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Abstract

We consider partial identification of finite mixture models in the presence of an observ-

able source of variation in the mixture weights that leaves component distributions

unchanged, as is the case in large classes of econometric models. We first show that

when the number J of component distributions is known a priori, the family of mix-

ture models compatible with the data is a subset of a J(J − 1)-dimensional space.

When the outcome variable is continuous, this subset is defined by linear constraints

which we characterize exactly. Our identifying assumption has testable implications

which we spell out for J = 2. We also extend our results to the case when the ana-

lyst does not know the true number of component distributions, and to models with

discrete outcomes.



Introduction

Finite mixture models feature prominently in many areas of econometrics. When in-

dividual heterogeneity in labor markets is characterized by a finite number of types,

as in Eckstein and Wolpin (1990) and Keane and Wolpin (1997), structural param-

eters of interest are recovered from a finite mixture. In measurement error models

including data contamination and misclassification of treatment or other observed

discrete regressors (see Chen, Hong, and Nekipelov (2011)) observed outcomes are

drawn from a finite mixture of distributions. The very large class of dynamic mod-

els with hidden discrete state variables, such as regime switching, also falls in the

category of finite mixtures (see Kim and Nelson (1999) for an extensive treatment).

Finally, social interactions, imperfect competition or complementarities in discrete

choice models often generate multiple equilibria, hence finite mixture models, where

the components are outcome distributions conditional on a realized equilibrium and

the equilibrium selection mechanism characterizes the mixture weights.

The statistical literature on parametric estimation of finite mixtures and determi-

nation of the number of components in mixtures is vast, as evidenced in a recent ac-

count by Frühwirth-Schnatter (2006). Recently, however, attention was drawn to the

empirical content of structural economic models with unobserved types or states short

of parametric assumptions on component distributions and mixture weights. Several

strategies for the nonparametric identification of finite mixtures have emerged as a

result. Mahajan (2006), Lewbel (2007) and Hu (2008) rely on instrumental variables

to identify models with misclassified discrete regressors. Chen, Hong, and Tamer

(2005) rely on auxiliary data and Chen, Hu, and Lewbel (2008, 2009) use shape and

moment restrictions to identify several types of measurement error models. Kitamura

(2003) relies on shape invariance to identify finite mixture models nonparametrically.

An exclusion restriction, namely a variable shifting mixture weights without af-

fecting component distributions, is maintained in many of the studies mentioned

above (namely Mahajan (2006), Lewbel (2007), Hu (2008) and Chen, Hu, and Lew-

bel (2008, 2009). This exclusion restriction has much larger appeal than the data

combination and misclassification framework. It can be derived from the widely

maintained Markov assumption in regime-switching and other hidden state models.

We also show how it can be substantiated in models of unobserved heterogeneity,
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where geographical variables, for instance, may shift type proportions without affect-

ing utility; and in models with multiple equilibria, where specific interventions may

increase the likelihood of one equilibrium being selected without affecting outcomes

conditional on equilibrium.

This exclusion restriction is generically insufficient for nonparametric identification

of the component distributions and the mixture weights. However, it has a non-trivial

empirical content, which we characterize through a constructive description of the

identified set.

Ours is not the first attempt at partial identification of mixture models. Some

of the recent work on partial identification studied particular mixture models and/or

identifying restrictions. Thus, Horowitz and Manski (1995) derive sharp bounds on

the distribution of contaminated variables; but they assume an upper bound on the

probability of contamination, while we do not restrict mixture weights. Bollinger

(1996) derives sharp bounds on E[Y |X ] when X is a mismeasured binary regressor;

our results apply to regressors of any form in any kind of mixture. Hall and Zhou

(2003) studied nonparametric identification in models with repeated measurements.

More precisely, they derive bounds for the distribution of a T -dimensional mixture

when T ≥ 2 and each component has independent marginals. Kasahara and Shimotsu

(2009) build on similar ideas to identify finite mictures of persistent types in dynamic

discrete choice models. Bonhomme, Jochmans, and Robin (2012) show point identifi-

cation when T ≥ 3 under a rank condition, and they propose a convenient estimation

method.

Molinari (2008) gives general partial identification results for the distribution of

a misclassified categorical variable. She proposes a direct misclassification approach

to the treatment of data errors, which fully exploits all known restrictions on the

matrix of data misclassification probabilities. In the model Pw = Pw|xPx, Molinari

derives sharp bounds on the vector of true frequencies Px based on the distribution

of misclassified data Pw and a very comprehensive class of restrictions on the matrix

of misclassification probabilities Pw|x. In contrast to Molinari (2008), we consider

unrestricted outcome variables (continuous and discrete) and we rely on an exclusion

restriction rather than on assumptions on the misclassification process.

In the case of a two-component mixture, we show that the identified set can

be characterized as a two-parameter family of component distributions and mixture
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weights. Going beyond the two-component mixture case, we characterize the identi-

fied set for a J-component mixture as a J(J − 1)-parameter family. The extension

bears resemblance to Cross and Manski (2002) (and Molinari and Peski (2006)), es-

pecially as in both cases the construction requires computation of the extreme points

of a convex polytope. But the problem Cross and Manski (2002) study is “ecological

inference”: the mixture weights are known.

Based on our constructive characterization of the identified set, we provide strate-

gies for the construction of confidence regions. Our bounds are sharp; and our iden-

tifying restriction implies testable implications, which are quite simple for J = 2 at

least.

In general, misspecification of finite mixture models in the form of an erroneous

maintained number of component distributions is a serious concern, as it may in-

validate inference. This is one of the major themes in the statistical literature on

parametric mixtures, since any misspecification of the components may bias the esti-

mate of their number. In econometrics, some recent papers have therefore taken up

testing for the true number of components (in Kasahara and Shimotsu (2011) for in-

stance). Our partial identification analysis removes this concern: we show that it can

be embedded in a iterative procedure that determines the true number of components

without resorting to any parametric assumption.

The paper is organized as follows. Section 1 presents the analytical framework

and discusses the exclusion restriction that underlies our partial identification results.

To convey the intuition, we first study in section 2 mixtures with two components;

Section 3 then gives general results in the J-component case. These two sections

mainly focus on continuously distributed outcomes; Section 4 extends our results to

discrete outcomes. We also present in Section 4 a iterative procedure to determine the

number of components when it is not known a priori. Most proofs are in Appendix B.
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1 Finite mixtures with exclusion restrictions

1.1 Analytical framework

Let Y be a random variable and Z = (X,W ) a random vector defined on the same

probability space. In all that follows, F will denote conditional cumulative distri-

bution functions and lower case letters w, x, y, z will be used to denote realizations

of the random elements W,X, Y and Z. We assume that observed outcomes Y are

generated from a finite mixture of at most J ≥ 1 component distributions:

Assumption 1 (Mixture) For almost all y, z,

F (y|z) =

J−1
∑

j=0

λj(z)Fj(y|z) (1.1)

where the λj(z) are non-negative numbers and the Fj(·|z) are cumulative distribution

functions.

Note that since we assume that both F and the Fj ’s are cdfs, (1.1) implies that
∑J−1

j=0 λj(z) ≡ 1. In particular, the non-negativity of the weights implies that none of

them can be larger than 1. On the other hand, we allow for the possibility that some

of them are actually zero, so that the model has fewer than J components for some

or all values of z.

We assume that an infinite sample from the distribution of (Y, Z) is available,

so that we can recover the distribution function F (y|z) of Y conditional on Z. The

objects of interest are the latent component distributions Fj(y|z) and the mixture

weights λj(z) for j = 0, . . . , J − 1. Without further assumptions, the components

of the mixture are clearly not identifiable; the observed distribution function F (y|z)

could be rationalized as F (y|z) =
∑J−1

j=0 λj(z)Fj(y|z) with λj = 1 for j = 0, say, and

zero otherwise.

The identifying restriction we consider is a source W of variation in the mixture

weights that leaves each of the component distributions unchanged. Our whole anal-

ysis is conditional on X ; and our identification results apply for any value of x for

which:
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Assumption 2 (Exclusion restriction) Fj(y|x, w) = Fj(y|x), for all j = 0, . . . , J−

1 and all (y, w) in the support of (Y,W )|X.

Let x be one such value. For simplicity, we shall drop x from the notation from

now on; all quantities considered will implicitly be functions of x.

We shall be concerned in this paper with the characterization of the empirical

content of Assumptions 1 and 2 above. This will take the form of a constructive

characterization of the identified set, which we now define:

Definition 1 (Identified Set) The identified set is the set of distributions Fj(y|x)

and mixture weights z 7→ λj(z), j = 0, . . . , J − 1, that satisfy Assumptions 1 and 2.

Under Assumptions 1 and 2, the mixture can be written as follows for any pair

w,w′ in the support of W .

F (y|w) = F (y|w′) +

J−1
∑

j=0

(

λj(w)− λj(w
′)
)

Fj(y)

= F (y|w′) +

J−1
∑

j=1

(

λj(w)− λj(w
′)
) (

Fj(y)− F0(y)
)

,

where the first equation results from the exclusion restriction and the second equation

results from the mixture specification with λ0(w) = 1−
∑J−1

j=1 λj(w) for all w. Hence

the observable F (y|w)−F (y|w′) is a J−1 dimensional scalar product. The first term

(

Fj(y)− F0(y)
)J−1

j=1

is a function of y only. The second term

(

λj(w)− λj(w
′)
)J−1

j=1

is an additively separable, antisymmetric function of w and w′ only. This decomposi-

tion will be key to our partial identification results; it will also allow us to construct

overidentification tests of Assumptions 1 and 2.
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1.2 Discussion of the exclusion restriction

The variables in w function as traditional (nonparametric) instruments: under As-

sumption 2 they can vary without changing the distribution of any individual compo-

nent. In the case of regime switching models, Assumption 2 is a direct implication of

the usual Markov assumption. In misclassification and data contamination models, it

is equivalent to the mismeasured variable being non-informative on the outcome, con-

ditional on the true value of the variable. This is again a common (but not universal)

assumption. In structural economic models with discrete unobserved heterogeneity or

with multiple equilibria, the validity of Assumption 2 depends on the context. In each

case, we also need the component weights λj to depend on w “enough” that they give

the instruments identifying power. We now discuss these four applications in more

detail. As we will see later, while Assumption 2 may be more or less convincing in a

given application, it is a testable assumption.

1.2.1 Regime switching and Markov decision models

Consider the classical Markov switching model (see Kim and Nelson (1999) for a

survey), where Yt is independently and identically distributed conditionally on a state

variable St that follows a Markov chain. For simplicity, let St be binary: St ∈ {0, 1},

with transition probabilities

Pr(St = 1|St−1 = 1) = P11 and Pr(St = 0|St−1 = 0) = P00.

Assumptions 1 and 2 are automatically satisfied in this model, with Y = Yt and

W = Yt−1. Indeed, denoting λ(w) ≡ λ1(w) ≡ Pr(St = 1|Yt−1 = w), we have

F (yt|Yt−1 = w) = λ(w)F (yt|St = 1) + (1− λ(w))F (yt|St = 0).

Moreover, it is easy to see that λ(w) does depend on w, unless Yt is independent of

St and/or P11 = P00. Special cases include mean switching, with yt i.i.d. conditionally

on St and µSt
= Stµ1+(1−St)µ2, and stochastic volatility, with yt i.i.d. conditionally

on V ar(yt) = σ2
St

= Stσ
2
1 + (1− St)σ

2
2 .

This example can easily be extended to m-dependence: if there exists an m ≥ 1

with

F (yt|St = s, yt−1, . . . , y1) ≡ F (yt|St = s, yt−1, . . . , yt−m),
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for all states s and all t ≥ m, then the variable Z = (Yt−1, . . . , Y1) can be split

into X = (Yt−1, . . . , Yt−m) and W = (Yt−m−1, . . . , Y1). In particular, Assumption 2

holds in any model in which the observed trajectory is a finite-order autoregression

conditionally on the hidden Markov chain.

1.2.2 Data contamination and misclassification

Models with measurement error on a discrete regressor also often satisfy Assump-

tion 2. Consider an outcome Y affected by an unobserved treatment T ∗ taking values

T ∗ = t0, t1, . . . , tJ−1. Let T be an observed variable that is informative on T ⋆. T

could be misclassified treatment, as in Aigner (1973) for the binary case and Moli-

nari (2008) for any discrete regressor; more generally, it could be any measurement

that is correlated with T ∗. As before, additional conditioning variables X could be

incorporated without any substantive change.

The classical assumption on misclassification error, as imposed in most of the

recent literature on misclassified treatment surveyed in Chen, Hong, and Nekipelov

(2011), posits independence of classification error and outcome conditionally on the

true treatment:

Y ⊥⊥ T | T ∗.

Then the conditional distribution function of outcome Y conditional on measurement

T is

FY |T (y|T ) =

J−1
∑

j=0

FY |T,T ⋆(y|T ∗ = tj, T ) Pr(T
∗ = tj |T ) =

J−1
∑

j=0

FY |T ⋆(y|T ∗ = tj) Pr(T
∗ = tj |T );

and it satisfies Assumptions 1 and 2 with W = T , λj(w) = Pr(T ∗ = tj|T = w) and

Fj(y) = FY |T ⋆(y|T ∗ = tj). The weights λj depend on w in so far as the measurement

T is informative on the true treatment T ∗.

The classical assumption on misclassification error comes at a cost; we would

not expect it to hold when misclassification error is correlated to non-compliance, or

the extent of misreporting depends on unobservable individual heterogeneity. The

Assumption 2 would not apply in general.
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1.2.3 Models with unobserved heterogeneity

Consider a general structural microeconometric model, where observed outcomes Y

are functions Y = g(S, Z, ε) of observed heterogeneity Z = (W,X), a discrete un-

observable agent type S = s0, s1, . . . , sJ−1 and an error term ε. Then Assumption 2

holds when

y ⊥⊥ W |S,X ;

for instance when g(S, Z, ε) ≡ g(S,W, ε) and ε is independent of (S, Z). The instru-

ments W will be a source of identifying power if the distribution of S depends on W

as well as on X .

If Y represents the demand for a good for instance, we require the unobserved

heterogeneity in demand to be adequately summarized by the combination of an

agent type S and an idiosyncratic shock ε; and we can use any instrument W that

does not enter preferences or covariates X , and yet changes the distribution of agent

types. Geographical variables fit the bill as long as they do not directly enter utilities.

In dynamic settings such as Markov decision processes, we can also appeal to past

observations as in Section 1.2.1. Finally, variables that are not in buyers’ information

sets at the time of purchase satisfy the first criterion, and the second one too if they

change the composition of demand. We develop in Appendix A a simple oligopoly

model to illustrate this last point.

1.2.4 Multiple equilibria

Economic models of imperfect competition, social interactions and joint investment

with spillovers typically incorporate non-cooperative games in which multiple equi-

libria are the norm rather than the exception. With a finite set of equilibria E =

e0, . . . , eJ−1, realized outcomes are generated as a mixture1:

FY |Z(y|z) =

J−1
∑

j=0

Pr(E = ej|Z = z)FY |E,Z(y|ej, z).

Assumption 2 then holds if a variable W does not affect outcomes conditional on the

realized equilibrium:

Y ⊥⊥ W |E,X.

1We thank Elie Tamer for pointing out this class of applications of the mixture model.
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For identification, we also need W to enter the equilibrium selection mechanism

Pr(E = ej |Z = z). We now discuss several frameworks in which Assumption 2 is

reasonable.

Policy interventions that affect the equilibrium selection are prime candidates as

instruments W . In the oligopolistic competition analysis of Ciliberto and Tamer

(2009), policies aimed at reducing collusion among firms may affect equilibrium se-

lection differentially in regional markets. There is also a sizable literature in macroe-

conomics and development on coordination failures. In their theory of the Big Push,

Murphy, Shleifer, and Vishny (1989) propose subsidizing fixed entry costs in joint in-

vestments with spillovers to prevent poverty traps. More generally, fixed cost shifters

that do not affect pricing conditional on entry are potential instruments in problems

of joint investment with spillovers (see e.g. Hendricks and Kovenock (1989) for in-

formation spillovers.) Cooper and Corbae (2002) explain financial collapse through

coordination failure in market participation. In this framework, Ennis and Keister

(2006) argue that lower tax rates are likely to increase the probability of the Pareto

efficient equilibrium being selected; but other types of intervention, such as subsidies,

are more likely to be outcome neutral conditional on equilibrium and hence satisfy

Assumption 2. In Forbes and Rigobon (2002), financial contagion is defined as a

jump from a low correlation equilibrium to a high correlation equilibrium. Similarly,

Pesaran and Pick (2007) argue that policy interventions are more likely to be effective

if “the cause of a crisis is a random jump between equilibria, i.e., contagion” than if

“a crisis spreads to other markets because the fundamentals are correlated.” This is

exactly the spirit of our Assumption 2.

When social interactions are prevalent, the regional heterogeneity of outcomes

across time and space is often attributed to multiple equilibria. The tipping point

theory of segregation in Schelling (1971) is an early example. The model of wage dis-

crimination through negative stereotypes of Coate and Loury (1993) and the model

of criminal activities of Calvó-Armengol and Zenou (2004) also exhibit such multiple

equilibria. In all of these cases, history dependence and variations in social norms

induce variation in the equilibrium selection mechanism; but they are typically ex-

cluded from utility and hence leave outcomes conditional on equilibrium unchanged.

Any such source of variation can serve as an identifying W .
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2 Partial Identification of two-component mixtures

From now on, we shall maintain Assumptions 1 and 2 throughout and characterize

their empirical content with a constructive characterization of the identified set of

Definition 1. Start with the case where the mixture is known to involve exactly two

component distributions. We will denote λ1(w) simply by λ(w), and λ0(w) = 1−λ(w).

As discussed in Section 1, to complement the exclusion restriction of Assumption 2,

we need minimal variation in the mixture weights. Also, the existence of exactly two

components implies restrictions. We posit

Assumption 3

(i) Pr(0 < λ(W )) Pr(λ(W ) < 1) > 0 and Pr(F0(Y ) = F1(Y )) < 1.

(ii) There exist w0 and w1 in the support of W such that λ(w0) 6= λ(w1).

Assumption 3.(i) implies that the mixture does not degenerate to one component;

and (ii) will ensure that w has identifying power. Note that under Assumptions 1

and 2, Assumption 3 could only fail if F (·|w) were independent of w, which is clearly

testable.

Since

F (y|w1)− F (y|w0) = (λ(w1)− λ(w0)) (F1(y)− F0(y)) ,

the left-hand side is non-zero at any y where F0 and F1 do not coincide. At any such

y, for any w we have

F (y|w)− F (y|w0)

F (y|w1)− F (y|w0)
=

λ(w)− λ(w0)

λ(w1)− λ(w0)
. (2.1)

Therefore the left-hand-side of this equation is a function of w only, which we denote

Λ(w). It is identified from the data, and by construction Λ(w0) = 0 and Λ(w1) = 1.

From (2.1), we obtain a two-parameter characterization of the mixture weights

that are compatible with the data:

λ(w) = φ+ ψΛ(w), (2.2)
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where φ = λ(w0) and ψ = λ(w1) − λ(w0). Once the parameters φ and ψ are fixed,

the component distributions are also identified. Defining δ = F1 − F0, we have

δ(y) = F1(y)− F0(y) =
F (y|w1)− F (y|w0)

λ(w1)− λ(w0)
=

1

ψ
[F (y|w1)− F (y|w0)]. (2.3)

By construction,

F0(y) = F (y|w0)− λ(w0)δ(y),

F1(y) = ∆(y) + F0(y)

= F (y|w0) + [1− λ(w0)]δ(y).

Since, by definition, φ = λ(w0) and ψ = λ(w1) − λ(w0) and since the latter is non

zero by Assumption 3, we obtain the two-parameter family characterization for the

component distributions.

F0(y) = F (y|w0)−
φ

ψ
[F (y|w1)− F (y|w0)], (2.4)

F1(y) = F (y|w0) +
1− φ

ψ
[F (y|w1)− F (y|w0)] (2.5)

The identified set for the mixture under Assumptions 1-3 is therefore determined by

the set of admissible values for the pair (φ, ψ). Such a pair is admissible if and only if

λ(w) is a probability and the two component distributions F0(y) and F1(y) are cdfs.

• First consider the constraints on the weight: 0 ≤ λ(w) ≤ 1 for all w. Defining

Λ = sup
w

Λ(w) and Λ = inf
w

Λ(w), (2.6)

these result in two necessary and sufficient conditions on the pair (φ, ψ):

0 ≤ φ+ ψΛ ≤ 1 and 0 ≤ φ+ ψΛ ≤ 1.

These conditions (which imply φ > 0 but do not restrict the sign of ψ) are

equivalent to −ψΛ ≤ φ ≤ 1− ψΛ and −ψΛ ≤ φ ≤ 1− ψΛ, and finally to

−min(ψΛ, ψΛ) ≤ φ ≤ 1−max(ψΛ, ψΛ). (2.7)

The inequalities above can be expressed in terms of the reparametrization

(−φ/ψ, (1− φ)/ψ) as

min

(

1− φ

ψ
,
−φ

ψ

)

≤ Λ ≤ 0 ≤ 1 ≤ Λ ≤ max

(

1− φ

ψ
,
−φ

ψ

)

.
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• Let us proceed to the constraints on the component distributions: F0 and F1

should be non-decreasing, right-continuous and with left and right limits 0 and

1. It follows directly from Equations (2.4) and (2.5) that the left and right

limits of F0 and F1 are 0 and 1, and that they are right-continuous. Now

consider the monotonicity constraints. For two realizations y′ > y of Y , denote

Dk(y, y
′) = F (y′|wk)− F (y|wk) ≥ 0 for k = 0, 1. We must have

D0(y, y
′) + ζ (D1(y, y

′)−D0(y, y
′)) ≥ 0

for both ζ = −φ/ψ and ζ = (1−φ)/ψ. This is equivalent to the two conditions

sup
y′>y;D1(y,y′)>D0(y,y′)

−D0(y, y
′)

D1(y, y′)−D0(y, y′)
≤ min

(

−
φ

ψ
,
1− φ

ψ

)

and

max

(

−
φ

ψ
,
1− φ

ψ

)

≤ inf
y′>y;D1(y,y′)<D0(y,y′)

D0(y, y
′)

D0(y, y′)−D1(y, y′)
.

These two conditions, along with (2.7), give the sharp bounds on (φ, ψ) and there-

fore on (λ, F0, F1). When outcomes y are continuously distributed, the analysis is

simpler since the monotonicity constraints become constraints on the densities.

Assumption 4 The observable distribution F (.|w) is differentiable for all y in the

support of Y and all w in the support of W .

Under Assumption 4, the monotonicity of F0 and F1 is equivalent to the non-

negativity of their densities:

f∗ := sup
f(y|w1)>f(y|w0)

−f(y|w0)

f(y|w1)− f(y|w0)
≤ min

(

−
φ

ψ
,
1− φ

ψ

)

≤ 0

≤ max

(

−
φ

ψ
,
1− φ

ψ

)

≤ inf
f(y|w0)>f(y|w1)

f(y|w0)

f(y|w0)− f(y|w1)
:= f ∗. (2.8)

Denote the likelihood ratio

r(y) :=
f(y|w1)

f(y|w0)
.
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Since densities have total mass 1,

∫

(r(y)− 1)f(y|w0)dy = 0

and so

r := inf
y∈Y

r(y) < 1 < sup
y∈Y

r(y) := r.

Then

f∗ = −
1

r − 1
and f ∗ =

1

1− r
. (2.9)

We therefore have the following characterization of the identified set in the case

of two-component mixtures with continuous outcomes—we treat the case of discrete

outcomes y separately in section 4.2.

Theorem 1 (Two-component identified set with continuous outcomes) Under

Assumptions 1, 2, 3 and 4, the component mixtures and mixture weights are identified

as a two parameter family according to (2.2), (2.4), and (2.5); and the identified set

for the parameter pair (φ, ψ) is

{(φ, ψ) : f∗ ≤ min((1− φ)/ψ,−φ/ψ) ≤ Λ and Λ ≤ max((1− φ)/ψ,−φ/ψ) ≤ f ∗},

where the identified parameters Λ and Λ are defined in (2.6) and f∗ and f ∗ in (2.8).

The bounds can be equivalently written in terms of (ψ, φ) as

max(−Λψ,−Λψ,min(1−ψf∗, 1−ψf
∗)) ≤ φ ≤ min(1−Λψ, 1−Λψ,max(−ψf∗,−ψf

∗)).

While these inequalities look complex, note that this is in great part due to the

“labeling problem”: if we decide for instance to call “component 1” the component

whose weight is larger in w1 than in w0, then ψ = λ(w1)− λ(w0) > 0 and the bounds

on (ψ, φ) simplify to

max(−Λψ, 1− ψf ∗)) ≤ φ ≤ min(1− Λψ,−ψf∗).

Figures 1 and 2 represent the identified region for the pair (ψ, φ) and the corresponding

region for (−φ/ψ, (1−φ)/ψ), restricted to ψ > 0. The identified region with ψ < 0 is
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symmetric with respect to the ψ = 0 axis in Figure 1; and it is obtained by a rotation

of angle −π/2 around the origin in Figure 2.

It follows from (2.7) and (2.8) that the projection of the identified set on the ψ

axis is a symmetric pair of intervals:

(f ∗ − f∗)
−1 ≤ |ψ| ≤ (Λ− Λ)−1, (2.10)

which shows the impact of variation in W and in Y on the size of the identified

region. If W induces a large variation in the distribution of Y then, by the definition

of Λ(w), the bounds Λ and Λ will be farther apart and the identified set for (ψ, φ)

will shrink. Similarly, a large variation in the density of Y conditional on W will pull

the bounds f ∗ and f∗ closer together and shrink the identified set. This can be seen

from Figures 1 and 2: a larger support forW leads to an increase in Λ−Λ, and hence

to a smaller identification region.

Note that the model is point identified when f∗ = Λ and f ∗ = Λ; again this is

testable. Theorem 1 also shows that the model is rejected when f∗ > Λ or f ∗ < Λ.

This provides a test of specification of the model, which involves testing jointly the

exclusion restriction and the hypothesis that there are two component distributions in

the mixture. We will build on this idea in section 4.1 when we describe our iterative

procedure to determine the number of components J .

Using equation (2.9), it is easy to see that

• the model is rejected iff

r < 1−
1

Λ
or r > 1−

1

Λ

• it is point identified if both of these inequalities are replaced with equalities

• and it is partially identified otherwise.

Point-identification may seem like a rare case; but there are useful classes of models for

which the two conditions are binding. If for instance the range of the true likelihood

ratio R(y) = f1(y)/f0(y) includes 0 and +∞, then

r = min

(

λ(w1)

λ(w0)
,
1− λ(w1)

1− λ(w0)

)

and r = max

(

λ(w1)

λ(w0)
,
1− λ(w1)

1− λ(w0)

)

14



and the model is point-identified whenever λ(w0) 6= λ(w1), as it does under As-

sumption 3(ii). Additional a priori restrictions, such as a monotone likelihood ratio

assumption on R(y), would allow the analyst to relax these conditions.
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φ = 1 − f∗ψ

1

ψ

φ

0

1

1

Λ−Λ1

f∗−f∗

φ = −f∗ψ

φ = −Λψ

φ = 1 − Λψ

Figure 1: The shaded area is the identified region for the pair (ψ, φ) in the half-plane ψ > 0.

Note from (2.3) that any linear functional of (F1 − F0) is identified up to scale.

Denote Ei the expectation operator with respect to Fi. Then for any function h of y,

we can test whether E1h(Y )−E0h(Y ) is zero simply by testing that E (h(Y )|W = w)

depends on w. If it does, then for any other function g of y, the ratio

E1g(Y )− E0g(Y )

E1h(Y )− E0h(Y )

is point-identified.

In the context of a model with randomized assignment and mismeasured treat-

ment, this ratio is simply a relative average treatment effect. Take h to be the identity

15
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−

φ
ψ

Figure 2: The shaded area is the identified region for the pair (−φ/ψ, (1 − φ)/ψ) which parameterize the two

component distributions F1 and F0, restricted to ψ > 0.
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function for instance, while g(y) = 11(y ≥ a). Then if the average treatment effect on

Y is non-zero, the relative quantile treatment effects

Pr1(Y ≥ a)− Pr0(Y ≥ a)

E1Y − E0Y

are point-identified for all values of a.

3 Finite mixtures of arbitrary order

We now turn to general partial identification results. We first assume that the true

number of mixture components is known and equal to J . The next section will extend

the identification results to the case of an unknown number of mixture components.

Under Assumptions 1 and 2, we recall that for any (y, w, w0),

F (y|w)− F (y|w0) =

J−1
∑

j=1

(λj(w)− λj(w0))(Fj(y)− F0(y)) = ψ(w)
t δ(y),

where (dropping the dependence on w0 from the notation) we define ψ(w) as the (J−

1)-vector with j-th component ψj(w) := λj(w)−λj(w0) and δ(y) as the (J−1)-vector

with j-th component δj(y) := Fj(y)− F0(y). As in the case of two components, we

need sufficient variability of mixture weights to complement the exclusion restriction

of Assumption 2. We therefore state the analogue of Assumption 3 in the case of J

component distributions:

Assumption 5 (Relevance) There exist (w0, w1, . . . , wJ−1) in the support of W

such that the (J − 1)× (J − 1) matrix Ψ with j-th column ψ(wj) is invertible.

Note that Assumption 5 immediately implies an order condition: the support of

W must contain at least J distinct points. Under Assumption 5, let hc(y) denote the

(J − 1)-vector with j-th component F (y|wj)− F (y|w0). Then

hc(y) = Ψt δ(y),

so that δ(y) =
(

Ψt
)−1

hc(y). This translates immediately into the identification of

component distributions as a J(J − 1) parameter family:

for all j = 0, . . . , J − 1, Fj(y) = F (y|w0) + (ej − φ)
t
(

Ψt
)−1

hc(y), (3.1)
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where ej is the unit vector with a 1 in the j-th row, with the convention that e0 is the

zero vector; and [ ]j denotes the j-th component of the vector inside the brackets. The

component distributions are identified in Equation (3.1) up to the J(J − 1) unknown

parameters that define φ and Ψ, since all other quantities involved, namely F (y|w0)

and hc(y), are point-identified.

Now assume that there is sufficient variation in δ(y):

Assumption 6 (Rank) There exist (y1, . . . , yJ−1) in the support of Y such that the

(J − 1)× (J − 1) matrix ∆ with j-th column δ(yj) is invertible.

Again, an order condition immediately arises: under Assumption 6, Y must have

at least J distinct points of support. Note that if the number of distinct component

distributions is assumed to be exactly equal to J , this order condition is automatically

satisfied.

Assumptions 5 and 6 both relate to unobservable quantities. We could alterna-

tively have used Assumption 7, which is directly testable from the data:

Assumption 7 There exist (w0, . . . , wJ−1) in the support of W and (y1, . . . , yJ−1) in

the support of Y such that the (J − 1)× (J − 1) matrix H with j-th column hc(yj) is

invertible.

The (J−1)× (J−1) matrix H is the product of the two (J−1)× (J−1) matrices

Ψ and ∆. The following lemma follows immediately:

Lemma 1 (Testability of rank conditions) Under Assumptions 1 and 2, Assump-

tions 5 and 6 are equivalent to Assumption 7.

Under Assumptions 5 and 6 (or Assumption 7), we can now identify the mixture

weights as a J(J − 1) family. Indeed, for all y, w, we have:

F (y|w)− F (y|w0) = ψ(w)t δ(y)

= ψ(w)t
(

Ψt
)−1

hc(y),

so that, denoting hr(w) the identified (J − 1)-vector with j-th component F (yj|w)−

F (yj|w0), we have

hr(w)
t = ψ(w)t

(

Ψt
)−1

H
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and we finally obtain identification of the mixture weights as a two-parameter family.

More precisely, call λ(w) the (unknown) vector of mixture weights with j-th com-

ponent λj(w):

λ(w) = φ+ψ(w) = φ+Ψ
(

Ht
)−1

hr(w), (3.2)

where Λ(w) = (Ht)
−1

hr(w) is the analogue of the identified Λ(w) function of the

two-component case. In order to characterize the identified set, we only need to

derive sharp bounds for (φ,Ψ). As in the case of the two-component mixture, we

obtain these bounds by imposing probability constraints on λ(w) and monotonicity

constraints on the component distributions Fj(y), j = 0, 1, . . . , J − 1:

• Probability constraints: we need 0 ≤ λ(w) and 1tλ(w) ≤ 1 on the mixture

weights. Hence we require

0 ≤ φ+Ψ
(

Ht
)−1

hr(w) and 1t
(

φ+Ψ
(

H t
)−1

hr(w)
)

< 1

for all w in the support of W . These are linear inequalities in (Φ,Ψ); as such,

they only need to be imposed at the extreme points of convex hull of the range

of w 7→ Λ(w) = (Ht)
−1

hr(w).

• Monotonicity constraints: As with the case of two components, equation (3.1)

implies directly that the Fj ’s range from 0 to 1. We will again treat the case

of discrete supports separately; here we assume that the cdfs of outcomes are

differentiable, as in Assumption 4. Denote f(y|w) the density of outcomes

conditional on w and h′
c(y) the derivative of hc(y); the monotonicity constraints

on the component distributions are

for all j = 0, 1, . . . , J − 1, f(y|w0) + (ej − φ)
t
(

Ψt
)−1

h′
c(y) ≥ 0

for all y in the domain of Y . These inequalities are not linear in (φ,Ψ) any

more; but they are linear in the transformed parameters Ωj = (ej−φ)
t
(

Ψt
)−1

.

Therefore they only need to be checked at the extreme points of the range of

the function F(y) := −h′
c(y)/f(y|w0).

The previous discussion is summarized in the following theorem, which we prove

in Appendix B:

19



Theorem 2 (Identified set) The identified set for the component distributions and

the mixture weights under Assumptions 1, 2, 4 and 7 is the J(J−1) parameter family

defined by Equations (3.1)-(3.2) along with the following constraints on (φ,Ψ) :

• the linear constraints φ + Ψe > 0 and 1
t (φ+Ψe) < 1 for all extreme points

e of the convex hull of the range of the identified function w 7→ Λ(w) =

(Ht)
−1

hr(w);

• the quadratic constraints f tΨ−1(ej − φ) ≤ 1 for j = 0, . . . , J − 1 and for all

extreme points f of the convex hull of the range of the identified function y 7→

F(y) := −h′
c(y)/f(y|w0).

The hypotheses of Theorem 2 preclude discrete outcomes and require a priori

knowledge of the true number of component distributions. The next section shows

that these limitations are superficial, as the same reasoning can be applied to discrete

outcomes and unknown mixture order. Section 4.2 also shown how to considerably

reduce the computational burden associated with the construction of the identified

set, with a view to form confidence regions with traditional partial identification

inference procedures.

4 Extensions

We now move beyond the assumptions of Theorem 2 to consider the determination

of the order J of the mixture, and the case of discrete-valued outcomes.

4.1 Determining J

Theorem 2 assumed that the analyst knows the exact number of distinct component

distributions. In fact, a simple iterative procedure allows us to determine the number

of components and the identified set for the component distributions and mixture

weights2.

Start with J = 2. Note that the true number of components is at least 2 under

assumption 3.

2We thank Ismael Mourifié for suggesting this iterative procedure to us.
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1. Construct the identified set according to the procedure of section 3.

2. If Step 1 yields a nonempty identified set, the mixture model with at most

J components cannot be rejected. The true number of components is then

identified as J .

3. If the identified set in Step 1 is empty, the mixture model with a maximum of

J components is rejected. Then make J ← J + 1 and return to Step 1.

4.2 Discrete outcomes: latent class analysis

The identification results of Theorem 2 rely on Assumption 4, which rules out discrete

outcomes. However, most of the analysis carries over with simple changes in notation.

To emphasize it, we shall retain the same notation for slightly different objects, with

probability mass functions replacing probability distribution functions.

One substantial difference is that the true number of mixture component distri-

butions is directly identified from the matrix of conditional probabilities. Let the

support of Y be {y1, . . . , yN}, and that of W be {w0, w1, . . . , wM−1}. Write Pr(y|w)

for the probability Pr(Y = y|W = w) of outcome y conditional on W = w. First

note that under Assumption 1, there cannot be more than min(M,N) components.

The following lemma identifies the true number of component distributions:

Lemma 2 (Mixture order for finite outcomes) Under Assumptions 1 and 2 with

J = min(M,N), the number of non-zero weights and distinct components is (K +1),

where K is the rank of the (M−1)×N matrix with (i, j)-th entry Pr(yj|wi)−Pr(yj|w0).

With K defined as in Lemma 2 above and suitable relabeling of the supports of

Y and W , we can assume that the K ×K matrix H with (i, j)-th entry Pr(yj|wi)−

P (yj|w0) is invertible. As before, call hr(wi) its i-th row and hc(yj) its j-th column.

Then, following the same reasoning as in Section 3, we obtain identification of the

component probabilities Pj and mixture weights λj, j = 0, 1, . . . , J − 1, as a J(J − 1)

parameter family, with the (J − 1)-vector φ and the (J − 1)× (J − 1) matrix Ψ as

parameters:

Pj(yl) = P (yl|w0) + (ej − φ)
t
(

Ψt
)−1

hc(yl), (4.1)

λ(wk) = φ+Ψ
(

Ht
)−1

hr(wk) (4.2)
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for all l = 1, . . . , N , all k = 1, . . . ,M and all j = 0, 1, . . . , J − 1, where for j ≥ 1, ej

is the unit vector with a 1 in the j-th row, and e0 is a (J − 1) vector of zeros.

Characterizing the identified set for the mixture now requires identifying sharp

bounds for the parameter pair (φ,Ψ), which are, as before, (ej−φ)
t
(

Ψt
)−1

e ≤ 1 for

e in the union of the ranges of y 7→ −hc(y)/P (y|w0) and y 7→ hc(y)/(1− P (y|w0));

and 0 ≤ φ +Ψe and 1t (φ+Ψe) < 1 for all extreme points e of the convex hull of

the range of the identified function w 7→ Λ(w) = (Ht)
−1

hr(w).

Consider now the computational aspects of the problem of checking whether a

particular choice of (φ,Ψ) belongs to the identified set, hence whether a particular

choice of mixture model is admissible. Call A the convex hull of the collection of

points in R
M with coordinates hc(yl)/P (yl|w0) or hc(yl)/(1−P (yl|w0)), l = 1, . . . , N

and B the convex hull of the collection of points in R
N with coordinates Λ(wk),

k = 1, . . . ,M . Checking that a (φ,Ψ) pair is admissible is equivalent to checking

the linear constraints (ej − φ)
t
(

Ψt
)−1

e ≤ 1 for all extreme points e of A and the

linear constraints φ +Ψe > 0 for all extreme points e of B. The problem of finding

the extreme points of the convex hull of a collection of points is a classical one and

numerous algorithms exist (see for instance Matoušek (2002)) for which off-the-shelf

implementations abound. The Matlab ConvexHull command is one of them. The ad-

vantage of the extreme points method are both computational and statistical. First,

the linear constraints are checked on a reduced number of points, producing com-

putational efficiency gains. Second and more importantly, it reduces the number of

inequalities to check in the construction of a confidence region for the identified set,

thereby reducing the conservativeness of the region as in Chernozhukov, Hong, and

Tamer (2007).

Concluding Remarks

Finite mixtures are pervasive in econometrics, and yet most of the literature has

imposed strong parametric restrictions in order to estimate them. We fully charac-

terized the identified region under an exclusion restriction that is quite natural in

some important classes of models.

In the two-component case, point-identification can be obtained under two addi-
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tional restrictions. One can for instance impose that one component dominates in the

left tail and the other one dominates in the right tail. In parallel work, we explore

the asymptotic properties of an estimator that relies on tail dominance.

Although the case of two-component mixtures is very important in applications,

inference for partially identified finite mixtures of more than two components is a

natural next step in this research program. We are currently working to adapt the

literature on estimation of partially identified models defined by moment inequalities.

Finally, one could combine our exclusion restriction with others in order to achieve

tighter identification. The repeated measurement literature is a case in point: the

results of Bonhomme, Jochmans, and Robin (2012) for instance can be integrated

with ours.
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Appendices

A Oligopoly model

Consider an oligopoly with N firms. Each firm i operates with costs of production

Ci(·) and faces demand Di(pi, p−i, s), where the demand parameter s can take on two

values s > s.

The timing of the game and the information structure are the following:

1. Cost functions Ci are realized.

2. Each firm observes its own cost along with a private signal si that is informative

on other firm’s costs and on the state s.

3. Firms simultaneously choose prices pi to maximize their expected profits.

4. Then s is realized and sales are made.

5. The econometrician later observes noisy measurements of costs, prices, sales,

and profits of all firms, which we collect in four N -vectors D̃, p̃, C̃, and π̃.

We focus on the distribution of observed sales conditional on observed profits, prices,

and costs:

F (D̃|π̃, p̃, C̃) = F (D̃|π̃, p̃, C̃, s = s) Pr(s = s|π̃, p̃, C̃)

+ F (D̃|π̃, p̃, C̃, s = s) Pr(s = s|π̃, p̃, C̃).

Now assume that

1. Prices are observed by the econometrician without measurement error: p̃ = p.

2. Observed demand and profits are conditionally independent:

D̃ ⊥⊥ π̃ | (p, C̃, s).

When these conditions hold, observed profits π̃ do not appear any more in the con-

ditional distributions F (D̃|π̃,p, C̃, s), so that Assumption 2 applies with y = D̃ as

the outcome, w = π̃ as the instrument, and with covariates x that contain (p, C̃, s).
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A variety of more primitive assumptions imply condition 2 above. If measurement

errors are classical (independent of all true values), then condition 2 holds if the

measurement errors on demand are independent of those on profits and on costs.

Both conditions hold for instance in Hendricks, Pinkse, and Porter (2003), where

ex-post information is obtained on the value of oil tracts in wildcat lease contracts.

B Proofs

Proof of Theorem 1: Theorem 1 is a special case of Theorem 2. However, proving

it directly simplifies notation and helps gain intuition towards the proof of the more

general case.

We already showed in the main text that Assumptions 1 to 4 imply the set of

inequalities on the pair ((1 − φ)/ψ, φ/ψ) that appears in Theorem 1. The set of

inequalities on (ψ, φ) follows immediately. We still need to prove that the implied

bounds on (F0, F1, λ) do not depend on the choice of w1 and w0

To see this, take any choice (w1
0, w

1
1) of (w0, w1), along with any (φ1, ψ1). The

corresponding mixture weights and component functions λ1, F 1
0 , F

1
1 are

λ1(w) = φ1 + ψ1 λ(w)− λ(w
1
0)

λ(w1
1)− λ(w

1
0)

F 1
0 (y) = F (y|w1

0)−
φ1

ψ1

(

F (y|w1
1)− F (y|w

1
0)
)

F 1
1 (y) = F (y|w1

0) +
1− φ1

ψ1

(

F (y|w1
1)− F (y|w

1
0)
)

.

The last two equations can also be rewritten as

F 1
0 (y) = F0(y) +

(

λ(w1
0)−

φ1

ψ1
(λ(w1

1)− λ(w
1
0))

)

(F1(y)− F0(y)) (B.1)

F 1
1 (y)− F

1
0 (y) =

λ(w1
1)− λ(w

1
0)

ψ1
. (B.2)

For any other choice (w2
0, w

2
1), define (φ2, ψ2) such that the two functions λ1 and λ2
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coincide. This is always possible: we only need

ψ2

λ(w2
1)− λ(w

2
0)

=
ψ1

λ(w1
1)− λ(w

1
0)

φ2 − λ(w2
0)

ψ2

λ(w2
1)− λ(w

2
0)

= φ1 − λ(w1
0)

ψ1

λ(w1
1)− λ(w

1
0)
.

Moreover, equation (B.2) shows that with this choice, F 2
1 − F

2
0 ≡ F 1

1 − F
1
0 ; and it

easy to check in equation (B.1) that F 2
0 ≡ F 1

0 .

We still need to check that if (φ1, ψ1) satisfies the inequalities in the Theorem for

(w1
0, w

1
1), then (φ2, ψ2) also does for (w2

0, w
2
1). But since the former set of inequalities

are necessary and sufficient conditions for λ1 to be a probability and for (F 1
0 , F

1
1 ) to

be cdfs, and (λ2, F 2
0 , F

2
1 ) coincides with (λ1, F 1

0 , F
1
1 ), this holds by construction.

Proof of Theorem 2: Again, we only need to show that the constraints are not

affected by the choice of w0, w1, . . . , wJ−1 and y1, . . . , yJ−1.

We proceed as with the proof of Theorem 1. Consider any choicew1 = (w1
0, . . . , w

1
J−1)

and y1 = (y11, . . . , y
1
J−1) satisfying Assumptions 5 and 6, and any (φ1,Ψ1). Then we

construct

λ1(w) = φ1 +Ψ1
(

(

H1
)t
)−1

h1
r (w) (B.3)

F 1
j (y) = F (y|w1

0) + (ej − φ
1)t((Ψ1)t)−1h1

c(y), (B.4)

where h1
c(y) is the (J − 1) vector with j-th component F (y|w1

j )−F (y|w
1
0) and h1

r (w)

is the (J − 1) vector with j-th component F (yj|w)− F (yj|w
1
0), and H is the matrix

with (i, j)-th element F (yj|w
1
i )− F (yj|w

1
0).

Now take an alternative choice (w2,y2) and choose φ2 and Ψ2 so that λ2 ≡ λ1.

Since [h1
r (w)]j = (δ(yj))

t (λ(w)− λ(w1
0)), this boils down to

Ψ2
(

(

H2
)t
)−1

(

∆2
)t

= Ψ1
(

(

H1
)t
)−1

(

∆1
)t

(B.5)

φ2 −Ψ2
(

(

H2
)t
)−1

(

∆2
)t
λ(w2

0) = φ
1 −Ψ1

(

(

H1
)t
)−1

(

∆1
)t
λ(w1

0), (B.6)

which are the multidimensional analogs of equations (B.1) and (B.2). They clearly

have a unique solution in (φ2,Ψ2) under our assumptions.
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Moreover, equation (B.5) implies

((Ψ1)t)−1 = ((Ψ2)t)−1H2
(

∆2
)−1

∆1
(

H1
)−1

so that, using equation (B.4),

F 1
j (y)− F

1
0 (y) = (ej)

t((Ψ1)t)−1h1
c(y)

= (ej)
t((Ψ2)t)−1H2

(

∆2
)−1

∆1
(

H1
)−1

h1
c(y).

Now [h1
c(y)]j = (δ(y))t(λ(w1

j ) − λ(w
1
0)), so that. . . Finally, rewriting (B.4) for j = 0

as

F 2
0 (y)−F

1
0 (y) =

(

λ(w2
0)− λ(w

1
0)
)t
δ(y)−

(

φ2
)t
((Ψ2)t)−1h2

c(y)+
(

φ1
)t
((Ψ1)t)−1h1

c(y),

we get F 2
0 ≡ F 1

0 .

We conclude as in the proof of Theorem 1 by noting that (φ2,Ψ2) satisfies the

constraints in Theorem 2 for (w2,y2) if (φ1,Ψ1) does for (w1,y1). As before, we

have two alternative expressions for the same weights and the same component dis-

tributions. One of the expressions satisfies the constraints of Theorem 2, hence so

must the other by construction.
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