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Abstract

We consider an Arrow-Debreu economy in which expected-utility-maximizing
agents are sensitive to regret. According to regret theory, the marginal utility
of their consumption is increasing in the maximum payoff that they could
have obtained if they would have made another choice ex ante. We show that
regret biases the optimal portfolio allocation towards assets that perform
particularly well in low probability states. The competitive asset pricing
kernel is convexified by regret if the distribution of the macroeconomic risk
is logconcave. Regret also reduces the equity premium when the macro risk
is positively skewed. We characterize the competitive allocation of risk when
consumers have heterogenous preferences, and we show how to aggregate
individual intensities of regret.
Keywords: regret theory, portfolio choice, complete markets, long odds

bias.



1 Introduction

The pleasure extracted from a favorable event is often mitigated by the feeling
that this event could have been even more favorable if other actions would
have been performed ex ante. For example, I am happy to have bet on
a horse which won its race, but my pleasure is limited by the feeling that
I could have earned a larger payoff by betting more on that horse. This
feeling is particularly acute for winning horses with large odds. Similarly,
investors who invested 50% of their financial wealth in stocks are hopeful
in a bullish market, but they anticipate that they will regret not having
invested more in stocks if stock prices surge. Quoting Bell (1985), regret
is a psychological reaction to making a wrong decision, where the quality
of decision is determined on the basis of actual outcomes rather than on
the information available at the time of the decision. Bell (1982, 1983) and
Loomes and Sugden (1982), have convincingly argued that many people are
likely to feel regret, and the expectation of such future regret should have
an impact on the optimal behavior in the face of risk. Regret theory may
explain some of the puzzles coming from the confrontation of the expected
utility theory with the market and experimental data. For example, Bell
(1982) has shown that regret theory can explain why it may be optimal
to purchase insurance at an actuarially unfair price and, at the same time,
gambling on a zero-mean risk.
In this paper, we assume that agents are subject to regret, and we ex-

amine the consequences of this assumption on the optimal decisions under
risk, the allocation of risk in the economy, and asset prices. To do this, we
consider a static model with complete markets for Arrow-Debreu securities.
Following the authors mentioned above, we assume that agents maximize
their expected utility, where each individual’s ex-post utility is a function
of two variables: the actual level of consumption x, and the largest level of
consumption y that would have been attainable if another decision would
have been made ex ante. This second variable will hereafter be called the
”forgone best alternative”. Two alternative properties of this utility func-
tion can be considered to define the notion of regret. The first candidate for
a definition of regret is that the utility function is decreasing in y. In this
paper, we prefer to use a more behavioral approach in defining regret by
the positiveness of the cross-derivative of the utility function: the marginal
utility of actual consumption is increasing in the forgone best alternative. In
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short, this means that consumption is a substitute for regret. As explained
by Eeckhoudt, Rey and Schlesinger (2005) in a different context, this defini-
tion of regret is equivalent to a preference for a positive correlation between
the actual payoff and the forgone best alternative. A more restrictive specifi-
cation of the utility function that satisfies this assumption has been proposed
by Bell, Loomes and Sugden.
This definition of regret has intuitive consequences, as the so-called long

odds bias that is observed in racetrack betting and national lotteries. When
the budget available for gambling is fixed, the forgone best alternative ex post
is of course to bet the player’s entire budget on the winning horse, yielding a
best payoff that is proportional to its add. When prices are actuarially fair,
this means that the foregone best alternative is inversely proportional to the
corresponding state probability. Thus, the feeling of regret is relatively more
pronounced for long-shots than for favorites. The preference for a positive
correlation between the actual payoff and the forgone best alternative implies
that the player biases his betting strategy towards long-shots. Similarly,
consumers that are sensitive to regret biases their insurance demand towards
low probability events, and they biases their portfolio allocation towards
assets that perform particularly well in low probability states, i.e., highly
skewed assets.
An immediate consequence of this property is that the demand for equity

is increased by regret if the macroeconomic risk is positively skewed. In
this context, the equilibrium price of equity is increasing in the intensity of
regret of the representative agent. Thus, regret cannot explain the equity
premium puzzle (Mehra and Prescott (1985)) when the macroeconomic risk
is positively skewed.
More generally, we characterize the competitive price of any contingent

claim in this economy. In a regret free economy, the competitive state price
per unit of probability is a decreasing function of the aggregate consumption
in that state. This function is usually referred to as the pricing kernel.
The equity premium is proportional to the absolute value of its derivative,
which is the absolute risk aversion of the representative agent in the classical
model. The characterization of the pricing kernel is more complex when the
representative agent is sensitive to regret. Indeed, the competitive state price
per unit of probability will also be a function of the state probability in that
case. The increased demand for contingent claims associated to unlikely
states that is generated by regret tends to raise their competitive price.
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Therefore, state prices will be abnormally large in the tails of the distribution
of aggregate consumption. In other words, regret convexifies the pricing
kernel. This is compatible with the observation made by Rosenberg and
Engle (2002) who showed that the empirical pricing kernel at the lower tail
is much steeper than what would be obtained in the classical model with a
regret-free model. However, Rosenberg and Engle (2002) do not observe a
similar pattern at the upper tail of the distribution.
We define an index of the intensity of regret. It equals the increase in

actual consumption that preserves the marginal utility when the foregone
alternative is increased by 1%. We describe the preferences of the represen-
tative agents when consumers have heterogenous preferences. Wilson (1968)
already showed that the representative agent has an absolute risk tolerance
which is the mean absolute risk tolerance in the population. In a similar fash-
ion, we show that the representative agent has an intensity of regret that is
the mean of the intensities of regret in the population.
Muerman, Mitchell and Volkman (2005) and Michenaud and Solnik (2005)

have examined a portfolio choice problem when the investor anticipates re-
gret. Our work differs much from their analyses in at least three essential
dimensions. First, we derive our results by just assuming that the cross-
derivative of the bivariate utility function U(x, y) is nonnegative, whereas
they assume that U(x, y) = v(x)+ f(v(x)− v(y)). Second, we go beyond the
portfolio choice problem to derive an asset pricing model and a preference
aggregation formula. Last but not least, these authors consider a two-asset
model, whereas we assume the existence of a complete set of markets for
Arrow-Debreu securities. Because regret theory is very sensitive to the def-
inition of the investment opportunity set, this alternative assumption has a
deep impact on the characterization of the optimal portfolio. For example,
both Muerman et al. (2005) and Michenaud et al. (2005) obtain as a central
result that the demand for the risky asset is positive when the price of the
risky asset is fair. Our finding is radically different under complete markets,
since we show that, under actuarially fair prices, the risk free position is still
optimal when all states are equally likely. More generally, we show that the
sign of the demand for the risky asset depends upon the skewness of the
distribution of its returns.
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2 Regret and binary lottery choices

As initially suggested by Bell (1982), we assume that agents are subject to
regret in the sense that the von Neumann-Morgenstern utility in any state
is a function of two variables: (1) the actual consumption x of that agent
in that state, and (2) the maximal consumption y that could have been
attained in that state if another feasible choice would have been made at the
beginning of the period. We make the following assumption on this utility
function U. First, it is assumed to be increasing and concave in x. Agents
always prefer to consume more to less (Ux > 0), and are averse to risk on
actual consumption (Uxx ≤ 0). Second, we assume that agents are sensitive
to regret, in the sense that the marginal utility of actual consumption is
increasing in the forgone alternative y : Uxy ≥ 0.In a more general context,
Eeckhoudt, Rey and Schlesinger (2005) show that the positivity of the cross-
derivative of the utility function can be interpreted as a preference for a
positive correlation between x and y. Thus, regret sensitiveness is equivalent
to correlation loving between actual consumption and the forgone alternative:
consumption is more valuable in states where the feeling of regret is larger.
Contrary to the existing literature on regret as initiated by Bell (1982) and

Loomes and Sugden (1982), we don’t advocate for any particular specification
of our bivariate utility function U . In the remaining of this section, we claim
that the cross-derivative of this function characterizes the agent’s attitude
to regret. Following Bell (1982), consider the possibility to bet an amount
b on a horse whose objective probability of winning the race is p. Suppose
moreover that the bets are fair, i.e., for a bet of size b euros, the bookmaker is
ready to pay x/p euros if the horse wins and zero otherwise. In this section,
the only alternative to bet b is not to bet at all. It is optimal to bet if and
only if

pU

µ
b
1− p

p
, b
1− p

p

¶
+ (1− p)U(−b, 0) ≥ pU

µ
0, b
1− p

p

¶
+ (1− p)U(0, 0).

(1)
There are two situations in which the agent feels regret: (1) he bets, and
the horse looses, and (2) he doesn’t bet and the horse win. These are the
two terms in (1) in which the two variables in U differ. When Uxx < 0
and Uxy > 0, we see two contradictory effects in (1). First, risk aversion is
unfavorable to taking this fair bet, since x is riskier in the left-hand side of
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(1) than in its right-hand side. Second, risk taking is favored by the feeling of
regret, which is equivalent to correlation loving between x and y. Indeed, x
and y are positively correlated when the lottery is accepted, whereas they are
independent when no risk is taken. This contradictory effects can be made
more explicit for small risk. When bet b is small, it is indeed easy to check
that the above inequality holds if and only if

Uxx(0, 0) + 2(1− p)Uxy(0, 0) ≥ 0. (2)

Thus, betting is optimal only if the feeling of regret is strong enough com-
pared to the intensity of risk aversion.
We see from (2) that the willingness to accept the fair lottery due to the

anticipation of regret depends upon the probability p of winning. When p is
close to unity, the covariance between x and y, which is equal to b2(1−p)2/p
when the lottery is accepted, tends to zero. The effect of regret — or xy-
correlation loving — is almost inexistent in that case. When p is reduced, the
covariance increases, and the effect of regret increases. The effect of regret is
maximum for very low-probability events. This could explain the long-shot
bias. This bias is well-documented in the literature. For example, Kahneman
and Tversky (1979) showed that 72% of their subjects in a laboratory ex-
periment preferred the lottery (5000, 1/1000; 0, 999/1000) over the sure gain
of 5, which can be interpreted equivalently as accepting a fair bet of 5 on a
horse that has a probability of winning of 1/1000. Jullien and Salanié (2000)
provide information on the unfavorable equilibrium prices observed for long
shots in horse races in the U.K..
Bell (1982) and Loomes and Sugden (1982) advocated the use of the

following special case of our model:

U(x, y) = v(x) + f(v(x)− v(y)), (3)

where functions f and v are increasing and concave. Another possible spec-
ification for U exhibits ”multiplicative” regret:

U i(x, y) =
x1−γyα

1− γ
, (4)

where γ and α are two positive scalars. Whereas we consider these partic-
ular specifications as quite intuitive, we claim that they are unnecessarily
restrictive. We will derive most of our results for the general bivariate utility
model.
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3 Optimal portfolio for regret-sensitive agents

Contrary to the classical expected utility model, the evaluation of a specific
decision is not independent of the set of possible alternative decisions when
the decision maker is sensitive to regret. Contrary to the binary decision
model that we considered in the previous section, we assume here that the
agent has a continuum of choice. This is typical of a portfolio choice problem.
The uncertainty prevailing at the end of the period is described by the S
possible states of nature, indexed s = 1, ..., S. There is an agreed-upon
objective probability distribution of the states given by vector (p1, ..., pS) > 0.
We assume that markets are complete. For each state s, there is a tradable
Arrow-Debreu security that yields one unit of the single consumption good
to its owner if state s occurs, and that yields nothing otherwise. The price of
this asset at the beginning of the period is denoted Πs > 0. When Πs = ps
for all s, we say that state prices are actuarially fair.
The investor’s endowment in the consumption good is state-contingent,

with ωs denoting the endowment in state s. Let xs denote the actual con-
sumption in state s. It is financed by the state endowment ωs plus the
purchased amount xs − ωs of the Arrow-Debreu security associated to that
state. This consumption plan must satisfy the budget constraint, which is
written as:

SX
s=1

Πsxs = w =def

SX
s=1

Πsωs, (5)

where w is the market value of agent i’s state-contingent endowment. We
prohibit personal bankruptcy by imposing constraint xs ≥ 0 for all s. The
preferences of the decision maker are characterized by the bivariate utility
function U(x, y) as defined in the previous section.
It is obvious that, given the no-bankruptcy constraint, the maximal level

of consumption in state s is ys = w/Πs. This would be the level of consump-
tion attained by that agent in that state if her entire wealth w would have
been invested in the Arrow-Debreu security associated to that state. Given
this observation, the portfolio decision problem can be written as

(x1, ..., xS) ∈ arg max
x1,...,xS≥0

SX
s=1

psU(xs,
w

Πs
) s.t. (5). (6)
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Because U is concave in its first argument, the objective function is con-
cave in the vector of decision variables, whereas the budget constraint is
linear in it. It implies that the solution to this program is unique. We as-
sume that the utility function satisfies the Inada condition that states that
the marginal utility of actual consumption tends to infinity when actual con-
sumption tends to zero. It implies that the no-bankruptcy constraint is never
binding. The necessary and sufficient condition characterizing the optimal
portfolio of Arrow-Debreu securities is therefore written as

Ux(xs,
w

Πs
) = λ

Πs

ps
, (7)

where λ is the Lagrange multiplier associated to the budget constraint. Let
πs = Πs/ps denote the state price per unit of probability. For any given pair
(π,Π), let X denote the unique solution of the following equation:

Ux(X,
w

Π
) = λπ. (8)

This equation characterizes function X(π,Π). Comparing equation (7) and
(8) implies that the optimal portfolio is such that xs = X(πs,Πs). The opti-
mal risk exposure is measured by the size of the differences in state consump-
tion, |∆xs/∆s|. By equation (8), these differences in states consumption may
be due either to differences in πs or differences in Πs across states. Totally
differentiating equation (8) yields

UxxdX − Uxy
w

Π2
dΠ = λdπ,

where the derivatives of U are evaluated at (X(π,Π), w/Π). Replacing λ by
Ux/π, we obtain the following result.

Proposition 1 The demand xs for the claim contingent to state s is a func-
tion X of the state price per unit of probability πs = Πs/ps and of the state
price Πs. This function satisfies the following property:

dX = −T (X,w/Π)
dπ

π
− Γ(X,w/Π)

dΠ

Π
, (9)

where T (x, y) = −Ux(x, y)/Uxx(x, y) is the Arrow-Pratt index of absolute
tolerance towards actual consumption, and Γ(x, y) = −yUxy(x, y)/Uxx(x, y)
measures the intensity of regret.
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No regret. In the absence of regret (Γxy = 0), we know from (7) that
the optimal demand for the Arrow-Debreu security associated to state s
depends upon the state only through the corresponding state price per unit
of probability π=Π/p. This property of the classical model is essential, as it
means that all risks that can be diversified at an actuarially fair price will
be fully diversified away in individual portfolios. This property is central
to derive the CAPM and APT pricing formulas. At the limit, when all
assets are actuarially priced (Πs = ps for all s), full insurance is optimal,
i.e., agents purchase a risk free portfolio (X ≡ w). When state prices are
not actuarially fair, the optimal risk exposure in the absence of regret is
such that −πdX/dπ = T . In words, the demand for Arrow-Debreu securities
is larger for states with a smaller state price per unit of probability. This
sensitivity is proportional to the investor’s tolerance to risk. Seen from ex
ante, this sensitivity is a measurement of the riskiness of the portfolio selected
by investor i, which is optimally proportional to the agent’s risk tolerance.
Regret with fair prices and equally likely states. Proposition 1 character-

izes the optimal portfolio of agent i in the more general case with regret. The
index Γ of regret measures the increase in actual consumption that preserves
the marginal utility of actual consumption when the foregone alternative is
increased by one percent. Because Γ is positive under regret, equation (9)
states that the demand for state consumption is decreasing in the correspond-
ing state price, since regret is inversely related to it. The simplest case with
regret arises when all states are equally likely and state prices are actuarially
fair, i.e., Πs = ps = 1/S for all s. In that case, the riskless portfolio is still
optimal, with xs = X(1, 1/S) = w for all s. This is a case where risk aversion
is the driving force behind this full insurance result. Because the foregone
best alternative is the same in all states, regret affects the marginal utility of
consumption in the same way in all states. Therefore, it does not affect the
willingness to fully insure risk.
Regret with fair prices and heterogeneous state probabilities. The next

step is to maintain the assumption of actuarially fair prices, but to relax
the assumption that states are all equally likely: Πs = ps for all s, but
∃(s, s0) : Πs = ps > ps0 = Πs0 . In that case, equation (9) tells us that, in spite
of the fairness of asset prices, the demand for the contingent claim associated
to the more likely state s is smaller than the contingent claim associated to
the less likely state s0. As explained above, the reason is the larger foregone
best alternative in state s0. The difference in demand is proportional to the
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intensity of regret measured by Γ, and to the relative increase in probability
dp/p. This is the mechanism at work in the observation by Bell (1982) that
an agent can at the same time have a positive demand for gambling and for
insurance, when prices are actuarially fair.1 Risk-averse agents are willing to
insure a 50-50 risk of accident, and, at the same time, they want to bet on
low probability events, both at unfair prices. We summarize these findings
in the following proposition.

Proposition 2 Suppose that state prices are actuarially fair: πs = πs0 for
all (s, s0). Then, the risk free position is optimal only if all states are equally
likely, or if Uxy ≡ 0. More generally, under actuarially fair prices, the de-
mand for Arrow-Debreu securities is decreasing in the corresponding state
probability (long shot bias).

This implies for example that, when insurance prices are fair, risk-averse
agents will purchase partial insurance — or no insurance at all — against a
binary risk of loss when the loss probability is larger than 1/2.
Regret with unfair prices. We have just shown that regret tends to induce

investors to accept risk in a situation where the risk free position would
have been optimal in the absence of regret. However, when prices are not
fair, it is not true in general that the expectation of regret ex post induces
people to take more risk ex ante. To illustrate this point, suppose that
vectors (π1, ..., πs) and (Π1, ...,ΠS) are anti-comonotone in the sense that for
all (s, s0), (πs − πs0)(Πs − Πs0) is nonpositive. This is a situation in which
the two terms in the right-hand side of equation (9) have opposite sign. The
effect of regret goes opposite to the effect of risk tolerance. From the point
of view of her risk tolerance, the agent would like to purchase less contingent
claims associated to states with a larger state price per unit of probability.
But these are the states where the effect of regret is stronger, thereby yielding
an increase in demand for these claims. Thus, in that case, regret reduces
the differences of the demands for Arrow-Debreu securities, i.e., it reduces
the optimal portfolio risk. We can formalize this result by defining function
q such that Πs = q(πs) for all s. We can then rewrite equation (9) as

dX = −
∙
T (X) +

q0(π)

q(π)
Γ(X,

w

q(π)
)

¸
dπ

π
. (10)

1However, contrary to us, Bell (1982) does not consider explicitly the joint insurance
and gambling decision.
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When vectors (π1, ..., πs) and (Π1, ...,ΠS) are (anti-)comonotone, q
0 is positive

(negative). Assuming that the bracketed term in (10) is positive, the optimal
risk exposure in increasing (decreasing) in the intensity Γ of regret.
To illustrate, let us consider a simple insurance problem. There are two

states of nature, a no-loss state s = 1 and a loss state s = 2 in which
the agent looses 50 percents of his wealth. The endowment of the agent is
ω1 = 1 in state s = 1, whereas it is only ω2 = 1 − L = 0.5 in state s = 2.
The probability of loss is denoted p. For each euro of indemnity paid in
case of loss, the policyholder must pay a premium (1 + k)p, where k > 0
is the loading factor of the insurance premium. This is compatible with the
following state prices:

Π1 = 1− p(1 + k); π1 = 1− k
p

1− p
Π2 = p(1 + k); π2 = 1 + k

Because obviously π1 is less than π2 under the assumption that k is positive,
the vectors of the π and the Π are comonotone when Π1 ≤ Π2, i.e., when p
is larger than bp = 0.5(1 + k)−1 < 0.5. In our calibration exercise, we assume
that k = 30%, so that the threshold probability bp equals 0.38.We also assume
that the utility function is U i(x, y) = x1−γyα/(1 − γ). Notice that because
Γi(x, y) = αx/γ, parameter α is a measure of the intensity of regret. In this
context, the optimal indemnity equals

I =
1− µ(1− L)

(1 + k)(1− µ)p+ µ
with µ =

"
1− k p

1−p
(1 + k)1+α

#− 1
γ ∙
1− p(1 + k)

p

¸−α
γ

.

(11)
In Figure 1, we depicted the optimal indemnity as a function of the probabil-
ity of loss, for γ = 2 and α = 0, 0.1,,...,0.5. We see that when the probability
of loss is larger than bp = 0.38, the optimal indemnity is decreasing in the
intensity of regret. The expectation of future regret raises the optimal risk
exposure because π and Π are comonotone for these values of the loss prob-
ability. This figure and this argument may explain why we don’t observe
active insurance markets for high-frequency risks. Notice that when the in-
tensity of regret is large, it may be optimal to overinsure the risk, i.e. to
select an insurance contract promising an indemnity larger than the loss.2

2There is no asymmetric information in our model. This implies that we do not restrict
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Figure 1: Optimal indemnity as a function of the probability of loss for a
regret factor α = 0, 0.1, 0.2, 0.3, 0.4 and 0.5.

4 Asset prices

From our analysis of the characteristics of the optimal individual portfo-
lios, we can easily derive an asset pricing formula by assuming that all con-
sumers in the economy have the same utility function U and the same state-
dependent endowment (ω1, ..., ωS). In that case, autarcy must be a compet-
itive equilibrium. Plugging this market-clearing conditions xs = ωs for all s
in the first-order condition (7) yields

Ux(ωs,
w

psπs
) = λπs. (12)

The competitive price per unit of probability of of the Arrow-Debreu security
associated to state s is given by πs = π(ωs, ps), where function π solves the

the indemnity to be nonnegative and smaller than the loss. If we would impose this
constraint, the maximum consumption in the no-loss state would be the initial wealth,
whereas it would be the initial wealth minus the full insurance premium in the loss state.
Because the second is larger than the first, regret would always work in favor of partial
insurance under this constraint, as shown by Braun and Muermann (2004).
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following equation

Ux(ω,
w

pπ(ω, p)
) = λπ(ω, p) (13)

for all (ω, p). Because the left-hand side of this equation is decreasing in π
whereas its right-hand side is increasing in π, the solution of this equation is
unique. Function π is usually referred to as the pricing kernel, as it allows to
price any asset in the economy. Notice also that 1/πs measures the expected
return of the investment in the Arrow-Debreu security s, whereas 1/Πs mea-
sures the return of the Arrow-Debreu security conditional to the occurrence
of state s.
Without regret (Uxy ≡ 0), it is well-known that diversifiable risks are

actuarially priced at equilibrium, a property of asset prices that induce in-
vestors to eliminate diversifiable risk from their portfolio. Technically, this
means that, without regret, if there are two states (s, s0) such that ωs = ωs0 ,
then πs = πs0 . Thus, without regret, the price kernel is independent of the
state probability. This property does not hold in general when investors are
sensitive to regret. Indeed, totally differentiating equation (13) yields

Uxxdω − Uxy
w

pπ

dπ

π
− Uxy

w

pπ

dp

p
= λdπ.

Eliminating λ from this equation by using (13) and dividing by Uxx yields
the following result.

Proposition 3 The equilibrium price per unit of probability πs of the Arrow-
Debreu security associated to state s equals π(ωs, ps), where function π is
defined by equation (13). It satisfies the following property:

−dπ
π
= [T + Γ]−1

µ
dω + Γ

dp

p

¶
, (14)

where T and Γ are respectively the absolute risk tolerance and the intensity
of regret, evaluated at (ω,w/pπ(ω, p)). As a consequence, we obtain that

1. the price kernel π is independent of the state probability only if the
representative agent is insensitive to regret;

2. the price kernel π is decreasing in the state probability when the repre-
sentative agent is sensitive to regret.
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When the representative agent feels regret, diversifiable risks are actu-
arially priced only if the involved states of nature are equally likely. States
that are more likely to occur have a smaller state price per unit of probabil-
ity. Because the foregone alternative w/pπ is larger in less likely states, the
increased demand for consumption in these states must be compensated at
equilibrium by an increase in the corresponding state prices. Long shots get
a negative risk premium. By equation (14), an increase in the state proba-
bility by 1% has an effect on π that is equivalent to an increase in the state
wealth by 0.01Γ. In the special case with U(x, y) = x1−γyα/(1− γ), yielding
Γ(x, y) = αx/γ, an increase in the state probability by 1% has an effect on
π equivalent to an increase in wealth ω by α/γ%.

4.1 The equity premium when the macroeconomic risk
is small

Let us now compute the equity premium in such an economy. It is defined
by EP = (EωEπ/Eωπ)−1. Let p(ω) denote the probability that the wealth
per capita be equal to ω. Suppose that ω = 1 + ε, where ε is a zero-mean
small risk whose support is in a small neighborhood of 0. Using a first-order
approximation for π, we obtain the following standard approximation of the
equity premium EP ' −π−1(dπ/dω)V ar(ω), where π and its derivative is
evaluated at the expected final wealth ω = 1. Using (14), the derivative of
the log state price with respect to wealth equals −(1+Γp0/p)/(T +Γ), which
implies in turn that

EP =

1 + Γ
p0(ω)

p(ω)

T + Γ
V ar(ω), (15)

where T and Γ are evaluated at (1, w/p(ω)π). In the classical case where
the representative agent is insensitive to regret, the equity premium is pro-
portional to the absolute risk aversion 1/T. When the representative agent
is sensitive to regret, the right-hand side of equality (15) is decreasing in
the intensity of regret Γ when p0/p is smaller than the index of absolute risk
aversion 1/T .

Proposition 4 Consider two economies with the same distribution p of wealth
per capita, , one of which has a representative agent who is insensitive to re-
gret. Consider a state ω for which the degrees of risk tolerance T are the
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same in the two economies. If p0(ω)/p(ω) is smaller (larger) than absolute
risk aversion 1/T , then

1. the log state price per unit of probability is less (more) sensitive to
differences in state wealth in the economy with regret .

2. if the macroeconomic risk is small around ω, the equity premium is
smaller (larger) in the economy with regret.

This implies in particular that the equity premium is reduced by regret
if state probabilities are monotonically decreasing in state wealth. The intu-
ition of this result is simple. When wealthy states are relatively unlikely to
occur, it must be that their state prices Π are low. This raises the forgone
best alternative in these states, thereby raising the demand for these contin-
gent claims. As a consequence, the corresponding state prices do not need
to be reduced as much as they must be in a regret-free economy to induce
people to consume more in these states. This reduces the equity premium.
This is in fact another illustration of the long shot bias. It thus appears that
the skewness of the distribution of ω is important to determine the equity
premium. When the distribution of wealth is positively skewed, this analysis
suggests that the equity premium is decreasing with the intensity of regret.
Notice that the same mechanism is still at play when states are equally

likely, because state prices Π remains decreasing in the state wealth in that
case, due to risk aversion. The state probabilities must be sufficiently in-
creasing in the state wealth to compensate this effect in order to reverse the
result. Because log π decreases at rate 1/T without regret, it must be that
log p increases at least at that rate to guarantee that Π = pπ be increasing
in state wealth.

4.2 The equity premium with a logconcave macro risk

This intuition on the role of skewness is confirmed in the special case of
the multiplicatively CRRA separable utility function when the state wealth
per capita is lognormally distributed. A analytical solution for the equity
premium is obtained in this case.

Proposition 5 Suppose that the representative agent has a multiplicatively
separable CRRA utility function U(x, y) = x1−γyα/(1 − γ), and that state
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wealth are lognormally distributed: logω ∼ N(µ, σ2). The equity premium in
such an economy is such that ln(1 +EP ) = (γ − 1.5α)σ2.

Proof: See the Appendix.
This extends the well-known result that in such an economy, the equity

premium equals the product of relative risk aversion γ by the variance of
log consumption σ2 when there is no feeling of regret. The increase in the
measure of regret α by ∆ has the same effect on the equity premium than
a reduction in relative risk aversion by 3∆/2. This reduction in the equity
premium is not due to a uniform reduction in the derivative of − log π. As
seen in Figure 2 where the pricing kernel is drawn for different values of
α. In this figure, we assumed that µ = σ = 2%, and γ = 2. We see in
particular that regret convexifies the pricing kernel. This will always be the
case when the distribution of growth is log concave, and absolute risk aversion
is nondecreasing. This is stated in the following proposition, which is a direct
consequence of Proposition 4.

Proposition 6 Suppose that the consumption per capita is lognormally dis-
tributed. Suppose also that the index of absolute risk tolerance is independent
of the foregone alternative and is non-increasing. Then, regret convexifies
the price kernel in the sense that there exists a critical consumption ω such
that −πdπ/dω is increased by regret if ω < ω, and it is reduced by regret if
ω > ω.

When the distribution of state consumption is not logconcave, when the
utility function U is not multiplicatively separable, or when absolute risk
aversion is decreasing (as is usually assumed), more complex transforma-
tions of the pricing kernel due regret are possible. Rosenberg and Engle
(2002) empirically estimated the pricing kernel by using financial date from
options markets. They observed that the slope of the empirical price kernel
at the lower tail is much steeper than what would be obtained in the classi-
cal model with a CRRA regret-free model. This is compatible with the idea
that investors feel much regret in these low-wealth small-probability states.
However, the oscillation of the price kernel observed by these authors is com-
patible with our model only if absolute risk aversion is sufficiently decreasing,
a condition that would require an unrealistically large γ.
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Figure 2: The pricing kernel when the log consumption is normally distrib-
uted with µ = σ = 2%, and U(x, y) = −x−1yα, for α = 0, 0.1, 0.2, 0.3, 0.4,
and 0.5.

5 Efficient risk sharing and aggregation of het-

erogenous preferences

In this section, we characterize the equilibrium price kernel when agents
have heterogenous preferences. This raises the questions of the aggregation
of heterogenous preferences and of the allocation of risks in the economy.
Wilson (1968) and Constantinides (1982) performed such task in the classical
case of expected utility. The problem is made more complex in our model
because preferences are affected by prices.
There are N agents in the economy. Agent i, i = 1, ..., N , is charac-

terized by a bivariate utility function U i and a state-dependent endowment
(ωi
1, ..., ω

i
S). The competitive equilibrium is characterized by a pricing kernel

π(ω, p) and N portfolio choice functions (x1, ..., xN) such that πs = π(ωs, ps)
for all s, and xis = xi(ωs, ps). It is defined by the standard optimality condi-
tions of the price-taker investors, together with the following market-clearing
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conditions:
1

N

NX
i=1

xis = ωs =def
1

N

NX
i=1

ωi
s, (16)

for s = 1, ..., S. Totally differentiating equation (7) and eliminating λi yields

dxi = −
¡
T i + Γi

¢ dπ
π
− Γi

dp

p
, (17)

where T i = −U i
x/U

i
xx and Γ

i = −yU i
xy/U

i
xx are evaluated at (x

i(ω, p), wi/pπ(ω, p)).
Totally differentiating the market-clearing condition (16) yields

1

N

NX
i=1

dxi = dω.

Combining these two condition directly proves the following proposition.

Proposition 7 The competitive equilibrium is characterized by functions
(π, x1, ..., xN) such that πs = π(ωs, ps) and x

i
s = xi(ωs, ps) for all s = 1, ..., S

and all i = 1, ..., N . These functions satisfy the following conditions:

−dπ
π
=
£
T + Γ

¤−1µ
dω + Γ

dp

p

¶
(18)

and

dxi =
T i + Γi

T + Γ
dω +

T iΓ− TΓi

T + Γ

dp

p
, (19)

where T i and Γi are evaluated at (xi(ω, p), wi/pπ(ω, p)) and

T (ω, p) =
1

N

NX
i=1

T i

µ
xi(ω, p),

wi

pπ(ω, p)

¶
(20)

Γ(ω, p) =
1

N

NX
i=1

Γi
µ
xi(ω, p),

wi

pπ(ω, p)

¶
. (21)

Equation (18) generalizes the asset pricing formula (14) to heterogenous
preferences. This generalization is particularly straightforward since we just
need to replace the absolute risk tolerance T and the intensity of regret Γ by
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their means T and Γ defined by equations (20) and (21). In other words, the
asset prices of this heterogenous economy can be duplicated in an economy
with identical agents endowed with absolute risk tolerance T and intensity of
regret Γ. Wilson (1968) already observed that the absolute risk tolerance of
a group equals the mean absolute risk tolerance of its members. The above
proposition also states that the intensity of regret of a group equals the mean
intensity of regret of its members.
Equation (19) characterizes the competitive sharing of risks in the econ-

omy. When all states are equally likely, the share of the macroeconomic risk
that is borne by agent i is proportional to T i + Γi, the sum of this agent
’s risk tolerance and intensity of regret. Because state prices are decreasing
with ω (equation (18)), regret is increasing with ω. Therefore, consumers
that are relatively more sensitive to regret are more willing to accept the
macroeconomic risk.
The second term in the right-hand side of equation (19) tells us who in

the population will bet on long shots. The demand xi for contingent claim
s is decreasing in p if T iΓ− TΓi is negative, i.e., if Γi/T i is larger than Γ/T .
The bettors on long shots are those whose intensity of regret Γi expressed as
a percentage of their risk tolerance T i is larger than the mean intensity of
regret expressed as a percentage of the mean risk tolerance in the economy.
Seen from a different angle, equation (19) tells us that regret-free insurers
will supply insurance coverage for low-probability event, and they will get a
premium for that.
Notice that in general T i, Γi, T and Γ are state-dependent, which means

that the above analysis must be interpreted locally. The only case where
they are state-independent is when U i(x, y) = −yαi exp(−x/ti), implying

T i = ti, Γi = αiti, T =
1

N

NX
i=1

ti, and Γ =
1

N

NX
i=1

αiti.

In that case, the share of the macroeconomic risk borne by agent i is propor-
tional to ti(1 + αi). Agents with an αi larger than Σjα

jtj/Σjt
j bets on long

shots, whereas the others bet on favorites.
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6 Conclusion

The starting point of our analysis is that most decision makers find it difficult
to evaluate the benefit of an outcome ex post without taking into account
what they could have obtained if another decision would have been made
ex ante. This is taken into account in our model by assuming that the
von Neumann-Morgenstern utility is a function of the forgone best alterna-
tive. We say that an agent is sensitive to regret if the marginal utility of
his consumption is increasing in the forgone best alternative. We showed
that regret-sensitive investors tend to bias their portfolio towards assets that
perform particularly well in low-probability states. In terms of asset prices,
this implies that these assets yield risk premia that are smaller than in the
classical asset pricing formula.
The effect of regret on the equity premium depends upon the distribu-

tion of the macro economic risk. If the density function is decreasing with
aggregate wealth, the equity premium is unambiguously decreasing with the
intensity of regret of the representative agent. When the distribution of the
macroeconomic risk is logconcave, the price kernel is convexified by regret.
We get an explicit formula for the equity premium when it is lognormally
distributed and the bivariate utility is a power multiplicatively separable
function. The equity premium is also decreasing withy the intensity of regret
in that case, thereby suggesting that positively skewed risks have a smaller
risk premium at equilibrium.
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Appendix: Proof of Proposition 5

We first prove the following Lemma.

Lemma 1 Suppose that ω is lognormally distributed: logω ∼ N(µ, σ2). It
implies thatZ

0

ωap(ω)bdω =
(2π)0.5(1−b)σ1−b√

b
exp

∙
µ(a+ 1− b) +

(a+ 1− b)2σ2

2b

¸
, (22)

where p(ω) =
¡
ωσ
√
2π
¢−1

exp [−(logω − µ)2/2σ2] is the density function of
ω.

Proof: We have thatZ
0

ωap(ω)bdω =
³
σ
√
2π
´−b Z

0

ωa+1−b exp

∙
−b(logω − µ)2

2σ2

¸
dω

ω
.

If W = logω and bσ2 = σ2/b, this is equivalent toZ
0

ωap(ω)bdω =
³
σ
√
2π
´−b Z

0

exp

∙
(a+ 1− b)W − (W − µ)2

2bσ2
¸
dW,

or, equivalently, Z
0

ωap(ω)bdω =
³
σ
√
2π
´−b

×Z
0

exp

∙
−(W − µ− bσ2(a+ 1− b))2

2bσ2 + µ(a− 1 + b)− 0.5bσ2(a+ 1− b)2
¸
dW.

Now, observe thatZ
0

exp

∙
−(W − µ− bσ2(a+ 1− b))2

2bσ2
¸
dW = bσ√2π. (23)

Combining the last two equations yields (22). ¥
This Lemma implies thatZ

0

ωp(ω)dω = exp

∙
µ+

σ2

2

¸
,
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Z
0

ω
−γ
1+αp(ω)

1
1+αdω = (σ

√
2π)

α
(1+α)
√
1 + α exp

∙
µ
α− γ

1 + α
+
(α− γ)2σ2

2(1 + α)

¸
,

andZ
0

ω1−
γ

1+αp(ω)
1

1+αdω = (σ
√
2π)

α
(1+α)
√
1 + α exp

∙
µ
1 + 2α− γ

1 + α
+
(1 + 2α− γ)2σ2

2(1 + α)

¸
.

The equity premium equals

EP =

£R
0
ωp(ω)dω

¤ hR
0
ω
−γ
1+αp(ω)

1
1+αdω

i
R
0
ω1−

γ
1+αp(ω)

1
1+αdω

− 1.

Combining the last 4 equations yields

ln(EP+1) = µ+
σ2

2
+µ

α− γ

1 + α
+
(α− γ)2σ2

2(1 + α)
−µ1 + 2α− γ

1 + α
− (1 + 2α− γ)2σ2

2(1 + α)
.

After some tedious simplifications, we obtain that

ln(EP + 1) = σ2
∙
γ − 3

2
α

¸
.

This concludes the proof of Proposition 5. ¥
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