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1 Introduction

In October 2012 the Nobel prize was attributed to Al Roth and Lloyd Shap-

ley for their work on matching. Both the seminal Gale-Shapley (1962) paper

and most of Roth’s work were concerned with allocation mechanisms when

prices or other transfers cannot be used—what we will call non-transferable

utility (NTU) in this survey. Gale and Shapley used college admissions,

marriage, and roommate assignments as examples; and Roth’s fundamental

work in market design has led to major improvements in the National Resi-

dent Matching Program (Roth and Peranson 1999) and to the creation of a

mechanism for kidney exchange (Roth, Sönmez and Ünver 2004.)

While these are important economic applications, matching problems are

much more pervasive. Market and non-market mechanisms such as auctions

match agents with goods, and buyers with sellers; agents match to each

other in production teams, and production tasks are matched with workers;

and in trade theory, countries are matched with goods or varieties. Yet while

the basic theory of matching was in place forty years ago, only recently has

there been an explosion of empirical work in this area. Several developments
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have concurred to bring it to the attention of applied researchers.

On the theoretical front, the path-breaking contributions of Koopmans-

Beckmann (1957), Gale-Shapley (1962), Shapley-Shubik (1972), Becker (1973,

1974) and Kelso-Crawford (1982) were followed by extensive investigations

in the 1980s; these culminated in the classic monograph by Roth and So-

tomayor (1992). Important contributions renewed interest in matching mod-

els more recently. Hatfield-Milgrom (2005) exploited the analogy of match-

ing with contract theory, auctions and general equilibrium. Their paper

encompassed NTU and TU matching in a general framework, and it also

opened the way to new results on many-to-one and many-to-many matching.

Several authors explored models of matching with frictions (e.g. Shimer-

Smith 2000 and Eeckhout-Kircher 2010), with the aim of enriching equi-

librium models of unemployment in particular. One-to-one matching mod-

els have been revisited to take into account imperfectly transferable utility

(Chiappori-Reny 2007, Legros-Newman 2007.) Finally, another strand of

the theoretical literature on TU models has built on advances in the mathe-

matical theory of optimal transportation, whose application to several fields

of economic theory has proved quite successful1; we will give an example

later in this survey.

The resulting insights have been applied to a host of issues, including

the allocation of students to schools, the marriage market with unbalanced

gender distributions, the role of marital prospects in human capital invest-

ment decisions, the social impact of improved birth control technologies and

many others. Finally, and perhaps even more interestingly, the economet-

rics of matching models have recently been reconsidered, from different and

equally innovative perspectives. The goal of the present project will be to

survey these methodological advances. We shall describe the main difficul-

ties at stake, the various answers provided so far, and the issues that remain

open.

1The original optimal transportation model dates back to Gaspard Monge (1781); as
became apparent much later, optimal transportation and matching under transferable
utility are very tightly connected. See Ekeland 2010, Chiappori-McCann-Nesheim 2010
and other papers in that special issue of Economic Theory.
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1.1 TU and NTU

Any presentation of recent contributions in this booming area must be struc-

tured around a small number of basic distinctions. The first, and arguably

the most important, is between transferable (TU) and non transferable

(NTU) utility models. While recent theoretical advances have shown that

these two settings can be analyzed using similar tools (see Hatfield-Milgrom

(2005) and the subsequent literature), their areas of practical relevance are

largely disjoint. This crucial point is often misunderstood. In some situa-

tions (e.g., the allocation of students to public schools), transfers are simply

excluded, and a TU framework would make little sense. In many other ap-

plications (on the job market, and also within the household), explicit or

implicit transfers are paramount and can hardly be ignored.

This would not matter if these two classes of models had similar testable

predictions; but the “market clearing” mechanisms are different in the two

contexts (with transfers playing the role of market clearing prices in TU

models), leading to significantly different comparative statics. For instance,

take Becker’s famous result that with one-dimensional characteristics, posi-

tive complementarities in joint surplus imply positive assortative matching

(PAM). Becker also showed in that paper (Becker 1973, pp. 835-6) that

without transfers, the condition for PAM is that preferences on each side

be increasing in types. Neither condition implies the other. Smith (2011)

and Lee-Yariv (2014) give simple examples in which the unique NTU stable

matching is PAM, while the unique TU stable matching exhibits negative

assortative matching.

This does not mean that it is easy to discriminate between the two mod-

els empirically when only matching patterns can be observed. As we will see

in section 5.1, any matching is rationalizable under TU (and a fortiori under

NTU) once we allow for within-type variation in preferences. Echenique et

al (2013) explore the testable predictions of TU and NTU stable matchings

when the analyst observes all payoff-relevant characteristics of the agents2.

They first show that NTU matching is testable in this setting: there exist

2They use the term “aggregate matchings”; but their assumption is really about the
econometrician having highly disaggregated information.
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matchings that cannot be stable NTU matchings for any profile of prefer-

ences. They then prove that TU matching is strictly more restrictive than

NTU matching; in fact, any matching that is rationalizable by some pro-

file of preferences under TU is also rationalizable by a men-preferred (or a

women-preferred) NTU stable matching. This implies that it is impossible

to test TU versus NTU using only information about observed matches.

Clearly, however, the assumption that all matching-relevant information is

observed by the econometrician is excessively strong. It implies for instance

that observationally identical should always have observationally identical

matches. Most of this survey deals precisely with the ways this assumption

can be relaxed.

Introducing the possibility of transfers (given quasi-linear utilites) in

a NTU market clearly enhances the total joint surplus, since that is by

construction maximal under TU. Lee-Yariv (2014) show that in large one-

to-one matching markets, transfers are actually not always necessary for

efficiency purposes: for some classes of preferences, stable NTU matchings

are asymptotically efficient. On the other hand, for other specifications

allowing transfers has a large effect on efficiency. This is an area that cries

for more research.

Even in contexts in which transfers cannot be ignored, the standard TU

framework relies on a strong assumption—namely, that utility can be trans-

ferred between partners at a constant “exchange rate”. This has testable

consequences that may or may not be acceptable. Take, for instance, the

case of households who match on the market for marriage. The TU as-

sumption is only valid under specific individual preferences3; these in turn

imply that the household’s demand for goods is the same for all Pareto

efficient allocations. Therefore changes affecting the matching game (say,

variations in the composition of the populations of men and women), and

generally variations in the spouses’ respective weights cannot possibly affect

such household’s decisions as the amount spent on health care, education or

3Necessary and sufficient conditions for TU, that generalize previous contributions by
Bergstrom and Varian (1984) and Bergstrom and Cornes (1983), are provided in Chiap-
pori and Gugl (2014). Technically, the conditional indirect utility must be affine in the
(conditional) sharing rule.
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children expenditures. These restrictions may be excessive in some contexts.

Then it is necessary to generalize the basic model by allowing for a nonlin-

ear utility frontier. We will briefly describe such “imperfectly transferable

utility” (ITU) models, although to the best of our knowledge they have not

yet been taken to data.

1.2 Data and Theory

A second, recurrent theme of this survey will be that the econometrics of

matching models needs to combine data with theory judiciously. Unlike

single-agent models, matching models by definition involve at least two par-

ties; as a result they can give rise to much richer observable patterns, which

makes it much harder to identify parameters of interest without the help of

a well-defined theoretical structure.

To illustrate this, consider changes in assortative matching on the mar-

riage market over the past fifty years. Many social scientists have docu-

mented an increase in educational homogamy using descriptive statistics—

see for instance Schwartz and Mare (2005)4. But what lies behind this

increased homogamy? How much of it is due to changes in preferences, how

much to changes in the “supply” of partners by skill, how much to changes

in the returns to education on the labor market? Going beyond the causes,

which categories of men and women benefited from the resulting matching

patterns? As we will explain in more detail in section 3, the two-sided na-

ture of matching problems makes it particularly hard to interpret estimates

from descriptive techniques; a theoretical framework is essential to begin to

answer these questions.

This structure need not be very tightly specified, if the analyst can ob-

serve enough data. We will assume throughout that matching patterns

(“who matches with whom”) are observed, either in one large market or

in many markets that share some characteristics. In some data sets, infor-

mation about the dynamics of the matching process (e.g., on the various

offers made by each agent) is also available. Sometimes, as in employment

4In a similar vein, researchers have used duration data models for instance to describe
the increase in ages at marriage.
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relationships, transfers between agents (here the wage) are also recorded.

This is typically not the case in household economics, if only because trans-

fers are mostly implicit (e.g., they operate through changes in the structure

of household expenditures); however, in collective models of household be-

havior, transfers may often be at least partially identified when individual

consumption or labor supply functions are observable. The ability to recover

the intrahousehold distribution of resources and welfare indeed is a major

asset of matching models in family economics.

In some settings the data also contain useful proxies for “match output”

or “joint surplus.” When students are matched with schools, for instance,

their educational outcomes can often be observed. To some degree, wage

increases or separations also give information on match output in employ-

ment relationships; and one could argue that divorces and children outcomes

also proxy for marital output. Once again, observing such data allows the

analyst to relax theoretical restrictions and therefore the specification of the

model.

1.3 Empirical Approaches

Two broad types of empirical strategies have been followed so far in testing

and estimating matching models. On the one hand, some approaches ex-

plicitly introduce a stochastic structure at the level of individual matches;

a standard justification, that we shall discuss in more detail, is that the

corresponding random terms reflect some unobserved heterogeneity among

agents. These are interpreted as characteristics that all individuals observe,

and along which they match, but which are not available to the econome-

trician. Obtaining a useful characterization of the solutions of a matching

game explicitly involving random payoffs in its most general form is an ex-

tremely difficult problem. However, a complete characterization may obtain

under additional hypotheses regarding the stochastic process.

In the TU framework, identification can be achieved under a separabil-

ity property introduced by Choo-Siow (2006). Depending on the context,

identification may obtain from data relative to a single market; or it may

instead require the observation of several markets sharing structural char-
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acteristics, as discussed by Chiappori, Salanié and Weiss (2014) in the TU

context and by Hsieh (2011) in the NTU framework. Chiappori, Oreffice

and Quintana-Domeque (2012) have proposed a different approach, which

reduces the individual variation in preferences for partners: all individuals

agree on an “attractiveness index” that aggregates the traits of potential

partners. All these issues will be considered below.

Alternatively, some work relies on regularity conditions that all stable

matchings are assumed to satisfy. The rank-order properties introduced by

Fox (2010a, 2010b) belong to that family. We will discuss the underlying

theory, a related result by Graham (2011, 2013), and recent applications.

1.4 Scope of the survey

To keep our task manageable, we have had to make some difficult choices.

Much of our discussion bears on one-to-one matching, where the link be-

tween theory and empirics is the most straightforward. We will not cover

matching markets in which match output is observed, since the recent survey

by Graham (2011) does this very well; we refer the reader to his section 3.

On the other hand, we will explain how observed transfers can be taken into

account.

A common feature of all the matching models we study is the absence

of frictions: any participant in a matching game is supposed to have perfect

information about all possible mates, even in large markets. This sharply

contrasts with search models, in which frictions are explicitly modeled and

play a key role. We see the vast literature on matching in a search context

and in particular its more recent advances in labor economics5 as comple-

mentary to the frictionless view. Each approach exhibits specific advantages

and limitations, and the choice of one or another should primarily be driven

by the nature of the issue under consideration. For instance, models aimed

at explaining unemployment can hardly afford ignoring frictions; if, however,

the key issue under investigation is the matching of firms and top executive,

a frictionless benchmark may make perfect sense. Using the dynamic fea-

5In particular Postel-Vinay and Robin (2002) and the contributions that followed from
it.
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tures of search models is also more appealing when the data does indeed

follow agents matching over time; as we will explain in our conclusion, in

cross-sectional data the two approaches are essentially equivalent.

Clarifying the relationship between matching and search models from

an explicitly empirical perspective, is an important challenge to be faced

by future research. At any rate, we believe that a review of the recent

literature on search would go far beyond the scope of the present survey.

This literature, by its size, its scope, and its specificities, amply justifies an

independent presentation.

In the next section, we give a brief exposition of bilateral matching, fo-

cusing on the elements of the theory that are necessary to approach empirical

work. Section 3 gives an overview of the various empirical philosophies that

have guided the contributors to this literature. We describe work on NTU

models in section 4; and we move to TU models in section 5. We conclude

this survey with some of the most important challenges empirical work on

matching still faces.

2 Theoretical Background

2.1 Common structure

The theoretical frameworks that underpin most empirical work on matching

share a few basic features. First, they consider bipartite matching. We

start with two sets I and J of agents, whom we will refer to from now

on as “men” and “women”. Each of these sets can be endowed with a

measure (resp. µ and ν), which can be discrete or continuous but must

be finite. Any individual i ∈ I may be matched with an individual j ∈ J
or remain single, and conversely; to accommodate single men, we add two

dummy populations of null agents, denoted ∅, to J and I respectively, and

we extend the probabilities µ and ν accordingly (so that a Dirac mass equal

to the total mass of J is put on the dummy population added to I and

conversely.)

It is important to note at this point that very few restrictions are imposed

on the sets of male and female characteristics, I and J . In particular, we do
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not restrict their dimension to be one. Multidimensional matching received

scant attention until recently, but this trend is now being reversed; we will

cover some of the major contributions in this new direction.

Second, a matching defines who is matched with whom, or remains un-

matched. Technically, a matching is defined by a measure η on the product

space I × J ; intuitively, η (i, j) is the ‘’‘probability” that Mr i is matched

with Ms j. Obviously, such a measure must satisfy a feasibility constraint,

reflecting the fact that any given individual can be matched to one person at

most; formally, the marginals of η must therefore equal µ and ν respectively.

If for instance the sets I and J are finite, the feasibility constraint for Mr i

is simply ∑
j∈J

η(i, j) + η(i, ∅) = µ(i). (1)

Finally, the standard equilibrium concept is stability. We will return

to its definition, which is slightly different in the TU and the NTU cases.

Broadly speaking, a matching is stable if

(i) no matched individual would rather be single, and

(ii) no pair of individuals would both rather be matched together than

remain in their current situation.

The stability concept therefore involves robustness against deviations by

individuals and couples.

2.2 Bilateral matching under NTU

The last ingredient of a matching game are the payoffs; they are defined in

quite different ways with or without transfers. We start with the NTU case.

Here, matching Mr i with Ms j generates some utility for each of them; in

other words, the game is defined by two exogenous functions, U (i, j) and

V (i, j). By assumption, these utilities are fixed ; agents are not able, through

further trade, to increase a person’s utility while reducing the others (what

transfers would typically allow). They are primitives of the problem, and

may in principle be econometrically recovered if the model is identified.
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Stability has a very direct translation in the NTU context. Let u (i)

and v (j) denote the utility levels respectively reached by Mr i and Ms j

at a stable matching η. First, for any (i, j) belonging to the support of a

stable matching η (i.e., for any man-woman pair who marries with positive

probability), we require that:

u (i) = U (i, j) and v (j) = V (i, j)

Moreover, stability requires that:

u(i) = max
k∈J
{U(i, k) | V (i, k) ≥ v(k)}

and

v(j) = max
k∈I
{V (k, j) | U(k, j) ≥ u(k)}.

The first equation, for instance, simply states that

if U(i, k) > u(i) = U(i, j), then V (i, k) < v(k);

that is, any woman k whom i would strictly prefer to his current match j

must be strictly better off in her current situation than if she were matched

with i.

2.3 Bilateral matching under TU

Under TU, things are quite different. The primitive of the problem now

is a single function, s (i, j), usually called the (joint) surplus. The surplus

generated by any matched couple must be shared between the spouses; how-

ever, this sharing is now endogenous, and is typically determined (or at least

constrained) by the stability conditions. In practice, therefore, the match-

ing game is defined by the two sets I and J , together with the associated

measures µ and ν, and the function s.

A solution (a “matching”) is now defined by a measure η on the product

space and by two functions, u (i) and v (j), which describe the payoffs to

partners. In particular, these functions are such that for any couple matched
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with positive probability—that is, for any (i, j) in the support of η—we have:

u (i) + v (j) = s (i, j)

Stability has a simple translation; namely, for any (not necessarily matched)

pair (i, j), it must be that:

u (i) + v (j) ≥ s (i, j)

Indeed, if we had u(i) + v(j) < s(i, j) for some (i, j), then i and j could

match together and split the surplus in a way that gives i more than u(i)

and j more than v(j), contradicting the definition of u and v as equilibrium

payoffs.

The main theoretical result for the TU framework is the well-known

equivalence between stability and surplus maximization. Specifically, let us

forget for a minute the notion of stability and consider the following problem:

find a measure η on the product space I × J such that

(i) the marginals of η equal µ and ν respectively6

(ii) η maximizes total surplus

S =

∫
I×J

s (i, j) dη (i, j) .

Note that the problem just described is linear in its unknown, namely

the measure η. This linear programming problem admits a dual program,

which can be written as:

min
u,v

(∫
I
u (i) dµ (i) +

∫
J
v (j) dν (j)

)
under the constraints

u (i) + v (j) ≥ s (i, j) for all i, j,

6That is, feasibility constraints like (1) must hold.
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which are exactly the stability constraints stated above. It follows that if

a stable match exists, then the corresponding measure maximizes total sur-

plus; conversely, for any solution to the surplus maximization problem, one

can find the functions u and v by simply solving the (linear) dual problem—

which has a solution by standard duality results.

2.4 Bilateral matching under Imperfectly Transferable Util-

ity (ITU)

Finally, the ITU case can be seen as a direct generalization of the TU case.

The equation of the Pareto frontier generated by a couple (i, j) is no longer

linear; therefore the surplus function, s (i, j), is replaced with a function

F (i, j, v) that defines the maximum utility reachable by i when matched

with j, if j receives (at least) a utility equal to v. Again, the intra-couple

sharing (defined by the pair (u, v)) is endogenous, and is typically deter-

mined (or at least constrained) by the stability conditions. The matching

game is thus defined by the two measurable sets I and J , together with

the associated measures µ and ν, and the function F . As in the TU case,

a solution (a “matching”) is defined by a measure η on the product space

and by two functions, u (i) and v (j). These functions are such that for any

couple matched with positive probability—that is, for any (i, j) in to the

support of η—we have:

u (i) = F (i, j, v (j))

As before, stability has a simple translation; namely, for any (not necessarily

matched) pair (i, j), it must be that:

u (i) ≥ F (i, j, v (j))

The main advantage of the ITU model is its generality. In particular, it does

not imply that couples always behave like individuals—a property charac-

teristic of the TU framework (see Section 1.1). The price to pay is that we

lose the equivalence between stability and surplus maximization; in fact, the

mere notion of aggregate surplus can no longer be defined in that context.
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2.5 Hedonic models as matching models

Hedonic models study markets for goods and services that can be decom-

posed into a vector of attributes. An equilibrium then is characterized by

a price function, which describes the relationship between the attributes of

the good and the price at which it is traded (see for instance Heckman,

Matzkin and Nesheim 2010.) The general structure of an hedonic model

consists of three sets: a set I of “buyers” (together with a measure µ), a

set J of “sellers” (together with a measure ν) and a set K of “products”7.

Each product k has a price P (k), which is endogenously determined, as are

the matches between buyers and sellers. To put it concisely, equilibrium

determines who buys what from whom, and at which price.

We assume that each buyer i has quasi linear preferences of the form

U (i, k)−P (k); similarly, seller j maximizes her profit P (k)−c (j, k), where

c(j, ·) is a seller-specific cost function. An equilibrium is defined by a price

function P (k) such that when each buyer maximizes utility and each seller

maximizes profit, market clearing obtains for all products in K. Technically,

an equilibrium consists of a function P and a measure α on the product set

I × J ×K such that

(i) the marginal of α on I (resp. J) coincides with µ (resp. ν), and

(ii) for all (i, j, k) in the support of α,

U (i, k)− P (k) = max
k′∈K

(
U
(
i, k′

)
− P

(
k′
))

and P (k)− c (j, k) = max
k′∈K

(
P
(
k′
)
− c

(
j, k′

))
.

In words, (i, j, k) belong to the support of α if, with positive probability,

buyer i consumes product k and seller j supplies product k.

As shown by Chiappori, McCann and Nesheim (2010), there exists a

canonical correspondance between hedonic models of the type just described

7Different interpretations are obviously possible; e.g. I could be the set of employers,
J the set of employees, and K the set of characteristics of potential jobs.
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and matching models under TU. Specifically, consider a hedonic model, and

define the surplus function s by:

s(i, j) = max
k∈K

(U(i, k)− c(i, k))

Let η be the marginal of α over I × J and define u (i) and v (j) by

u (i) = max
k∈K

(U (i, k)− P (k)) and v (j) = max
k∈K

(P (k)− c (j, k))

Then one can readily check that (η, u, v) defines a stable matching for the

matching problem defined on I × J by the surplus function s. Conversely,

starting from a stable matching (η, u, v), we know that

u(i) + v(j) ≥ s (i, j) ≥ U (i, k)− c (j, k) for all (i, j, k)

which implies that

c (j, k) + v (j) ≥ U (i, k)− u(i) for all (i, j, k) .

Any P (k) such that

inf
j∈J
{c (j, k) + v (j)} ≥ P (k) ≥ sup

i∈I
{U (i, k)− u (i)}

for all k is an equilibrium price function for the hedonic model.

The theory of (quasi-linear) hedonic models therefore has close ties with

that of matching models under TU. From an empirical point of view, though,

a key difference is that transfers between agents are much more likely to be

observed in hedonic models, via the price function P.

3 The Econometrics of Matching: Introductory

Remarks

Deterministic matching models tend to yield stark predictions, such as pos-

itive assortative matching. This obtains in models with one-dimensional
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characteristics when each agent’s utility is increasing in the partner’s type (in

the NTU case) or when the joint surplus is supermodular (for TU models—

see Becker 1973). If the relevant variable is, say, income, then the model

predicts that the richest man will marry the richest woman, the second

richest man will marry the second richest woman, and so on. While we

do observe a positive correlation between spouses’ income, perfect assorta-

tiveness of this type is of course counterfactual. Moreover, deterministic

models predict that observationally equivalent agents should have identical

matching outcomes—again not an empirically appealing feature.

To reconcile the highly restrictive predictions derived by this barebones

matching model with reality, two paths can be followed. One is to invoke

frictions. With imperfect and costly information and sequential meetings,

the wealthiest woman may well settle for a man who is high enough in the

income distribution, rather than wait for an hypothetical meeting with an

even wealthier mate. In addition, the randomness of the meetings process

guarantees that similar agents will have different types of partners in equi-

librium. Following the seminal contribution of Shimer and Smith (2000),

several authors have started to combine the search and the matching frame-

works8; for lack of space, we shall not cover this work in this survey.

Alternatively, one may maintain the frictionless context but enrich the

model by considering a multidimensional setting. While this is a first step to-

wards realism, it is not enough: to accommodate the dispersion in matching

outcomes of observationally equivalent agents, some of the relevant traits

must be unobservable to the econometrician. In other words, agents also

differ by some unobservable but matching-relevant heterogeneity, which is

modeled as a stochastic term. All structural models we consider below follow

this second direction, sometimes implicitly.

In all studies we know of (except some versions of hedonics models), the

stochastic term enters additively. Take the NTU context first: the utilities

generated by the matching of Mr i (with observable characteristics xi) and

8See Jacquemet and Robin (2012) and Goussé (2014).
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Ms j (with observable characteristics yj) take the respective forms:

uij = U (xi, yj) + εmij and vij = V (xi, yj) + εwij (2)

where the shocks εm,wij reflect the impact of unobserved heterogeneity on

match quality.

Similarly, structural TU approaches postulate that the joint surplus gen-

erated by such a match can be written as

sij = s(xi, yj) + εij . (3)

Different studies have imposed very contrasted assumptions on the joint

distribution of these random terms. Some authors assume full independence;

in the TU model for instance, εij would be independent of xi, of yj , and of

all εkl unless i = k and j = l. Other postulate specific covariance structures.

To understand the issues at stake, it is useful to consider a special but widely

used example in which the observable traits x and y are discrete. Let for

instance x (resp. y) denote the wife’s (husband’s) education, with values in

some finite set. If say Mr i is particularly fond of educated partners, then

the distribution of εij will move to the right as yj increases. If moreover such

preferences are common among educated men, the distribution of εij will also

vary with xi. By contrast, independence imposes that Mr i’s idiosyncratic

preferences cannot be related to any of the observable characteristics of

her potential spouses. Of course, if independence is not imposed, then the

unconditional correlation structure of the εij ’s may exhibit specific patterns.

For instance, εij and εik will typically be correlated if i and k belong to the

same education class; and the identification strategy will have to take this

correlation structure into account.

Note that there are often strong theoretical arguments for not assuming

independence. Consider, for instance the matching model of Chiappori,

Iyigun and Weiss (2009), in which agents first invest in education and then

match on the marriage market. Agents differ ex ante by two idiosyncratic

characteristics, both unobservable to the econometrician: their willingness

to marry and their cost of acquiring education. The authors show that
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both aspects influence educational choices. In particular, agents with a high

preference for marriage are more likely to invest in education, since they are

more likely to reap returns from their education on the marriage market (a

better educated spouse, for instance.) In this context, modeling the marriage

market under the assumption that idiosyncratic preferences are independent

of education would be incorrect, since education is in fact endogenous to the

realization of preferences for marriage.

Another important simplification that much (but not all of) this litera-

ture relies on is that the markets considered are large. One can show that in

large matching markets, nothing is lost for inference9 by looking only at the

matching patterns conditional on the µ and ν’s marginal distributions.10

In a nutshell, assumptions regarding the joint distribution of the random

terms are far from innocuous; we shall explicitly discuss them in what fol-

lows. Testing between different stochastic specifications, however, is not an

easy task. As we will see, some empirical work uses data on (one or several)

large matching markets, while other work relies on exclusion restrictions

across markets to identify the primitives of the model11.

Sometimes the data restricts what can be done. For instance, it is often

easier to get data on realized matches than on unmatched agents. Then only

some patterns of the utilities or surplus can be identified. In the TU case for

instance, it is easy to see that with data on realized matches only, we can

only hope to identify the joint surplus up to a sum of an arbitrary function of

the man’s type and an arbitrary function of the woman’s type. Intuitively,

these functions describe the expected utility of marriage for the various types

of agents; and it stands to reason that we need data on unmatched agents

9Menzel (2015b) gives a rigorous argument proving that under reasonable conditions,
in large markets correlations across agents play a vanishing role in the likelihood function.

10In large markets, assuming independence of the match-specific random shocks has
another drawback. If the distribution of the random shock is unbounded (as is usually
assumed in empirical models), then, when the size of the market increases, the expected
utility of any given individual tends to become very large and mostly driven by the stochas-
tic component. The intuition is that utilities, in this context, are related to the maximum
of the shocks over all possible partners.

11We shall not consider here the empirical contributions that rely on calibration or
simulation, and do not offer an econometric analysis in the strict sense (for instance the
recent work on CEO compensation by Gabaix-Landier 2008 and Edmans et al 2009.)
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to identify them.

Before we proceed, it is important to mention that there is a wealth of

descriptive empirical work by demographers and sociologists on assortative

matching. Their empirical strategy is often based on the analysis of variance

framework. They assume that men and women belong to a finite (and

usually small) set of types; these can be income or age brackets, education

levels or others. They define an index of homogamy Hxy for each pair of

observed types (x, y) of men and women; and they run a regression of the

form

Hxy = ax + by + ξxy,

where ax and by can be flexible functions of observables relating to men

of type x and to women of type y, respectively. Then they interpret the

contributions to the explained variance of the a, b and ξ terms.

The problem with this approach is that it negates the equilibrium effects—

what Choo and Siow (2006) call “spillover effects”. Whether the relevant

model allows for transfers or not, the number of matches between types x

and y is a function of all proportions of types: µ(x) and ν(y) certainly, but

also all µ(x′) and ν(y′) for x 6= x′, y 6= y′. If for instance the proportion of

men of a given type increases, it is likely to increase the proportion of single

men of all similar types. As a consequence, these regressions omit many

relevant variables and their results are very hard to interpret.12 The key

conclusion, here, is that since the equilibrium number of matches between

types x and y depends in a very nonlinear and asymmetric manner on all

µ(x′) and ν(y′), this methodological issue is not easy to solve: without a

structural model, it is very hard to guess which of these many variables

should be added to the regression, and how.

12Chiappori and Salanié (2014) give a telling example. They generate data from a
Choo-Siow model for different distributions of men and women across the various types,
keeping structural preferences for homogamy unchanged. ANOVA regressions on such data
conclude that the contributions of the various terms to total variance have changed, which
the applied literature typically (and mistakenly) interprets as a change in preferences for
homogamy.
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4 The NTU Case

A host of applied theory contributions have been devoted to matching prob-

lems in a NTU framework. Following Roth’s (1984) seminal contribution,

which studies the market for new doctors in the U.S., many papers have

considered various markets for medical interns and residents, but also the

allocation of children to public schools (Abdulkadiroglu and Sönmez 2003,

Abdulkadiroglu, Pathak and Roth 2005, Abdulkadiroglu et al. 2005) or

the organ exchange programs between hospitals (Ashlagi and Roth 2012),

to name just a few. This body of literature often adopts a normative ap-

proach: it aims at constructing an algorithm that would solve the matching

problem under specific requirements (stability, incentive compatibility, etc.).

These contributions are not covered by our survey, which concentrates on

the econometrics of matching.

Still, several recent articles explicitly address estimation and testing of

a NTU matching model. Referring to the distinction made earlier between

“structural” and “reduced form” approaches, these contributions generally

follow the structural path. In this context, two types of econometric works

can be found, depending on the data that are available. In some cases,

the econometrician only observes the final matching (or the corresponding

contingency table, indicating, for discrete characteristics, the size of the

sample for each combination of male and female traits). However, some

authors observe not only the final match, but also the entire dynamics of the

matching game. For instance, data from online dating sites typically include

the set of potential partners an individual has considered (by clicking on their

file). Clearly, such data have a stronger empirical content; in particular,

they may allow to directly estimate agents’ preferences, independently of

the realized match.

4.1 Direct identification of preferences

Hitsch, Hortacsu and Ariely (2010—from now on HHA) consider matching

on online dating sites. This is a context in which an NTU approach makes

sense, since the corresponding technology does not allow for transfers of any
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type. Specific to their data is the fact that they can observe not only the final

matching, but also all the potential partners whom any given agent contacts

(“clicks”). They rely on a search-and-matching model by Adachi (2003),

in which agents optimally fix an “attractiveness threshold” and propose to

(here click) all potential mates above the threshold. Adachi shows that the

outcome of the search model converges to a stable matching when frictions

vanish. Assuming away strategic behavior (e.g., not contacting one’s favorite

choice because (s)he is considered as “out of reach”), an agent’s clicking

strategy thus gives a direct indication of his/her preferences, which can be

recovered using standard, discrete choice approaches.

In practice, HHA consider stochastic utilities of the type (2); in addition,

they assume that

εij = αi + ε̃ij and ηij = βj + η̃ij

where α, β are individual fixed effects and the random shocks ε̃ij and η̃ij

are iid and extreme value distributed. As explained earlier, this assumption

of independence (across partners, and from observed characteristics) is very

strong; but it makes it very easy to estimate the model, using fixed effects

logit. Finally, having estimated preferences, HHA can apply a Gale-Shapley

algorithm to recover the predicted, stable matchings. They find that the

predicted matches are similar to the actual matches achieved by the dating

site, and that the actual matches are approximately efficient.

Banerjee et al (2013) exploit matrimonial advertisements in a major In-

dian newspaper to study the relative importance of in-caste preferences and

preferences for other characteristics. To do so, their paper imposes strong

symmetry assumptions on preferences. They document a strong preference

for in-caste marriage; interestingly, this does not seem to interfere much

with preferences over education for instance. This may help explain the

persistence of castes in India.
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4.2 Using matching patterns only

Other approaches use data relative to realized matches only. In some cases,

however, information is available about behavior, which can be directly used

for the estimation process. One of the first contributions along this line is

due to del Boca and Flinn (2014, from now on DBF.) The basic insight can be

summarized as follows. DBF assume that household allocation decisions are

made according to a rule which is exogenously given—in sharp contrast to a

standard TU framework, in which sharing rules are an equilibrium outcome.

DBF consider either non cooperative Nash equilibrium or the maximization

of a weighted sum of individual utilities, with the weights as parameters to

be empirically identified.

For any given rule, the observation of household behavior allows DBF

to recover the parameters characterizing the preferences and (household)

productivities of both spouses. In turn, this allows to construct preference

orderings for each male over all possible females and conversely; note that

these preferences are recovered conditionally on the decision rule, and entail

a random component as described above. Finally, they apply the Gale and

Shapley algorithm to determine a stable matching of the game thus defined,

and compare the correspondence between predicted and observed matches

using a likelihood-based metric, that can be used to determine the decision

rule and the relevant parameter.

A different path is followed by Boyd et al. (2013), who analyze the match-

ing of public school teachers to jobs over several years. Their approach is

more explicitly structural. They start from stochastic utilities of the type

(2) with a parametric representation of the deterministic components, and

assume that the random shocks are independent. A first remark is that, for

any random draw of the stochastic shocks, the Gale Shapley algorithm gen-

erates a stable matching, for which a set of descriptive statistics (in terms

of correlations between attributes) can be computed. This suggests using

a method of simulated moments in order to select the values of parameters

that fit best the moments observed in the real data. While remarkably pow-

erful, such simulation-based approaches are computationally cumbersome,

and may become impractical when the number of players becomes large.
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To circumvent the computational problem, Hsieh (2011) uses a modified

version of the Gale -Shapley algorithm that allows to directly compute the

contingency table of marriage types without explicitly solving for the stable

matching. He considers a model in which women and men can be categorized

into M and N types respectively: xi ∈ {1, ...,M} and yj ∈ {1, ..., N}.
As above, an individual’s spousal preference is the sum of a deterministic

term that depends on the agent’s and the potential partner’s type, and of a

random term; but the latter only depends on the partner’s type:

uij = V (xi, yj) + εi (yj) and vij = V (xi, yj) + ηi (xi)

In particular, each agent equally values his/her potential partners who be-

long to the same category.

Unlike in DBF, no behavior is observed; identification comes only from

the observation of matching patterns. Hsieh shows that stability is not

testable from the observation of a single market: any contingency table can

be rationalized as a stable matching for well chosen functions. However,

when we observe several markets with the same deterministic functions and

the same stochastic distributions, stability generates testable predictions.

Moreover, the model is parametrically identified.

4.3 Extensions

Agarwal (2014) notes that sometimes it is reasonable to assume that one

side of the market is only vertially differentiated. For instance, in the resi-

dent matching program hospitals seem to agree on their ranking of potential

residents. This considerably reduces the scope for deviations and makes an

estimator based on pairwise stability conditions quite manageable. Agarwal

uses this insight to criticize the argument that the resident matching pro-

gram unfairly reduces the salaries of residents. He shows that low salaries

can in fact be rationalized as the price residents pay for valuable training in

the better hospitals.

Finally, a wide-ranging contribution by Menzel 2015a obtains very strong

results on large matching markets. Following Dagsvik 2000, Menzel assumes
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that preferences on each side of the market are a function of observed char-

acteristics and of an unobserved shock; for instance,

Uij = U(xi, yj) + ζij

represents the utility man i derives from a match with woman j. In large

markets, any man has many potential matches; and it is intuitively clear

that the maximum of these utilities over willing partners will play an im-

portant role in the theory. Now in statistics, extreme value theory shows

that the (properly standardized) maximum of a large number of indepen-

dent and identically distributed random variable can only converge to one

of three parameter-free distributions. One of these is the type I extreme

value distribution that figures prominently in discrete choice econometrics,

as well as in this survey.

Menzel assumes that the ζ’s (and the corresponding shocks for women)

are iid across i and j, and that the tail distribution of these shocks belongs to

the class that yields convergence of the maximum to the type I EV distribu-

tion. He then takes the “very large market” limit13. He shows that in every

stable matching, the number of matches between partners of characteristics

x and y satisfies

η(x, y)

η(x, 0)η(0, y)
= exp(U(x, y) + V (x, y)). (4)

Menzel’s analysis therefore yields a remarkably simple formula, that only

relies on a fairly weak restriction on the form of the distribution of errors—

but a strong one on their iid character. It also shows that the observed

matches are informative only about the quasi-surplus14 (U+V ). Data on the

observed matches is not enough to separate the preferences U and V of both

sides of the market. On the other hand, it is possible to compute expected

utilities at a stable matching: in the large market limit, they coincide with

13This involves much work and technical details that we cannot discuss here.
14It may seem surprising that adding U and V makes sense in an NTU world; but note

that the assumption that shocks are identically distributed for men and women introduces
an implicit normalization of utility scales.
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minus the logarithm of the share of unmatched agents, as in the Choo and

Siow paper discussed in 5.1.

5 Matching under TU

The structural approaches to TU matching all consider surplus functions

entailing an additive, random shock as in (3). Even under this restricted

form, identifying both the function s and the distribution of εij conditional

on (xi, yj) is a difficult task. To understand why, consider an alternative

model of marriage for a moment: we observe women j with observable

characteristics yj choosing men i with observable characteristics i; men have

no say in the matter, and get zero surplus in their imposed marriage.

This alternative, one-sided specification is simply a discrete choice model

in which woman j chooses a man i by maximizing s(xi, yj) + εij . While

this model is identified under theoretically reasonable conditions (Berry and

Haile 2010), it is still a very hard model to estimate without strong paramet-

ric assumptions. The reason is simple: even if we assume that the ε terms are

distributed independently of xi and yj , and identically and independently

across women, if observable characteristics of men take M values then the

joint distribution of the ε’s is M -dimensional. Its variance-covariance ma-

trix, for instance, has M(M−1)/2−1 degrees of freedom after the standard

normalizations are applied.

The two-sided matching model is an order of magnitude more complex

of course. From section 2.3, the individual utilities ui and vj associated with

the stable matching solve the coupling equations:

ui = max
j∈J

(s (xi, yj) + εij − vj)

and

vj = max
i∈I

(s (xi, yj) + εij − ui) .

Each of these two systems of equations has the structure of a one-sided

choice model; but the key difference is that the choice models of men and

of women are coupled through the equilibrium constructs ui and vj . This is
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a specific feature of the TU framework, as opposed to NTU models. This,

along the fact that we cannot safely assume that the unobservable ε’s are

independent across i or j, greatly complicates identification.

Since fully nonparametric identification is out of the question, we must

impose restrictions on the function s, which we will call the “mean sur-

plus”15, and on the conditional distribution of the unobservable ε’s. A

useful way of contrasting existing empirical approaches to matching models

under TU is in whether they choose to impose stronger restrictions on s or

on ε.

A first group of methods, pioneered by Choo and Siow (2006), does not

impose any restriction on the mean surplus s; on the other hand, it restricts

the distribution of the unobserved heterogeneity εij and derives implications

for matching patterns. By contrast, Fox (2010a) has proposed and used an

approach which does not explicitly specify the distribution of the unobserved

heterogeneity. Instead it directly postulates a “rank-order property” that

imposes restrictions on the relationship between matching patterns and the

surplus function.

Chiappori, Oreffice and Quintana-Domeque (2012) use a different semi-

parametric idea: they assume that the joint surplus has an “index” struc-

ture, in the sense that it is weakly separable into two one-dimensional func-

tions of female and male characteristics respectively. As we will see, this

allows them to run simple regressions to estimate the index, and to test the

index assumption.

Finally, Fox, Hsu and Yang (2015) take the opposite approach to Choo

and Siow: they restrict the specification of the mean surplus s in order to

identify the distribution of the unobservables ε. The simplest version of

their model assumes that the mean surplus s is observed for every possi-

ble match and that the ε’s are distributed independently of s. They show

that if the analyst observes many markets with different mean surplus but

the same distribution for the unobservables, then the distribution of the

complementarities across unobservables is identified.

15We use the term “mean” by analogy with discrete choice models, although, as we will
see, s is not equal to the sum of average equilibrium utilities.
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We now present these four approaches in more detail.

5.1 Separable Surplus

Remember that in equation (3), we associated to each potential match of a

man i and a woman j a joint surplus

sij = s(xi, yj) + εij ;

and we now normalize the mean surplus s to be zero for singles16.

Now consider the stability problem from the perspective of aggregate

surplus maximization. For each realization of the ε’s, we have a well-posed

maximization problem, which has a solution: a measure η which gives match-

ing patterns, and associated dual variables u, v that describe equilibrium

utilities17. These dual variables are now random, as for any given (x, y),

different realizations of the ε’s generate different dual variables. Knowing

the distribution of the ε’s, is it possible to infer the distribution of the dual

functions u and v?

To the best of our knowledge, little is known about this question, except

in a specific case, initially considered by Choo-Siow (2006), and on which

much of the relevant literature is based. It relies on two crucial assump-

tions:18

1. The observable characteristics x ∈ X and y ∈ Y are discrete; they

define a finite number of categories, each of which contains a continuum

of individuals.

2. The surplus function is additively separable in the unobserved com-

ponents of both partners. That is, for any match of a man i and a

woman j, the surplus generated can be written

s(xi, yj) + εij = s(xi, yj) + α
yj
i + βxij . (5)

16Formally, we let s(x, ∅) = s(∅, y) = 0 for all x and y.
17With finite populations, the solution η is generically unique but the u and v are not

uniquely defined. In large markets they converge to a unique solution.
18In addition, Choo and Siow assume that the random terms follow an extreme value

distribution. However, this assumption can be dispensed of—see below.
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The separability assumption allows for any type of complementarity be-

tween observable characteristics; but it rules out any complementarity be-

tween unobservable characteristics. The term αyi , for instance, could reflect

an idiosyncratic preference of man i for women of category y, or a preference

of women of type y for man i, or some interaction in domestic production.

Chiappori, Salanié and Weiss (2014) showed that given these assump-

tions, there exists a decomposition

s(x, y) ≡ U(x, y) + V (x, y)

such that, at any stable matching a man i will be matched with a partner19

whose category y maximizes U(xi, y)+αyi ; moreover, i’s utility at equilibrium

is equal to the value of this maximum. To see this, remember the coupling

equation

u(i) = max
j∈J

(
s(xi, yj) + α

yj
i + βxij − v(j)

)
;

and note that we can decompose symbolically

max
j∈J

= max
y∈Y

max
j s.t. yj=y

(first choose the category of your partner, then a partner within that cate-

gory.) We can pull out α
yj
i from the maximization over j, to get

u(i) = max
y∈Y

(
s(xi, y) + αyi + max

j s.t. yj=y

(
βxij − v(j)

))
.

Now define

V (xi, y) = min
j s.t. yj=y

(
v(j)− βxij

)
and U(xi, y) = s(xi, y)− V (xi, y)

so that

u(i) = max
y∈Y

(U(xi, y) + αyi ) ,

as announced; and by the same token, v(j) = maxx∈X
(
V (x, yj) + βxj

)
.

19Again, we are allowing for unmatched agents—then y = ∅.
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This result is important for two reasons. First, it gives an exact char-

acterization of the stochastic distribution of the dual variables, which are a

major outcome of interest in many applications (including household eco-

nomics.) Second, and from a more practical viewpoint, it leads to a simple

characterization of individual choices that links them directly to standard,

discrete choice models.

5.1.1 Identification

This setting can be analyzed from a general perspective, as in Galichon-

Salanié (2014). Take a man i whose category is x; and suppose that the

distribution of the vector of shocks (αyi ) for all values of y ∈ Y is Px. Note

that Px is a multidimensional distribution, and that it may vary with x.

Similarly, denote Qy the distribution of the vector of shocks (βxj ) for all val-

ues of x ∈ X. Galichon and Salanié prove that the distribution of matching

patterns η solves a convex program

max
η

(∑
x,y

η(x, y)s(x, y) + E(η)

)
(6)

where the generalized entropy E is a concave function whose specific form

depends on the distributions Px and Qy.

As a consequence the matching patterns η are linked to the unknown

mean surplus s by a simple formula; and so is the distribution of utilities.

Galichon and Salanié also provide an algorithm to solve for the optimal

matching η that is very fast in leading examples.

Econometricians are in fact interested in the inverse problem: given the

observation of the marginals µ and ν and the matching patterns η, what

can we infer on the mean surplus s and the distributions Px and Qy?

First assume that we only observe data from one large matching market—

say, marriages in America in 2013. Galichon and Salanié prove that for any

possible choice of the distributions Px and Qy, the relationship between

matching patterns η and mean surplus s is one-to-one; that is, any match-

ing pattern can be rationalized by one and only one surplus function. In
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other terms, given exact knowledge of the Px and Qy, the mean surplus s is

nonparametrically just identified.

Take for instance the most common assumption, namely that the α’s

and β’s follow standard type-I extreme value distributions; then the choice

of a spouse can be modeled using a standard multilogit model. This was

the path followed by Choo-Siow (2006). Then the generalized entropy is the

standard measure of entropy; and we obtain the formula

s (x, y) = ln
η (x, y)2

η (x, ∅) η (∅, y)
(7)

(remember that η(x, ∅) is the probability of an unmatched man of type x.)

This expression can also be written as:

ln η (x, y) =
1

2
s (x, y) +

1

2
ln η (x, ∅) +

1

2
ln η (∅, y) (8)

Note the similarity with equation (4) of Menzel (2015a). The only differ-

ence is the “square” exponent—but that is an important one as it involves

the scaling properties of the equilibrium. It is fair to say that at this stage,

the underlying differences are not well-understood.

The multilogit model fixes all Px and Qy distributions to be one and the

same: no heteroskedasticity, and no correlation in preferences over partners.

For instance, it imposes both that the dispersion of preferences of men of

type x be independent of x, and that the idiosyncratic preferences of any

such man over women of types y and z be independent.

These are extremely strong assumptions; one of their consequences, as

pointed out in Siow (2009), is that we can test for complementarities just by

looking at the total positivity of observed matching patterns. Moreover, they

imply specific predictions in terms of comparative statics of the model—see

Decker et al (2012). As shown by Galichon and Salanié, only some of these

predictions hold for all separable surplus functions.

Yet the results of Galichon-Salanié show that any more flexible choice

of the distribution is underidentified from cross-sectional data, and the just

identification result implies that we cannot test any assumption on the dis-

29



tributions Px and Qy. There are only three ways out of this dilemma:

1. we can use data on several markets, using well-chosen exclusion re-

strictions

2. we can impose parametric or semiparametric assumptions on the mean

surplus s and the distributions Px and Qy

3. using data on transfers would also give useful information that allows

the researcher to identify more features of the surplus function s and

the distributions P ’s and Q’s.

Using observations on transfers is discussed in Section 6. In section 5.1.5,

we will describe how Chiappori, Salanié and Weiss (2014) combine the first

two approaches to estimate and test a heteroskedastic model.

Finally, a recent contribution by Mourifié and Siow (2014) generalizes

the basic Choo-Siow version by replacing (8) with:

ln η (x, y) =
1

2
s (x, y) + a ln η (x, ∅) + b ln η (∅, y)

where a and b are parameters that can be interpreted as representing peer

and/or scale effects. The authors note that this formulation encompasses,

as particular cases, not only the standard Choo-Siow framework (which

correspond to a = b = 1/2), but also the Dagsvik-Menzel setting (a = b = 1),

the heteroskedastic version of Chiappori, Salanié and Weiss (2014), and

possibly other models as well. The price to pay is that the model has

no natural, structural interpretation. For instance, it does not necessarily

belong to either the TU or the NTU framework.

5.1.2 Sign-based Identification

The results by Galichon and Salanié (2014) nonparametrically identify the

mean surplus when the distributions of the unobservables are separable and

known. Now assuming perfect knowledge of the distribution of the un-

observables is quite strong; what can we identify if we only make weaker
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assumptions? Graham (2011, 2013) gives such a result under separabil-

ity, using only information on matches. His Theorem 4.1 shows that if the

analyst only assumes that unobservables are independently and identically

distributed, then the sign of the complementarities

C(x, y, x′, y′) = s(x, y) + s(x′, y′)− s(x, y′)− s(x′, y) (9)

is identified.

To understand Graham’s result, it is useful to consider the simpler dis-

crete choice model in which man i of type x chooses among women of type

y by maximizing

U(x, y) + αyi .

Now if the αyi are iid over y, the monotonicity result of Manski (1975) shows

that the probability η(x, y) that such a man chooses a woman of type y is

an increasing function of the mean utility U(x, y). In particular, the sign of

U(x, y′)− U(x, y) is that of η(x, y′)− η(x, y) and is therefore identified.

The same argument applies to women, with V (x, y) = s(x, y)− U(x, y);

and expanding the complementarity in (9), it is easy to see that if

min
(
η(x, y), η(x′, y′)

)
> max

(
η(x′, y), η(x, y′)

)
then the complementarity C(x, y, x′, y′) is positive. Graham’s more refined

result follows from similar arguments.

While identifying the sign of the complementarities may not sound that

exciting, complementarities lie at the heart of matching as we have known

since Becker (1973). It also gives a rigorous foundation for Fox’s rank-order

based approach (2010a), which we describe in section 5.2. The price to

pay is the assumption that unobserved heterogeneities are identically and

independently distributed, which seems very strong.

5.1.3 Continuous Separable Models

The general framework of separable models described above need not be

restricted to discrete characteristics such as diploma or race. In fact, the
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general ideas in Galichon and Salanié (2014) can be extended to continuously

distributed characteristics like income. Several technical difficulties must be

faced, however. The first, obvious one is that standard discrete choice models

such as the multinomial logit behave badly when taken to the continuous

limit. Suppose for instance that mean utilities (Uj) are iid; then if J is a

continuous set, maxj∈J (Uj + εj) is infinite unless the (εj)’s have a bounded

support.

A first way of solving this problem, pioneered by Dagsvik (1994), is to

assume that each agent is only confronted by a countable set of choices—

technically, a random draw from a Poisson process whose intensity is gov-

erned by a standard type-I extreme value distribution. Dupuy and Galichon

(2014) show how this can be extended to the matching framework. In this

setting, each woman for instance can only match with men whom she met;

and this meeting process is random and governed by a Poisson process, much

as it is in the job search literature. The great appeal of this approach is that

the probability density that a woman of type y matches with a man of type

x is a direct continuous analog of the logit formula:

η(x|y) =
exp(U(x, y))∫
exp(U(z, y))dz

.

Dupuy and Galichon also describe a version of this model in which the mean

joint surplus of an (x, y) pair is bilinear in types:

Φ(x, y) = x′Ay

where A is an “affinity matrix.” This yields very simple formulæ and a direct

way of selecting relevant characteristics by a singular value decomposition

of A.

One can also restrict the stochastic specification of joint surplus so that

the infinity problem disappears. To take a very simple example, suppose

that x and y are the incomes of man i and woman j. Men and women have

different “bliss points” for the income gap within the couple. This could be
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described by a joint surplus like

−a(x− y − αi)2 − b(x− y − βj)2,

which allows for variation in the intensity of preferences across genders, and

for idiosyncratic variation in the bliss points. This is clearly separable, since

there is no interaction term between the α’s and β’s. Moreover, the joint

surplus is bounded above and so must expected utilities in every match-

ing. Chiappori, Galichon and Salanié (in progress) studies the conditions

under which the discrete separable approach can be extended to continuous

characteristics.20

5.1.4 ITU Models

The techniques just described may in some cases be extended to the ITU

case. While such an extension raises specific difficulties, due in particular

to the non linearities introduced by the ITU framework, these difficulties

are not insuperable; see Galichon, Kominers and Weber (2014) for recent

advances on this topic.

5.1.5 Empirical applications and results

In the paper that introduced separable matching, Choo-Siow (2006a) ex-

plored the welfare effects of the 1973 legalization of abortion in the US.

Given their specification, the change in the expected utility of men of age x

is directly related to the change in their probability of staying single. Choo

and Siow rely on the variation on the legal status of abortion across US states

before 1973 to obtain a difference-of-differences estimate of the welfare ef-

fects. As expected, these effects are concentrated on women of childbearing

age and the men who marry them. They estimate that 20 to 30 percent of

the observed fall in the marriage rates of young men can be attributed to

Roe vs Wade; and that it also contributed to delaying marriage.

20Finally, a continuum economy can also be represented as the limit of a discrete econ-
omy. This is done in a non-separable NTU setting by Menzel (2015a), which we discussed
in Section 4.3.

33



Choo-Siow (2006b) used the same framework, augmented to allow for

cohabitation, to examine the effects of the baby boom in Canada. They

find that men benefited from the baby boom, while women did not. The

baby boom was gender-neutral in its effect on birth rates; but preferences

of men and women differ, on age at marriage in particular. Women prefer

earlier marriage, while men can more easily wait. The baby boom benefited

men born in its early years by making young women more plentiful. Choo

and Siow’s estimates confirm that the baby boom increased the net gains of

marriage to men born between 1940 and 1955 and lowered them for women

born before 1960.

The simplicity of the Choo and Siow model, in its “logit” implementa-

tion, yields predictions that are very stark. For instance, in their setting,

just as in the original Becker model, positive assortative matching is exactly

equivalent to positive complementarity in the joint surplus. Siow (2009)

exploits this property to provide strong evidence for educational comple-

mentarities in surplus, especially in cities.

Several papers have gone beyond the separable logit. Galichon and

Salanié (2014) revisit Choo and Siow’s results using their more flexible ap-

proach; in particular, they estimate a model with random coefficients that

has quite different comparative statics outcomes than the Choo and Siow

model. Chiappori, Salanié and Weiss (2014) pool data from thirty cohorts

of American men and women in order to explore changes in the returns to

education on the marriage market. By restricting the variation in the joint

surplus across cohorts, they are able to identify the changes in the “mar-

ital college premium” over the post-WWII period. They find that having

a college (or higher) education has benefited women more and more over

time, partly by reducing the likelihood that they stay single and partly by

improving their bargaining position within the couples they form.

Finally, Dupuy-Galichon (2014) applied their model of matching on con-

tinuous types to data from the DNB Household Survey. They focussed on

several groups of characteristics: education, health, physical measurements,

and personality traits (the “big five”, and attitudes towards risk.) Their

estimates and tests on the affinity matrix show that sorting occurs on sev-
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eral dimensions: personality traits matter as well as education. Preferences

over personality traits vary across genders, and the matching patterns of

individuals with different traits also differ markedly.

5.2 The Rank-order Approach

The results obtained by Choo and Siow (2006a) and their subsequent ex-

tension by Galichon and Salanié (2012) rely on a parametric specification

of the stochastic terms in the joint surplus, while possibly leaving the non-

stochastic part fully flexible. By the standards of the semiparametric litera-

ture, this is an unusual modeling choice: much of semiparametric economet-

ric theory has dedicated itself to relaxing assumptions on the distribution of

error terms. Several important papers have followed this alternative route.

The most influential approach is that proposed by Jeremy Fox, which he has

articulated in several papers (Fox 2010a,b, Fox and Bajari 2013.)

A common feature of these papers is that they rely on a “rank-order prop-

erty;” but this property differs across papers. For notational simplicity, we

will continue to confine our discussion to one-to-one, bipartite matching—

the marriage problem. It is worth stressing here that because Fox’s approach

only relies on pairwise stability, it can be applied more widely, to many-to-

one or even many-to-many matching.

Unlike Choo-Siow (2006a), who work with one large market, Fox (2010a)

seeks to identify the surplus function s by comparing matchings from a col-

lection of independent finite-size markets. The term “independent” here

means that individuals cannot match across market boundaries. Fox as-

sumes that the mean surplus function s(x, y) is the same in all of these

markets; his aim is to recover estimates of s(x, y) while imposing few re-

strictions on the stochastic part.

Denote Cn the list of observable characteristics on market n, and An

the observed matching (the list of (xi, yj) matches and of single men and

women.) If on each market the observed matching is stable given the list of

characteristics on that market, it follows that An maximizes the total surplus

given the constraints imposed by the draw of observable characteristics Cn

and of unobserved characteristics ε on market n. Now take any possible list
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of observed characteristics C. Given a large number of markets, there will be

many whose list of characteristics is close to C—with very similar numbers of

white college-educated men, of Hispanic high-school graduate women, etc.

The data therefore identify Pr(A|C), the probability that such a market

has given matching patterns over observable characteristics—say, a given

number of marriages between a white college-educated man and a Hispanic

high-school graduate woman. Note that the reason that Pr(A|C) is not

concentrated over one particular matching is that even markets with exactly

the same distribution of observed characteristics have different distributions

of unobserved characteristics. This is a consequence of the assumption that

each of these markets is “small.”

Now the knowledge of Pr(A|C) is clearly not enough to completely char-

acterize the joint surplus function. But sometimes we are only interested in

those of its features that only depend on observed characteristics, that is in

the mean surplus s(x, y). Suppose that for given C, Pr(A|C) is an increasing

function of
∑

(i,j)∈A s(xi, yj), so that

Pr(A1|C) > Pr(A2|C) iff
∑

(i,j)∈A1

s(xi, yj) >
∑

(i,j)∈A2

s(xi, yj).

Fox (2010a) shows that under this rank-order property, if the distribution

of observed characteristics has continuous support then comparing markets

with the same C but different A identifies the function s up to a monotonic

transformation.

The rank-order property at first seems to be a natural extension of the

monotonicity in the usual single-agent discrete choice models. Such mod-

els have a 0-1 variable y determined by whether some index F (x) is large

enough:

y = 1 iff F (x) > ε.

If the distribution of ε is independent of x, then clearly Pr(y = 1|x) is an

increasing function of F (x).

Unfortunately, such monotonic behavior is rare in matching models: the

intution above just does not carry over to two-sided markets. Fox (2010a)
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argues, on the basis of simulations, that the rank-order property holds ap-

proximately if εij is iid across matches (i, j). But take separable models for

instance: the rank-order property only applies if we can neglect the general-

ized entropy term in equation (6), so that the optimal matching maximizes∑
x,y η(x, y)s(x, y). Since the entropy term scales like the dispersion of the

unobserved heterogeneity term, the rank-order property can only be a good

approximation if these “fixed effects” are negligible.

When it applies, the rank-order property lends itself very well to an

estimation approach based on inequalities. Suppose for instance that the

matchings A1 and A2 above only differ in that the partners w and w′ of

two men m and m′ have been switched. Then the rank-order property, if it

holds, implies that

Pr(A1|C) > Pr(A2|C) iff s(xi, yj) + s(xi′ , yj′) > s(xi′ , yj) + s(xi, yj′).

Any such inequality generates information on the function s; given enough

such inequalities, the function s can be identified. Moreover, its unknown

parameters β0 can be estimated using maximum score (Manski 1975.) To

see this, take any 4-tuple (x, y, x′, y′). The rank-order property implies that

we are more likely to observe matches of x with y and of x′ with y′ if

C(x, y, x′, y′, β0) ≡ s(x, y, β0) + s(x′, y′, β0)− s(x, y′, β0)− s(x′, y, β0)

is positive. Now consider the following objective function:

F (β) =
∑
n

∑
i 6=j

11
(
C(xi, yi, xj , yj , β) > 0

)
,

where the sums extend over the different markets n and over the matches

i = (xi, yi) and j = (xj , yj) observed in each market. The set of values

of β that maximize this score function converges to β0 as the number of

markets becomes large. The function F is discontinuous, but the score

can be smoothed (Horowitz 1992.) Moreover, the analyst need not use all

matches i and j on each market; she only needs to select enough of them

that a unique estimate of β0 is obtained.
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Note that the validity of a maximum score estimator only requires that

the sign of the complementarities C in the mean surplus s can be inferred

from the matching patterns η(x, y). Graham’s (2013) result of section 5.1.2

in particular shows that this holds in separable models when the distribu-

tions of heterogeneity terms are iid for each gender; this gives a primitive

justification for the large market rank order property in both Fox and Bajari

(2013) and Fox (2010b), and therefore a rigorous justification for the use of

a maximum score approach in these context.

Fox-Bajari (2013) also propose a maximum score estimator based on a

rank-order property. Their paper, however, assumes data on only one large

matching market. Their version of the rank-order property is that of Fox

(2010b, section 3.1). For simplicity again, assume as in section 5.1 that the

observed characteristics x and y can only take a finite number of values, and

denote η(x, y) the number of matches between men of type x and women

of type y on the market. The “one large market” version of the rank-order

property states that

s(x, y) + s(x′, y′) > s(x, y′) + s(x′, y)

if and only if

η(x, y)η(x′, y′) > η(x, y′)η(x′, y).

Unlike the “many small markets” version, this rank-order property can be

derived from more primitive assumptions. For simplicity, assume that x and

y are continuously distributed one-dimensional attributes. Then it is easy

to see that the mean surplus functions s that rationalize observed matching

patterns η satisfy

∂2s

∂x∂y
(x, y) = F

(
∂2 log η

∂x∂y
(x, y)

)
(10)

for some increasing function F such that F (0) = 0. In particular, choosing

F (x) = 2x gives

s(x, y) = 2 log η(x, y) + a(x) + b(y);
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but as we saw in section 5.1, this is precisely the equation that identifies the

surplus in the Choo and Siow (2006) specification. Therefore the “one large

market” rank-order property applies in the Choo and Siow model. We do

not know which other primitive assumptions yield (10); it does not apply in

the heteroskedastic Choo and Siow specification of Chiappori, Salanié and

Weiss (2014) for instance.

Finally, it bears repeating that the techniques described in this subsec-

tion can readily be extended to many to-one or many-to-many matching.

Fox and Bajari 2013 illustrates the former by estimating a structural model

of the FCC spectrum auctions; and Fox 2010b takes this approach to the

(many-to-many) relationships between car producers and seller of car parts.

5.3 Index-based Approaches

One approach investigates the conditions under which such a model can

actually be analyzed using one-dimensional tools. This is the case, for in-

stance, if the various components of x and y only enter payoffs through

one-dimensional indices, A (x) and B (y). Such a property in turn has em-

pirically testable consequences that are analyzed by Chiappori, Oreffice and

Quintana-Domeque (2012, from now on COQ). Specifically, they consider a

model in which each potential wife, say i ∈ I, is characterized by a vector

xi =
(
x1i , ..., x

K
i

)
∈ RK of observable characteristics, and by some vector of

unobservable characteristics εi ∈ RN ; similarly, man j ∈ J is defined by a

vector of observable variables yj =
(
y1j , ..., y

L
j

)
∈ RL and some unobservable

characteristics νj ∈ RN , where the random components ν and ε are drawn

from continuous and atomless distributions.

COQ assume that both the surplus function and the distribution of un-

observables only depends on the observable characteristics through two one-

dimensional indices (one for men and one for women). An immediate con-

sequence is that whenever two males, j and j′, have different vectors of

observable characteristics but the same index, their spouses must be drawn

from the same distribution; technically, there exists, for each gender, an

(unknown) function of observable characteristics that is a sufficient statistic

for the spouse’s distribution. COQ show that the index can be (ordinally)
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identified from data on matching patterns; moreover, the index assumption

can be tested non parametrically. Note that this approach can be general-

ized beyond the TU framework; it applies to NTU or ITU models, and also

to search frameworks.

5.4 Identifying Complementarities on Unobservables

Fox, Hsu and Yang (2015) suggest an approach to identification in mar-

riage markets that in some sense is the polar opposite of that of Choo and

Siow (2006): instead of restricting the distribution of errors to learn aboaut

the mean surplus, they restrict the mean surplus function and they go after

the distribution of the unobservables ε.

While Fox et al discuss several specifications, all of them rely on the

analyst observing many small markets in which the mean surplus function

is identical. Their baseline result (which is relaxed later in the paper) in

fact assumes that the mean surplus of every possible match is observed by

the analyst. Therefore the joint surplus of a match between a man i and a

woman j is

S(i, j) + εij

and the function S is known, while the ε’s are drawn from an unknown

distribution G. All markets have N men and N women, and all agents must

be matched on each market. Markets share the same distribution G, but

each has its own draw of the ε’s; and each market has a different function

S.

A simple way of representing this problem is to write the surpluses of all

possible matches in a given market as an N ×N matrix of the form (S+E).

Then the optimal matching is the bistochastic matrix21 ∆ that maximizes

the total joint surplus

N∑
i,j=1

∆ij(Sij + Eij) = Tr
(
∆′(S + E)

)
.

21A bistochastic matrix has non-negative elements, and each row and each column sum
up to one.
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The data identify the distribution of ∆ conditional on S, which is driven by

the unknown distribution G of E. Fox et al show that if there are enough

markets that all possible matrices S are represented, then the distribution

G is identified.

This is a remarkable result, but it requires very strong assumptions.

Moreover, its implementation is likely to be very challenging as the number

of markets required to get a reliable estimate of a non-restricted distribution

G will probably be very large. Nevertheless, combining these ideas with

those in section 5.1 seems to be a very promising research direction.

6 Observable surplus or transfers

In all models discussed so far, we constantly assumed that the econometri-

cian can only observe matching patterns. Quite obviously, this restriction

strongly limits the scope of any empirical work. It is easy to get a first

intuition of these limitations. Forget unobservable characteristics for a mo-

ment, and assume one characteristic only matters for matching; assume

moreover that we observe a perfectly assortative matching. From this ob-

servation, we can certainly infer that the surplus function is supermodular.

But, conversely, any supermodular function would generate the same match-

ing; therefore, matching patterns tell us exactly nothing about the precise

nature of the surplus function within the (rather large) set of supermodular

mappings. While this example is highly specific, it conveys the main mes-

sage: when only matching patterns are observed, we should either limit our

expectations to very partial identification (e.g., sign-based identification),

or be willing to accept strong (and probably parametric) assumptions.

6.1 Hedonic models

The situation is much more favorable when other aspects of the matching

outcomes are observed as well. In some cases, for instance, the equilibrium

transfers are also observable. A typical example is provided by hedonic

models (which are canonically equivalent to matching models, as discussed

above). Indeed, available data generally include not only matching patterns
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(which buyer purchases which product from which seller), but also equi-

librium prices. In that case, one could expect much stronger identification

results to obtain.

The econometrics of hedonic models has until recently concentrated on a

very specific model, initially analyzed by Tinbergen (1956). For expositional

purposes, it is useful to briefly recall its main characteristics22. Buyers’

preferences and producers’ profits are quadratic:

U (x, z) = xz − a

2
z2 − P (z)

Π (y, z) = P (z)− yz − b

2
z2

where P (z) is the price of product z, a, b are parameters, and x and y are

the buyer’s and seller’s respective idiosyncratic characteristic; the latter are

assumed one dimensional and normally distributed with respective mean

and variance
(
ma, σ

2
a

)
, a = x, y. In that case, one can show that matching

is negative assortative:

x = αy + β, α < 0

and the equilibrium price is also quadratic in z:

P (z) = p1z +
p2
2
z2

where α, β, p1, p2 are parameters that can in principle be econometrically

identified. The identification problem, in that case, boils down to the fol-

lowing question: can we, from the sole observation of matching patterns

and prices (that is, α, β, p1, p2), recover the parameters of the model (two

means, two variances and the structural parameters a and b)? The answer is

clearly negative: equilibrium prices, together with matching patterns, pro-

vide four equations which cannot pin down the six unknowns.23 Moreover,

the identification process, initially suggested by Rosen (1974) and discussed

by Brown and Rosen (1982), raises difficult endogeneity problems.

22Our presentation exactly follows that of Ekeland, Heckman and Nesheim (2002).
23In fact, one of the variances can be normalized to one, but one of the equations is

redundant, and the indetermination remains.
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Recent advances, however, have shown that the normal-quadratic ex-

ample is misleading: the non identification result that characterizes that

case is highly specific. The intuition is that, in general, we can observe

much more than the mean and (co)variances of the distributions at stake.

That a distribution can be entirely defined by these few parameters (as is

the case under normality assumptions) is a highly peculiar (‘non generic’)

case. In general, we should think of the identification problem in non para-

metric terms: both the observables and the unknowns are functions and

distributions. In a systematic analysis, Ekeland, Heckman and Nesheim

(2004) actually show that, under the assumption of additive separability

of the random component, hedonic models of this kind are non parametri-

cally identified in a generic sense. The extension of these results to the non

separable case is discussed in Heckman, Matzkin and Nesheim (2010) and

Chernozhukov, Galichon and Henry (2014). Recently, Nesheim (2013) has

proposed a multidimensional extension of these results.

6.2 Observable behavior

In the (many) cases in which transfers are not observed, additional identi-

fication power can in principle be gained by observing the behavior of the

matched partners. While this approach has not yet been fully developed,

we describe here a recent contribution of Chiappori, Costa-Dias and Meghir

(2015). They consider a model in which agents first invest in education,

then enter the marriage market and match based on their human capital;

during a third stage (“productive life”), they consume, save and supply la-

bor. Gains from marriage arise from two sources: the joint consumption

of a public good and the sharing of the risk generated by random shocks

affecting wages and human capital. The authors adopt a TU framework;

therefore, once married, the couple maximizes the sum of individual util-

ities. This makes it possible to use standard, dynamic models of savings

and labor supply. The main parameters (and in particular the distribu-

tion of individual preference parameters) can therefore be estimated from

labor supply. Crucially, this implies that the value of the surplus generated

by each type of marriage can be directly recovered from observed behavior.
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The analysis of the matching stage, in turn, determines the equilibrium allo-

cation of the surplus between spouses; ultimately, this pins down the return

on investments in human capital, which can be used to estimate the first

stage.

The model is estimated using the British HPS. From a technical view-

point, a parametric version can be identified using moment estimators. Un-

like the Choo-Siow framework, however, the model is testable, because the

matching patterns must be compatible with the surplus estimations derived

from the analysis of savings and labor supply. Clearly, more work is needed

in this promising direction.

Conclusion

Although the empirical literature on frictionless matching has made spec-

tacular progress over the last decade, many questions remain open. For one

thing, the majority of existing applications consider a model of one-to-one,

bilateral matching; but there is a host of other types of matching models ripe

for empirical analysis. These include “roommate” problems, in which people

matching to form a pair belong to the same population24; many-to-one and

many-to-many matching, which bring up thorny theoretical issues25; and

more general approaches of the “matching in contracts” type (Hatfield and

Milgrom 2005), which unify TU and NTU at the theoretical level but have

yet to be taken to data in a rigorous way.

Another set of open issues are related to what could be called “pre-

matching investments”. In the analysis described above, the distributions

of agents’ characteristics were considered as exogenously given. In practice,

however, characteristics on which agents match are often the product of

some investment decision that was made before the matching game. The

(prospective) outcome of the future matching game then typically influences

the investment decisions. For instance, when choosing a level of education,

or more generally deciding on a human capital investment, agents presum-

24See Chiappori, Galichon and Salanié (2013) for a recent investigation.
25See Fox and Bajari 2013 and Fox 2010b.
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ably consider all returns to this investement, including those perceived on

the marriage market. After all, a higher stock of human capital may affect

a person’s marriage probability and the “quality” (say, the education or in-

come) of their potential spouses—but also the size of the surplus generated

and its allocation between spouses. This intuition is formalized by Chiap-

pori, Iyigun and Weiss (2009), who argue that features of the marriage mar-

ket can explain why investments in higher education has been remarkably

asymmetric between genders over the recent decades; Chiappori, Salanié and

Weiss (2013) provide an empirical investigation of this view. In the same

vein, Low (2014) argues that a shift in the nature of matching equilibria,

itself generated by structural changes in both desired fertility and returns to

human capital investments, has dramatically reduced the cost of female in-

vestement in higher education. While reduced form evidence supports these

views, structural estimates (possibly in the direction initiated by Chiappori,

Costas Dias and Meghir 2015) still need to be developed.

A last and promising avenue for future investigation is the relationship

between models based on frictionless matching and models related to search

approaches. We argued in our Introduction that given only data about

“who matches with whom”, it will be hard to distinguish the predictions

of matching models with unobserved heterogeneity and those of matching

models with frictions. To be more precise, take the pioneering Shimer–Smith

(2000) model. This is somehat different from our framework in that the two

sides of the market are treated symmetrically; but it makes our points more

transparently.

Shimer and Smith describe a market in which types i, j ∈ [0, 1] meet

randomly, consider how they can share their surplus s(i, j), and decide to

match or to wait for a better partner. The primitives are the distribution

of types µ and the joint surplus function s, along with discount rate r, rate

of random meetings ρ, and rate of destruction of matches δ. Given various

restrictions, there is a unique steady state equilibrium; this yields numbers

of singles η(i, 0) and matching patterns η(i, j). Now let the econometrician
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observe some aggregate matching patterns, say

η̃(x, 0) =

∫
11(xi = x)dµ(i) and η̃(x, y) =

∫
11(xi = x, xj = y)dη (i, j) .

The econometrician could neglect frictions and fit a Choo and Siow model

to this data, with separable unobserved heterogeneity of the type I EV form.

We know from Section 5 that this model is just identified nonparametrically;

that is, the econometrician could rationalize the data perfectly with a model

of the form

s(x, y) + αyi + βxj

with

s(x, y) = log
η̃(x, y)2

η̃(x, 0)η̃(y, 0)
.

Conversely, can data generated by a model of frictionless matching with

unobserved heterogeneity also be rationalized by a model of matching with

frictions but no unobserved heterogeneity? In the Shimer–Smith model, the

answer turns out to be negative. Take a type i. When unmatched, she will

meet all other types with a probability proportional to their frequency in the

unmatched population. This applies in particular to all types that belong

to i’s “matching set” (that is, types that are acceptable to her.) Take two

such types j and k; then in the notation above,

η(i, j)

η(i, k)
=
η(j, 0)

η(k, 0)
.

With frictions, matching sets are nondegenerate; and given data that is

disaggregated enough, the equality above will impose restrictions on the

observed matching patterns. It follows that the model of Choo and Siow

can rationalize matching patterns that are inconsistent with the framework

of Shimer and Smith.

This can be seen as a positive or a negative, depending on one’s inclina-

tion. In any case, it is very specific to assumptions that Shimer and Smith

make mostly for simplicity. If for instance meetings were driven by directed

search, the relationship above would break. There are many variants of mod-
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els with frictions and it is hard to make a general statement. We conjecture,

however, that given only data about matching patterns in a cross-section, it

is impossible to distinguish between models with frictions and models with

unobserved heterogeneity. Explaining the dispersion of observed outcomes

by frictions, in that sense, is an a priori not a data-driven choice.26

26Of course, models with frictions are most often used in settings in which a time
dimension is available and/or transfers can be observed. On labor markets for instance,
wage transitions and the dynamics of employment offer rich information to identify the
model. A recent contribution by Hagedorn et al (2014) shows how all components of the
Shimer-Smith model can be identified, assuming that the surplus function is constant over
time.
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remblais”. Histoire de l’Académie Royale des Sciences, 666–704.
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