.474

“brute force” because doing so quickly becomes impractical when n or r is of even moderate size. Instead, a genetic

algorithm — which will be discussed in the next section — is used for SEFA that maximizes the likelihood jointly

over the locations of the exact zeros and the corresponding free parameters.

To further fix ideas about the vanilla SEFA model, consider Harman’s (1976) data on n = 8 physical variables

where r = 2, and four variables that pertain to “lankiness” are followed by four variables that pertain to “stockiness”.

Excluding reorderings and reflections of the factors, there are 210 ways to place exactly two zeros into each column of

β that satisfy corollary 1 for these data. Table 2 shows three estimated primary pattern matrices. The first configuration

has no exact zeros and hence does not satisfy corollary 1 because it is a EFA model that is similar to the result obtained

by Harman (1976) using a graphical transformation.5 The second solution is a CFA with zeros on the first factor for

the girth and width measurements and on the second factor for the height and lower leg measurements. The third is the

vanilla SEFA model where the locations of the zeros were unspecified but happen to maximize ` when located on the

first factor for the weight and bitro measurement and on the second factor for the arm span and forearm measurement.

While both of the last two configurations satisfy corollary 1, are consistent with the lankiness-stockiness division, and

produce a good fit at their respective optima, the ̂̀for the SEFA model is slightly higher than that of the CFA model

and is only a hundredth worse than that of the EFA model. We will return to the issue of model comparison often, but

clearly the SEFA model is as adequate as the EFA and CFA models in this case.

EFA is often characterized as an “unrestricted” model but is properly speaking a minimally restricted model that

imposes exactly r2 restrictions on the parameters. One way to estimate a EFA model is to impose the preliminary

restrictions that the factors are orthogonal and that the upper triangle of the primary pattern matrix is filled with zeros.

Doing so imposes r2 restrictions on the model, which can be estimated using CFA algorithms as if the these arbitrary

5Thurstone’s (1935, 1947) criterion was used to transform the factors, which is possible for the first time thanks to RGENOUD. See Goodrich
(2008) for more details.
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TABLE 3. Major Differences between EFA, CFA, and SEFA

Consideration EFA CFA SEFA

Number of restrictions r2 ≥ r2 > r2

Transformation required / allowed Yes No No

Specific cells of β constrained to be zero in advance No Yes Maybe

Simultaneous estimation of second order factor analysis model No Maybe Maybe

Computationally simple these days Yes Yes No

restrictions represented the theory to be confirmed. This way of estimating the EFA model is not too prevalent in

software, but for the purposes of discussion, it does not matter what algorithm is used to obtain EFA estimates of the

preliminary primary pattern matrix, here denoted Λ̂.

EFA introduces a second equation that Φ = T′T, where T is a r×rmatrix with unit-length columns. By specifying

these r2 cells of T, the analyst thereby substitutes r2 restrictions for the r2 preliminary restrictions used to obtain Λ̂.

It can be shown that β̂ = Λ̂ [T′]−1 and that Λ̂Λ̂
′

= Ĉ − Θ̂2 = β̂T′Tβ̂
′
. The process of choosing a T is known

as “choosing a transformation” of the factors by optimizing some objective function, generically denoted f (T). The

most popular algorithm for selecting T in applied research is called “varimax” (see Kaiser 1958).

A much less popular, but much more effective, f (T) is the “simplimax” criterion (see Kiers 1994), which is also

noteworthy for sharing with SEFA the general attitude of “I know there are certain number of zeros in β but I will

tell you where they are later.” However, when using the simplimax criterion with EFA, the analyst specifies that some

gross number of cells in β̂ are (near) zero but does not require a particular allocation of zeros across the r factors. In

SEFA, condition (ii) of corollary 1 requires r − 1 exact zeros per column of β̂.

Table 3 summarize the major differences between EFA, CFA, and SEFA. Besides the computational difficulty of

SEFA to be discussed in the next section, the major differences between the three methods pertain to the restrictions.

The conceptual difference between EFA and SEFA is this: An EFA analyst chooses the T that is closest to the optimum

of a given f (T), which implies an estimate of β that is optimal among all combinations of estimates that yield ̂̀EFA.

A SEFA model produces estimates of β and Φ that are optimal with respect to ` among all combinations of estimates

that satisfy the restrictions the analyst imposes. In other words, EFA yields an estimate of β that satisfies some

identification condition among all estimates with the same fit, and SEFA yields an estimate of β and Φ with the best

fit among all estimates that satisfy the restrictions imposed.

This distinction is subtle but important. Exploratory factor analysts have long conceptualized choosing T as follow-

ing Ockham’s Razor by choosing the “simplest” among equally good explanations for S, although defining “simplest”

has proven to be complicated. The most common definition for the “simplest” β̂EFA is the one with the most zeros,

which would better be termed “sparsest”, since this conception of simplicity and / or its utility is sharply contested by
7



Butler (1969), Cureton and D’Agostino (1983), Yates (1987), and others. SEFA tries to avoid this issue by placing

restrictions on the model so that there (hopefully) is a unique, best-fitting solution, obviating the need to define “sim-

plest” in order to choose among equally good explanations for S. In other words, the primary reason to prefer SEFA

to EFA is that it avoids the necessity to choose T. SEFA is closer to CFA in that deciding among models is, in part, a

matter of choosing the best tradeoff between model fit and the number of estimated parameters.

How much violence do the SEFA restrictions to the model fit? Note that ̂̀EFA is an upper bound for `SEFA, so

one should always verify whether ̂̀SEFA is within plausible sampling variability of ̂̀EFA for an EFA model with

r factors (as was the case with the example from Harman (1976) above). If ̂̀SEFA � ̂̀
EFA, then one should be

skeptical of the restrictions placed on the SEFA model, unless the restrictions have a strong theoretical motivation, as

is discussed in the last section. Unfortunately, ̂̀SEFA ≈ ̂̀EFA does not necessarily imply that β̂SEFA and Φ̂SEFA

are good estimates, and it is still necessary to justify the theoretical appropriateness of the restrictions and verify that

the estimates appear reasonable. But 2
(̂̀

EFA − ̂̀SEFA

)
≈ 0 does imply that even if the True T′T = Φ were found

by optimizing f (T), the differences between β̂EFA and β̂SEFA could plausibly be attributed to sampling variability.

The conceptual difference between SEFA and CFA is this: SEFA estimates the locations of a given number of zeros

in β̂; CFA specifies the locations of the zeros a priori. However, it is also possible to estimate a “mixed” SEFA model,

which specifies some cells in β̂ a priori and estimates the locations of the remaining zeros, such that the restrictions

collectively satisfy corollary 1. Thus, a “pure” SEFA model that requires b ≥ r zeros per factor but leaves all their

locations unspecified nests all CFA models that have at least b zeros per factor. The exception to this generalization is

the rare case of a CFA model that minimally satisfies theorem 1, in which case a SEFA model is more restrictive from

a statistical perspective. However, even in that case the SEFA model would be considered less restrictive in everyday

language because it does not specify the locations of the b exact zeros for each factor.

I have so far glossed over how a SEFA model is estimated, which is a nontrivial but not insurmountable task to

be discussed in the next section. The goal of this section was merely to situate SEFA between EFA and CFA and

emphasize the virtues of SEFA. To oversimplify, but only slightly, SEFA is a fully statistical model that is similar

to EFA but without the necessity of the transformation step, and CFA is a special case of SEFA. Another way to

conceptualize SEFA is that it maximizes the likelihood of S over a huge number of CFA models that impose at least

b exclusion restrictions per factor. In other words, once SEFA estimates are obtained, β̂SEFA has b zeros per factor,

implying that the SEFA estimates are “as if” a CFA model had imposed those exclusion restrictions from the outset,

and any theorems that are applicable to CFA estimates are also applicable to SEFA estimates.

Lisa Harlow remarked that one virtue of SEFA, which will become more apparent in the last section, is that it

makes transparent the process of establishing restrictions on the factor analysis model. I think that is an important

point, and I hope it also makes the plausibility of the restrictions easier to judge. SEFA could largely replace both
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EFA and CFA because it genuinely has the ability to span almost the entire range of the continuum between EFA

and CFA models, depending on the number and nature of the restrictions that the analyst chooses to impose. For

example, a vanilla SEFA is no less “exploratory” than a EFA, which usually implies that Θ̂2
SEFA ≈ Θ̂2

EFA and

any differences between β̂SEFA and β̂EFA will usually be primarily attributable to the choice of T for the EFA

model. Alternatively, SEFA can be “confirmatory” and orient its restrictions toward testing a specific theory, including

fixing some coefficients to particular values (zero or otherwise), placing bounds on the parameters, etc. My general

preference is to estimate SEFA models with b = r and impose some theoretically motivated inequality restrictions on

the parameters, which are discussed in the last section.

3. ESTIMATING THE SEFA MODEL VIA A GENETIC ALGORITHM

The computational difficulty of SEFA comes from a variety of sources, but it is obvious that the number of ways

to satisfy corollary 1 increases at an increasing rate in both n and r. Thus, SEFA requires either a genetic algorithm

to simultaneously find the optimal configuration of zeros and the optimal values of the corresponding free parameters

or MCMC to sample from the joint posterior distribution (which is not discussed in this paper). It appears as if the

phrase “genetic algorithm” has appeared in only five Psychometrika articles, and by any measure, this approach to

optimization seems to be largely unknown in psychology and other fields that use factor analysis.6

The particular genetic algorithm used by FAiR is called RGENOUD (see Mebane and Sekhon 2008 and the refer-

ences to proofs therein). The main virtues of genetic algorithms are that they are robust to merely local optima and

are flexible enough to work in all kinds of non-standard problems. Table 2 in Mebane and Sekhon (2008) compares

RGENOUD favorably against a genetic algorithm described in Yao, Liu, and Lin (1999) in their ability to minimize

twenty-two functions, many of which are much too difficult for a traditional optimization algorithm, such as

f(θ) =
30∑

i=1

u (θi, 10, 100, 4) + 10 sin2 (πτ1) +
29∑

i=1

{
(τi − 1)2 [1 + 10 sin2 (πτi+1)

]
+ τ30 − 1

}
, where

τi = 1 +
θi + 1

4
, and

u (θi, k, a, r) =


k (θi − a)r if θi > a,

0 if − a ≤ θi ≤ a,

k (−θi − a)r otherwise,

which is a piecewise sinusoidal function in thirty dimensions. SEFA problems can be even more difficult than this, but

RGENOUD can find the global optimum nonetheless.

6The Wikipedia entry (http://en.wikipedia.org/wiki/Genetic_algorithm) appears to be a fair introduction to the topic, as of the time of this writing.
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A genetic algorithm uses principles of Evolution to find the optimum of an objective function. Consider a population

of parameter vectors θ1,θ2, . . . ,θK where K is “large” (like 1,000 or more) and θk — which is called the kth

“individual” — is a vector that contains all the free or potentially free parameters to be estimated. For example, each

θk would be a vector of length 0.5r (r − 1) + nr + n if we are estimating the off-diagonals of Φ, all cells of β, and

the diagonal elements of Θ2, even though at least r (r − 1) of the coefficients will be pegged to zero. The parameters

can be thought of as constituting the DNA of an individual.

We need an objective function, f (θ), which can be just about any real function, such as a log-likelihood function

or other discrepancy function. One point that must always be kept in mind is that the ranks of θ1,θ2, . . . ,θK with

respect to f (θ) are more relevant for RGENOUD than are the numeric values of f (θ1) , f (θ2) , . . . , f (θK) or the

numeric values of the gradients ∂f(θ1)
∂θ1

, ∂f(θ2)
∂θ2

, . . . , ∂f(θK)
∂θK

, which stands in sharp contrast to most of the optimization

algorithms that have been used in factor analysis previously.

A genetic algorithm is Evolutionary rather than iterative, and we next need rules that govern how θ1,θ2, . . . ,θK

progress over the generations, which are indexed by the superscripts t = 0, 1, 2, . . . ,∞. RGENOUD uses nine

“heuristics” or “operators” but I will only mention three of the most intuitive here. The first is “cloning”, which

implies that θ
[t+1]
k = θ

[t]
k and that the kth individual is the same in generation t + 1 as in generation t. The second

is “uniform mutation”, which is like noisy cloning and implies that θ
[t+1]
k is the same as θ

[t]
k , except in one element,

which is randomly changed. The third is “simple crossover”, which first selects two “parents”, such that θ
[t]
k 6= θ

[t]
k′ ,

and a random integer a. Then two children in the t + 1 generation are created Frankenstein-style, such that θ
[t+1]
k

consists of the first a elements of θ
[t]
k and the remaining elements of θ

[t]
k′ while θ

[t+1]
k′ consists of the first a elements

of θ
[t]
k′ and the remaining elements of θ

[t]
k . The nine operators are probabilistically applied to the population at the end

of each generation. See table 1 in Mebane and Sekhon (2008) for more details on operators.

Evolution implies that if individuals with higher fitness are more likely to be cloned, to be parents, etc. than are less

fit individuals, then the average fitness of the population improves in expectation each generation. And if the average

fitness of the population improves in expectation, then as t,K → ∞, some θ
[t]
k must eventually approach the global

optimum of f (θ). More formally, the population of individuals can be seen as a suitable Markov chain because θ
[t]
k

depends only on the parameter values in the t− 1 generation, suitable Markov chains asymptotically converge to their

stationary distributions, and the stationary distribution of this Markov chain is where θk = θ ∀k at the global optimum

of f (θ). In practice, we have to impose stopping conditions based on the gradient and / or level of f (θ) to obtain an

answer in finite time with finite K, but the result is typically correct to the specified precision if care is taken.

Finally, we need “mapping rules” from θ to Φ̃, β̃, and Θ̃2. Since RGENOUD only requires that θ1,θ2, . . . ,θK

be ranked with respect to f (θ), there is no need for f (θ) to be continuous and differentiable everywhere, which

permits discontinuous or otherwise complicated mapping rules from θ to Φ̃, β̃, and Θ̃2. To understand the essential

10



relationship between mapping rules and corollary 1, let sort ({•}) be the standard function that takes a numeric set

(represented by •) and sorts it in ascending order and let sort ({•})1:b indicate the first b ascending elements of the

sorted set. θ fills the off-diagonals of Φ̃, the diagonal elements of the Θ̃2 , and a preliminary coefficient matrix β̌

(with a supra-check). Then, β̃ (with a supre-tilde) could be derived from β̌ according to a mapping rule, for example:

β̃jp =


0 abs

(
β̌jp

)
∈ sort

({
abs

(
β̌p

)})
1:b

β̌jp otherwise.

In words, β̃jp is simply β̌jp, unless β̌jp is among the b smallest absolute values slated for the pth factor, in which case

β̃jp is squashed to exactly zero to eliminate rotational indeterminacy. In other words, the mapping rule ensures that β̃

satisfies condition (ii) of corollary 1. To give a hypothetical example of this mapping rule where n = 5 and r = 2 = b,

θk =
[

0.25 0.9 0.8 0.4 0.3 0.5 0.1 0.1 0.7 0.6 0.5 0.11 0.22 0.33 0.44 0.55
]

Φ̃k =

 1 0.25

0.25 1

 β̌k =



0.9 0.1

0.8 0.1

0.4 0.7

0.3 0.6

0.5 0.5


=⇒ β̃k =



0.9 0

0.8 0

0 0.7

0 0.6

0.5 0.5


Θ̃2

k =



0.11 0 0 0 0

0 0.22 0 0 0

0 0 0.33 0 0

0 0 0 0.44 0

0 0 0 0 0.55


,

and the log-likelihood for the kth individual in generation t is evaluated at β̃k rather than β̌k.

This mapping rule from θ to β̌ to β̃ implies that ∂f(θ)
∂θ is flat in some (here four) dimensions, which would be

problematic for optimization algorithms that rely on gradients but not for RGENOUD because the population Evolves

pseudo-randomly and with discrete jumps over the generations. Any deterministic mapping rule that results in condi-

tion (ii) of corollary 1 being satisfied can be used, and FAiR provides several mapping rules to choose from, which

are discussed in the next section and will generally yield different fits at their respective optima.7

Mapping rules are one cornerstone of SEFA; lexical ranking is the other, which is just a formal method for breaking

ties that is also used for playoff seeding in many sports.8 If z = f (θ) is a vector of fit criteria, then lexical ranking is

used to rank θ1,θ2, . . . ,θK with respect to f (θ) as follows:

(1) θ1,θ2, . . . ,θK are ranked by the first criterion
(
z[1]
)

produced by f (θ).

(2) If any are tied on z[1], those population members are then ranked by the second criterion
(
z[2]
)
.

(3) If still tied, the third, . . ., last criterion is utilized until all ties among unique population members are broken.

7Also, FAiR does not actually use the primary pattern matrix to implement these mapping rules. Instead, some combination of the reference
structure matrix and the factor contribution matrix are used.
8See, for example, http://www.nfl.com/standings/tiebreakingprocedures .
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Thus, if θk and θk′ are tied on z[1] (sports: overall record), but θk is better than θk′ on z[2] (sports: head-to-head

record), then θk is ranked better than θk′ with respect to f (θ) (sports: playoff seeding), regardless of whether θk′ is

better than θk on any subsequent criterion (sports: conference record, net margin of victory, etc.).

It should be noted in passing that EFA is an example of lexical optimization, just in two separate steps. First, the

analyst finds some set of parameter values that maximizes `. But there are an infinite number of sets of parameters

that also maximize ` that are within a transformation of the MLEs. So the analyst then breaks ties among all sets

of parameters that yield ̂̀ by optimizing a second objective function to choose the optimal T. In theory, but not

with floating point numbers, one could conduct an EFA via lexical optimization by specifying that z[1] = ˜̀ and

z[2] = −f
(
T̃
)

and would theoretically obtain the same result as conducting the EFA in two conventional steps. But

if EFA were explicitly recognized as a lexical optimization problem, then the full power of lexical optimization could

be brought to bear when conducting a EFA, as is discussed in Goodrich (2008).

Lexical optimization with respect to f (θ) is equivalent to optimization with respect to the last criterion among pop-

ulation members with the same values on all previous criteria. If the last criterion is fully continuous and all previous

criteria are operationalized as “constraints”, then lexical optimization is tantamount to constrained optimization, but is

much more flexible than traditional constrained optimization techniques like Lagrange multipliers and linear program-

ming. By a “constraint”, I mean a fit criterion that equals 1.0 if some qualitative condition is sufficiently satisfied by

θk and equals some number less than 1.0 otherwise.

The recognition of this point led to the birth of SEFA, where ` is the last criterion in z = f (θ) and the previous

criteria are various constraints. For example, to impose the necessary constraints that unique variances are positive

and that condition (iii) of corollary 1 holds, one could operationalize the first two constraints in z as

z[1] =


1 if Θ̃2

j > 0 ∀j,

0 otherwise.
z[2] =


1 if condition (iii) of corollary 1 holds for β̃

0 otherwise.

Based on these two criteria alone, the ranking of candidates in generation t would be, in descending order:

(1) all individuals where z[1] = 1 and z[2] = 1

(2) all individuals where z[1] = 1 and z[2] = 0

(3) all individuals where z[1] = 0 and z[2] = 1

(4) all individuals where z[1] = 0 and z[2] = 0

and ties among individuals within each of these four groups are broken by subsequent criteria.9 In the t+1 generation,

we can expect at least as many individuals to satisfy these two constraints due to “survival of the fittest” principles.

9SEFA actually uses more complicated piecewise functions for computational efficiency, but these only come into play for suboptimal candidates.
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Three other criteria are standard in vanilla SEFA for more technical reasons:

z[3] =


1 if Φ̃ is positive definite

0 otherwise,
z[4] =


1 if

(∑n
j=1 β̃jp

)
> 0 ∀p,

0 otherwise.
z[5] =


1 if C̃ is positive definite

0 otherwise,

Since Φ̃ and C̃ are estimates of correlation matrices, it is reasonable to require that they be positive definite up to

computer tolerance to avoid the prospect of trying to invert a matrix that is computationally singular. The rationale for

the fourth criterion is less obvious but follows from the fact that factors can arbitrarily by multiplied by −1 to reverse

their polarity without affecting `. However, RGENOUD has no way of knowing that there are many places in θ-space

that yield the same ̂̀where the MLEs are merely reflections of each other. Thus, the fourth criterion has the effect of

confining the search to the region of θ-space where the column-sums of β̃ are positive, which excludes some of the

duplicative modes in the likelihood function and concentrates the population into a subset of θ-space.

The ultimate criterion, z[6] = ˜̀, breaks all ties among unique individuals. Thus, vanilla SEFA seeks the θ that

maximizes `, subject to the condition that z[1] = z[2] = z[3] = z[4] = z[5] = 1. Among individuals in generation t that

satisfy all the constraints, the ones with the highest values of ˜̀are ranked highest, which drives the Evolutionary dy-

namic toward the global optimum of f (θ), which is the constrained optimum of `. More constraints can (and should)

be added but the essence of lexical optimization remains the same. Creativity is necessary to construct the mapping

rules and the constraints, which ideally would exclude all “bad optima” of `. Carefully choosing the constraints and

mapping rule in light of the problem at hand is more important than understanding in great depth how RGENOUD

works, although Evolution is a convenient and pertinent metaphor for understanding the process. The most important

things to understand about genetic algorithms are that they are more likely to be successful in finite time as the size of

the population increases, as the number of generations increases, and as the regularity of f (θ) increases in the region

of θ-space where the constraints hold.

4. MODEL COMPARISON AND ADDITIONAL RESTRICTIONS ON SEFA MODELS

CFA makes rather specific assumptions about β that the analyst thinks are appropriate for a particular research

project; for example that β12 = 0. EFA makes rather general assumptions about β and Φ when using an algorithm

to select T, such as whether Φ = T′T is an identity matrix. SEFA makes at least one general assumption by

specifying b but can also make assumptions about specific parameters. Many papers in the long history of (mostly

exploratory) factor analysis have suggested or implied that β, Φ, or functions thereof should satisfy some inequality

constraints that are fairly general, but it is very difficult to respect nonlinear inequality constraints with a traditional

optimization algorithm. The preceeding section illustrates that FAiR can easily impose any constraint by formulating

it as a piecewise criterion that precedes ` in the lexical ranking. It is also possible to place bounds on any elements
13



of θ. This section discusses possible constraints, some of which represent a quite radical departure from conventional

thinking in factor analysis models, and explores alternative mapping rules.

While genetic algorithms have excellent asymptotic properties, SEFA problems are quite difficult, and FAiR may

fail to find a global optimum in a reasonable period of time. The primary difficulty is that there are a lot of local optima

in a θ-space of very high dimensionality and several good optima may be far apart from each other in θ-space. Thus,

the chances of failure can be lessened by imposing additional restrictions on the model that narrow the admissible

region of θ-space. Of course, poorly chosen restrictions may serve to exclude the best optimum from consideration,

so it is important to think carefully about what restrictions to impose. But there are plenty of reasons to believe

that vanilla SEFA will not be scientifically fruitful in many situations, and thus it is typically necessary to put some

additional restrictions on a SEFA model.

4.1. Simple Structure. For starters, Guttman (1992) criticizes Thurstone’s concept of simple structure (and EFA

generally) as an unfalsifiable hypothesis because it lacks a test statistic that could provide a basis for rejection in a

given application. In other words, one can optimize f (T) to produce T, but nothing indicates whether the resulting

β̂EFA is a “simple enough” to sustain the simple structure hypothesis. Perhaps Guttman (1992) reads Thurstone

(1935, 1947) a bit literally, but the general point that the choice of T is not a statistical decision is undeniable.

With SEFA, it is easy to test the hypothesis that a particular simple structure configuration is plausible. Thurstone’s

definition of simple structure implies that each row of β contains at least one exact zero in one of its r cells so that

each outcome is “in” one or more of the r hyperplanes (or dimensionality r − 1) in the common factor space. Thus,

there are rn ways to achieve simple structure under this strict definition. Consider a mapping rule where θ fills a

preliminary matrix, β̌, and then a simple structure configuration can be enforced by specifying that

β̃jp =


0 if abs

(
β̌jp

)
= min

{
abs

(
β̌j

)}
,

β̌jp otherwise.

In words, β̃jp is simply the corresponding element of β̌, unless the corresponding element of β̌ is the smallest absolute

value slated for the jth row of β̃, in which case it gets squashed to exactly zero by the mapping rule.

Once ̂̀is found by SEFA with simple structure as the restriction scheme, one can test whether the restrictions hold

by comparing model fit statistics to those for an EFA model with an equivalent number of factors. Such a test is not a

test of the null hypothesis that simple structure holds; it is a test of a the null hypothesis that the restrictions hold for

the most likely configuration of the parameters that satisfies Thurstone’s definition of simple structure and the other

constraints. In other words, rejecting this null implies that the data are inconsistent with the simple structure in the

most favorable case but does not necessarily imply that the cumulative evidence for simple structure — taking into
14



account all good, but suboptimal, configurations of β that satisfy simple structure — is insufficient. I have no idea

how to test a simple structure hypothesis over almost rn possible ways to achieve simple structure, but such a test is

probably not what Guttman (1992) had in mind anyway.

Thurstone recognized that simple structure was an unnecessarily strong hypothesis because it imposed many more

restrictions than were necessary and that it was quite possible for any particular test to be a function of all r factors.

Thus, a literal simple structure hypothesis may be rejected in a given application, but we can weaken the mapping

rule considerably. Let the “complexity” of the jth outcome be the number of non-zeros in βj . Thurstone (1947) only

“demands that the list of traits be long enough so that, after elimination of several traits of complexity r, enough traits

of complexity less than r remain to determine uniquely both the trait configuration and the simple structure (335).”

This weaker simple structure hypothesis requires that r tests per factor are of complexity r − 1 — although these

r2 tests could have “non-zero” coefficients that are arbitrarily close to zero — and is feasible in the usual case where

r2 < n. In other words, up to n − r2 tests are allowed to be of complexity r under the weaker version of the simple

structure hypothesis and there are slightly fewer than
(

n
r2

)
× rr2

ways to satisfy corollary 1 with this scheme. The only

inherent difference between vanilla SEFA and weak simple structure SEFA is that vanilla SEFA allows the r2 zeros to

be allocated such that some tests can be of complexity less than r − 1, while weak simple structure SEFA does not.

In this section, I present four-factor solutions for the ubiquitous Holzinger and Swineford (1939) data on twenty-

four mental tests to illustrate different SEFA options. In my opinion, one should impose any restrictions that seem

appropriate at the outset, examine the model fit statistics and plots, judge which models are plausible, and only then

examine attempt to interpret the primary pattern matrix, as if one were evaluating a candidate for the transformed

solution in an EFA. To that end, I do not undertake any substantive interpretations in this paper and focus on the

process by which a model’s plausibility can be judged.

Aside from model fit statistics, the main tool is a figure where the correlations between outcomes and reference

factors for each outcome are plotted two factors at a time in the upper right, which is the mechanism Thurstone relied

on to judge if the model were plausible. Thurstone (1935, 1947) gives some guidelines for interpretting these plots,

but basically the analyst is trying to discern order from the configuration of reference structure correlations, which

are discussed in a bit more detail below and to put it simply, are proportional to coefficients in the primary pattern

matrix. The angle between each pair of primary factors is indicated by the lines in the lower left of the figure, and

the correlation itself can be read off the x-axis. Finally, the diagonal of the figure lists the proportion of communality

associated with each factor, which will be defined more rigorously toward the end of this section.

The plot to the left of figure 1 is an example of what the solution should not look like. It is an EFA, transformed

using Thurstone’s (1935) criterion subject to the constraint that the factors must remain distinct, which FAiR makes

feasible for the first time ever and is discussed more in Goodrich (2008). Although it is possible to obtain better results
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using a more complicated scheme for choosing T, this EFA would loosely be considered a “successful” transformation

to simple structure in the sense that each outcome has at least one reference structure correlation that is smaller than

0.10 in absolute value. But we have no statistical way to formally test a simple structure with EFA; it is simply the

best that could be done with respect to this f (T). Although there was no “factor collapse”, the first two factors are

unreasonably correlated, and there is virtually no systematic ordereding of the reference structure correlations.

In contrast, the plot to the right of figure figure 1 is almost exactly what Thurstone wanted to see when conducting

a factor analysis but is a SEFA with the strong simple structure requirement that there be one exact zero per outcome.

Although there appears to be a lot of order to the configuration, one aspect that looks abberrant is that the third factor

is nearly orthogonal to the first two factors, while the rest of the inter-factor correlations are moderately positive and

is more in accordance with theory on primary mental abilities.

Since the plot appears reasonable, we can turn to some model fit statistics, of which FAiR calculates several. For

the sake of brevity, I will focus exclusively on the log-likelihood, although one would not want to do so in actual

reasearch. Recall that ̂̀EFA is an upper bound for the log-likelihood in a SEFA model with an equivalent number of

factors. This SEFA with strong simple structure differs in (twice) ̂̀ from the EFA by about (sixteen) eight units but

estimates twelve fewer coefficients (due to the exact zeros). Thus, a likelihood-ratio test would fail to reject the SEFA

with strong simple structure in favor of the EFA. Hence the combined evidence from prior theory about mental tests,

the plots, and the model fit statistic(s) suggest that this simple structure SEFA model is plausible.

Figure 2 contains a SEFA solution with the weak simple structure requirement that 16 of the outcomes have one

exact zero and 8 outcomes are allowed to be perfectly complex. The significance of the different symbols is as follows:

A closed, red dot indicates that outcome has an exact zero loading on one of the factors besides the two being plotted.

An open, black circle indicates that the outcome does not fall in any other hyperplanes besides (potentially) the two

being plotted. Hence for the strong simple structure SEFA, there were no open, black circles in the interior of any plot

because every test was restricted to be in one hyperplane but this requirement is relaxed under weak simple structure.

For the weak simple structure SEFA, the first three factors do look too bad when paired with each other but the

fourth factor is a disaster. There is little order to the reference structure correlations on the fourth factor, and it is

hightly correlated with the other factors, especially the first. Based on this plot alone, one might conclude that the

weak simple structure SEFA model should be reestimated with three factors, although there is independent evidence

for four factors.

4.2. Model Comparison and Invariance. These plots illustrate a counter-intuitive point: The most plausible model

is the strong simple structure SEFA, followed by the weak simple structure SEFA, and then the strong simple structure

EFA. But the EFA model (necessarily) has the best fit, followed (necessarily) by the weak simple structure SEFA,

and then by the strong simple structure SEFA. It is true that the difference in ̂̀ between the EFA and the strong
17



FIGURE 2. SEFA with Weak Simple Structure for the Holzinger and Swineford (1939) Data
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Factor 4 
 0.132

This SEFA requires that r2 (16) of the n (24) outcomes be of complexity of r − 1 (3). Although the log-likelihood
(−1028.028) is comparable to that the EFA (−1027.736) in figure 1, one should not consider this solution plausible
because the reference structure correlations on the fourth factor appear chaotic.

simple structure SEFA would not be considered statistically significant, but it emphasizes that factor analysts (should)

typically seek the best estimates of β, Φ, and Θ2 rather than seeking the C = βΦβ′ + Θ2 that best fits S. Although

the two goals are intertwined, the former does not imply the latter and the latter most certainly does not imply the

former. Thus, one cannot decide among models merely by automatic application of some model comparison statistic,

especially the simple comparisons of the log-likelihood that are made in this paper.

Moreover, model comparison tools typically are intended to select the model that would produce the best out-of-

sample predictions if the same battery were collected for a different random sample of individuals. Yates (1987) argues

that the greater concern is not that the model would poorly predict the correlations among the same outcomes in a new

sample but that the interpretation would qualitatively change if a different subset of the domain of outcomes were

collected on the same units of observation. Furthermore, a solution tends to be invariant to pertubations of the battery

when it fails to take into account minor factors, which necessarily increases the misfit between S and Ĉ. Statistical
18



tools for model comparison tell us nothing about Yates’ (1987) concerns, and for all these reasons, common sense and

substantive theory should be used as much as any model comparison statistic.

In this case, when the strong simple structure requirement that each outcome be of complexity r − 1 is relaxed

so that eight outcomes can be perfectly complex, the weak simple structure SEFA allocates the zeros among clusters

of similar tests. Yates (1987) only discusses EFA but would have anticipated this phenomenon, which is problem for

vanilla or weak simple structure SEFA but is actually a problem with factor analysis generally. While this allocation of

zeros is “optimal” in the sense that it maximizes `, it is decidedly suboptimal from a scientific perspective because the

resulting factors would not be robust to the removal of a cluster from the battery. The short version of Yates’ (1987)

argument is that clusters are battery-dependent and are created by the investigator, rather than the data-generating

process. It is trivially easy to create a cluster by including a sufficiently large number of similar tests from the domain

of possible outcomes. But in a homogenous domain, there is a large number (or perhaps even a continuum) of possible

outcomes that only differ in degree from each other, depending on differences in how strongly they are related to

different latent factors in the population. Thus, the domain is not overtly characterized by clusters, and a model for the

domain of interest should generally predict that outcomes differ in degree rather than in kind.

Moreover, Yates (1987) argues that a cluster solution is also difficult to interpret scientifically because the one factor

that a cluster of outcomes appears to load on may actually be a linear combination of multiple factors. In other words,

when β̂ exhibits a cluster configuration, it implies that each outcome in the cluster is a similar function of one or more

latent variables, but it does not necessarily imply that each outcome in the cluster is a function of one scientifically

meaningful latent variable. Tucker (1955) notes that if tests fall into r clusters, then it is possible to run one axis

through each cluster or to “turn” the axes slightly and make them less acute so that each cluster falls in exactly one

edge of the hyperplane. Tucker (1955) prefers the former solution where all outcomes load on exactly one factor

over the latter where all outcomes load on all but one factor, but Yates (1987) emphasizes that the presence of multiple

solutions implies scientifically ambiguity. The only way to resolve this ambiguity is to create a larger and more diverse

battery that could disconfirm either or both configurations.

Thus, for Yates (1987), the tragedy of factor analysis is that almost all researchers seek a perfect cluster configu-

ration, as if it were a good thing (see Ferguson 1954). This tendency can be seen from the fact that almost all f (T)

that are used to choose a transformation in EFA reach their theoretical optimum when every row of β̂EFA is of unit

complexity. But this tendency can also been seen in the CFA literature, where it is quite common to see a “congeneric”

theory tested where every row of β̂CFA is of unit complexity a priori. In both cases, this tendency can be seen in

the way batteries are constructed with a view toward collecting data on many similar outcomes so that the resulting

coefficient estimates will be of unit complexity. But it is quite reasonable for outcomes to be a function of more than

one factor, which certainly seems to be the norm in linear regression models where all variables are observed.
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Yates (1987) takes steps in the context of EFA to ensure that the primary axes to run through the edges of the

configuration of outcomes in common factor space, rather than picking the lowest hanging fruit by running the axes

through clusters of similar tests. In other words, Yates (1987) seeks a T so that some tests fall in the hyperplanes of

dimensionality r−1 defined by the r axes, and the rest of the tests fall in the interior of this polyhedral cone in common

factor space. If the hyperplanes tightly bind the test configuration in a cone, then the solution will be largely invariant

to the addition or removal of interior tests, and if there are an excess of tests that fall in (or near) cone boundaries, then

the solution will be largely invariant to the removal of a small number of tests from a hyperplane edge. The rest of this

paper considers how best to do so in the context of SEFA, which I think is entirely consistent with the ideas in Yates

(1987), although I am more sympathetic to statistical considerations.

To some extent, invariance can often be informally judged by looking at plots: Simply imagine a few conspicuous

outcomes being removed from the battery and ask whether the axes would jump to another equilibrium. It is immediate

that even if the analyst only requires b = r in a SEFA model, invariance requires that the number of exact plus near

zeros in each column of β̂ exceed b. Otherwise, if one were to take away even one of the b tests in one of the

hyperplanes, the algorithm would be forced to cut the axes through a denser region of the test configuration.

4.3. Positive Manifolds and Positive Factor Contributions. Thurstone (1935, 1937) coined the “positive manifold”,

although he considered it to be inferior theory to simple structure and not applicable outside the domain of mental

abilities. Cureton and Mulaik (1971), Cureton and D’Agostino (1983), Yates (1987), and Comrey and Lee (1992)

certainly consider it to be applicable to many domains that can be factor analyzed. Guttman (1992) notes that most

practitioners are under the misimpression that a positive manifold refers to the off-diagonal elements of S being non-

negative, whereas a positive manifold is defined as the situation where all cells of β are non-negative. Guttman (1992)

also emphasizes that the positive manifold hypothesis was a proposed explanation for — not a fancy term for — the

non-negativity of the off-diagonals of S in the selection of mental tests. If β and Φ are non-negative, then the off-

diagonals of Σ will be non-negative, but the converse need not hold, particularly in a sample. It should be kept in

mind that the jth manifest variable can arbitrarily be reflected by multiplying the observed scores on the jth test by

−1, which merely reverses the signs of βj without affecting ` in order to move tests into the positive manifold.

If a positive manifold exists, then the primary axes necessarily run through the edges of the test configuration in

common factor space, which is why Yates (1987) is supportive of positive manifolds. The SEFA with strong simple

structure above is within the positive manifold, even though it was designed to find the best solution with strong

simple structure. It also illustrates Thurstone’s (1947) preferred strategy of seeking simple structure and hoping to

find a positive manifold in doing so, while Yates (1987) prefers to do the reverse. Both Cureton and Mulaik (1971)

and Yates (1987) suggest EFA algorithms that make the occurance of a positive manifold somewhat more likely but
20



neither algorithm is entirely satisfactory, much less automated in any software package. As discussed in Goodrich

(2008), FAiR makes it possible to obtain a positive manifold via transformation in EFA if so desired.

But a positive manifold can more easily be enforced under SEFA by placing bounds on the estimated cells of β.

Strictly speaking, bounds are a feature of RGENOUD rather than SEFA per se, and thus bounds could be placed on

CFA estimates of β as well. For example, the analyst could require that β̃jp ∈ [−0.1, 1.2] ∀j, p to maximize ` subject

to a “positive” manifold condition (with some allowance for sampling error around zero). Parameter bounds do not

generally satisfy any aspect of corollary 1, but they do speed up the computation considerably and moreover represent

a substantive belief about the model that can be tested relative to a EFA with a model comparison statistic.10

Yates (1987) justifies the related assumption that Φ is non-negative by channeling Spearman and theorizing that a

positive general factor lies behind the correlations among primary factors:

The occurrence of positive correlations among primary factors and negative correlations among ref-

erence vectors in [Thurstone’s] box problem actually stems from the fact that variation in the volume

of boxes tends to require proportional adjustments in all three basic dimensions, i.e., there is a sec-

ond order general factor here related to the fact that boxes must be functional containers rather than

objects of random dimensions. That there are many possible boxes that do not occur is simply an in-

dication that box dimensions share a common hypothetical determinant or factor such as the volume

requirement that simultaneously characterizes and differentiates containers. The point of all this is

to indicate that the existence of a common variance in the form of a second order or higher general

factor is to be expected in any domain in which it makes sense to look for common factors at all. We

should therefore always be able to reflect our first order common factors so that they are mutually

positively correlated, as is the case in [Thurstone’s] box problem. Otherwise, there is a possibility

that the unpredictable parts of the factors (i.e. the reference vectors) share more variance in common

than the primary factors per se — this would clearly suggest that we should not continue to entertain

the notion of common factors as hypothetical determinants within the domain in question. (26–27)

However, Yates’ (1987) hypothesis needs closer scrutiny, since there is little elaboration on the last sentence. The

reference factors are an alternate representation of the factor analysis model that were mentioned above. Let Ψ =

DΦ−1D be the correlation matrix among reference factors, where D is a diagonal matrix with the reciprocal square

roots of the diagonal elements of Φ−1 along the diagonal of D. The matrix of reference structure correlations, which

appears in the upper right of all the plots in this paper, is defined as βD, which illustrates the claim made earlier that

reference structure correlations are (column-wise) proportional to primary pattern coefficients.

10Bounds can also be placed on the estimated off-diagonals of Φ.
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Let the second-order model be given by Φ = ∆∆′ + Ω2 where ∆ is a 1 × r matrix of second-order coefficients

with ∆1p ∈ [0, 1] ∀p and Ω2 is a diagonal r × r matrix of uniquenesses for the primary factors. Yates (1987) implies

that if these bounds are not imposed, then it is possible that the generalized variance (determinant) of the (correlation

matrix among) reference factors could be smaller than the generalized variance (determinant) of the (correlation matrix

among) primary factors, which would (somehow) imply that the common factor model is inappropriate for the sample.

However, it appears to be the case that if Φ − Ω2 is of rank 1, then |Φ| ≤ |Ψ| regardless of whether ∆ is non-

negative, and it is possible for |Φ| ≤ |Ψ| even when there are no second-order factors. Thus, if |Φ| ≤ |Ψ| is “clearly”

problematic (I don’t see the problem), it would be logical to reinterpret Yates (1987) as recommending that the gth

lexical criterion in a SEFA be operationalized as

z[g] =


1 if |Φ| ≤ |Ψ|

0 otherwise

and only consider solutions that satisfy this constraint. However, counterexamples can be constructed where the factor

analysis model holds but the reference vectors do have more shared variance than the primary factors (for example,

the plasmode in Cattell and Dickman 1962). In limited testing, I have not found this criterion to be overwhelmingly

effective but further investigation (and exposition of Yates’ (1987) claim) will be needed before passing judgment.

The CFA literature has alternative justifications for including a general second order factor (whether non-negative

or not), and SEFA provides a natural mechanism to test whether this specification is appropriate when r ≥ 3. Speci-

fication of a second-order equation satisfies condition (iv) of corollary 1 and permits the analyst to specify b = r − 1

instead of b ≥ r. If r ≥ 5, then there can be two or more correlated second-order factors, but corollary 1 then needs to

be applied to the second-order model as well. FAiR supports all of these options.

Yates’ (1987) justification for the positive manifold assumption can also be criticized for going too far. In the most

fundamental passage of the entire book, Yates (1987) states, with the emphasis in the original:

Short of accepting the extremely chaotic situation in which manifest behavioral variables are related

to their latent determinants in a completely unrestricted fashion, about the weakest simplifying as-

sumption we can make about the action of natural causal factors is that they may influence manifest

variables either independently or in conjunction, but do not tend to act at odds to one another. This

assumption is a more fundamental expression of the principle of scientific parsimony than is the

notion of simple structure, although it leads to the latter as a special case.

When dealing with the problem of identifying unobserved or “latent” independent variables that

can be regarded as the source of observed covariation among dependent variables we really have little

choice but to assume that these independent variables do not in general produce effects that cancel
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one another out. If such cancellation of latent determinant effects were typical, then the implications

of any observed set of intercorrelations among manifest variables would be ambiguous indeed. In

particular, we could not take the absence of manifest association between any two observed behav-

ioral variables to mean that they do not share a common cause — it could be that the lack of manifest

association occurs simply because the strong mutual effects of one shared determinant are cancelled

out by equally strong but contradictory effects of another shared determinant. (87–88)

This “weakest possible assumption” would nevertheless strike many behavioral researchers as too strong. There are,

however, possibilities to weaken this assumption that are mentioned in Yates (1987) but are not explained so well.

One is to allow the coefficients to be slightly negative, which Yates (1987, p. 106) labels as a “diffuse” positive

manifold. A second is to apply Yates’ (1987) principle of non-cancellation only to the systematic variation that an

outcome has with itself and not to the covariation outcomes have with each other. In jargon, one can make the

assumption that none of the factors are “suppressor variables” for any of the n outcomes, but this point requires

further elaboration. Let Π = βΦ, be the primary structure matrix, which gives the correlation between outcomes

and primary factors in each of its cells when the outcomes and factors are standardized. And let Γ = Π × β, where

× indicates element-by-element multiplication, be the “factor contribution matrix” (see White 1966), which indicates

the proportion of variance in the jth outcome that is explained by pth factor. Thus, h2
j =

∑r
p=1 Γjp = βjΦβ′j is the

communality of the jth outcome. Although a communality cannot be negative because Φ is positive definite, any Γjp

could be negative when r > 1, in which case the pth factor would be a “suppressor variable” for the jth outcome. As

a side note, one can define the proportional “influence” of the pth factor as
Pn

j=1 ΓjpPn
j=1 h2

j
, which is the measure appearing

along the diagonal of the figures in this paper.

But Yates (1987) erroneously claims “By assuming consistency in the manner in which manifest variables relate to

their hypothetical determinants, then, the positive manifold assumption is equivalent to the assertion that suppressor

variable effects are rare or, at least, not typical in nature (119).” The non-negativity of β and Φ are jointly sufficient

but neither is necessary for the non-negativity of Γ: If β and Φ are both non-negative, then Π = βΦ is non-negative

and thus Γ = Π × β is non-negative. But it is (now) overkill for Yates (1987) to assume so when there is a weaker

condition available that is both necessary and sufficient to avoid finding suppressor variables in a sample. When

estimating a SEFA model, simply operationalize the gth criterion as

z[g] =
1
nr

n∑
j=1

r∑
p=1

I
{

Γ̃jp ≥ Γ
}
, where

I
{

Γ̃jp ≥ Γ
}

=


1 if Γ̃jp ≥ Γ

0 otherwise
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and Γ is some analyst-specified threshold like 0 or, to make some allowance for sampling error around zero, some

marginally negative number like −0.01. Thus, the optimal θ is sought subject to the condition that z[g] = 1, which

holds when there are no suppressor variables in the sample.

Yates’ (1987) principle of non-cancellation is broader. We could define “correlation contributions” as the vector

comprised by Πj ×βj′ , which are “factor contributions” in the special case where j = j′. Yates (1987) thus contends

that all correlation contributions between j and j′ should have the same sign to prevent the complicated scenario

where
∑r

p=1 Πjp × βj′p = 0 but outcome j and outcome j′ have offsetting factors in common. This “weakest

possible assumption” may very well be plausible in some domains, but it clearly can be weakened further by requiring

it only when j = j′.

Recall that in figure 1, the solution with the strong simple structure restriction also exhibited a positive manifold.

However, one of the correlations between factors was slightly negative, which runs contrary to Yates (1987) rule that

the intercorrelations among primary factors should be non-negative. For the Holzinger and Swineford (1939) data,

if Yates’ (1987) recommendation is faithfully followed by constraining the first-order coefficients to be in the diffuse

positive manifold and that the second-order general factor is non-negative, a corner solution (not shown) results where

the factors must be orthogonal in order to fit the data reasonably well. Perhaps for this reason, Yates (1987) favored

three-factor solutions for mental test batteries.

The left side of figure 3 shows a solution where Yates’ (1987) recommendation is relaxed and only requires that∣∣∣Φ̂∣∣∣ ≤ ∣∣∣Ψ̂∣∣∣. The plots are not bad, although the configuration does not exhibit as much order as some of the solutions

that follow. It appears as if the third factor is inclined too accutely to the other factors by perhaps a few degrees.

Although this distortion would probably not be big enough to drastically affect the interpretation of the factors, it is

problematic and can usually be attributed to strong pairwise linkages between tests that fall in certain hyperplanes.

The solution on the right side of figure 3 imposes the restriction that prohibits suppressor variables by requiring

factor contributions to exceed −0.03. It looks similar to the previous plot, but the inter-factor correlations are some-

what more moderate while still satisfying the (not required) condition that
∣∣∣Φ̂∣∣∣ ≤ ∣∣∣Ψ̂∣∣∣. There is more order to this

configuration, but it looks like the fourth factor is somewhat misaligned and leaves one major negative outlier, pre-

sumably due to the cluster of tests that loads highly on factor 1 but not at all on factor 4. As it turns out, this outlier is

the test for addition of numbers, which is too fundamental to the study of mental abilities to simply be dismissed. In

both solutions in figure 3, ̂̀differs only trivially from ̂̀
EFA.

Many contend that the positive manifold assumption is reasonable for mental test data but too strong for behavioral

data. The assumption that none of the factors are suppressor variables for any of the n outcomes is a weaker assumption

than the positive manifold / positive intercorrelations assumption, and hopefully it is sufficiently weak to be applicable

in the behavioral domains. In other words, it is possible for some, and perhaps several, cells of β̂ to be somewhat
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negative provided that the off-diagonals of Φ̂ are not too large. In the extreme case where Φ̂ = I, then Π̂ = β̂ and

Γ̂jp = β̂2
jp, in which case there is no limit on how “bipolar” the factors can be because the factor contributions are all

non-negative. Generally speaking, the size of the off-diagonals in Φ̂ will be largest in a vanilla SEFA, smallest when

a positive manifold is also required, and middling when suppressor variables are prohibited.

4.4. Invariance, Cohyperplanarity, and Collinearity. Yates (1987) was influenced by Butler (1969), which argues

that researchers should choose T to make the factors invariant to reasonable changes in the battery or the sample. But-

ler (1969) further argues factors are likely to be invariant when the off-diagonal elements of Φ are small in magnitude

and proposes choosing T by running the r primary axes directly through the r tests in Λ̂ that are “distinguished”,

i.e. most orthogonal to each other. This simple method of choosing T thereby creates one test of unit complexity per

factor, which is criticized in Cureton and Mulaik (1971) for presuming that r such tests exist in the battery.

One could respond to Cureton and Mulaik’s (1971) criticism by estimating a SEFA model with a mapping rule that

satisfies condition (ii) of corollary 1 by allocating r (r − 1) zeros among the set of r tests that are least correlated in

the common factor space and then evaluating whether these restrictions are plausible at the optimum. Such a mapping

rule can be implemented ∀q 6= p

β̃jp =


0 if abs

(
β̌jq

)
= max

{
abs

(
β̌q

)}
β̌jp otherwise.

In other words, if β̌jq is the largest preliminary coefficient for the qth factor, squash all cells in the jth row of β̃ to

zero except β̃jq . There is a deeper justification for this mapping rule than it might appear at first sight. Let
0

β̃ be the

r × r submatrix of β̃ such that each row of
0

β̃ is of complexity 1. The determinant of
0

β̃ is simply the product of the

non-zero cells, and

∣∣∣∣∣ 0β̃
∣∣∣∣∣ is thus the largest determinant that could have been formed under this mapping rule. Since∣∣∣∣∣ 0β̃Φ

0

β̃′

∣∣∣∣∣ =

∣∣∣∣∣ 0β̃
∣∣∣∣∣
2

|Φ|,

∣∣∣∣∣ 0β̃Φ
0

β̃′

∣∣∣∣∣ is largest than any other reduced correlation matrix among r outcomes in common factor

space, which is consistent with the definition Butler (1969) gives for the most distinguished set of r vectors in common

factor space.

Yates (1987) is also wary of presuming that unifactorial tests exist in a battery but wholeheartedly adopts Butler’s

(1969) goal of pursuing invariance. However, Yates (1987) differs from Butler (1969) by arguing that invariance is

probable when the tests within a hyperplane are highly distinguished from each other; i.e. widely dispersed in r − 1

directions throughout the hyperplane (when r > 2). In other words, there is cohyperplanarity but not collinearity

among tests in a hyperplane. Literally implementing a mapping rule where the zeros are chosen to minimize the

correlation among tests in a hyperplane is currently impractical from a computational perspective, but there are a

couple of options for cheap approximations.
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One is to operationalize the gth criterion as

z[g] =
1
r

r∑
p=1

I


∣∣∣∣∣

p

β̃Φ̃
p

β̃′ +
p

Θ̃2

∣∣∣∣∣
1
b

≥
∣∣∣C̃∣∣∣ 1

n

 ,

where
p

β̃ is again the submatrix of β̃ with exact zeros in the pth column,
p

Θ̃2 is the diagonal submatrix of Θ̃2 containing

the uniquenesses of the tests with exact zeros in the pth column of β̃. A determinant of a matrix raised to the power

of the reciprocal of its order is called the “effective variance” by Peña and Rodriguez (2003), which shows that —

in contrast to the generalized variance (determinant) — the effective variance can be meaningfully compared across

correlation matrices of different orders. Thus, this criterion essentially requires that, for each hyperplane, the tests in

that hyperplane must be “less correlated per variable” than is the battery as a whole in common factor space.

Another approach is to use a mapping rule to encourage cohyperplanarity. Let θ fill Φ̃ and β̌, which is again a

preliminary pattern matrix that can be used to construct a preliminary factor contribution matrix, Γ̌. Then, ∀q 6= p,

β̃jp =


0 if Γ̌jq − Γ̌jp = max

{
Γ̌q − Γ̌p

}
β̌jp otherwise.

In essence, this mapping rule forces β̃jp to be exactly zero when Γ̌jq is large, which is to say that the qth factor is quite

influential when β̃j is in the pth hyperplane. This mapping rule encourages the r − 1 tests within the pth hyperplane

to be widely dispersed in r − 1 directions and tends to encourage tests in hyperplanes to have large communalities.

Figure 4 depicts a solution that uses this mapping rule and imposes the constraint that the tests in each hyperplane

must have more effective variance than the battery as a whole. The solution fits well in the sense that ̂̀is virtually the

same as ̂̀EFA. Although a few squares seem imperfect, for each factor, two out of three squares appear quite good,

which suggests that it would be difficult to further improve the configuration. In particular, note that every axis runs

through a point far from the origin, which is encouraged but not strictly implied by the cohyperplanarity mapping rule.

These high communality tests are denoted by filled, red dots, which indicates that they also fall in other hyperplanes.

In fact, although it was not required, each factor is represented by one test of unit complexity: Visual Perception (test

#1), Sentence Completion (#7), Addition (#10), and Word Recognition (#14). Although this occurence does make

interpretation easy, the solution cannot be invariant to the removal of any of these tests (especially #10). On the other

hand, the solution is extremely invariant to the removal of any of the other twenty tests or the addition of new tests.

If the mapping rule inspired by Butler (1969) is used, the configuration stays the same except that the third axis cuts

slightly inside test #10 and through test #12 (Counting Dots).

27



FIGURE 4. Cohyperplanar SEFA for the Holzinger and Swineford (1939) Data
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This SEFA requires that tests within each hyperplane have more effective variance than the configuration as a whole
and uses a mapping rule based on differences in factor contributions to encourage cohyperplanarity without
collinearity among the tests within a hyperplane. The log-likelihood is −1027.807, which is indistinguishable from
that of the EFA with four factors.

The solution also happens to closely resemble the result one would obtain if the quartimin algorithm were used

to transform the preliminary EFA solution. From Yates’ (1987) anti-quartimin perspective, this similarity would rep-

resent a stroke of luck on quartimin’s part. Although the coefficients do not fall into a perfect cluster configuration,

by optimizing with respect to the quartimin criterion — whose theoretical optimum corresponds to a perfect cluster

configuration — and failing to make much headway in that direction, the result is a configuration characterized by

cohyperplanarity instead of “progressing” all the way to within-cluster collinearity in common factor space. In con-

trast, this SEFA model achieved exactly what it set out to do with its mapping rule — namely to place at least four

outcomes in each hyperplane edge that are widely dispersed in three directions — a goal that has a deeper, Butler /

Yates justification compared to merely seeking an easy-to-interpret, perfect cluster configuration.

Despite the fact that no one has stepped forward to defend quartimin and perfect cluster configurations against the

criticisms made by Butler (1969) and Yates (1987) decades ago, FAiR includes a mapping rule that estimates a SEFA
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model under the presumption that β has a perfect cluster configuration:

β̃jp =


β̌jp if abs

(
β̌jp

)
= max

{
abs

(
β̌j

)}
,

0 otherwise.

In other words, all coefficients are squashed to zero unless they are the largest (in magnitude) among those slated for

the jth row of β̃. The question is whether the likelihood at the constrained optimum is sufficiently close to ̂̀EFA. My

guess is that it typically is not, but this fact can be ascertained in any given situation by estimating both models and

reporting the model fit statistics. FAiR actually generalizes this mapping rule and the strong simple structure mapping

rule to allow the user to specify the maximum factor complexity for each outcome or for all outcomes.

Table ?? shows the results of three SEFA models with maximum test complexity of 3, 2, and 1 respectively. The

solution with complexity 3 is the strong simple structure solution shown in figure 1, which was thought to be good

although perhaps not as good as the solution that encouraged cohyperplanarity. Even if one were not persuaded by

Yates’ (1987) theoretical arguments that perfect cluster configurations should not be sought in a scientific investigation,

we can say that the second and third solutions should be rejected on the basis of a likelihood-ratio test relative to the

EFA, whereas we cannot reject the first solution with strong simple structure or any of the previous SEFA models

shown in this paper. Perhaps if one were interested in constructing an in-sample scale, then estimating a SEFA model

with perfect clustering would be useful, albeit not useful for estimating population parameters.

When the data-generating process actually does involve a β with a perfect cluster configuration, it is difficult to find

the global optimum with a SEFA model. In part, it may be that FAiR is insufficiently optimized for such situations,

which I believe to be rare in actual research. In part, there are a lot of potentially free parameters but very little

“information” because r clusters of tests are perfectly collinear in the common factor space. And part of the the

problem is that ` is highly multimodal with modes that are widely separated in θ-space, as noted earlier in the earlier

disussion of the differences in the reactions of Tucker (1955) and Yates (1987) to this fact. In theory, RGENOUD

can handle any degree of multimodality as t,K → ∞, but in practice FAiR seems to consistently handle intense

multimodality only when the best admissable modes are within shouting distance of each other in θ-space.

5. CONCLUSIONS

This paper has introduced SEFA as a method to estimate a factor analysis model. By utilizing RGENOUD, FAiR

gives a reasonable (but not guaranteed) assurance that the maximum of the constrained log-likelihood function will be

found in finite time. The question becomes — but really always has been — “What constraints should a good factor

analysis model meet?” or “How do you know a good estimates of β, Φ, and Θ2 when you see them?” There are

surprisingly few papers and books in the history of multiple factor analysis that have addressed this question directly.
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For Thurstone (1935), if β̂ exhibits simple structure, then it is probably a good estimate of β. For Ferguson (1954)

and Tucker (1955), if β̂ is sparse, then it is probably a good estimate of β. For Butler (1969), if Φ̂ ≈ I, then β̂ is

probably a good estimate of β. For Yates (1987), if β̂ is within the positive manifold and Φ̂ is non-negative, then they

are probably good estimates of β and Φ. CFA proponents answer this question somewhat tautologically by saying

that β̂ is a good estimate of β when some cells of β̂ are fixed to the corresponding values in β in accordance with

substantive theory. But today many EFA practitioners and methodologists duck this challenging but standard statistical

question by saying something to the effect of “If the primary pattern is easy to interpret (read sparse), then it is good”

without specifically arguing that it is a good estimate of β in the population, which requires stronger assumptions.

In this paper, I added the contention that if b = r, Γ̂ is non-negative, and ̂̀SEFA ≈ ̂̀EFA, then β̂ and Φ̂ may be

good estimates of β and Φ in many circumstances. The best result for the Holzinger and Swineford (1939) data was

obtained with a mapping rule that encouraged cohyperplanarity through differences in factor contributions, although it

would have also been possible to prohibit suppressor variables from this solution as well. Decent resuls were obtained

simply by requiring
∣∣∣Φ̂∣∣∣ ≤ ∣∣∣Ψ̂∣∣∣, which probably could have been improved upon by adding the restriction on Γ̂.

The reasons to use, or at least try SEFA, over EFA and CFA are relatively clear. SEFA is like EFA in that neither

requires a complete substantive theory to be fruitful. Thus, SEFA is appropriate for a pilot study and so forth. But

unlike EFA, SEFA does not require the analyst to choose T, which is its chief virtue. Because the final results are

driven entirely by ` and the restrictions, SEFA is on firm statistical ground, and many statisticians have previously

objected to EFA because the choice of T is astatistical. Yates (1987) goes farther by arguing that, in practice, the

choice of T is ascientific and designed to provide in-sample descriptions of clusters rather than to make inferences

about the effects of latent variables in the population. With appropriate restrictions, a SEFA can accomplish Yates’

(1987) ultimate goal of locating hyperplanes at or near the edges of the test configuration in common factor space.

In a sense, SEFA replaces the transformation problem in EFA with the problem of choosing a solution that is within

some tolerance of ̂̀EFA. It may be possible to reject some choices of restrictions by comparing log-likelihoods at the

optimum, as was the case using the Holzinger and Swineford (1939) data for the last two solutions in table ??. But

lots of schemes for placing weaker restrictions on a SEFA model would have produced a ̂̀SEFA that is statistically

insignificantly different from (or otherwise close to) ̂̀EFA. Thus, as Yates (1987) stated in no uncertain terms, an

additional principle — beyond simple structure and certainly beyond perfect clustering — is typically needed to

obtain scientifically meaningful results in non-trivial, real world problems. For Yates (1987), this additional principle

is non-cancellation but there are some other possibilities like |Φ| ≤ |Ψ| and the idea of distinguishability in Butler

(1969) that need further investigation. FAiR could quickly operationalize other principles once proposed.

I like the SEFA’s reformulation of the EFA transformation problem because the restrictions imposed on the SEFA

model must be made explicit at the outset. And everyone has at least an intuitive understanding of (constrained)
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discrepancy functions measuring the misfit between S (data) and Ĉ (model), which ultimately drives the results.

In contrast, the identification condition used to select T and thus β̂EFA is more opaque because f (T) drives the

results, about which all we know are the conditions under which it reaches its theoretical optimum. At best, for most

transformation algorithms f (T) tells us something about the misfit between β̂EFA and a hypothetical primary pattern

matrix with perfect clustering, but tell us nothing intrinsically about the misfit between β̂EFA and β.

SEFA is also appropriate when the researcher has a well-specified substantive theory to test. Many will undoubtedly

contend that “CFA is grounded in theory” while “SEFA is atheoretical” but this view misunderstands SEFA. Choosing

what restrictions to place on a SEFA requires careful consideration of the problem at hand. For example, Thurstone

originally proposed the positive manifold as a theoretically motivated hypothesis to explain variation in mental test

scores, and FAiR gives researchers the option of estimating a SEFA model subject to the positive manifold restriction

to see if this hypothesis is plausible in light of the data. In short, βjp ≥ 0∀j, p is no less a theory than β12 = 0, but

the former is harder to test with well-known CFA software and is thus liable to be considered less theoretical.

Moreover, the purpose of CFA is to test competing theories, but SEFA can be conceptualized as maximizing the

likelihood over all CFA models that require at least as many zeros per factor. Thus, if the researcher has a well-

specified substantive theory about specific cells of β, SEFA provides a stronger test of that theory than does CFA

because SEFA exposes the theory to an incomprehendable number of competing hypotheses that could be backed out

of the likelihood function. CFA only exposes the theory in question to at most a handful of other theories that have

been articulated well enough to test with a different CFA model. And it is important to keep in mind the possibility —

that is already implemented in FAiR but not discussed much here — that most restrictions that can be imposed on a

CFA model can also be imposed on a (mixed) SEFA model, and vice versa with the exception of mapping rules.

The weaknesses of SEFA seem small in number and importance. SEFA sacrifices some model fit relative to EFA

and to CFA models that minimally satisfy theorem 1. SEFA standard errors do not reflect the locational uncertainty in

the exact zeros. Perhaps the biggest concern is that FAiR may bypass the “True” answer in a finite sample when it is a

local optimum that is exceeded by another optimum due to sampling variability. Thus, it is fair to say that the research

design requirements are generally stronger for a SEFA model than for a pure CFA model. However, it may very well

be the case that if someone were to seek a grant to conduct a preliminary EFA followed by a CFA, the money could

be better spent on a single SEFA with a larger sample and / or battery.

There are, however, a lot of practical challenges for SEFA to overcome. Many practitioners are familiar with EFA

and / or CFA and will undoubtedly be reluctant to change to a new estimator in a new software environment. SEFA can

take an hour or more to finish, depending mostly on n and r, and still is not guaranteed to find the optimum in finite

time. There are a lot of tuning parameters for RGENOUD, and we do not yet know what combinations work best with

FAiR. FAiR is considerably less mature than other packages for factor analysis that have been in development for a
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decade or more and currently lacks mechanisms to make the estimates “robust” to departures from the traditional factor

analysis assumptions. These are largely shortcomings of the computer code underlying FAiR rather than theoretical

problems with the SEFA model that can be probably be overcome with continued effort. Most of all, we do not yet

know what combinations of restrictions are best to impose on the factor analysis model, despite Yates’ (1987) progress

on this front. That is the main theoretical question for future research.
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