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Abstract

Imposing a separability assumption on the joint surplus in tranferable
utility matching models has proved very useful in empirical work. Yet
when only “who matches whom” is observed, the distributions of unob-
served heterogeneity cannot be identified separately. This note derives
the distribution of equiilibrium transfers and shows that if the distribu-
tion of transfers within cells is observed, the distribution of heterogeneity
can often be recovered, separability can be tested, and complementarities
in surplus inferred.

1 Matching with Separable Surplus

We impose throughout this note the central assumption introduced by Choo
and Siow (2006), which Chiappori-Salanié-Weiss (2014, hereafter CSW) and
Galichon-Salanié (2014, hereafter GS) call “separability”. To define it, assume a
population of men m = 1, . . . ,M and a population of women w = 1, . . . ,W (the
terms “men” and “women” are only for concreteness; they should be adapted
to fit other one-to-one matching contexts.)

A hypothetical match between manm and woman w generates a joint surplus
Φ̃mw. While these are known to all participants in the market, the analyst only
observes that nx men have characteristic x, my women have characteristics y,
and µxy marriages between x-men and y-women took place. By subtraction,
nx −

∑
y µxy remain single; we use the standard convention of matching them

with 0. In the rest of this note summations over y typically also include the 0
term. Similar notation is used for single women.

Our problem is to identify as much as we can of the matrix Φ̃mw while ob-
serving only the numbers nx,my, and µxy; and possibly some data on transfers.
As it is, this is clearly a hopeless task: there are many more unknown numbers
than observations. To reduce the degree of underidentification, we impose:
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Assumption S (separability) for all m ∈ x and w ∈ y,

Φ̃mw = Φxy + εmy + ηwx.

Assumption S requires that conditional on observables, the partners’ unob-
servables do not interact in creating joint surplus.

2 Identification without transfers

As proved in CSW and in GS, assumption S implies that there exist two matrices

Uxy + Vxy = Φxy

such that man m chooses the characteristic of his partner y by solving

max
y

(Uxy + εmy)

and woman w chooses the characteristic of her partner x by solving

max
x

(Vxy + ηwx)

Moreover, Galichon and Salanié prove that in large markets1, the matrices U
and V are just identified if the analyst knows the distributions of the unobserved
heterogeneities.

More precisely, denote

• Px the distribution of the vector (εmy)y conditional on m ∈ x

• and Qy the distribution of the vector (ηwx)x conditional on w ∈ y;

and for any matrix Ux· = (Uxy)y,

Gx (Ux·) = EPx
max

y
(Uxy + εmy)

the expected maximized utility of men of characteristic x under Ux·. Now define
the Legendre–Fenchel transform over the marriage patterns µ·|x = (µy|x)y of
men of characteristic x:

G∗x(µ·|x) = max
Ux·

(∑
y

µy|xUxy −Gx(Ux·)

)
.

GS proves that in equilibrium,

Uxy =
∂G∗x
∂µy|x

.

1That is, if the numbers nx and my are very large for every x and y—see GS for a precise
statement.
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A similar equality obtains for V , replacing Px with Qy, Gx with Hy, etc.
Therefore observing the marriage patterns µ identifies U , V and their sum

Φ = U+V , provided that surplus is separable and we know the distributions Px

and Qy. The latter assumption is clearly very strong. It was imposed in Choo
and Siow 2006, who specified these distributions as products of iid standard type
I extreme value distributions. Relaxing it has been a priority of more recent
literaure.

A first possibility is to use data on several “similar” submarkets. CSW
used data on thirty cohorts of men and women in the US to identify the het-
eroskedasticity of Px and Qy, while still maintaining the type I EV assumption
and independence2.

This note proposes a second approach, which relies on observing data on
transfers. We will explore two extreme cases:

• Case 1: the analyst only observes the mean value of the transfer t̃mw in
each “cell” (x, y)—that is, she observes

txy = E
(
t̃mw|x, y

)
where the expectation is over realized matches of m ∈ x and w ∈ y.

• Case 2: for each realized match, the analyst observes the value of the
transfer t̃mw.

We will always assume that pre-transfer utilities are themselves separable, so
that the post-transfer utility of man m ∈ x in a match with woman w ∈ y is

axy + εamy + ηawx − t̃mw

and that of his partner is

bxy + εbmy + ηbwx + t̃mw,

with a+ b ≡ Φ, εa + εb ≡ ε, and ηa + ηb ≡ η.

3 Transfers are Separable

Given the results in GS, post-transfer utilities in a match (m ∈ x,w ∈ y) equal

∂G∗x
∂µy|x

+ εmy

and
∂H∗y
∂µx|y

+ ηwx.

2Fox and Yang (2013) show that one can sometimes identify the distribution of unobserved
heterogeneity using data on many markets, even without separability. To do so, they impose
restrictions on what we called Φxy .
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Equating these expressions to those in section 2 shows that

ηawx − εbmy − t̃mw

can only be a function of (x, y); that is, it cannot depend on the identity of
m ∈ x and w ∈ y. It follows that we must have

t̃mw = Txy + ηawx − εbmy (1)

for some matrix Txy. This proves that the separability of pre-transfer utilities
implies the separability of equilibrium transfers.

In equilibrium, a man m ∈ x who marries a woman w ∈ y faces competition
from all other men of characteristic x who value woman w; given prefect com-
petition, this implies that he will have to pay her a salary that is shifted up by
ηamy. By a similar argument, the salary woman w receives is shifted down by

the value of εbmy.
Moreover, we have

Uxy = axy − Txy =
∂G∗x
∂µy|x

(2)

and

Vxy = bxy + Txy =
∂H∗y
∂µx|y

(3)

so that

Txy = axy −
∂G∗x
∂µy|x

=
∂H∗y
∂µx|y

− bxy. (4)

4 The Equilibrium Value of Transfers

Given a specified model and the observed (or simulated) matching patterns,
formulas (1) and (4) can be used to compute equilibrium transfers.

4.1 An Example

As a simple example, take the TU analog of Agarwal’s (2014) matching market,
in which one side of the market agrees on the ranking of all individuals on the
other side. In my notation, say that all men agree on how to rank all women.
This can only hold if pre-transfer utilities of men have εamy ≡ 0 and ηawx ≡ ηw.
Then in equilibrium in large markets, the results in GS imply that

t̃mw = axy −
∂

∂µy|x
max
Ux·

(∑
z

µz|xUxz − EPx
max

z

(
Uxz + εbmz

))
− εbmy.

Why this may seem complicated, it is often easy to evaluate in closed form. If
for instance the εbmy are type I extreme value G(−γ, σ2

x), then

t̃mw = axy − σx logµy|x − εbmy.
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4.2 A Test for Separability

In addition, these formulas generate a simple prediction of separability (when
conjoined with perfect competition, the absence of frictions and large markets):
if m and m′ share the same x and women w and w′ share the same y, then

tmw + tm′w′ = tmw′ + tm′w.

In Case 1, this is non-testable since we only observe average transfers for each
(x, y)-cell. But in case 2, this generates a testable prediction. As a deterministic
equality on observables, it will of course be rejected by any data set. It is more
useful to consider (1) as an approximation, and to evaluate its quality. A simple
way to do so is to regress transfers on interacted dummies:

t̃mw = dxy + dmy + dwx + ξmw.

The R2 of this regression is a measure of how well separability fits the data.

5 The Identifying Power of Transfers

Now let us go beyond Choo and Siow by letting the distributions of εamy, ε
b
my, η

a
wx

and ηbwx depend on unknown parameters θ. Our identifying equations are (1),
(2), and (3), and the RHS in the latter two now depend on θ. We wish to
identify θ, a, b, and T .

First note that from the results in GS, given any value of θ,

axy − Txy =
∂G∗x
∂µy|x

(µ·|x; θ)

and

bxy + Txy =
∂H∗y
∂µx|y

(µ·|y; θ)

are just identified from the matching patterns. In addition, we now know observe
the realized transfers

t̃mw = Txy + ηawx − εbmy

in Case 2, and the average transfers

txy = Txy + E
(
ηawx − εbmy|x, y

)
in Case 1.

5.1 Restrictions on Pre-transfer Utilities

In some applications, the analyst will be able to assume that the matrices a
and b are restricted in some way; this would help her identify θ. This is already
true for models in which we do not observe transfers, and we do not pursue it
further.
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5.2 Restrictions on Unobserved Components

A particularly simple case is that in which the components εb and ηa are known
to be identically zero. Then t̃mw is simply Txy; so that Txy is just-identified in
Case 1, and massively over-identified (and testable) in Case 2.

In Case 1 as in Case 2, the knowledge of T also gives us a and b for any
given θ; on the other hand, we cannot use the observability of transfers to learn
about θ.

Note that εb ≡ 0, for instance, implies that all women of characteristics y
are indifferent (pre-transfer) as to which man of characteristics x they may end
up marrying: if they were offered a different x-husband with the same transfer,
they would be equally happy. This sounds rather implausible.

The polar assumption, on which we focus from now on, would have εa and
ηb be identically zero: all men of characteristics x agree in the way they rank
(pre-transfer) the women of type y, and all women of characteristics y agree in
the way they rank (pre-transfer) the men of type x. Then the distribution of
t̃mw conditional on a match (m ∈ x,w ∈ y) is the distribution of

Txy + ηawx − εbmy

conditional on
∂G∗x
∂µz|x

(µ·|x; θ) + εbmz (5)

being maximal in z = y and

∂H∗y
∂µz|y

(µ·|y; θ) + ηawz

being maximal in z = x. In Case 2, we observe this entire conditional distribu-
tion; and in Case 1 we only observe its mean.

5.2.1 An Illustrative Example

Let us take a simple example that minimally generalizes Choo and Siow 2006.
As in CSW, we assume that the εbmy (resp. the ηawx) are type I EV iid with scale
parameter σx (resp. τy.) Therefore θ = ((σx)x, (τy)y).

The special properties of the type I EV distribution3 imply that the distri-
bution of the maximum in (5) is the original type I EV distribution translated
by the expected maximum utility,

σx log
∑
z

exp(Uxz/σx) = −σx logµ0|x.

In addition, the results in GS show that

∂G∗x
∂µy|x

(µ·|x; θ) = σx log
(
µy|x/µ0|x

)
.

3See de Palma-Kilani 2007.
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Putting this together, t̃mw should be distributed as the difference of Txy and
two independent type I EV distributions,

• one with location parameter −τy logµx|y and scale parameter τy

• one with location parameter −σx logµy|x and scale parameter σx.

In Case 1, we obtain equivalently

txy = Txy − τy logµx|y + σx logµy|x

= axy − τy logµx|y + σx logµ0|x

= σx logµy|x − τy logµ0|y − bxy.

in which the terms Txy, axy, bxy, σx and τy are unknown. Jointly with

axy + bxy = σx log
(
µy|x/µ0|x

)
+ τy log

(
µx|y/µ0|y

)
,

this is the empirical content of the model. Given the structure of these equations,
it is clear that we cannot identify θ.

On the other hand, in Case 2 we can identify the scale parameters σx and τy.
They are in fact just identified from the second- and third-order moments of t̃;
and they are overidentified using higher-order moments, so that the specification
is testable. It would even be possible to allow for some mismeasurement of
transfers.

While this is only an illustrative example, it is interesting to note that it is
exactly the model in CSW. Observing the distribution of transfers in every cell
therefore substitutes for the repeated cross-sections they used4.

5.2.2 A More General Treatment

For any non-negative integer k, define

cky = E
(
εkmy11 (Uxy + εmy ≥ Uxz + εmz for all z)

)
.

Note that each cky is a random function of the differences of utilities (Uxy−Uxz)
and of θ. Moreover, c0y is simply the probability that y is chosen by m ∈ x,
which is µy|x. Therefore the equation

c0y = µy|x

simply rewrites equation (2). Solving these equations for all values of y gives us
the differences of utilities as a function of θ. Moreover, the conditional moments
of εmy given that the maximum is achieved in y are simply the cky/c0y for k ≥ 1;
and since we already solved for the differences of utilities, these are functions of
θ only.

In Case 1, we only observe txy, which is the sum of Txy, of c1y/c0y and of
the equivalent term for η. This is essentially uninformative on θ.

4It does a little more, in fact, since it identifies the general scale of utilities.
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In Case 2, we know the distribution of transfers for (x, y) matches. In partic-
ular, we know its moments of all orders; but these are functions of the unknown
Txy, of the conditional moments cky/c0y of ε, and of those of η. Therefore we
have an infinity of equations to solve for θ, and a tempting conjecture is that
any finite-dimensional θ is overidentified.

While we do not have a proof for this conjecture, some more special results
are easily obtained. Consider for instance the case in which the shape of the
distribution for each gender is known but its scale parameter is not; then θ =
((σx), (τy)). It is easy to see that the cky scale as σk

x with the difference utilities
divided by σx:

E
(

(σxεmy)
k

11 (Uxy + σxεmy ≥ Uxz + σxεmz for all z)
)

= σk
xE

(
εkmy11

(
Uxy

σx
+ εmy ≥

Uxz

σx
+ εmz for all z

))
.

As a consequence, the conditional moments cky/c0y scale as σk
x, and knowledge

of the moments of t̃mw identifies the θ parameter. Thus the findings reported
in 5.2.1 for the type I EV distribution apply much more generally, and scale
parameters are identified.

6 Testing for Assortative Matching

Much attention has been devoted to “sorting” in matching markets. Eeckhout
and Kircher (2011) for instance make the point that even in a frictionless market
like the one we consider, a given set of transfers may be the product of very dif-
ferent surplus functions, only some of which involve positive complementarities.
In this section we are concerned about inferring complementarities in surplus
from the observed data. “Complementarities in surplus” have a straightforward
definition: we require that for the given orderings on the sets of men charac-
teristics x and of women characteristics y, the joint surplus be supermodular in
(x, y).

To put it more formally, there are complementarities in surplus iff for all
men characteristics x and z and women characteristics y and t,

Φx∨z,y∨t + Φx∧z,y∧t ≥ Φxt + Φzy.

Complementarity in surplus is an ordinal property: it is invariant if x and y are
subjected to increasing transformations.

Take the CSW example of section 5.2.1. When the σx and τy parameters all
equal one (which defines the model of Choo and Siow 2006), then

Φxy = log
µy|x

µ0|x
+ log

µx|y

µ0|y
.

Eliminating the terms that do not interact x and y, it is clear that Φ is super-
modular iff logµ is—a point already made by Siow (2009). Observing transfers
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is not necessary to infer complementarities; the matching patterns µ are all that
is needed. Their log-supermodularity is equivalent to the supermodularity of
the joint surplus.

If we reintroduce the parameters σx and τy, then

Φxy = σx log
µy|x

µ0|x
+ τy log

µx|y

µ0|y
,

and the supermodularity of Φ is equivalent to that of the matrix

Mxy = (σx + τy) logµxy,

The supermodularity of M in turn depends on the logsupermodularity of µ,
but also on its monotonicity and on that of σx and τy. While the first two are
readily observed from the data, the latter is not; and inferring complementarities
requires learning about the additional parameters σx and τy.

To illustrate this, suppose that we observe aggregate transfers as in case 1,
and that (a, b, σ, τ) rationalizes the data (t, µ), with

axy + bxy = σx log
µy|x

µ0|x
+ τy log

µx|y

µ0|y

txy = axy − τy logµx|y + σx logµ0|x

= σx logµy|x − τy logµ0|y − bxy.

Now pick any (δσx, δτy), and modify a and b as follows:

δaxy = δσx logµxy

δbxy = δτy logµxy.

It is easy to see that (a+δa, b+δb, σ+δσ, τ+δτ) rationalizes the same data; and
with these degrees of freedom we can easily make M supermodular, submodular,
or neither. The only exception is the intermediate case in which we assume that
σx is independent of x and τy is independent of y. Then we can still conclude
that Φ is supermodular iff logµ is..

The lesson from this exercise is that unless we restrict the pre-transfer util-
ities a or b, their separate and unknown complementarities will defeat our at-
tempts to infer those of the joint surplus. Restrictions on a and b do not yield
that much, however. Assume that there are no interactions between x and y in
a (so that axy only depends on x, or on y.) Then t is supermodular iff τy logµxy

is; and M is supermodular if and only if

σx logµxy + txy

is supermodular. If we knew the value of σx, then we would identify the comple-
mentarities in surplus; but even an additional assumption that σx is a constant
σ will not allow us to conclude unless for instance logµ and t are both super-
modular.

Finally, remember from section 5.2.1 that in case 2, σx and τy are identified
from the individual transfers; and therefore we can test for complementarities
once we have recovered estimates of these parameters.
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Conclusion

The results in this note are mixed. When the only information on transfers is
available at the “cell” level as in Case 1, then it will not allow us to identify any
parameter of the distribution of unobserved heterogeneity. On the other hand,
information on the distribution of transfers within each cell has the potential
to be very informative on this distribution under separability. It also allows the
analyst to test for separability without resorting to specific assumptions on the
distributions of heterogeneity.

While this note focused on the identifying power of transfers, in some situ-
ations the analyst observes measurements of outcomes; these will be informa-
tional on the joint surplus Φ̃mw, or on the way it is shared. In marriage markets,
such measurements could include divorces, children outcomes, or allocation of
household expenditure. In labor markets one could have measurements of the
productivity of a match. The survey by Graham (2011) discusses this at greater
length.
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