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1 Introduction

Testing for the presence of moral hazard is a hard problem when agents are unobservably hetero-
geneous—what the contract literature calls “hidden information”. This has been known for some
time in the insurance context for instance, where several approaches have been used to circumvent
this difficulty1. We propose in this paper a test for moral hazard (or lack thereof) that relies
on the availability of an instrument that shifts contract choice but is excluded from the outcome
equation. We allow for the presence of hidden information in the sense that the Agent can have a
privately known type, that neither the Principal nor the econometrician can observe. To describe
our contribution, we use the language of insurance models in this introduction. This is purely for
expository purposes; nothing depends on it. The reader can simply substitute say “employment
contract” for “insurance contract” to apply our results to labor economics for instance.

The basic model of insurance has a risk averse agent deciding how much coverage to buy against
the risk of a loss. To fix ideas, we will illustrate this with car insurance; there the loss Y is caused
by an accident, and different levels of coverage are available. The driver may be insured only if
she is not at fault; or also if she is at fault, with various levels of deductibles and/or proportional
reimbursements. We denote Rd(Y ) the transfer from the insurer to the insuree under contract
d when the insuree incurs a loss Y , and Pd the premium the insuree pays. These are normally
conditional on covariates (e.g. describing the driver as well as her car); we drop them from the
notation here for simplicity. We denote the set of contracts that are available to this driver D.
Note for future reference that D can be represented as a set of pairs (Rd(·), Pd) indexed by d.
It can vary with observed covariates, but not with the agent’s private type v ∈ V since that is
unobserved by the insurer.

Let an insuree with private type v have a Bernoulli utility index uv, and start with an insurance
relationship without moral hazard: this insuree faces an exogenous distribution of losses Fv. Note
that v enters both the utility function (via initial wealth and attitude towards risk) and the
distribution of losses. This insuree will choose her insurance contract d by solving

max
d∈D

∫
uv(Rd(Y )− Y − Pd)dFv(Y ) (1)

To illustrate: the standard Rothschild-Stiglitz model has two states. The loss can be 0, or some
fixed Ȳ . There are two types of insurees, v = L,H, and the loss Ȳ occurs with a probability pv;
so that Fv puts a mass pv on Ȳ and a mass (1 − pv) on 0. Finally, the two types have the same
utility function uv ≡ u.

We now introduce moral hazard in this model: the insuree may be able to influence the distri-
bution of losses by exerting costly effort. A driver, for instance, may exercise more or less caution;
and she may be influenced in her choice of effort by her insurance coverage. Let e ∈ E denote the
effort, and Fv(·; e) the cdf of losses when the agent expends effort e. Then the agent chooses both

1See for instance the recent survey by Chiappori and Salanié (2014).
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contract and effort by solving

max
d∈D,e∈E

∫
uv(Rd(Y )− Y − Pd; e)dFv(Y ; e). (2)

Note that utility depends both on final wealth and on effort now.
We can break down this problem further. For any choice of coverage d, the insuree chooses a

level of effort e = ēv(d). This choice of effort depends both on the coverage d and, via utility and
“technology”, on the agent’s type v. In a first stage, the insuree chooses her coverage by solving

max
d∈D

∫
uv(Rd(Y )− Y − Pd; ēv(d))dFv(Y ; ēv(d)), (3)

with a solution d = D∗v(D). Plugging this into the choice of effort gives

e = ēv (D∗v(D)) ≡ e∗v(D);

and realized losses will be drawn from the distribution

Fv (·; e∗v(D)) ≡ F ∗v (·;D).

This simple model shows why it is so difficult to test for moral hazard (or a fortiori to quantify
it) in the presence of adverse selection. Suppose that the data available has both choice of coverage
d ∈ D and realized losses Y . After conditioning on covariates, the econometrician will face data
that shows observably identical insurees choosing different levels of coverage from a set D and
having different losses Y . The corresponding data-generating process is

Di = D∗vi(D)

Yi ∼ F ∗vi(·;D)

where vi is the unobserved type of insuree i. There is of course a connection between losses Yi
and coverage Di: we know that F ∗vi(·;D) is in fact Fvi (·; ēvi(Di)). But since the data is typically
uninformative about effort choices, this is only very indirect information. It is easy to check that
excluding some covariates from either uv or Fv does not help either, as effort choice, contract choice
and observed losses all depend on both utility and technology.

Now consider testing for moral hazard. In the absence of moral hazard, the distribution of
losses would be an exogenous Fvi as in (1); with moral hazard, it becomes a function of two
additional variables, the choice of coverage Di and the set of available contracts D. If D does not
vary in the data, testing for the null of no moral hazard involves testing that

Yi ⊥⊥ Di | vi

while only observing the joint distribution of (Yi, Di). This would be easy if types vi were observed;
but it is clearly a hopeless task in the presence of adverse selection—or, more generally, if the
econometrician only observes a subset of the payoff-relevant variables.
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An alternative is to use variation in the menu of contracts D. Recall that this is an indexed
set of pairs, each of which has a premium and a reimbursement schedule. Any exogenous variation
in the set of premia and/or reimbursement schedules can be used as an instrument: for any given
agent vi, it changes (or may change) the choice of coverage Di = D∗vi(D) but it does not affect
the distribution of losses conditional on vi and on the coverage chosen Di. This is the approach
to identification we use in this paper. We will show that if the change in the menu of contracts
is truly exogenous, it allows the analyst to test for moral hazard in the presence of any kind of
adverse selection, whether that bears on risk, on utility, or both2.

In addition, we show that when contracts can be ordered so that (i) effort is monotonic with
contract choice, conditional on type; (ii) contract choice is monotonic with respect to the in-
strument; and (iii) outcomes are monotonic in effort, then with moral hazard the distribution of
outcomes must be stochastically monotonic with respect to the instrument. This provides us with
an alternative testing strategies. Note that while assumptions (i)-(iii) are quite natural in the
insurance context, it is easy to imagine settings in which they would be less credible.

Truly exogenous variation in contract choice is key to our results. Changes in the set of
available contracts are often a response of insurers to perceived changes in demand. Such changes
are typically not valid instruments. Randomized experimentation by insurers would, but it is a
rare event3. On the other hand, several papers in insurance economics have exploited (for different
purposes) variation in menus of contracts that is arguably exogenous. Cohen and Einav (2007)
used both informal experimentation by insurers and inflation-driven adjustments to a nominal cap
on deductibles. Einav et al (2013) rely on variation in the health insurance options offered to
different groups of Alcoa workers at different points of time, stemming from staggered timing of
new union contracts4. Handel (2013) observed workers’ health insurance choices before and after
a major change in the options offered by another large company. Regulatory changes can also
generate plausible instruments, depending on their motivation and timing. Chiappori, Durand, and
Geoffard (1998) exploited such an exogenous change in French health insurance: the replacement
of full coverage with a 10 percent copayment in 1994. Dionne and Vanasse (1997) used changes in
the definition of the “no fault” regime for car insurance in Québec. Annan (2015) uses a strategy
related to ours to analyze the effect of a national reform of car insurance in Ghana. The reform
made it harder to buy insurance on credit, making lower coverage more attractive. It led to a large
reduction in claims, showing that moral hazard had played a large role in this market.

Given an exogenous instrument Z, a vector of covariates X, the contract choice D and the
outcome Y, we provide conditions under which testing for the null of no moral hazard is tantamount
to testing the conditional independence assumption

Y ⊥⊥ Z|X = x.

2A related but distinct idea exploits the dependence of contracts on observed characteristics that do not directly
affect utility or technology. Weisburd (2013) applies this idea to data from a large Israeli firm which offers benefits
based on occupation.

3See Manning et al (1987) for a study of the celebrated RAND experiment.
4As they explain clearly in section I.B of their paper, their “moral hazard” is really price elasticity—a common

use of the term in health economics, but different from ours.
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There exists an extensive literature on testing conditional independence; see for instance Su and
White (2007, 2008) and references therein for a review of nonparametric testing results. We follow
Delgado and González-Manteiga (2001, henceforth DG) in constructing nonparametric tests based
on unconditional moments and restricted estimators. This choice has theoretical and practical
advantages in terms of local power and only requires estimating low-dimensional nonparametric
objects.

We give a complete discussion of our proposed test statistics and their properties in the common
case in which both contract choice D and outcomes Y are binary; we normalize them to take values
0 and 1. Then we test for moral hazard as

Y ⊥⊥ P |X = x

with P ≡ P (X,Z) = E(D|X,Z). In this 2-by-2 model, we improve on the approach in DG by
choosing test functions carefully. This allows us to obtain test statistics with smaller finite-sample
bias. Our modification allows for optimal nonparametric first step estimators and data-driven
optimal choices for bandwidths that are often used in practice (e.g. by cross-validation), and
which are not permitted in DG’s theory. Also, our nonparametric test statistic is less sensitive to
smoothing parameters than alternative procedures.

We also complement our nonparametric tests with parametric and semiparametric tests that
can be implemented by simple least squares methods in off-the-shelf statistical software, extending
previous tests by Wooldridge (1990) to our setting.

Section 2 describes the basic testing idea. Section 3 investigates the 2-by-2 model in detail.
It provides conditions under which our test has power; it proposes parametric and nonparametric
test statistics under different specifications and establishes their asymptotic properties. Section 4
proposes a different testing strategy that relies on monotonicity in instruments and stochastic
dominance restrictions. An Appendix gathers computational aspects of our nonparametric tests,
and mathematical proofs for the main inference results.

2 The basic testing idea

Let us translate the economic model presented in the introduction into a statistical model. Consider
the following two equations:

Y = g(e(D,X, V ), X, V, η), (4)

D = h(Z,X, V ), (5)

where

• Y denotes the outcome(s) of interest.

• X contains observed factors that influence the agent’s choice of effort; they will normally
also affect both the probability of the bad state and the choice of coverage.
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• Z are additional observed variables that do not affect the choice of effort for a given coverage,
but may affect contract choice by varying the set of available contracts.

• V is an unobservable representing the individual’s type.

• η represents factors that influence the probability of a bad state conditional on effort.

The term V is the agent’s private information. Note that while V is observed by the agent
and determines her choice of coverage, η typically contains both information that accrues to the
agent between the time she chooses coverage and the time she chooses effort, and shocks that are
unobservable by the agent.
We make the following assumption on the variable Z:

Assumption 2.1 (Instrument Validity at x) The pair (V, η) is independent of Z conditional
on X = x.

In order to proceed, we need to specify a null hypothesis. This is tantamount to defining
“moral hazard”, or its absence. According to the textbook definition (e.g. Salanié 2005, p. 119),
moral hazard arises when the Agent can make unobservable decisions that affect the joint surplus
of her interaction with the Principal, and their incentives are not aligned. In a model of insurance,
the unobservable decision is effort. The marginal benefit of effort is a reduction in losses, which
benefits both parties in a way that depends on the insurance contract; and the marginal cost of
effort is born by the insuree only. This suggests the following null hypothesis:

For fixed x, effort does not change the distribution of losses;
that is, the function (d, v)→ e(d, x, v) is constant.

On the other hand, this is stronger than it need be. Suppose that effort does not respond to
contract choice; then the insurer does not have to worry that providing more coverage will increase
claims, and moral hazard is irrelevant. This corresponds to a weaker null hypothesis:

For fixed x, effort does not depend on the insurance contract;
that is, the function (d, v)→ e(d, x, v) only depends on v.

We use this weaker definition in what follows, and we specify:

(H0) at x : the function (d, v)→ e(d, x, v) only depends on v.

Under this null hypothesis, outcomes are generated by

Y = g(e(X, V ), X, V, η),

and given Assumption 2.1, Y is independent of Z conditional on X = x. We have established that
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Proposition 2.1 Under the null, if Assumption 2.1 holds at x then

Y ⊥⊥ Z|X = x.

At this stage nothing in our assumptions guarantees that the reciprocal to Proposition 2.1 holds,
i.e. that lack of conditional independence implies moral hazard. If for instance the contract choice
does not vary at all with the instrument Z, the test will be useless since conditional independence
will hold even with moral hazard. We therefore need to assume that instruments can pick up
deviations from (H0). To put it loosely, we want to find two possible values of Z that lead to
different choices of effort, which in turn translate into different distributions of outcomes. The
following assumption spells this out rigorously:

Assumption 2.2 (Instrument relevance at x) There exist two disjoint subsets Z1 and Z2 of
suppZ|X = x such that

(i) Pr(Z ∈ Zj|X = x) > 0 for j = 1, 2

(ii) for any v in suppV |X = x, denote Ej(v) the set e(h(Zj, x, v), x, v) for j = 1, 2. Then for all
measurable selections e1(v) ∈ E1(v) and e2(v) ∈ E2(v),

Pr(g(e1(V ), x, V, η) 6= g(e2(V ), x, V, η) |X = x) > 0.

The implications of Assumption 2.2 are obvious:

Proposition 2.2 (Power at x) Let Assumption 2.2 hold at x. Then if (H0) does not hold at x,
Y and Z are not independent conditional on X = x.

This proposition highlights that power comes from a combination of the richness of the variation
in contract choice induced by instruments (via h) and the strength of the assumptions that can
be imposed on the choice of effort (via the function e) and on the technology (via g). Note that
in the common case when instruments only take two values z1 and z2, a test of Assumption 2.2 is
feasible if we observe some agents repeatedly under both instrument values, and their unobserved
heterogeneity (v, η) does not change5. If such an agent always has the same outcomes under z1
and under z2, this would suggest that Assumption 2.2 does not apply to him/her.

In the next section, we study a more specialized model; we will propose test statistics and also
discuss the power of the corresponding test procedures.

5Or at least it can be matched across the two instrument values.
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3 The 2-by-2 model: binary outcome and binary contract

choice

To illustrate our approach, we will now focus on the simplest possible model in which moral hazard
can arise: the menu of contracts D only has two elements, D = 0, 1; and outcomes Y only take
two values which we also denote 0 and 1. In addition, we assume single-index monotonicity:

Assumption 3.1 (Monotonicity) There is a function P such that D = 1(V ≤ P (X,Z)).

Then the 2-by-2 model is

Y = 1(η ≤ e(D,X, V )), (6)

D = 1(V ≤ P (X,Z)), (7)

where henceforth 1(A) denotes the indicator function of the event A, i.e. 1(A) = 1 if A is true,
and zero otherwise. Without loss of generality, we can normalize V and η to be distributed as
U [0, 1] conditional on X = x. In particular, P (X,Z) ≡ E(D|X,Z).

In this 2-by-2 model, under Assumption 2.1

Pr(Y = 1|X = x, Z = z) =

∫ P (x,z)

0

Fη|V,X (e(1, x, v)|v, x) dv +

∫ 1

P (x,z)

Fη|V,X (e(0, x, v)|v, x) dv,

which only depends on z through P (x, z). Therefore we only need to test that

Y ⊥⊥ P (X,Z)|X = x

and we can expect that such tests will have more power to detect moral hazard if the model is
well-specified.6 To simplify notation, we denote by P the random variable P (X,Z).

3.1 Power in the 2-by-2 model

We provide sufficient conditions for our testing procedure to have power at x in this model, where
the outcome is given by

Y = 1 (η ≤ e(1(V ≤ P ), x, V )) .

Assumption 3.2 (Power at x in the 2-by-2 model)
There exist two disjoint subsets Z1 and Z2 of suppZ|X = x such that

(i) Pr(Z ∈ Zj|X = x) > 0 for j = 1, 2.

6Conversely, if the test gives very different results when we use Z or P (x, Z) this would point towards misspec-
ification.
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(ii) p1(x) < p
2
(x), where for j = 1, 2, pj(x) = sup{P (x, z) : z ∈ Zj}, and p

j
(x) = inf{P (x, z) :

z ∈ Zj}.

(iii) For v ∈ VM(x) ≡ [p
1
(x), p2(x)], sign(e(1, x, v) − e(0, x, v)) does not depend on v, where

sign(t) = 1(t ≥ 0)− 1(t < 0).

(iv) For all v ∈ Vm(X) ≡ (p1(X), p
2
(X)), η has full support on [0, 1] conditional on (X = x, V =

v).

(v) Pr(e(1, x, V ) 6= e(0, x, V )|X = x, V ∈ Vm(X)) > 0.

Proposition 3.1 Suppose that (H0) does not hold at x. Then under Assumptions 2.1, 3.1 and 3.2,
Y and Z are not independent conditional on X = x.

Proof: Let z1 ∈ Z1, z2 ∈ Z2. First note that for any value of v not in VM(x), the choices of
effort coincide under z1 and z2: e.g. for v < p

1
(x) we have e(1(V ≤ P (x, z1)), x, v) = e(1, x, v) =

e(1(V ≤ P (x, z2)), x, v). Now using (iii) of Assumption 3.2, suppose that e(1, x, v) ≤ e(0, x, v) for
each v ∈ VM(x). For any such value of v,

e (1(v ≤ P (x, z1)), x, v) ≥ e (1(v ≤ p1(x)), x, v)

and
e (1(v ≤ P (x, z2)), x, v) ≤ e

(
1(v ≤ p

2
(x)), x, v

)
.

Given Assumption 3.2.(ii), this implies that for any v ∈ VM(x),

e (1(v ≤ P (x, z1)), x, v) > e (1(v ≤ P (x, z2)), x, v) .

and therefore that

Pr(Y = 1|Z = z1, X = x)− Pr(Y = 1|Z = z2, X = x)

= E [1(V ∈ VM(x))

× (Pr (η ≤ e (1(V ≤ P (x, z1)), x, V ) |V = v)− Pr (η ≤ e (1(V ≤ P (x, z2)), x, V ) |V = v)) |X = x]

< 0.

The argument is the same if e(1, x, v) ≤ (e(0, x, v) for each v ∈ VM(x). Therefore Y and Z are not
independent conditional on X = x. �

If for instance the instrument Z is discrete, then we just choose two points z1 and z2 in its
support at X = x with P (x, z2) > P (x, z1) and take Z1 = {z1} and Z2 = {z2}. Our test will have
power if D = 1 always induces more (or always induces less) effort than D = 0; or if V and η are
independent and D = 0 and D = 1 induce different average efforts. If Z is continuous, then one
can take small neighborhoods of such points z1 and z2 in the interior of the support of Z.
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3.2 Testing in the 2-by-2 model

In the remainder of the paper we focus on testing the hypothesis7

Y ⊥⊥ P |X = x. (8)

We also focus on the case where X is a continuous variable and we aim to test for (8) for almost
surely (a.s) all x in the support of X, say X . If X is in fact discrete and the researcher is interested
in testing (8) at just one x ∈ X , then the testing problem is simplified. We discuss the discrete
covariate case in Remark 3.1 (p. 11).

The conditional independence Y ⊥⊥ P |X can be characterized by the conditional moment
restrictions

Pr(Y = 1|P,X) = Pr(Y = 1|X) a.s., (9)

or equivalently since Y ∈ {0, 1}: E(Y |P,X) = E(Y |X) a.s., or

E (ε|P,X) = 0 a.s.,

where ε = Y − E(Y |X). These conditional moment restrictions in turn can be rewritten as the
set of unconditional moment restrictions

R(φ) := E (εφ(X,P )) = 0,

for all measurable functions φ such that the moment function R(φ) exists.
Let the data be the random sample {Wi = (Yi, Di, Xi, Zi)}ni=1. The previous characterization

suggests rejecting (9) for “large” values of the sample moments

R0
n(φ) =

1

n

n∑
i=1

εiφ(Xi, Pi).

This is not a feasible statistic since neither Pi nor E(Y |X) are observed; we construct a feasible
version Rn by replacing these two quantities with estimators. Denote

• Ŷni = Ên(Yi|Xi) an estimator of E(Yi|Xi)

• P̂ni an estimator of Pi = P (Xi, Zi)

where Ŷni and P̂ni could be parametric, semiparametric or nonparametric fits.
We compute the residual ε̂ni := Yi − Ŷni and we form the feasible sample moment functions

Rn(φ) =
1

n

n∑
i=1

ε̂niφ(Xi, P̂ni).

7Our results also apply to tests of Y ⊥⊥ Z|X = x, with the simplification that unlike P , Z is observed.
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We call this test parametric when we use finitely many test functions φ. A parametric test rejects
the null hypothesis when the quadratic form

Sn = nR′n(φ)Ω−1n Rn(φ), (10)

takes large values (A′ denotes the transpose of the matrix A). In this expression, φ denotes an
m-dimensional vector of test functions and Ωn estimates consistently the asymptotic variance

Ω := E
(
ε2iφ(Xi, Pi)φ

′(Xi, Pi)
)
.

We will show in section 3.3 how to choose test functions so that the test statistic Sn converges
under the null to a χ2(m). We also will adapt the parametric approach of Wooldridge (1990) to
show how this test can be implemented with routine least squares techniques.

Remark 3.1 If X is discrete and one is interested in testing (8) at just one x ∈ X , then the
natural estimator for E(Yi|Xi = x) is Ŷni ≡ Ên(Yi|Xi = x) = n−1x

∑n
i=1 Yi1(Xi = x), where

nx =
∑n

i=1 1(Xi = x). The parametric test above applies with φ = (φ1, ..., φm)′, where the j-th
component is φj(Xi, Pi) = δj(Pi)1(Xi = x), for some measurable functions δj(·), j = 1, ...,m.

When an infinite family of test functions is used, we will call our test nonparametric. We will
propose in Section 3.5 a nonparametric test where the test functions φ are indexed by s ≡ (x, p) ∈
S, a compact subset of IRd+1 where d is the dimension of X. We will define

Rn(s) =
1

n

n∑
i=1

ε̂niφs(Xi, P̂ni) (11)

the corresponding sample moments, now a stochastic process in s ∈ S. The nonparametric test
statistic is given by the quadratic form

Cn = n

∫
S

(
Rn(s)

σn

)2

dµ(s), (12)

where σ2
n is a consistent estimator of E(ε2), for example

σ2
n =

1

n

n∑
i=1

ε̂2ni,

and µ is a suitable integrating measure. Section 3.5 discusses a specific choice of (φs) and µ
that leads to a closed form expression for Cn (see the Appendix for explicit computation of the
nonparametric test statistic). Since the asymptotic null distribution of the nonparametric test is
non-pivotal, we will also show how its critical values can be approximated by a simple multiplier
bootstrap procedure.
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Relative to other existing tests for conditional independence such as DG’s, our choice of test
functions has several advantages: it results in tests with a smaller finite-sample bias; it makes
optimal nonparametric estimation of E(Yi|Xi) possible when X is low-dimensional; and it is less
sensitive to the choice of the smoothing parameters. To understand why, let us write Rn(φ) as

Rn(φ) =
1

n

n∑
i=1

εiφ(Xi, P̂ni) +
1

n

n∑
i=1

(
E(Yi|Xi)− Ên(Yi|Xi)

)
φ(Xi, P̂ni)

≡ An(φ) +Bn(φ). (13)

To control the bias termBn(φ), existing kernel methods estimate Ŷni = Ên(Yi|Xi) with a bandwidth
parameter sequence h that satisfies the condition nh4 → 0 as n → ∞; see DG (p. 1475). In
contrast, we only require h → 0 as n → ∞, and standard regularity conditions on first steps.
Therefore, undersmoothing is not necessary and optimal bandwidths can be used in estimating
E(Yi|Xi) Moreover, our choice of φ makes the bias term Bn(φ) second order, while in DG it is
of first order. This results in smaller bias for our test statistic relative to that of DG. Finally, in
our test estimation of E(Yi|Xi) does not contribute to the first order asymptotics; this is likely to
make it less sensitive to the choice of h.

The implementation of our tests, both parametric and nonparametric, depends on the spec-
ifications considered for E(Y |X) and P (X,Z), and on the corresponding estimators. As usual,
parametric models are simplest; but they are not robust to misspecifications and may therefore
invalidate our tests. This is a more serious issue for E(Y |X) than for P (X,Z), as estimation of
P (X,Z) has no impact on the asymptotic null distribution of tests (although of course it might
affect power). We will consider a generic estimator P̂ni ≡ P̂n(Xi, Zi), which can be obtained from
parametric, semiparametric or nonparametric fits in a first step. The general theory of the Ap-
pendix allows for all these possibilities. For completeness, we discuss parametric, semiparametric
and nonparametric specifications for E(Y |X) under the same unified theory.

3.3 Parametric inference

First consider the parametric case where

E(Y |X,P ) = ϕ(β′X + γP ),

for a known real-valued function ϕ, an unknown vector β in a subset B of IRd, and an unknown
coefficient γ. This setting includes the standard linear regression model, with ϕ(u) = u, as well
as probit and logit specifications. Testing for moral hazard in this setting corresponds to the
parametric testing problem

H0 : γ = 0 vs H1 : γ 6= 0.

A standard t-test would be valid (even when P is estimated). Here we choose LM tests: they
only require smoothing estimation under the null, which is convenient in later sections given the
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curse of dimensionality of nonparametric estimation. An LM test statistic based on least squares
residuals leads to (10), with

Ŷni = ϕ(β̂
′
Xi), ε̂ni = Yi − Ŷni and φ(Xi, P̂ni) = ϕ̇(β̂

′
Xi)P̂ni,

where β̂ is a restricted least squares estimator on the parameter space B ⊂ Rd, i.e.

β̂ ∈ arg min
β∈B

1

n

n∑
i=1

(Yi − ϕ(β′Xi))
2

and ϕ̇(u) := ∂ϕ(u)/∂u.
We now explain how we can construct test statistics that (i) can be implemented by least

squares methods; and (ii) have standard chi-square limit distributions. Applying the Mean Value
Theorem to the first order condition of the nonlinear least squares objective function w.r.t. β, we
can show that

β̂ − β =
1

n

n∑
i=1

εi
(
E
(
ϕ̇2(β′Xi)XiX

′
i

))−1
ϕ̇(β′Xi)Xi + oP (n−1/2).

Therefore the expansion (13) holds with a bias term Bn(φ) under H0 given by

1

n

n∑
i=1

(
ϕ(β′Xi)− ϕ(β̂

′
Xi)
)
φ(Xi, P̂ni) = −

(
β̂ − β

) 1

n

n∑
i=1

φ(Xi, P̂ni)ϕ̇(β′Xi)Xi + oP (n−1/2)

= − 1

n

n∑
i=1

εi(Lφ)(Xi) + oP (n−1/2),

where φ(X,P ) here is a measurable function satisfying some regularity conditions and

(Lφ)(Xi) = E (φ(Xi, Pi)ϕ̇(β′Xi)Xi)
(
E
(
ϕ̇2(β′Xi)XiX

′
i

))−1
ϕ̇(β′Xi)Xi. (14)

We will choose test functions φ so that Lφ ≡ 0, and hence for which the bias term becomes
of second order Bn(φ) = oP (n−1/2). To implement a parametric test based on Sn in (10), we
recommend the following procedure:

Algorithm 3.1 Algorithm for parametric tests:

1. Obtain first-step estimators
{
P̂ni

}n
i=1

(parametric, semiparametric or nonparametric).

2. Compute restricted least squares residuals
{
ε̂ni = Yi − ϕ(β̂

′
Xi)
}n
i=1

.

3. For each component of an initial m-dimensional vector of test functions φ0, compute the least

squares residuals of φ0(Xi, Pi) on ϕ̇(β̂
′
Xi)Xi, denoted by φ(Xi, Pi). This vector of residuals

consists of new test functions that satisfy the sample analog of Lφ ≡ 0.
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4. Run a regression of a vector of ones on ε̂niφ(Xi, Pi), and compute Sn = nR2
u, where R2

u is
the uncentered R2 of the regression.

5. Reject H0 if Sn > χ2
m,1−α (the 1− α quantile of the χ2

m distribution).

Wooldridge (1990) contains further discussion on the validity of this algorithm when the P̂ni
are not estimates. In the Appendix we prove the validity of this procedure in a more general
setting that includes nonparametric residuals. Nonparametric tests with a continuum of weights
φs can also be implemented when a parametric model is used for E(Y |X,P ); but to save space,
we only present these nonparametric tests below in the context of nonparametric fits, i.e. when
E(Y |X) is nonparametric.

3.4 Semiparametric inference

A natural extension of the previous setting considers an unknown link function ϕ. This leads to a
semiparametric single-index fit that can be obtained, for example, from the semiparametric least
squares estimator of Ichimura (1993):

β̂ = arg min
β∈B

1

n

n∑
i=1

(Yi − Yni(β))2 1(Xi ∈ X ),

where

Yni(β) =

∑n
j=1 Yjkh (β′Xi − β′Xj)∑n
j=1 kh (β′Xi − β′Xj)

,

kh(u) = h−1k (u/h), k (·) is a kernel function, h denotes a bandwidth parameter, and X is a compact
and convex (non-empty) subset of Rd that is introduced to avoid a small random denominator in
Yni(β). Then, with Ŷni = Yni(β̂) we compute residuals

ε̂ni = Yi − Ŷni.

Given the semiparametric single index restriction, the bias term in the expansion (13) equals

1

n

n∑
i=1

(
E(Yi|Xi)− Ên(Yi|Xi)

)
φ(Xi, P̂ni) =

1

n

n∑
i=1

(
E(Yi|β′Xi)− Ên(Yi|β̂

′
Xi)
)
φ(Xi, P̂ni)

=
1

n

n∑
i=1

(
E(Yi|β′Xi)− Ên(Yi|β′Xi)

)
φ(Xi, P̂ni) (15)

+
1

n

n∑
i=1

(
Ên(Yi|β′Xi)− Ên(Yi|β̂

′
Xi)
)
φ(Xi, P̂ni). (16)
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Lemma 5.6 in Ichimura (1993, pp. 95) shows that under regularity conditions, (16) is oP (n−1/2);
and Theorem 3.2 in Escanciano, Jacho-Chavez and Lewbel (2014) implies that (15) equals

− 1

n

n∑
i=1

εi(Lφ)(Xi) + oP (n−1/2),

where
(Lφ)(Xi) = E (φ(Xi, Pi)|β′Xi) . (17)

The following procedure implements a parametric test in the semiparametric setting:

Algorithm 3.2 Algorithm for semiparametric tests: replace step 3 in Algorithm 3.1 with
3’: For each component of an initial m-dimensional vector of test functions φ0, stimate non-

parametrically the least squares residuals φ(Xi, Pi) = φ0(Xi, Pi)− Ên (φ0(Xi, Pi)|β′Xi) .

Again, the residuals in Algorithm 3.2 satisfy the sample analog of Lφ ≡ 0. As in Section 3.3,
this construction allows for optimal estimators Yni(β̂); it reduces the bias of the test and is less
sensitive to smoothing parameters8.

3.5 Nonparametric inference

Semiparametric methods are still subject to misspecification errors. This motivates a fully non-
parametric procedure where E(Y |X) is completely unspecified. Here we compute nonparametric
residuals with the Nadaraya-Watson estimator

ε̂ni = Yi − Ŷni, (18)

where

Ŷni =
Tn(Xi)

fn(Xi)
,

Tn(x) =
1

n

n∑
j=1

YjKh (x−Xj) ,

fn(x) =
1

n

n∑
j=1

Kh (x−Xj) , (19)

with Kh (x−Xj) =
∏d

l=1 kh(xl −Xlj), and kh is a rescaled kernel with bandwidth h.
We show in the Appendix that under regularity conditions, the following expansion holds in

the nonparametric case for suitable test functions φ:

1

n

n∑
i=1

(
E(Yi|Xi)− Ên(Yi|Xi)

)
φ(Xi, P̂ni) = − 1

n

n∑
i=1

εi(Lφ)(Xi) + oP (n−1/2),

8Related nonparametric tests under index restrictions have been studied by Song (2009); he obtained asymptot-
ically pivotal statistics, but for known Pi.

15



with
(Lφ)(Xi) = E (φ(Xi, Pi)|Xi) . (20)

We will base our nonparametric tests on the following class of test functions indexed by s = (x, p) ∈
S ≡ X × [0, 1] :

φs(Xi, P̂ni) := 1(Xi ≤ x)fn(Xi)
(
fn(Xi) exp

(
pP̂ni

)
− r̂p(Xi)

)
,

where

r̂p(x) :=
1

n

n∑
j=1

exp
(
pP̂nj

)
Kh (x−Xj)

estimates consistently rp(x) := f(x)E (exp(pPi)|Xi = x) and fn(·) given in (19) is a kernel estima-
tor of the true density f(·) of X.

Under suitable regularity conditions, φs(Xi, P̂ni) converges in mean square to

φ0
s(Xi, Pi) = 1(Xi ≤ x)f 2(Xi) (exp(pPi)− E (exp(pP )|X = Xi)) .

Our nonparametric test of conditional independence is similar in nature to the nonparametric
significance tests proposed in DG, which used the moments

φDGs (Xi, Pi) = 1(Xi ≤ x)fn(Xi)1(Pi ≤ p).

There are three important differences with respect to DG:

• We consider moment functions satisfying Lφ = 0, which leads to the advantages men-
tioned above of having small bias, avoiding undersmoothing, permitting commonly used
cross-validated bandwidths and having better finite sample performance.

• In DG’s setting Pi was observed, whereas in our setting we have a regressor that is non-
parametrically generated. This significantly complicates inference. For example, we would
require stringent conditions on the rate of convergence of the estimator P̂ni to ensure the
convergence of 1(P̂ni ≤ p) 9. This motivates our choice of the smooth test function exp(pP ).

• The factor f 2
n(Xi) in our test allows weakening strong conditions on the density (i.e. density

bounded away from zero) that otherwise are needed in DG.

• Finally, our method of proof is very different from DG and allows for stochastic bandwidth
choices, which are common in applied work (e.g. cross-validated bandwidths).

To study the asymptotic distribution of Cn in (12) we view this test statistic as a continuous
functional of the stochastic process Rn(·) in (11). To derive its asymptotic distribution under the
null hypothesis we first show that n1/2Rn converges weakly to a process in `∞ (S) defined below;

9This is similar to the difficulties with the maximum score estimator of Manski (1975).
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then we apply the Continuous Mapping Theorem (CMT) (e.g. Dudley 1999, Theorem 3.6.7, pp.
116). Our next result provides the limiting distribution of n1/2Rn under the null. Let `∞ (S)
be the Banach space of uniformly bounded functions on S endowed with the supremum norm,
‖f‖∞ = sups∈S |f(s)| . Let R∞ be zero mean Gaussian process with covariance function,

K(s1, s2) = E(ε2iφ
0
s1

(Xi, Pi)φ
0
s2

(Xi, Pi))

for fixed s1 and s2 in S.

Theorem 3.1 Under H0, if A1 to A5 in the Appendix hold, then

n1/2Rn converges in distribution to R∞ in `∞ (S) .

As a consequence of Theorem 3.1 and the CMT, under H0, p

Cn →d

∫
S

(
R∞(s)

σ

)2

dµ(s)

where σ2 = Eε2. Unfortunately, the limiting distribution R∞ is not pivotal, and the asymptotic
critical values of Cn are difficult to compute except in special circumstances. Hence, we propose
to implement the test with the assistance of a simple bootstrap procedure. We prove below that
the distribution of R∞ can be approximated by the limiting bootstrap distribution of

√
nR∗n(s) =

1√
n

n∑
i=1

ε̂niφs(Xi, P̂ni)Vi,

where {Vi, i = 1, ..., n} are random variables such that {Vi}ni=1 are bounded, iid independent of
Wn = {Yi, Di, Xi, Zi, i = 1, ..., n}, such that E (V1) = 0 and E (V 2

1 ) = 1. Examples are Rademacher
variables Pr (Vi = −1| {Wi}ni=1) = Pr (Vi = 1| {Wi}ni=1) = 0.5.

Let C∗n denote the corresponding bootstrap test statistic when
√
nRn is replaced by R∗n. As

usual, we approximate the bootstrap distributions by Monte Carlo. Let {C∗n,b}Bb=1 beB independent
Monte Carlo simulations of C∗n, and let c∗n,α be the corresponding α-th empirical critical value,
α ∈ (0, 1). We reject the null hypothesis of moral hazard with the nonparametric test at the α-th
significance level if Cn > c∗n,α. More generally, the unknown limiting null distribution of g (Rn) ,
i.e. the distribution of g (R∞) , is approximated by the bootstrap distribution of g (R∗n) . That is,
the bootstrap distribution

F ∗
g(
√
nR∗n) (x) = Pr (g (R∗n) ≤ x| {Wi}ni=1)

estimates the asymptotic null distribution function

Fg(R∞) (x) = Pr (g (R∞) ≤ x) .

Thus, H0 will be rejected at the 100α% of significance when g (Rn) ≥ c∗n,α, where F ∗g(R∗n)
(
c∗n,α
)

=
1 − α. The bootstrap assisted test is valid if F ∗g(R∗n) is a consistent estimator of Fg(R∞) at each

continuity point of Fϕ(R∞). When consistency is in probability it is expressed as g (R∗n)→d g (R∞)
in probability . See Giné and Zinn (1990) or van der Vaart and Wellner (1996) for discussion.

In the Appendix we prove the validity of the bootstrap approximations.
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Theorem 3.2 If A1 to A5 in the Appendix hold, for any continuous functional g in `∞ (S) ,

g (R∗n)→d g (R∞) in probability.

Remark 3.2 Our choice of functional g(R) =
∫
S

(
R(s)
σ

)2
dµ(s) involves unknown quantities in σ

and perhaps µ. However, by standard arguments, estimation of these objects does not affect the
asymptotic null distribution of our test.

We recommend the following procedure to implement the nonparametric test.

Algorithm 3.3 Algorithm for nonparametric tests:

1. Obtain first-step estimators
{
P̂ni

}n
i=1

(parametric, semiparametric or nonparametric).

2. Compute nonparametric restricted residuals as in (18) and test statistic Cn as in the closed
form expression (21) in page 23.

3. Generate n iid Rademacher variables {Vi}ni=1, i.e. Pr (Vi = −1) = Pr (Vi = 1) = 0.5, inde-
pendent of the original sample. Compute bootstrap residuals ε̂∗ni = ε̂niVi and compute C∗n as
Cn in (21) in page 23 but with ε̂ni replaced by ε̂∗ni.

4. Repeat Step 3 B times, and compute the (1−α)−empirical quantile of the obtained bootstrap
test statistics, C∗n,j j = 1, ..., B, say c∗n,α.

5. Reject H0 at level α if Cn > c∗n,α.

4 Testing for stochastic dominance

Proposition 2.1 established that in the absence of moral hazard, outcomes Y and instruments Z
are independent conditional on X = x. But sometimes the economic structure of the problem
indicates the direction that the codependence of Y and Z will take under moral hazard. In an
insurance context for instance, effort is often assumed to shift the mean of the distribution of
losses to the left, or perhaps only to generate a distributions of losses that are ordered by first-
order stochastic dominance. If in addition contract choice is monotonic with respect to instruments
Z, then intuition suggests that a higher value of the instrument should shift the distribution of
losses to the left.

To make this more precise, we return to the setting of the model of section 2. Let z and z′ be
two values of the instruments Z, and x be a value of the covariates. The following gives sufficient
conditions for the distributions of outcomes to be ordered by the values of the instruments:

Assumption 4.1 (Stochastic Dominance at (x, z, z′))
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(i) there exists an ordering of contract choices �D for which the effort function (D, V ) →
e(x,D, V ) is strictly increasing with D for all V

(ii) for the same ordering �D, h(x, z′, V ) �D h(x, z, V ) for all V

(iii) (e, V, η)→ g(e, x, V, η) is increasing in e.

The combination of (i) and (ii) in Assumption 4.1 implies that when instruments shift from z to
z′, the distribution of effort shifts to the right. Part (iii) then implies that so does the distribution
of outcomes. Obviously, part (i) of the assumption violates the null hypothesis of no moral hazard.

In an insurance model, the order �D in the assumption would simply reflect lower coverage,
which induces higher effort. The change from z to z′ could come from a higher price of coverage,
or an insurer offering a new contract with lower coverage.

Proposition 4.1 Under Assumptions 2.1 and 4.1, the distribution of Y conditional on (Z =
z′, X = x) first-order stochastically dominates that of Y conditional on (Z = z,X = x).

Proof: remember that

Y = g (e(D, x, V ), x, V, η) = g (e(h(x, Z, V ), x, V ), x, V, η) .

Therefore for any y, using Assumption 4.1.(iii),

Pr(Y < y|Z = z,X = x) = Pr(e(h(x, z, V ), x, V ) < ḡ(y, x, V, η)|X = x)

for an increasing function ḡ. Using part (i),

Pr(Y < y|Z = z,X = x) = Pr(h(x, z, V ) ≺D g̃(y, x, V, η)|X = x)

for some function g̃, and finally, part (ii) gives

Pr(h(x, z, V ) ≺D g̃(y, x, V, η)|X = x) > Pr(h(x, z′, V ) ≺D g̃(y, x, V, η)|X = x)

so that Pr(Y < y|Z = z,X = x) > Pr(Y < y|Z = z′, X = x). �
Proposition 4.1 suggests the use of tests that focus on the alternative of stochastic dominance.

In a parametric setting, similar to that of Section 3.3, developing such methods is straightforward.
For example, consider for simplicity the binary outcome case and a probit or logit type specification

E(Y |X,Z) = ϕ(β′X + γZ).

The null of conditional independence corresponds to γ = 0. The alternative of stochastic dominance
corresponds to γ > 0 or γ < 0, depending on the direction of monotonicity. A simple one sided
t-test would be a valid test. This can be implemented in off-the-shelf statistical software.

Nonparametric tests of stochastic monotonicity are also available in the literature. See for
example the test proposed by Romano, Shaikh and Wolf (2014), which can be applied when the
support of the variables (Y,X,Z) is discrete, or Lee, Linton and Whang (2009), Delgado and
Escanciano (2012), and Andrews and Shi (2013), which can be applied to continuous variables.
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Concluding remarks

While we chose to only discuss inference in detail for the 2-by-2 model, it should be clear from sec-
tion 2 that our approach is much more general. Applying it requires checking that Assumption 2.2
holds, so that the instruments have power to detect deviations from the null, and then writing the
appropriate test statistic. Both steps will be slightly different depending on the range of variation
of instruments, of efforts, and of outcomes; but the same principles apply. In the 2-by-2 model
we recommend first checking the relevance of instruments by applying the same conditional inde-
pendence test proposed above but where Yi and Pi are replaced, respectively, by Di and Zi. Then,
if the instruments are found nonparametrically relevant, proceed by applying the nonparametric
test based Cn, with the closed form expression provided in the Appendix.

The contribution of this approach to testing for moral hazard depends on its power to reject
the null in the kind of samples that researchers use in practice. We are currently developing a
Monte Carlo simulation study to test how our procedure performs in realistic instances of the
2-by-2 model.

20



References

Andrews, D.W.K. and X. Shi (2013), “Inference based on conditional moment inequali-
ties,” Econometrica, 81, 609-666.

Annan, F. (2015), “Identifying and Estimating Asymmetric Information using an Instrument
from a National Reform”, mimeo Columbia.

Chiappori, P.-A., F. Durand, and P. Y. Geoffard, 1998,, “Moral Hazard and the
Demand for Physician Services: First Lessons From a French Natural Experiment”, in European
Economic Review, 42, 499–511.
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5 Appendix:

5.1 Computation of the nonparametric test statistic

The nonparametric test statistic (12) can be easily computed in closed form when the integrating
measure is given by

dµ(s) = dFn(x)× dp,
where Fn is the empirical cumulative distribution function of covariates {Xi}ni=1. With this choice,
after some simple algebra Cn is the following quadratic form of residuals {ε̂ni}ni=1

Cn =
1

n2σ2
n

n∑
i=1

n∑
k=1

ε̂niε̂nkaikbik, (21)

where

aik =
n∑
j=1

1(Xi ≤ Xj)1(Xk ≤ Xj),

bik = fn(Xi)fn(Xk)

fn(Xi)fn(Xk)
exp

(
P̂ni + P̂nk

)
− 1

P̂ni + P̂nk
− fn(Xi)cik − fn(Xk)cki + dik

 ,
cik =

1

n

n∑
j=1

exp
(
P̂ni + P̂nj

)
− 1

P̂ni + P̂nj

Kh (Xk −Xj)

and

dik =
1

n2

n∑
j=1

n∑
l=1

exp
(
P̂nj + P̂nl

)
− 1

P̂nj + P̂nl

Kh (Xi −Xj)Kh (Xk −Xl) .

5.2 Proofs of main inference results

The sample observations {Wi = (Yi, Di, Xi, Zi)}ni=1 are a sequence of independent and identically
distributed (iid) variables defined on the measurable space (W ,B), with probability law P, and
distributed as {W = (Y,D,X,Z)} . Let Pn denote the empirical distribution associated to {Wi}ni=1.
Henceforth, for a measurable function g we denote

Pg =

∫
gdP,

where we drop the domain of integrations to simplify the notation. The empirical process is defined
as

Gng =
√
n (Png − Pg)

=
1√
n

n∑
i=1

{g(Wi)− E (g(Wi))} .
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To measure the complexity of a class of functions G, we introduce the concept of bracketing
numbers. An envelope function G for the class G is a measurable function such that G(x) ≥
supg∈G |g(x)| . Given two functions l, u, a bracket [l, u] is the set of functions f ∈ G such that
l ≤ f ≤ u. An ε-bracket with respect to a norm ‖·‖ is a bracket [l, u] with ‖l − u‖ ≤ ε, ‖l‖ < ∞
and ‖u‖ < ∞ (note that u and l not need to be in G). The covering number with bracketing
N[·](ε,G, ‖·‖) is the minimal number of ε-brackets with respect to ‖·‖ needed to cover G. Let ‖·‖2
denote the L2-norm ‖g‖22 :=

∫
g2dP. Define for any vector (a1, ..., ad) of d integers the differential

operator ∂ax := ∂|a|/∂xa11 . . . ∂xadd , where |a| :=
∑d

i=1 ai.
Let f (x) denote the density of X evaluated at a point x in its support. For any smooth function

h : X ⊂ Rd → R and some η > 0, let η be the largest integer smaller than η, and

‖h‖∞,η := max
|a|≤η

sup
x∈X
|∂axh(x)|+ max

|a|=η
sup
x1 6=x2

|∂axh(x1)− ∂axh(x2)|
|x1 − x2|η−η

.

Further, let Cη
M(X ) be the set of all continuous functions h : X ⊂ Rd → R with ‖h‖∞,η ≤ M .

Then, it is known that lnN[·](ε, C
η
M(X ), ‖·‖∞) ≤ Cε−vw , with vw = d/η.

Henceforth, F is a class of measurable functions with F ⊂ C
ηf
Mf

(X ) and T is class of measurable

functions with T ⊂ C
ηT
MT

(X ). Let P and Ψ denote classes of measurable functions of (X,Z) ⊂
Rd+p. Let P̂ (Xi, Zi) be an estimator of P (X,Z) = E(D|X,Z). Define m(x) := E(Y |X = x),
T (x) := f (x)×m(x), and for p ∈ [−1, 1] and π ∈ P ,

rp,π(x) := f(x)E (exp(pπ(Xi, Zi))|Xi = x) .

A1.- E[Y 2] <∞ and X is a convex, compact subset of Rd, with non-empty interior.

A2.- (i) f and T are uniformly continuous; (ii) T ∈ CηT
MT

(X ), f ∈ Cηf
Mf

(X ), P(Tn ∈ T ) → 1, and

P(fn ∈ F)→ 1, for some ηT > d/2, ηf > d/2 and Mf <∞.

A3.- (i) rp,π(·) is uniformly equicontinuous, i.e.

lim
δ→0

sup
x,|z|<δ

sup
p∈[−1,1],π∈P

|rp,π(x− z)− rp,π(x)| = 0;

∥∥∥P̂ − P∥∥∥
2

= oP (1), P ∈ P and P(P̂ ∈ P) → 1, where P is a class of measurable functions

from Rd+p to [0, 1]; (ii) lnN[·](ε,P , ‖·‖2) ≤ Cε−vP for some vP < 2. Furthermore, P(r̂p ∈
F)→ 1 for each p ∈ [−1, 1].

A4.- The kernel function k (t) : R → R is symmetric, bounded, integrable and satisfies the
following conditions:

∫
k (t) dt = 1,

∫
k2(u)du <∞ and lim|z|→∞ |z| |k(z)| = 0.

A5.- The bandwidth h ≡ hn satisfies Pr(an ≤ hn ≤ bn) → 1 as n → ∞, for deterministic
sequences of positive numbers an and bn such that bn → 0 and adnn/ log n→∞.
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Assumption 1 is standard. The compact support of X can be relaxed. Assumptions A2(ii)-A3
follow from certain smoothness in the underlying class of functions. Assumption A4 is standard in
the literature of nonparametric kernel estimation, while Assumption A5 permits data-dependent
bandwidths.

Proof of Theorem 3.1: Define

ψ̂s(Xi, P̂ni) := 1(Xi ≤ x)
(
fn(Xi) exp(pP̂ni)− r̂p(Xi)

)
and then write

Rn(s) =
1

n

n∑
i=1

ε̂niφs(Xi, P̂ni)

=
1

n

n∑
i=1

[Yifn(Xi)− Tn(Xi)] ψ̂s(Xi, P̂ni)

=
1

n

n∑
i=1

(Yif(Xi)− Tn(Xi)) ψ̂s(Xi, P̂ni)

+
1

n

n∑
i=1

Yi (fn(Xi)− f(Xi)) ψ̂s(Xi, P̂ni)

≡ R1n(s) +R2n(s). (22)

To analyze R1n(s) define the classes of functions

Ψ := {(x, z)→ 1(x̄ ≤ x) (η(x) exp(p× π(x, z))− r(x)) : (x̄, p) ∈ S; η, r ∈ F ; π ∈ P}

and
G1 := {(y, x, z)→ (yf(x)− ϕ(x))ψ(x, z) : ϕ ∈ T , ψ ∈ Ψ} .

By Lemma A1 below, G1 is P-Donsker if T and Ψ are P-Donsker. Since T ⊂ C
ηT
MT

(X ) with
ηT > d/2, then it is known that T is P-Donsker. Lemma A3 below shows that Ψ is P-Donsker.

Define
gs,ηn(Wi) := (Yif(Xi)− Tn(Xi)) ψ̂s(Xi, P̂ni)

and
gs,η0(Wi) := (Yif(Xi)− T (Xi))ψs(Xi, Pi),

where ηn = (Tn, ψ̂s) and η0 = (T, ψs), with ψs(Xi, Pi) := 1(Xi ≤ x) (f(Xi) exp(pPi)− rp(Xi)) .
Now, using that ψs and T are uniformly bounded and the triangle and Cauchy-Schwarz in-

equalities, write

sup
s∈S

∥∥gs,ηn − gs,η0∥∥2 ≤ C ‖Tn − T‖2 + C sup
s∈S

∥∥∥ψ̂s − ψs∥∥∥
2

+ ‖Tn − T‖2 sup
s∈S

∥∥∥ψ̂s − ψs∥∥∥
2

= oP (1),
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where the last equality uses Lemmas A5-A6 below. In addition, Assumptions A2-A3, yield T ∈
C
ηT
MT

(X ), ψs ∈ Ψ, P(Tn ∈ T )→ 1 and P(ψ̂s ∈ Ψ)→ 1. Conclude from Lemma A2 that uniformly
in s ∈ S,

√
nR1n(s) =

1√
n

n∑
i=1

{(Yif(Xi)− T (Xi))ψs(Xi, Pi)}

+
√
nP( (Yif(Xi)− Tn(Xi)) ψ̂s(Xi, P̂ni))

+oP (1),

≡ A1n(s) +B1n(s) (23)

We first analyze the bias term B1n(s). By the triangle inequality, Cauchy-Schwarz inequality and
the moment

E (ψs(Xi, Pi)|Xi) = 0 a.s., (24)

we have, uniformly in s ∈ S,

B1n(s) =
√
nP( (T (Xi)− Tn(Xi))ψs(Xi, Pi)) + oP (1)

= oP (1).

Similarly as for R1n,

√
nR2n(s) =

√
nP(Yi (f(Xi)− fn(Xi)) ψ̂s(Xi, P̂ni)) + oP (1),

=
√
nP(Yi (f(Xi)− fn(Xi))ψs(Xi, Pi)) + oP (1),

= oP (1), (25)

where the first equality uses Lemma A2, the second equality uses the triangle inequality and
Cauchy-Schwarz’s inequality and the last equality uses the moment restriction (24). Then, from
(22), (23) and (25) we conclude, uniformly in s ∈ S and an ≤ h ≤ bn,

Rn(s) =
1

n

n∑
i=1

{
εiφ

0
s(Xi, Pi)

}
+ oP (n−1/2).

It is straightforward to show from our results that the class

{w → ε1(x̄ ≤ x) (f(x) exp(p× P (x, z))− rp(x)) : s ∈ S}

is P-Donsker. This completes the proof of the Theorem. �

Proof of Theorem 3.2: Write

√
nR∗n(s) =

1√
n

n∑
i=1

εiφ
0
s(Xi, Pi)Vi +

1√
n

n∑
i=1

{ε̂niφs(Xi, P̂ni)− εiφ0
s(Xi, Pi)}Vi

: = R∗1n (s) +R∗2n (s) .
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First, note that Theorem 2.11.9 in van der Vaart and Wellner (1996) implies

R∗1n →d R∞ in probability.

Second, we prove that
R∗2n →p 0 in probability.

For this we need to show that the finite dimensional distributions of the process R∗2n (conditionally
on the sample) converge to zero in probability and that R∗2n is asymptotically tight. Let consider
a finite set of points of S, s1 = (x′1, p1)

′, ..., sr = (x′1, p1)
′ and a real vector λ = (λ1, ..., λr)

′ with
|λ| = 1. Define

Z∗n,r = n−1/2
n∑
i=1

r∑
j=1

λj{ε̂niφsj(Xi, P̂ni)− εiφ0
sj

(Xi, Pi)}Vi :=
n∑
i=1

ζr∗ni,

where ζr∗ni is implicitly defined. Then, note that conditional on the original data, ζr∗ni is an indepen-
dent (not identically distributed) array of random variables, with

E∗

(
n∑
i=1

ζr∗ni

)
= 0,

while

V ∗

(
n∑
i=1

ζr∗ni

)
=

n∑
i=1

V ∗ (ζr∗ni)

=
r∑
j=1

r∑
h=1

λjλh

(
n−1

n∑
i=1

l̂nij l̂nih

)
:= σ̃2

n,r,

where l̂nij = {ε̂niφsj(Xi, P̂ni)− εiφ0
sj

(Xi, Pi)}. By Cauchy-Schwarz’s inequality and L2 convergence(
n−1

n∑
i=1

l̂nij l̂nih

)
≤

(
n−1

n∑
i=1

l̂2nij

)(
n−1

n∑
i=1

l̂2nih

)
= oP (1),

which follows by Markov’s inequality and from routine arguments in nonparametric kernel estima-
tion.

Next, the almost sure asymptotic uniform equicontinuity follows from Theorem 2.11.9 in van
der Vaart and Wellner (1996). �

27



5.3 Lemmas

The following Lemma is a well-known result in empirical processes theory (see e.g. Lemma A.1 in
Escanciano et al. (2014)).

Lemma A1. Let F and G be classes of functions with a bounded and a squared integrable envelope
F and G, respectively, then

N[·](ε,F·G, ‖·‖2) ≤ N[·](Cε,F , ‖·‖2)×N[·](Cε,G, ‖·‖2).

The following Lemma is Theorem 2.1 in Van der Vaart and Wellner (2007) and is stated here for
exposition.

Lemma A2. Suppose the following conditions hold

• {gs,η : s ∈ S, η ∈ H} is a P-Donsker class of measurable functions,

• P(ηn ∈ H)→ 1 and η0 ∈ H, as n→∞, and

• sups∈S
∥∥gs,ηn − gs,η0∥∥2 → 0, as n→∞.

Then, uniformly in s ∈ S,
Gngs,ηn = Gngs,η0 + oP (1).

Lemma A3. Ψ is a uniformly bounded P-Donsker class.
Proof of Lemma A3. The proof follows from Lemma A1 and the P-Donsker property of the
class

{(x, z)→ exp(p× π(x, z)) : p ∈ [−1, 1], π ∈ P} ,

which in turn follows easily from the Lipschitz property of π → exp(p× π(x, z)). �

Lemma A4 (Uniform in bandwidth bias). Let K : Rd → R be a measurable bounded function
such that ∫

Rd

|K(z)| dz <∞ and lim
|z|→∞

|z|d |K(z)| = 0.

Let g : Rd → R be a continuous function such that∫
Rd

|g(z)| dz <∞.

Then,

sup
an≤h≤bn

∣∣∣∣∫ 1

hd
K
(z
h

)
g(x− z)dz − g(x)

∫
K (z) dz

∣∣∣∣ = o(1). (26)
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Furthermore, if g is uniformly continuous, the convergence in (26) is uniform in Rd.
Proof of Lemma A4. Take any δ > 0. It is easy to check that the left hand side of (26) is
bounded by

sup
|z|≤δ
|g(x− z)− g(x)|

∫
Rd

|K(z)| dz

+ sup
|z|>δb−1

n

|K (z)| |z|d δ−d
∫
Rd

|g(z)| dz

+ |g(x)|
∫
|z|>δb−1

n

|K(z)| dz.

Continuity of g and bn → 0 implies the result. Uniformity in Rd follows from g being bounded
uniformly. �

Lemma A5. Under Assumptions A1, A2(i), A4(i) and A5(i),

sup
an≤h≤bn

‖fn − f‖2 = oP (1) and sup
an≤h≤bn

‖Tn − T‖2 = oP (1).

Proof of Lemma A5. We prove ‖Tn − T‖2 = oP (1); we omite the proof of ‖fn − f‖2 = oP (1),
which is similar but simpler.

It suffices to prove that

sup
an≤h≤bn

∫
(E (Tn(x))− T (x))2 f(x)dx = o(1) (27a)

and

sup
an≤h≤bn

∫
V ar (Tn(x)) f(x)dx = o(1). (28)

The proof of (27a) follows from the proof of Lemma A4, by the uniform continuity of T and the
boundedness of f . Moreover, by well known results using Assumption A1 and the boundedness of
f,

sup
an≤h≤bn

∫
V ar (Tn(x)) f(x)dx ≤ 1

adnn

∫ ∫
E(Y 2

j K
2
h (x−Xj))f(x)dx

≤ C

adnn

∫
k2(u)du

= o(1).

This proves the Lemma. �

Lemma A6. Under Assumptions A1,A2(i), A3(i), A4(i) and A5(i),

sup
an≤h≤bn

sup
s

∥∥∥ψ̂s − ψs∥∥∥
2

= oP (1).
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Proof of Lemma A6. For p ∈ [−1, 1] and π ∈ P , we define

r̂p,π(x) :=
1

n

n∑
j=1

exp (pπ(Xj, Zj))Kh (x−Xj) .

We first show that
sup

an≤h≤bn
sup

p∈[−1,1]
sup
π∈P
‖r̂p,π − rp,π‖2 = oP (1).

This follows from the same arguments as Lemma A5; the bias is uniformly negligible by the uniform
equicontinuity and the uniform integrability of rp,π, since exp (pπ(Xj, Zj)) is uniformly bounded.

The uniform boundedness and Lipschitz property of the function exp (pπ(Xj, Zj)) also imply,
uniformly in an ≤ h ≤ bn,

sup
s

∥∥∥ψ̂s − ψs∥∥∥
2
≤ C

[
‖fn − f‖2 +

∥∥∥P̂ − P∥∥∥
2

+ sup
p
‖r̂p − rp‖2

]
= oP (1),

by Lemma A5, Assumption A3 and

sup
p
‖r̂p − rp‖2 ≤ sup

p∈[−1,1]
sup
π∈P
‖r̂p,π − rp,π‖2 + sup

p∈[−1,1]

∥∥∥rp,P̂ − rp∥∥∥
2

≤ oP (1) + C
∥∥∥P̂ − P∥∥∥

2

= oP (1).

This proves the Lemma. �
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