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Abstract

Many modern estimation methods in econometrics approximate an objective func-

tion, through simulation or discretization for instance. Approximations typically impart

additional bias and variance to the resulting estimator. We here propose three methods

to improve the properties of such “approximate” estimators at a low computational cost.

The first method provides an analytical bias adjustment for estimators based on stochas-

tic approximators, such as simulation-based estimators. Our second proposal is based on

ideas from the resampling literature; it eliminates the leading bias term for non-stochastic

as well as stochastic approximators. Finally, we propose an iterative procedure where we

use Newton-Raphson (NR) iterations based on a much finer degree of approximation.

The NR step removes much of the additional bias and variance of the initial approximate

estimator. A Monte Carlo simulation on the mixed logit model shows that combining

these approaches can yield spectacular improvements at a low cost.
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1 Introduction

The complexity of econometric models has grown steadily over the past two decades. The

increase in computer power contributed to this development in various ways, and in partic-

ular by allowing econometricians to estimate more complicated models using methods that

rely on approximations. A leading example is simulation-based inference, where a function

of the observables and the parameters is approximated using simulations. In this case, the

function is an integral such as a moment, as in the simulated method of moments (McFadden

(1989), Duffie and Singleton (1993)) and in simulated pseudo-maximum likelihood (Laroque

and Salanié (1989, 1993, 1994)). It may also be an integrated density/cdf, as in simulated

maximum likelihood (Lee (1992, 1995)), Kolmogorov-Smirnov type statistics (Corradi and

Swanson (2007)), or an integrated value function (Rust (1997)).1 Then the approximation

technique often amounts to Monte Carlo integration. Other numerical integration techniques

may be preferred for low-dimensional integrals, e.g. Gaussian quadrature, or both techniques

can be mixed (see for example Lee (2001)). Within the class of simulation-based methods,

some nonparametric alternatives rely on kernel sums instead of integration (e.g. Fermanian

and Salanié (2004); Creel and Kristensen (2009); Kristensen and Shin (2008)), or on sieve

methods (Kristensen and Schjerning (2011); Norets (2011)). Other estimation methods in-

volve numerical approximations, such as discretization of continuous processes, using a finite

grid in the state space for dynamic programming models, and so on. Then the numerical ap-

proximation is essentially non-stochastic, unlike the case of simulation-based inference—this

difference will play an important role in our paper.

In all of these cases, we call the “approximator” the numerical approximation that replaces

the component of the objective function that we cannot evaluate exactly. Then the “exact

estimator” is the infeasible estimator that reduces the approximation error to zero. E.g. in

simulation-based inference, the exact estimator would be obtained with an infinite number

of simulations; in dynamic programming models it would rely on an infinitely fine grid. We

call the estimator that relies on a finite approximation an “approximate estimator”.

The use of approximations usually deteriorates the properties of the approximate estima-

tor relative to those of the corresponding exact estimator: it is often less efficient and may

suffer from additional biases. When the approximation error is unbiased and the objective

function is linear in the approximation error, then using approximations does not create addi-

tional bias, although it reduces efficiency: a case in point is the simulated method of moments.

In all other cases, approximation creates a bias and potentially (in case of simulations) a loss

of efficiency. These can usually be controlled by choosing a sufficiently fine approximation;

but this comes at the cost of increased computation time. In many applications this may be

1Simulation-based inference is surveyed in Gouriéroux and Monfort (1996), van Dijk, Monfort and Brown
(1995) and Mariano, Schuerman and Weeks (2001) among others.
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a seriously limiting factor; increased computer power helps, but it also motivates researchers

to work on more complex models.

The contribution of this paper is twofold: First, we analyze the higher-order proper-

ties of the approximate estimator relative to the exact one in a very general setting that

includes both M-estimators and GMM estimators, and allows for a wide range of approx-

imation schemes—both stochastic and non-stochastic. This higher-order expansion can be

used to choose the degree of approximation, and to quantify the additional estimation er-

ror due to approximation. Our findings encompass and extend results in the literature on

simulation-based estimators, such as Lee (1995, 1999), Gouriéroux and Monfort (1996) and

Laroque and Salanié (1989). Moreover, they can be used to analyze the behavior of approx-

imate estimators based on non-stochastic numerical approximation, which are often used in

structural econometric models2.

Second, based on the higher-order expansion, we propose three methods to improve on the

precision of approximate estimators. Each of these methods only carries a small additional

computation burden. The first method is targeted at a class of estimators that includes

most stochastic approximators, such as simulation-based estimators. These approximators

are usually unbiased (at least for a large number of simulations); but they have a variance

that enters a nonlinear objective function. As a consequence, the variance component of the

simulated approximator in general leads to an additional bias component in the approximate

estimator relative to the exact one3. We derive a general formula for the additional bias and

variance of the approximate estimator, and we build upon our asymptotic expansions in order

to correct the objective function and eliminate the leading term of the additional bias4. Take

for instance simulated maximum-likelihood on n observations, computed using S simulations.

The resulting approximate estimator has a bias of order 1/S, which dominates its efficiency

loss in finite samples. Our corrected estimator has a much lower bias: the leading term is of

order 1/S2 for parametric simulation-based inference.

The second method is a more general bias correction procedure. We show that the leading

term of the additional bias in an approximate estimator based an an approximator of quality

S (say, S simulations) can also be removed by subtracting from the objective function an

average of similar objective functions computed with smaller values of S. This is in the

spirit of the parametric bootstrap and the jackknife. It applies equally well to stochastic and

non-stochastic approximators, although the terms to be subtracted differ.

Finally, our third proposed improvement is a two-step method which applies quite gen-

erally. In the first step, we compute the approximate estimator, using an approximator that

2To list just a few examples: asset pricing models (Tauchen and Hussey (1991)), DSGE models (Fernández-
Villaverde, Rubio-Ramirez and Santos (2006)), and dynamic discrete choice models (Rust (1997)).

3As explained above, the simulated method of moments is exempt from this additional bias.
4Laffont et al. (1995) and Lee (1995) proposed a similar idea for SNLS estimators and SMLE of discrete

choice models respectively.
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may be coarser than what is usually done; and in the second step we run one or several

Newton-Raphson iterations based on the same objective function, but with a much finer de-

gree of approximation. The second step removes much of the additional bias and variance

of the initial approximate estimator.5 The Newton-Raphson adjustment can be combined

with either of the two aforementioned bias correction methods: the approximate objective

function can first be corrected so as to obtain an approximate estimator with a smaller bias

that in turn is used as the initial estimator of Newton-Raphson algorithm.

To test the practical performance of our proposed methods, we run a simulation study on a

mixed logit model. The mixed logit is a building block of much work in demand analysis; and

it is simple enough that we can use Gaussian quadrature to obtain a quasi-exact maximum-

likelihood estimator, which we then compare to basic and improved simulated maximum-

likelihood estimators. We show that uncorrected SML has non-negligible bias, even for large

sample sizes. Our analytical bias-correction removes most of it, at almost no additional

computational cost; and it does not add more variance to the estimators. In addition, the

Newton-Raphson correction markedly reduces the bias, and especially the variance of the

SML estimator. Combining both approaches therefore brings the SML estimator much closer

to the MLE. Taking one Newton-Raphson step increases the cost of SML since we need to

compute a Hessian matrix; but it is still a much more practical proposition than increasing

the number of simulations during estimation.

It bears repeating that we carry out our expansions around the exact estimator, as opposed

to doing them around the true parameter value. Thus, we only quantify biases and variances

due to the approximation, and we set aside the sampling errors in the exact estimation

problem. To obtain a higher-order expansion around the true parameter value, one could

simply combine the results derived in this paper with those obtained for exact estimators. In

principle, correcting for the approximation error might actually make the corrected estimator

more biased or less precise than the original approximate estimator. There is no reason to

believe that such quirky behavior is the norm, however; and that has not been our experience

in the simulation studies reported here.

Neither do we deal in this paper with difficulties incurred in numerical optimization or

in solving for a fixed-point, as often arise in estimating structural models. This is a separate

issue; and we refer to Judd and Su (2010) and to Dubé, Fox and Su (2009) for some recent

results.

The paper is organized as follows: Section 2 presents our framework and informally

introduces the methods we propose to improve the properties of approximate estimators. In

Section 3, we derive a bias and variance expansion of the approximate estimator relative to

the exact one; this expansion allows us to identify the leading terms. Then in Sections 4 and

5Hajivassiliou (2000) considered a somewhat similar idea, where Newton-Raphson step based on the exact
likelihood function were used to improve the efficiency of a first-step simulated method of moments estimator.
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5, we analyze in turn the two proposed bias adjustments. The properties of the Newton-

Raphson method are derived in Section 6. Finally, section 7 presents the results of a Monte

Carlo simulation study using the mixed logit model as an example. All proofs and lemmas

have been relegated to appendices A and B.

2 Framework

At the most general level, our framework can be described as follows. Given a sample

Zn = {z1, ..., zn} of n observations, the econometrician proposes to estimate a parameter

θ0 ∈ Θ ⊆ Rk using some extremum estimator,

θ̂n = arg min
θ∈Θ

Qn(θ, γ0), (1)

where Qn(θ, γ0) is the objective function. This depends on data, a finite dimensional param-

eter θ and a (usually) infinite-dimensional one, some function γ0(z, θ).

Note that in many cases of interest the value of Qn only depends on θ through the function

γ0—this will in fact hold in our examples below. However, we do not require this, and we

allow for

Qn(θ, γ0) = Qn(Zn, θ, γ0(·, θ)).

Our paper focuses on situations where the true function γ0 is not known on closed form

to the econometrician, and instead it has to be approximated numerically. In this case, a

feasible estimator is obtained by minimizing the analog approximate objective function

θ̂n,S = arg min
θ∈Θ

Qn(θ, γ̂S), (2)

where γ̂S depends on some approximation scheme of order S (e.g. S simulations, or a

discretization on a grid of size S).

We will refer to γ̂S as an “approximator”of γ0; to θ̂n as the “exact” estimator; and to

θ̂n,S as the “approximate” estimator. We now present a few examples.

Example 1: Simulated maximum likelihood (SML). Suppose we want to estimate a

(conditional) distribution characterised by a parameter θ, p (y|x; θ). The natural choice is

the maximum-likelihood estimator,

Qn(θ, γ0) = − 1

n

n∑
i=1

log (γ0 (yi, xi; θ)) ,

where γ0 (z; θ) := p (y|x; θ), z = (y, x). Sometimes the density γ0 cannot be written in closed

form. For example, in models with unobserved heterogeneity, γ0 (z; θ) =
∫
w (y|x, ε; θ) f (ε) dε
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for some densities w and f . In this example, we can draw εi,s, s = 1, ..., S, from the distribu-

tion of f and obtain a simulated version by γ̂S (z; θ) = S−1
∑S

s=1w (y|x, εs; θ). The resulting

estimator is a SMLE.

More recently, Fermanian and Salanié (2004) proposed using kernel estimators as approx-

imators. Suppose that y = r(x, ε; θ0), with implied conditional density γ0 (z; θ) = p(y|x, θ).
Then generate samples, ys(x, θ) = r(x, εs; θ) for s = 1, . . . , S, and approximate the density

γ0 with a kernel density estimator based on the ys’s: γ̂S (z; θ) =
∑S

s=1Kh (y − ys(x, θ)) /S.

For a similar approach in time series models, see Altissimo and Mele (2009), Brownlees,

Kristensen and Shin (2011) and Kristensen and Shin (2008).

Example 2: Simulated pseudo-maximum likelihood (SPML) method of moments.

Suppose that we have the following conditional moment restriction, E [y|x] = m (x; θ), where,

for some function w and some unobserved error ε, m (x; θ) = E [w (x, ε; θ) |x]. Defining

γ0 (x; θ) = m (x; θ), our exact Gaussian pseudo-log likelihood takes the form

Qn(θ, γ0) =
1

n

n∑
i=1

(yi − γ0 (xi; θ))
2 .

If the conditional expectation γ0 cannot be evaluated analytically, Laroque and Salanié (1989)

proposed simulated pseudo-maximum likelihood (SPML) estimators: Draw i.i.d. random

variables εs, s = 1, ..., S, and define γ̂S (x; θ) = S−1
∑S

s=1w (x, εs; θ). Then an SNLS esti-

mator is obtained by replacing γ0 with γ̂S . The above idea can be extended to incorporate

information regarding the conditional variance of y.

Example 3: Simulated method of moments (SMM). The parameter of interest is

identified through a set of moment conditions E [g(z, θ0)] = 0. Given a weighting matrix Wn,

the GMM estimator would minimize

Qn(θ, γ0) = Gn(θ)′WnGn(θ)

where Gn(θ) =
∑n

i=1 g(zi, θ)/n. Here, γ0 is simply the function g, which may be hard to

evaluate, as in the multinomial probit example of McFadden (1989). Another example is the

simulated method of moments (SMM) proposed by Duffie and Singleton (1993) to estimate

dynamic models where a long string of simulations from the model, say {ys (θ) : s = 1, ..., S},
are used to approximate unconditional moments of the model. The resulting estimator is of

the minimum-distance type. Creel and Kristensen (2009) generalize the approach of Duffie

and Singleton (1993) and propose to approximate conditional expectations by combining

simulations with kernel regression techniques.
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Many other examples fall within the above general framework: Evaluating the value func-

tion in dynamic programming models most often requires numerical approximations that

involve simulations, interpolation or sieve methods (also referred to as parametric approxi-

mations); see Rust (1997), and more recently Kristensen and Schjerning (2011) and Norets

(2009, 2011). Here the approximated value function plays the role of γ0.

Fixed-point algorithms have found many applications in the estimation of structural IO

models after Berry, Levinsohn and Pakes (1995). Here, market shares are modelled as func-

tions of unobserved and observed characteristics, share = s (ξ, z; θ) for some function s where

ξ and z respectively denote unobserved and observed characteristics. The BLP procedure

requires that the econometrician compute the unobserved product characteristics given ob-

served market shares; this involves inverting the market share function in its first argument,

ξ (share, z; θ) = s−1 (share, z; θ). Since s−1 is normally not available on closed form, this is

usually performed using a numerical fixed-point algorithm. It leads to an approximate solu-

tion, ξS (share, z; θ), where S captures the number of iterations and/or the tolerance level

used in the algorithm6.

Many models used in macroeconomics, for instance, have a very complex likelihood func-

tion, so that a limited information estimation method is used. But a large subclass cannot

even be solved in a closed form. Then estimation is based on an approximate model, often

by linearizing equations close to a steady state. The quality of the model approximation can

be improved at a larger computational cost by using a finer grid or by using, for example,

more iterations of perturbations or projection methods as advocated by Judd, Kubler and

Schmedders (2003). For a first-order theoretical analysis of the impact on the resulting ap-

proximate MLE, see Fernández-Villaverde, Rubio-Ramirez and Santos (2006) and Ackerberg,

Geweke and Hahn (2009).

In all of the examples above, approximations reduce the quality of the estimator. Start

with our first three examples where stochastic approximations (i.e. simulations) are used

to evaluate a mathematical expectation. The mean of course is an unbiased estimator of

the expectation; but in many simulation-based estimation methods the objective function

depends nonlinearly on the simulated mean, so that the approximate estimator based on S

simulations has an additional bias, along with a loss of efficiency. In many cases both are of

order 1/S; this holds for example when the approximator simulates an expectation through a

simple average. The efficiency loss may not be a concern in large samples; but the additional

bias persists asymptotically. When using nonparametric techniques such as kernel smoothers

or sieve methods in the approximation, the approximator itself is biased, and the objective

function will be biased even if the approximator enters linearly.

One exception from the above is simulated method of moments (Example 3). This ap-

6Some more recent implementations use mathematical programming under equilibrium constraints, as
advocated by Judd and Su (2010).
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proximate estimator has nicer properties since the objective function is linear in the simulated

mean. Then no additional biases due to simulations appear. The asymptotic efficiency loss

still is of order 1/S though.

Similarly, non-stochastic approximations lead to deteriorations of the properties of the

resulting estimators. Take the problem of computing the density p (y|x; θ) in Example 1

for instance. If the dimensionality of the integration variable (ε) is small, then instead of

simulations the numerical integration may be done by an S point Gaussian quadrature, as in

Lee (2001). As demonstrated in the next section, the resulting approximate estimator will

suffer from additional biases relative to the exact one. On the other hand, no efficiency loss

will be incurred.

Thus in general the approximate estimator θ̂n,S can only be consistent if S goes to infinity

as n goes to infinity; and
√
n-consistency requires that S diverges fast enough. In other

words (Section 3 will give more precise statements and regularity conditions), ||θ̂n,S − θ̂n|| =
oP (1/

√
n) as n→∞ for some sequence S = S (n)→∞, in which case there is no first-order

difference between the exact and approximate estimator. However, in practice, S is finite

and so it is desirable to quantify the discrepancy between the exact and infeasible estimator.

Our higher-order expansion allows the researcher to gauge the degree of inaccuracy (relative

to the exact estimator) that the chosen approximate estimator suffers from.

Moreover, to reach a given level of tolerance for the approximation error, S may have to

be chosen very large. This motivates our proposed methods that yield adjusted estimators

that may perform just as well as large-S approximate estimators, and yet are computationally

much less burdensome: Take as starting point the approximate estimator defined in eq. (2)

where S is “small” in the (admittedly loose) sense that the econometrician would dearly like to

have enough computational power to increase S. Our first two methods correct the objective

function so as to obtain an estimator with better bias properties. Instead of selecting θ̂n,S to

minimize Qn(θ, γ̂n,S), we select

θ̂
b

n,S = arg min
θ∈Θ
{Qn(θ, γ̂S)−∆n,S (θ)} , (3)

where ∆n,S (θ) corrects for at least the leading term of the approximation bias.

The first approach is an analytical bias adjustment that works for all known simulation-

based estimators. In the context of SNLS, it boils down to the adjustment proposed in

Laffont et al. (1995) (also see Laroque and Salanié (1989, 1993)); and for SML of discrete

choice models, it yields the adjustment in Lee (1995). These papers derived an unbiased

and consistent estimator of the leading bias component due to simulations. We extend their

results to general simulation-based estimators such as, for example, dynamic program models

where the Bellman operator is evaluated through simulations (Rust (1997)). We show how to

compute ∆n,S (θ) for a broad class of simulation-based estimators, and analyze the theoretical

8



properties of the resulting estimator.

Our second proposal is an alternative to the analytic bias adjustment and works for both

stochastic and non-stochastic approximators. The corrected estimator is defined as in equa-

tion (3), but the adjustment term ∆n,S(θ) is constructed in a different manner, more closely

related to the jackknife bias adjustment. To illustrate, suppose that E [Qn(θ, γ̂S)−Qn(θ, γ)] =

B(θ)/S + o (1/S). Now take two approximators γ̂
[1]
S/2 and γ̂

[2]
S/2 of order S/2. For each ap-

proximator m = 1, 2, we can compute the corresponding objective function, Qn(θ, γ̂
[m]
S/2). We

then choose ∆n,S(θ) = 1
4

[
Qn(θ, γ̂

[1]
S/2) +Qn(θ, γ̂

[2]
S/2)

]
so that the adjusted objective function

satisfies

E [{Qn(θ, γ̂S)−∆n,S(θ)} −Qn(θ, γ)] =
B(θ)

S
− 1

4

[
2B(θ)

S
+

2B(θ)

S

]
+ o

(
S−1

)
= o

(
S−1

)
,

and the leading bias terms cancel out. We provide details in section 5.

Our third proposed method works with non-stochastic approximations as well as with

stochastic approximations; it extends the well-known idea that a consistent estimator can

be made asymptotically efficient by applying one Newton-Raphson (NR) step of the log-

likelihood function to it. E.g. if θ̂n is a
√
n-consistent estimator of θ0 in a model with

log-likelihood Ln(θ), then a single NR-step yields a consistent and asymptotically efficient

estimator. We apply this idea to our setting by starting from some initial approximate es-

timator based on a small degree of approximation S, say θ̄n,S . This can for example arrive

from eq. (2) or (3). We then define the corrected estimator through one or possibly several

Newton-Raphson iterations of an approximate objective function that uses a much finer ap-

proximation, S∗ � S. DenoteGn (θ, γ) = ∂Qn(θ, γ)/∂θ and Hn (θ, γ) = ∂2Qn (θ, γ) /(∂θ∂θ′),

and define

θ̂
(k+1)

n,S = θ̂
(k)

n,S −H−1
n (θ̂

(k)

n,S , γ̂S∗)Gn(θ̂
(k)

n,S , γ̂S∗), k = 1, 2, 3, ... (4)

where θ̂
(1)

n,S = θ̄n,S and we use the S∗th order approximator, γ̂S∗ , in the iterations.

Note that the cost of computing this new estimator from the first one is (very) roughly

S∗/S times the cost of one iteration in the minimization of Qn(θ, γ̂S∗). Since the minimization

easily can require a hundred iterations or so, we can therefore take S∗ ten or twenty times

larger than S without adding much to the cost of the estimation procedure.7 Also, one

iteration is enough if S∗ goes to infinity at least as fast as S. We discuss this method in more

detail in Section 6.

7In many cases, a large part of the dimensionality of θ only comes into play within some linear indexes
θ′x; then the trade off is even more favourable since the computation of the second derivative Hn is much
simplified.
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3 Properties of Approximate Estimators

Before we come to our proposed bias adjustments, we first derive an asymptotic expansion

of the bias and variance of the unadjusted approximate estimator relative to the infeasible,

exact estimator. To do so, we need to introduce assumptions both on the estimating equation

and on the approximators.

3.1 The Estimating Equation

We restrict our attention to the class of exact estimators θ̂n that (asymptotically) satisfy a

first order condition of the form

Gn(θ̂n, γ0) = oP
(
1/
√
n
)
,

for some random functional Gn(θ, γ). The corresponding approximate estimator, θ̂n,S , is

implicitly defined by

Gn(θ̂n,S , γ̂S) = oP
(
1/
√
n
)
.

Furthermore, we assume that Gn (θ, γ) takes the form of a sample average,

Gn (θ, γ) =
1

n

n∑
i=1

g (zi; θ, γ) . (5)

Our setup allows for two-step GMM estimators where the weight matrix has been estimated.

In the following we shall assume that Gn (θ, γ) is a smooth function in both θ and γ. Re-

member that the dependence on θ comes partly through the function γ, so that smoothness

in θ also requires that γ be smooth in θ. We conjecture that our results could be generalized

to estimators minimizing non-differentiable objective functions by combining our approach

with the results of, for example, Newey and McFadden (1994, Section 7) and Pollard (1985).

The above framework includes all of the examples described in Section 2. When the esti-

mator is defined by (1) we may choose Gn (θ, γ) = ∂Qn (θ, γ) /∂θ. In the case of GMM estima-

tors, Qn (θ, γ) = Mn(θ, γ)WnMn(θ, γ) with Wn →P W and Mn(θ, γ) =
∑n

i=1m (zi; θ, γ) /n.

We may then choose g (zi; θ, γ) = H0Wm (zi; θ, γ), where H0 = E [∂m (zi; θ, γ) /∂θ], since this

is (asymptotically) first-order equivalent to the first-order condition of the GMM estimator.

Our estimation problem is very similar to two-step semiparametric estimation where in

the first step a (possibly infinite-dimensional) nuisance parameter (γ0) is replaced by its

estimator (the approximator γ̂S), which in turn is used to obtain an estimator θ̂S of θ0; see,

for example, Andrews (1994) and Chen et al (2003).

We assume that the function of interest γ0 : Z × Θ 7→ Rp belongs to a linear function

space Γ equipped with a norm ‖·‖. In most cases, the norm will be the Lq-norm induced
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by the probability measure associated with our observations, ‖γ‖ = E [‖γ (z)‖q]1/q for some

q ≥ 1. We introduce the first-order derivative of Gn (θ, γ) w.r.t. θ,

Hn (θ, γ) =
1

n

n∑
i=1

h (zi; θ, γ) , with h (zi; θ, γ) =
∂g

∂θ
(zi; θ, γ) ,

and the corresponding population versions,

G (θ, γ) = E [g (zi; θ, γ)] , H (θ, γ) = E

[
∂g (zi; θ, γ)

∂θ

]
.

We first impose conditions to ensure that the exact, but infeasible estimator and its approx-

imate version are both well-behaved:

A.1 {zi} is stationary and geometrically α-mixing.

A.2 The parameter space Θ is compact and θ0 is in its interior.

A.3 (i) The function g (z; θ, γ) is continuous in θ ∈ Θ, E [supθ∈Θ ‖g (zi; θ, γ0)‖] <∞
and (ii) G (θ, γ0) = 0 if and only if θ = θ0.

A.4 For all γ in a neighbourhood N of γ0, g (z; θ, γ) and its derivative, h (z; θ, γ), satisfy:

(a) For some δ > 0,

E

[
sup

‖θ−θ0‖<δ
‖h (zi; θ, γ0)‖

]
<∞

(b) H0 := H (θ0, γ0) is positive definite,

(c) for some δ, λ, H̄ > 0, and for all γ ∈ N ,

E

[
sup

‖θ−θ0‖<δ
‖h (zi; θ, γ)− h (zi; θ, γ0)‖

]
≤ H̄ ‖γ − γ0‖

λ .

Assumption A.1 rules out strongly persistent data, and allows us to obtain standard

rates of convergence for the resulting estimators. The geometric mixing condition could be

weakened, but this would lead to more complicated results; we refer the reader to Kristensen

and Shin (2008) for results on strongly persistent and/or non-stationary data (and thereby

estimators with non-standard rates.)

The second assumption, A.2, is standard in the asymptotic analysis of extremum esti-

mators, while A.3 ensures that a uniform law of large numbers hold for Gn (θ, γ) and that

θ0 is identified. Primitive conditions for the uniform moment condition in A.3 to hold in a

cross-sectional setting can be found in Newey and McFadden (1994).
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Finally, A.4 imposes additional smoothness conditions on g (z; θ, γ) for γ 6= γ0. In partic-

ular, when γ depends on θ (as is the case for all of our examples), it requires the approximator

to be a smooth function of θ. Therefore A.4 rules out discontinuous and non-differentiable

approximators such as the simulated method of moment estimators for discrete choice models

proposed in McFadden (1989) and Pakes and Pollard (1989), as the approximate moment

conditions for these models involve indicator functions.8 The Lipschitz condition imposed on

h (z; θ, γ′) is used to ensure that Hn (θ, γ̂S)→P H (θ, γ) uniformly in θ as γ̂S →P γ.

Our higher-order results will rely on a functional expansion of Gn (θ, γ) w.r.t. γ. To take

a finite-dimensional analogy, we would like to be able to use a Taylor expansion,

Gn(θ, γ̂S) = Gn(θ, γ0) +
∂Gn(θ, γ0)

∂γ′
(γ̂S − γ0) + . . .+ oP (‖γ̂S − γ0‖

m) .

Then we can use our knowledge of the properties of the approximators γ̂S to bound the

difference between approximate and exact estimating equation, and finally to characterize

the difference between approximate and exact estimators. To do this, we start from

Gn(θ̂n,S , γ̂S)−Gn(θ̂n, γ0) = oP (1/
√
n);

and we break down the left hand-side into

Gn(θ̂n,S , γ̂S)−Gn(θ̂n,S , γ0) =
∂Gn
∂θ

(θ̂n, γ0)(θ̂n,S − θ̂n) +OP (‖θ̂n,S − θ̂n‖2).

For such an expansion to be well-defined and for the individual terms in the expansion to

be well-behaved, we need to impose some further regularity conditions on g (zi; θ0, γ) as a

functional of γ; and since our γ’s are not vectors but functions, the notation will be somewhat

more involved. In all of the following, ∆γ ∈ Γ denotes a small change around γ0.

A.5(m) There exist functionals ∇kg (z; θ) [dγ1, ..., dγk], k = 1, ...,m, which are linear in each

component dγi ∈ Γ, i = 1, ..., k, and positive constants δ, λ, and Ḡi, i = 0, 1, 2, such

that:

E

[
sup

‖θ−θ0‖≤δ

∥∥∥∥∥g (z; θ, γ0 + ∆γ)− g (z; θ, γ0)−
m∑
k=1

1

k!
∇kg (z; θ) [∆γ, ...,∆γ]

∥∥∥∥∥
]
≤ Ḡ0 ‖∆γ‖m+λ .

(6)

Furthermore,

E

[
sup

‖θ−θ0‖≤δ
‖∇g (z; θ) [∆γ]‖2

]
≤ Ḡ1 ‖∆γ‖2 , (7)

8These cases can be handled by introducing a smoothed version of the approximators as discussed in
McFadden (1989); see also Fermanian and Salanié (2004).
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and for k = 2, ...,m and for some ν > 0,

E

[
sup

‖θ−θ0‖≤δ

∥∥∥∇kg (z; θ) [∆γ1, ...,∆γk]
∥∥∥2+ν

]
≤ Ḡk (‖∆γ1‖ · · · ‖∆γk‖)

2+ν . (8)

Assumption A.5(m) restricts g (z; θ, γ) to be m times pathwise differentiable w.r.t. γ

with differentials ∇kg (z; θ) [dγ1, ..., dγk], k = 1, ...,m. These differentials are required to be

Lipchitz in dγ1, ..., dγk. For a given choice of m, this allows us to use an mth order expansion

of Gn (θ, γ) w.r.t. γ to evaluate the impact of γ̂S . In particular, the difference between the

approximate and exact objective function can be written as

Gn(θ, γ̂S)−Gn(θ, γ0) =
m∑
k=1

1

k!
∇kGn(θ)[γ̂S − γ0, ..., γ̂S − γ0] +Rn,S , (9)

where Rn,S = OP (‖γ̂S − γ0‖
m+λ) is the remainder term, and

∇kGn(θ) [dγ1, ..., dγm] =
1

n

n∑
i=1

∇kg (zi; θ0) [dγ1, ..., dγk] .

To evaluate the higher-order errors due to the approximation, we will derive (the order of)

the mean and variance of each of the terms in the sum on the right hand side of Eq. (9).

3.2 The Approximators

We also impose regularity conditions on the approximation method. Let us first introduce

two alternative ways of implementing the approximation: Either one common approximator

is used across all observations, or a new approximator is used for each observation. In the

first case, the approximate sample moment takes the form

Gn (θ, γ̂S) =
1

n

n∑
i=1

g (zi; θ, γ̂S) , (10)

and one single approximator, γ̂S , is used in the computation of the moment conditions. In

the second case,

Gn (θ, γ̂S) =
1

n

n∑
i=1

g
(
zi; θ, γ̂i,S

)
, (11)

and n approximators, γ̂1,S , ....γ̂n,S , are used in the computation. To differentiate between the

two approximation schemes, we will refer to the approximate estimator based on eq. (10)

as an estimator based on common approximators (ECA) and to (11) as an estimator based

on individual approximators (EIA). We stress that the ECA and EIA are both targeting the
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same infeasible estimator; the only difference lies in how the approximators are used in the

computation of the objective function.

In simulation-based estimation, ECAs were proposed by Lee (1992) for cross-sectional

discrete choice models, and for Markov models in Kristensen and Shin (2008). The scheme

has also been used in stationary time series models where one long trajectory of the model is

simulated and used to compute simulated moments (see Example 3) or densities (see Altissimo

and Mele, 2009; Fermanian and Salanié, 2004). When the number of approximators remains

fixed, the resulting approximate estimator is similar to semiparametric two-step estimators

where in the first step a function is nonparametrically estimated, see e.g. Andrews (1994)

and Chen et al (2003).

In contrast, EIAs employ n approximators—one for each observation. Thus, the dimen-

sion of γ̂S (x; θ) =
(
γ̂1,S (x; θ) , ..., γ̂n,S (x; θ)

)
increases with sample size. For simulation-based

estimators, this approach was taken in, amongst others, Laroque and Salanié (1989), McFad-

den (1989), and Fermanian and Salanié (2004), where the n approximations were chosen to be

mutually independent. We note that EIAs, where the dimension of γ̂S increases with sample

size, give rise to an incidental parameters problem. Some of our results for this situation

are similar to those found in the literature on higher-order properties and bias-correction of

estimators in an incidental parameters setting, see e.g. Arellano and Hahn (2007) and Hahn

and Newey (2004).

Finally, we impose conditions on the approximators. In order to give conditions that

apply to both of the approximation schemes discussed above (ECA and EIA), we state our

assumptions for J independent approximators: J = 1 for the ECA in (10), while J = n for

the EIA in (11). In what follows, it is crucial to separate assumptions on the bias of the

approximator

bS (z; θ) := E[γ̂j,S (z; θ) |x]− γ0 (z; θ)

from assumptions on its stochastic component

ψj,S (z; θ) := γ̂j,S (z; θ)− E
[
γ̂j,S (z; θ) |z

]
.

A.6(p) The approximator(s) lies in Γ and satisfies:

(i) for any fixed value z, the J random variables γ̂1,S (z; θ) , ...., γ̂J,S (z; θ) are mutually

independent and are all independent of Zn.

(ii) The bias bS is of order β > 0:

bS (z; θ) = S−β b̄ (z; θ) + o(S−β).
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(iii) For 2 ≤ q ≤ p, the stochastic component of the approximator satisfies:

E
[∥∥ψj,S (z; θ)

∥∥q] = S−αqvq (z; θ) + o(S−αq),

for some constant αq > 0.

Note that the o (·) terms in (ii)-(iii) are w.r.t. the function norm on Γ. Assumption

A.6 is sufficiently general to cover all of the examples in Section 2 under suitable regularity

conditions. First consider A.6.iii. It requires that the approximator have p moments and that

each of these be suitably bounded as a function of S. Note that, by Jensen’s inequality, the

individual rates are ordered, αp/p ≤ αq/q for 1 ≤ p ≤ q.9 We will choose p ≥ 1 in conjunction

with the order of the expansion m ≥ 1 of Assumption A.5, since we wish to evaluate the

mean and variance of each of the higher-order terms. For example, in order to ensure that

the variance of ∇kGn (θ0) [γ̂S , ..., γ̂S ] exists and to evaluate its rate of convergence, we will

require A.6.iii to hold with p = 2k.

3.2.1 Non-stochastic approximators

First, consider an approximation that does not involve any randomness, as with numerical

integration, discretization, or numerical solution of differential equations. A.6.i clearly has

no bite when non-stochastic approximators are used. Then by construction the conditional

variance of the approximator is zero, so that αp = +∞ for all p ≥ 2. Non-stochastic approx-

imation imparts a bias, which in leading cases obeys assumption A.6.ii for some β > 0. We

will see later that the analytical bias adjustment technique based on correcting the objec-

tive function has no bite in this situation. On the other hand, the proposed Jackknife-type

bias adjustment and Newton-Raphson procedure work for both stochastic and non-stochastic

approximations.

3.2.2 Stochastic approximators

Next, let us examine stochastic approximation schemes, which encompass simulation-based

inference methods. Most simulation-based estimators in a dynamic setting use the ECA

scheme: only one approximator is used for all observations, c.f. the discussion in Example 3,

and so A.6.i is automatically satisfied. The typical EIA scheme draws J independent batches

of size S and then uses one batch per approximation; this again satisfies A6.i. It does not

rule out dependence between the simulated values within each batch, as will for example be

9We have E
[∥∥ψj,S (·; θ)

∥∥p] = cpS
−αp for any p ≥ 1. Then by Jensen’s inequality, since q/p ≥ 1,

cq/pp S−αpq/p = E
[∥∥ψj,S (·; θ)

∥∥p]q/p ≤ E [∥∥ψj,S (·; θ)
∥∥q] = cqS

−αq .

This inequality can only hold for all S ≥ 1 if αpq/p ≥ αq.

15



the case when drawing recursively from a time series models. Note that A.6.i is stated for

some fixed value of z; the requirement that the simulations be independent of data is satisfied

by most standard simulation schemes10. For parametric approximators in simulation-based

inference, the bias bS is typically zero and so A.6.ii holds with β =∞.
Monte Carlo schemes are of course the most prominent example of stochastic approx-

imators; and they have specific properties that allows for a more precise analysis of the

approximation error appearing in the resulting estimator. We will therefore specialize some

of our results to the following class of Monte Carlo approximators:

A.7(p) Assume that γ̂j,S (z; θ) takes the form

γ̂j,S (z; θ) =
1

S

S∑
s=1

wS (z, εj,s; θ) . (12)

For each j = 1, ..., J , {εjs}Ss=1 is stationary and geometrically β-mixing; {εjs}Ss=1 and

{εks}Ss=1 are independent for j 6= k, and they are all independent of the sample; the

function wS (z, εjs; θ) satisfies

w̄S (z; θ) := E [wS (z, εjs; θ) |x] = γ0 (z; θ) + S−β b̄ (z; θ) + o
(
S−β

)
.

Define ejS ≡ wS (z, εjs; θ)− w̄S (z; θ); then

E‖ejS‖p = O(Sµp) for some µp < p/2.

To our knowledge, the class of approximators that satisfies A7 includes all simulation-

based approximators proposed in the literature. The requirement that {εjs}Ss=1 be geometri-

cally β-mixing is only needed in the proof of Theorem 2 and could be weakened to strongly

mixing elsewhere, but we maintain the assumption of β-mixing throughout to streamline

the assumptions. The bias and variance of approximators on the form given in (12) follow

directly from those of the simulators wS : it is easy to see that under A7(p), A6(p) holds with

the same rate β for the bias term in A6(p).ii and with αp = p/2− µp > 0 in A6(p).iii.

In standard simulation-based estimation, the simulating function wS ≡ w in A7 is actually

independent of the number of simulations, and the approximator has no bias: bS ≡ 0 and

so β = ∞. Moreover, E‖ejS‖p then is constant; A.7(p).iii typically holds with µp = 0, and

A6(p).iii with αp = p/2.

The class A.7 also include approximators that combine simulations and nonparametric

10There is one situation where the independence assumption is violated: sequential approximation schemes
used in dynamic latent variable models such as particle filters, see e.g. Brownlees, Kristensen and Shin (2011)
and Olsson and Rydén (2008). Then the approximator of the conditional density of the current observation
depends on the one used for the previous observation, thereby not satisfying A.6.i.
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techniques such as the methods proposed in Fermanian and Salanié (2004), Creel and Kris-

tensen (2009), Kristensen and Scherning (2011) and Norets (2009, 2011). These will incur

both a bias and variance component, but A7 still applies. As an example, consider the

NPSML estimator: In this case, wS (y, x, εs; θ) = Kh (ys (x, θ)− y) where the bandwidth

h = h (S)→ 0 as S →∞. Let d = dim (y) and suppose that we use a kernel of order r. The

bias component satisfies

w̄S (y, x; θ) = p (y|x; θ) + hr
∂rp (y|x; θ)

∂yr
+ o (hr) ,

Furthermore, it is easily checked that E [|Kh (ys (x, θ)− x) |p|x] = O
(
1/
(
hd(p−1)

))
for all

p ≥ 2 under suitable regularity conditions. Thus, with a bandwidth of order h ∝ S−δ for

some δ > 0, A.7(p) holds with β = rδ and µp = δd (p− 1) for p ≥ 2.

As is well-known, the asymptotic mean integrated squared error is smallest when the

bias and variance component are balanced. This occurs when δ∗ = 1/ (2r + d), leading to

β = α2/2 = r/ (2r + d). We recover of course the standard nonparametric rate of S−2r/(2r+d)

for AMISE; for example in the textbook case with r = 2 and d = 1, we obtain AMISE =

O
(
S−4/5

)
.

We should stress at this point that while the standard nonparametric rate is optimal for

the approximation of the individual densities that make up the the likelihood, this does not

imply in any way that this rate yields the best NPSML estimators. In fact, the bandwidth

derived above is not necessarily optimal when the goal is to minimize the MSE of θ̂n,S .

This is akin to results for semiparametric two-step estimators where undersmoothing of the

first-step nonparametric estimator is normally required for the parametric estimator to be
√
n-consistent11. For example, the optimal rate for NPSML estimation turns out to be

δ∗∗ = 1/(r+ d+ 2). Interestingly, when standard second-order kernels are employed (r = 2),

the optimal rate minimizing the MSE of the kernel estimator is also optimal w.r.t. the MSE

of θ̂n,S : δ∗ = δ∗∗ = 1/(4 + d).

3.3 The Effect of Approximators

The following theorem states the rate at which the approximate objective function converges

towards the exact one; and it provides a bound on the difference between the approximate

estimator and the exact estimator. In the following, when we discuss biases and variances

and, for example, write E[θ̂n,S ], we refer to the (well-defined!) means and variances of the

leading terms of a valid stochastic expansion of the estimators. This is a standard approach

in the higher-order analysis of estimators since Rothenberg (1984); see also Newey-Smith

(2004, section 3.)

11See Kristensen-Salanié (2010) for details.
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Since we are concerned with the error due to the approximation, we let EBias(θ̂n,S) denote

the leading term of the error-bias, E[θ̂n,S − θ̂n]; and EVar(θ̂n,S) for the leading term of the

error-variance, Var(θ̂n,S − θ̂n). To state the asymptotic expansion in a compact manner, we

introduce some moments which will make up the leading bias terms:

B1 = −H−1
0 E [∇g(zi; θ0)[bS ]] (13)

B2 = −1

2
H−1

0 E
[
∇2g(zi; θ0)[ψS , ψS ]

]
. (14)

Theorem 1 Assume that A.1-A.4, A.5(2) and A.6(4) hold. Then for both the ECA and the

EIA,

EBias(θ̂n,S) = B1 +B2,

with

B1 = O(S−β), B2 = O(S−α2).

For EIA,

EVar(θ̂n,S) = O(n−1S−β) +O(n−1S−α2)

while for ECA,

EVar(θ̂n,S) = O(n−1S−β) +O(S−α2).

The bias and the variance of the approximator enter the two leading bias terms separately:

the bias bS drives B1, and the stochastic component ψS drives B2. When the approximator

takes the form of a simple unbiased simulated average, B1 = 0 and the leading bias term

B2 = O (1/S); this is a well-known result for specific simulation-based estimators in cross-

sectional settings, see e.g. Gouriéroux-Monfort (1996). Our theorem shows that this result

holds more generally under weak regularity conditions.

EIA’s and ECA’s differ regarding the variance due to the approximator: First, common

approximators introduce additional correlations across observations, which drive an addi-

tional term in the variances of ∇2Gn(θ0)[ψS ] and ∇2Gn(θ0)[ψS , ψS ]. Second, in contrast to

the ECA’s, the EIA’s asymptotically have no additional variance as n → ∞. These two

points do not imply however EIA’s are preferable to ECA’s: we need to generate nS draws

in total to compute the EIA, but only S draws for the ECA. Thus, for a fair comparison,

one should replace S with nS in the case of ECA, in which case the variances of the two

approximate estimators have the same rate in the leading case α2 = 1.

Finally, we should mention that the rate we give for the variance of ECA’s is not al-

ways sharp. For example, when γ̂S is a kernel estimator, we can show that EVar(θ̂n,S) =

O(n−1S−β) + O(S−1) which is sharper since O (S−α2) = O(1/
(
Shd

)
); see Creel and Kris-

tensen (2009) and Kristensen and Shin (2008).

To illustrate the use of our results, we return to Examples 1 and 2 of Section 2; more
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examples are given in the working paper version of the paper, Kristensen and Salanié (2010).

In the following, the notation ḟ(x, θ) stands for ∂f(x, θ)/ (∂θ).

Example 1 (SML in discrete choice models). Consider a discrete choice model where

d ∈ {1, ..., L} is the decision variable and x a set of covariates. Let Pl (x; θ) := Pθ (d = l|x),

l = 1, ..., L, denote the choice probabilities and suppose these are not available on closed

form. Then γ0 (x; θ) := (P1 (x; θ) , ..., PL (x; θ)) is a vector function. Given observations of

z = (y, x), where y = (d1, ...., dL) with dl = 1 if d = l, the individual log-likelihood is given

by log p (z; θ) =
∑L

l=1 dl,i log γ0,l (x; θ). In this case,

g(z; θ, γ) =
∂ log p(z; θ)

∂θ
=

L∑
l=1

dl,i
γ̇l (xi; θ)

γl (xi; θ)
.

The pathwise derivatives take the form

∇g(z; θ) [dγ] =

L∑
l=1

dl,i

[
1

γ0,l (x; θ)
dγ̇l (x; θ)−

γ̇0,l (x; θ)

γ2
0,l (x; θ)

dγl (x; θ)

]
,

∇2g(z; θ) [dγ, dγ] =
L∑
l=1

dl,i

[
− 2

γ2
0,l (x; θ)

dγl (x; θ) dγ̇l (x; θ) +
2γ̇0,l (x; θ)

γ3
0,l (x; θ)

dγl (x; θ)2

]
,

∇3g(z; θ) [dγ, dγ, dγ] =

L∑
l=1

dl,i

[
4

γ2
0,l (x; θ)

dγl (x; θ)2 dγ̇l (x; θ)−
6γ̇0,l (x; θ)

γ4
0,l (x; θ)

dγl (x; θ)3

]

Comparing with the expansion of the SMLE in Lee (1995, Theorem 1), we recognize his first

and second order terms, Ln and Qn in his notation, as the first and second order differentials

respectively: Ln = ∇Gn(θ0)[γ̂S − γ0] and Qn = ∇2Gn(θ0)[γ̂S − γ0, γ̂S − γ0]. By standard

arguments, we see that eq. (6) holds with m = 2 if

Ḡ0 :=
L∑
l=1

E

[{
6
∥∥γ̇0,l (x; θ0)

∥∥
γ3

0,l (x; θ0)
+

4

γ2
0,l (x; θ0)

}]
<∞.

Thus Ḡ0 cannot be finite unless E
[
γ−2−k

0,l (x; θ)
]
< ∞ for k = 0, 1. This will typically not

hold when covariates have unbounded support. We could impose that the density of the

covariates be bounded away from zero as in Lee (1995), but this is a very strong requirement.

To circumvent such assumptions, one can instead use trimming techniques (see Fermanian

and Salanié, 2004; Kristensen and Shin, 2008). This imparts an additional bias component to

the approximator, but the bias in general is of smaller order than the simulation component

however, and then it can be ignored.

Example 2 (SNLS). For the PMLE proposed in Laroque and Salanié (1989), γ0 (x; θ) =
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E [y|x, θ]. The first-order condition takes the form

g(z; θ, γ) = 2 (y − γ (x; θ)) γ̇ (x; θ)

Define ξ (z; θ) := y − γ0 (x; θ); then the functional differentials are

∇g(z; θ) [dγ] = 2γ̇0 (x; θ) dγ (xi; θ) + 2ξ (z; θ) dγ̇ (x; θ) ,

∇2g(z; θ) [dγ, dγ] = 4dγ̇ (x; θ) dγ0 (x; θ) .

Since ∇3g(z; θ) [dγ, dγ, dγ] = 0, eq. (6) holds with Ḡ0 = 0 and the remainder term RS,n in

eq. (9) is zero.

Assuming that E
[
y2
]
<∞, E[supθ∈Θ ‖γ0 (x, θ)‖2] <∞ and E[supθ∈Θ ‖γ̇0 (x; θ)‖2] <∞,

it is easily seen that eqs. (7)-(8) also hold when using an appropriate L2-norm. Depending on

how the simulated estimator has been implemented, different norms should be used. If two

independent batches have been used for the conditional mean and its derivative respectively,

we use ‖γ‖2 = E[‖γ (xi; θ)‖2]. If on the other hand the same simulations have been used for

both, we need to use ‖γ‖2 = E[‖γ (x; θ)‖2] + E[‖γ̇ (x; θ)‖2].

3.4 Asymptotic First-Order Equivalence

Our results allow us to state precisely when the approximate estimator is asymptotically

first-order equivalent to the exact estimator; that is, which choices of the sequence S =

Sn guarantee ||θ̂n,Sn − θ̂n|| = oP
(
n−1/2

)
. In general, asymptotic equivalence for ECA’s are

obtained if n/Smin(α2,2β) → 0; for EIA’s we have a weaker condition, replacing α2 with 2α2.

For parametric simulation-based estimators (β = 0, α2 = 1), this gives the standard result

that n/Sn should go to zero for ECA’s (Duffie and Singleton, 1993; Lee, 1995, Theorem 1),

while
√
n/Sn should go to zero for EIA’s (Laroque and Salanié, 1989; Lee, 1995, Theorem 4).

When nonparametric kernel methods are used, we have to choose both S and h. Assume

that y is d-dimensional, and we use an r-order kernel. One can show (see Kristensen and

Shin, 2008) that for the NPSMLE based on ECA’s to be equivalent to the MLE, we need
√
nhr → 0, n/S → 0 and

√
n/
(
Shd

)
→ 0.

3.5 Estimating the Variance

Even when the approximate estimator is asymptotically equivalent to the exact estimator,

in finite samples it may be useful to adjust computed standard errors to account for the

additional variance due to the approximation. This turns out to be quite straightforward in

many cases.

Under the additional assumption that E
[
‖g (zi; θ0, γ0)‖2

]
<∞, conditions A.1-A.4 imply
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that θ̂n has standard “sandwich” asymptotics,
√
n(θ̂n − θ0) →d N

(
0, H−1

0 ΩH−1
0

)
where

Ω = limn→∞Var (Gn (θ0, γ0)).

For the approximate estimator,

Var(θ̂n,S) ≈ H−1
0 Σn,SH

−1
0 , Σn,S = Var (Gn (θ0, γ) +∇Gn(θ0)[ψS ]) .

To approximate Σn,S , suppose for simplicity that the observations, zi, i = 1, ..., n, are inde-

pendent (otherwise HAC-type estimators should be employed). Then, we compute

Σ̂n,S =
1

n

n∑
i=1

ŝiŝ
′
i, ŝi := g(zi, θ̂n,S) + δ̂i,

where δ̂i is an estimator of ∇g(zi, θ̂n,S)[ψi,S ]; it accounts for the additional variance due to

the simulations. In the leading example where γ̂i,S satisfies A.7,

∇g(zi, θ̂n,S)[ψi,S ] =
1

S

s∑
s=1

∇g(zi, θ̂n,S)[wi,S − w̄i,S ],

and so a natural choice for the estimator δ̂i is

δ̂i =
1

S

s∑
s=1

∇g(zi, θ̂n,S)[wi,S − γ̂S ].

This estimator is similar to that proposed in Newey (1994) for semiparametric two-step

estimators.

4 Analytical Bias Adjustment

We now propose an analytical bias adjustment of the objective function Gn (θ, γ̂S) which

removes the term B2 in the formula for EBias(θ̂n,S). For the EIA scheme, B2 is in fact the

leading term of the approximation bias if the approximator’s variance is of a larger order

than its bias: α2 < β. This is clearly the case for the parametric simulation-based estimation

methods (α2 = 1, β = ∞), and so for this class of approximators are proposed method will

remove the leading bias term. We would like to stress that the proposed bias adjustment

method requires the approximator to satisfy A.7. Thus, the method is not applicable to

approximation schemes that cannot be expressed as an average.

Our adjustment is based on an estimator of the bias termB2 = −H−1
0 E

[
∇2g(zi; θ0)[ψS , ψS ]

]
/2

which we then include in the objective function. For approximators satisfying A.7, first note
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that

∇2Gn(θ0)[ψS , ψS ] =
1

nS2

n∑
i=1

S∑
s=1

∇2g(zi; θ0)[eS,is, eS,is],

Here, we write, for EIA’s, eS,is := eS (z, εi,s; θ) and, for ECA’s, eS,is = eS (z, εs; θ) for i =

1, ..., n where eS is defined in A.7.

To obtain an estimator of the right hand side in the above equation, we would ideally

compute eS = wS − w̄S ; but since in general w̄S is unknown, this is not feasible. On the

other hand, we can compute γ̂S which is an unbiased and consistent estimator of w̄. Thus, a

natural estimator of E
[
∇2g(zi; θ)[ψS , ψS ]

]
/2 is:

∆̇n,S (θ) =
1

2S (S − 1)

n∑
i=1

S∑
s=1

∇2g(zi; θ)[wS,is − γ̂S,i, wS,is − γ̂S,i]. (15)

Under regularity conditions, ||H−1
0 ∆̇n,S (θ0) − B2|| →P 0 as n → ∞. This motivates our

definition of an analytically bias-adjusted estimator θ̂
AB

n,S as the solution to:

oP

(
n−1/2

)
= Gn(θ̂

AB

n,S , γ̂S)− ∆̇n,S(θ̂
AB

n,S). (16)

When θ̂n,S = arg maxθ∈ΘQn(θ, γ̂S) where Qn(θ, γ) =
∑n

i=1 q(zi; θ, γ)/n, the above ad-

justment corresponds to

θ̂
AB

n,S = arg min
θ∈Θ
{Qn(θ, γ̂S)−∆n,S (θ)} , (17)

where

∆n,S (θ) =
1

2S (S − 1)

n∑
i=1

S∑
s=1

∇2q(zi; θ)[wS,is − γ̂S,i, wS,is − γ̂S,i].

After such an adjustment, the bias component B2 changes to

B̃2 := H−1
0 E

[
1

2
∇2Gn(θ0)[ψS , ψS ]− ∆̇n,S

]
.

The following Theorem shows that under slightly stronger conditions12 than in Theorem 1,

B̃2 has a faster rate of convergence than B2, while the rate of the other leading terms is

unchanged:

Theorem 2 Assume that A.1-A.4, A.5(3) and A.7(8) hold together with∥∥∇2g(z)[eis, eit]
∥∥ ≤ b (z) ‖eis (z)‖ ‖eit (z)‖ ,

12Note the different orders on A.5 and A.7; they are required to ensure that the remainder term, Rn,S , in
the asymptotic expansion is still dominated.
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where E
[
b8 (z)

]
<∞. Then, with ∆̇n,S (θ) and θ̂

AB

n,S defined in eqs.(15)-(16):

EBias(θ̂n,S) = B1 + B̃2

where B̃2 = O(S−2+µ2). The rates of B1 and EVar(θ̂n,S) are the same as in Theorem 1.

Comparing with Theorem 1, the bias term B2 = O (S−α2) = O
(
S−1+µ2

)
has been re-

placed by B̃2 = O(S−2+µ2). With unbiased simulators, we have µ2 = 0 and β =∞, and the

leading bias term of the approximation error of the unadjusted estimator is of order O
(
S−1

)
.

The above theorem shows that for the adjusted estimator the leading term of the bias is of

order O
(
S−2

)
. The improvement is by a factor S and so may be very significant.

More generally, the proposed adjustment will remove the largest bias component as long

as α2 < β. Otherwise the bias term OP
(
S−β

)
is of a larger order than OP (S−α2) and the

proposed bias adjustment does not remove the leading term anymore. In particular, when

non-stochastic approximations are employed the above adjustment does not help13. With

non-stochastic approximations, the leading term of the approximation error is not driven by

∇2Gn(θ)[ψS , ψS ], which the ∆̇n,S(θ) correction is aimed at: in fact this term is identically

zero as we saw earlier. To phrase things differently, with non-stochastic approximations, for

every p, αp =∞ and so αp > β.

We now return to the examples introduced in Section 2, and derive the bias adjustments

for the cases where stochastic approximators are employed.

Example 1 (SML on discrete choice models). Here, q(z; θ, γ) = −
∑L

l=1 dl,i log γl (x; θ)

and so ∇2q(z; θ) [dγ, dγ] =
∑L

l=1 dl,idγ
2
l (x; θ) /γ2

0,l (x; θ). .Thus, the adjustment term be-

comes

∆n,S (θ) =
1

2nS (S − 1)

n∑
i=1

L∑
l=1

dl,i

S∑
s=1

[
wl (xi, εis; θ)− γ̂l,S (xi; θ)

γ̂l,S (xi; θ)

]2

.

Example 2 (SNLS). Using the results obtained for the SNLS in the previous section,

∇2Gn(θ) [dγ, dγ] =
4

n

n∑
i=1

dγ̇ (xi; θ) dγ (xi; θ) .

Then the adjustment term becomes

∆n,S (θ) =
1

nS (S − 1)

n∑
i=1

S∑
s=1

r2 (xi, εs; θ) , r (xi, εs; θ) := wS (xi, εs; θ)− γ̂S (xi; θ)

13If we could estimate bS , then B1 could also be adjusted straightforwardly with ∆̇
(B)
n,S (θ) = ∇Gn(θ)[bS ].

However, estimating bS is usually a difficult task. Lee (2001) demonstrates how combining numerical approx-
imations and simulations can improve the order of the estimator. When kernel-based estimators are used,
higher-order kernels can also be used to reduce the bias component.
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This is exactly the correction proposed in Laffont et al. (1995); and as ∇3qi ≡ 0 in SNLS,

all approximation biases are removed.

Instead of adjusting the objective function (“preventive bias adjustment”), we could first

compute the unadjusted estimator, θ̂n,S , and then directly correct its bias (“corrective bias

adjustment”): Taking a first-order expansion in θ around θ̂n,S in eq. (16), we obtain

θ̂
AB

n,S = θ̂n,S −Hn(θ̂n,S , γ̂n,S)−1∆̇n,S(θ̂n,S),

where Hn (θ, γ) = ∂Gn (θ, γ) / (∂θ). Such a two-step procedure was proposed in Lee (1995) for

the special case of SMLE and SNLS in limited dependent variable models. As an illustration,

in the SNLS example, the adjustment term takes the following form:

∆̇n,S (θ) =
2

nS (S − 1)

n∑
i=1

S∑
s=1

r (xi, εs; θ) ṙ (xi, εs; θ) ,

where as, before, ḟ denotes the derivative of f w.r.t. θ. One complication of this corrective

procedure relative to the preventive one is that the derivatives of the simulators must be

computed. We refer to Arellano and Hahn (2007) for a further discussion of corrective and

preventive bias correction in a panel data setting.

5 Bias Adjustment by Resampling

As an alternative to analytical bias corrections, resampling methods can be used14. They will

in general handle the biases due to both the stochastic and the non-stochastic component of

the approximator; and the researcher is not required to derive an expression of the bias. On

the other hand, they are computationally more demanding than the analytical bias correction

proposed in the previous section, and may lead to an increase in finite-sample variance.

To motivate the bias adjustment, recall from Theorem 1 that EBias(θ̂n,S) ' b1S
−β +

b2S
−α2 . As before, the goal is to obtain an estimator of (parts of) the leading bias terms

and use this for bias correction. We here propose to do this by resampling methods: First,

compute two approximators of order S∗ which we denote γ̂
[1]
S∗ and γ̂

[2]
S∗ . Let θ̂

[m]

n,S∗ be the

estimator based on the same data sample Zn but using the mth approximator γ̂
[m]
S∗ , m = 1, 2.

We then propose the following jackknife (JK) type estimator:

θ̂
JK

n,S := 2θ̂n,S −
1

2

(
θ̂

[1]

n,S∗ + θ̂
[2]

n,S∗

)
, (18)

14See Hahn and Newey (2004) and Dhaene and Jochmans (2010) for bias correction using Jackknife in the
context of panel models, while we refer to Phillips and Yu (2005) for a time series application.
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and we easily see that

E
[
θ̂

JK

n,S − θ̂n
]

= 2E
[
θ̂n,S − θ̂n

]
− 1

2

(
E
[
θ̂

[1]

n,S∗ − θ̂n
]

+ E
[
θ̂

[2]

n,S∗ − θ̂n
])

' b1

[
2S−β − (S∗)−β

]
+ b2

[
2S−α − (S∗)−α2

]
,

where higher-order terms have been ignored. We would now ideally choose S∗ such that

both of the above bias terms cancel out. However, we can only remove either of the two: By

choosing either

S∗ =
S

21/β
or S∗ =

S

21/α2
, (19)

we will remove the first or the second term respectively. Obviously, S∗ should be chosen so

as to remove the bias component that dominates in the expansion.

One can generalize the above and compute M approximators, γ̂
[m]
Sm

, m = 1, ...,M , of order

Sm < S, and for each of those the corresponding approximate estimator, θ̂
[m]

n,Sm . For a given

set of weights pm, m = 1, ...,M , we then define the adjusted estimator as

θ̂
JK

n,S = Mθ̂n,S −
M∑
m=1

pmθ̂
[m]

n,Sm . (20)

Dhaene and Jochmans (2010, Section 3.1) demonstrate in a panel data context that the

optimal procedure is to choose M = 2 and pm = 1/2 if the goal is to remove the leading

bias term. We expect that a similar result extends to parametric simulation-based estimators

in our setting. On the other hand, the generalized adjustment as given in eq. (20) can be

used to remove further higher-order bias components by appropriate choice of weights and

appproximation orders, c.f. Dhaene and Jochmans (2010, Section 3.2). While we do not

pursue this here, we conjecture that the generalized adjustment would enable us to remove

both B1 and B2.

The implementation of the above Jackknife procedure can be computationally time-

consuming. In particular, one has to carry out additional two minimization routines. This

can be bypassed by using a Newton-Raphson procedure, leading to a Jackknife version of the

k-step bootstrap of Andrews (2002): For each m = 1, 2, compute

θ̂
[m,k+1]

n,S∗ = θ̂
[m,k]

n,S∗ −

∂Gn(θ̂
[m,k]

n,S∗ , γ̂
[m]
S∗ )

∂θ

−1

G(θ̂
[m,k]

n,S∗ , γ̂
[m]
S∗ ), k = 1, 2, 3, ... (21)

with starting value θ̂
[m,1]

n,S∗ = θ̂n,S , and compute θ̂
JK

n,S with θ̂
[m,k+1]

n,S∗ replacing θ̂
[m]

n,S∗ .

An alternative way to reduce the computational cost is to jackknife the objective function
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directly, as we did in section 2. Define

G∗n(θ, γ̂S) = 2Gn(θ, γ̂S)− 1

2

[
Gn(θ, γ̂

[1]
S∗) +Gn(θ, γ̂

[2]
S∗)
]
,

It is easy to see that the estimator defined by G∗n(θ̃
JK
n,S , γ̂S) = 0 is equivalent to θ̂

JK

n,S given in

eq. (18) in terms of bias.

In contrast to the analytical bias correction, the resampling-based correction can remove

the leading term of the bias for both stochastic and non-stochastic approximation schemes.

Another advantage of this alternative bias adjustment method is that we expect it to remove

finite-sample biases. Since we are here focusing on biases due to approximation errors, we

will merely give the intuition. Often the exact estimator suffers from biases of order n−1

relative to the true value in finite samples:

E
[
θ̂n,S − θ0

]
' b1S−β + b2S

−α2 + b3n
−1,

where again higher-order terms are suppressed. Note that we now consider E[θ̂n,S − θ0]

instead of E[θ̂n,S − θ̂n]. Then, by the same arguments as before, it is easily seen that θ̂
JK

n,S

also removes the third term, b3n
−1, for any choice of S∗.

6 Newton-Raphson Adjustment

We here propose an additional adjustment that also works for general approximation-based

estimators. We show that starting from either θ̄n,S = θ̂
AB

n,S , θ̂
JK

n,S or even the initial, unadjusted

estimator, θ̂n,S , one or more Newton-Raphson iterations based on the approximate objective

function with a finer approximation S∗ > S produce an estimator that has the presumably

higher precision of θ̂n,S∗ . The resulting estimator based on k iterations, θ̂
(k+1)

n,S , is defined in

eq. (4).

To evaluate the performance of θ̂
(k+1)

n,S relative to θ̄n,S∗ , we first note that

||θ̂(k+1)

n,S − θ̂n|| ≤ ||θ̂
(k+1)

n,S − θ̄n,S∗ ||+ ||θ̄n,S∗ − θ̂n||.

Combining this with Robinson (1988, Theorem 2), we obtain the following theorem:

Theorem 3 Assume that A.1-A.4, A.5(3) and A.7(6) hold. Let the initial estimate θ̄n,S be

chosen as either θ̂n,S, θ̂
AB

n,S, or θ̂
JK

n,S. Then the NR-estimator θ̂
(k+1)

n,S defined in eq. (4) satisfies:

||θ̂(k+1)

n,S − θ̂n|| = OP

(
||θ̄n,S − θ̂n||2

k
)

+OP

(
||θ̄n,S∗ − θ̂n||

)
(22)

as n, S and S∗ go to infinity with S∗ > S.
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The above result formalizes the intuition that a (large enough) number of NR-steps with

the score and Hessian evaluated at γS∗ yields an estimator that is equivalent to the extremum

estimator obtained from full optimization of the objective function based on γS∗ . This holds

irrespective of the convergence rate of the initial estimator. However, the number of NR

iterations, k, needed to obtain this result does depend on the precision of the initial estimator.

For unadjusted parametric simulation-based estimators in the EIA scheme for instance, we

know from Theorem 1 that ‖θ̄n,S−θ̂n‖ = OP (1/S). Then the first term on the right-hand side

of the inequality in Theorem 3 is asymptotically dominated by the second term if S∗ = o(S2k).

Taking k = 1 and having S∗/S converge to some positive number would be enough in this

case.

The above iterative estimator requires computation of the Hessian, Hn (θ, γ̂S). If this is

not feasible or computationally burdensome, an approximation can be employed, e.g. numer-

ical derivatives. This however will slow down the convergence rate and the result of Theorem

3 has to be adjusted, cf. Robinson (1988, Theorem 5). In particular, more iterations are

required to obtain a given level of precision.

7 A Simulation Study

To explore the performance of our proposed approaches, we set up a small Monte Carlo study

of a mixed logit model: the econometrician observes i.i.d. draws of (xi, yi) for i = 1, . . . , n,

with xi a centered normal of variance τ2 and

yi = 11(b+ (a+ sui)xi + ei > 0)

where ei is standardized type I extreme value and ui is a centered normal with unit variance,

independent of ei.

We take the true model to have parameters a = 1, s = 1, b = 0. In this specification, the

mean probability of y = 1 is close to 0.5. For τ = 1 (resp. τ = 2) the generalized R2 is 0.11

(resp. 0.21); in the corresponding simple logit model, which has s = 0, the R2 would be 0.17

(resp. 0.39.)

The mixed logit, in its multinomial form, has become a workhorse in studies of consumer

demand (see e.g. the book by Train (2009)); it also figures prominently on the demand side

of models of empirical industrial organization. It is usually estimated by simulation-based

methods. In empirical IO, the simulated method of moments is commonly used because of

endogeneity concerns; but it is not a useful benchmark for us as the approximate estimator

in SMM inherits no additional bias from the simulations. Instead, we focus here on SML,

which is perhaps the most popular method outside of empirical IO.

The mixed logit is still a very simple model; thus we can use Gaussian quadrature to
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compute the integral

Pr(y = 1|x) =

∫
φ(u)

1 + exp(−(b+ (a+ su)x)
du. (23)

Since Gaussian quadrature achieves almost correct numerical integration in such a regular,

one-dimensional case, we can rely on it to do (almost) exact maximum likelihood estimation.

By the same token, it is easy to compute the asymptotic variance of the exact ML estimator

θ̂n, and the leading term of the bias of the SML estimator. Simple calculations give the

numbers in Table 1.

τ
√
nσ̂ S times bias

a s b a s b

1 7.2 17.2 2.4 −9.0 −23.5 −0.0
2 6.7 10.8 2.8 −8.3 −13.5 −0.0

Table 1: Rescaled asymptotic standard errors and simulation biases

The columns labeled
√
nσ̂ give the square roots of the diagonal terms of the inverse of

the Fisher information matrix. As can be seen from the values of
√
nσ̂, it takes a large

number of observations to estimate this model reliably. To take an example, assume that

the econometrician would be happy with a modestly precise 95% confidence interval of half-

diameter 0.2 for the mean slope a. With τ = 1 it would take about (7.2 ∗ 1.96/0.2)2 ' 5, 200

observations; and still about 4, 500 for τ = 2, even though the generalized R2 almost doubles.

With such sample sizes, the estimate of the size of the heterogeneity s would still be very

noisy: its 95% confidence intervals would have half-diameters 0.48 and 0.32, respectively.

We also found that the correlation between the estimators of a and of s is always large and

positive—of the order of 0.8. Thus the confidence region for the pair (a, s) is in fact a rather

elongated ellipsoid. On the other hand, the estimates of b are reasonably precise, which is

not very surprising as b shifts the mean probability of y = 1 strongly.

The figures in the columns labeled “S times bias” refer to the expansions of θ̂nS − θ̂n
in our theorems. We will be using SML under the EIA scheme (independent draws across

observations). Then we know that the leading term of the bias due to the simulations is

BS,2 and is of order 1/S. The figures give our numerical evaluation of SBS,2, using our

formulæ and Gaussian quadrature again. As appears clearly from Table 1, once again the

heterogeneity coefficient s is the harder to estimate, followed by a, while there is hardly any

bias on b. With S = 100 simulations and τ = 1 for instance, the bias on a is −0.09, and the

bias on s is −0.23. For sample sizes of a few thousand observations, they are actually much

smaller than the dispersion of the estimates implied by the parametric efficiency bounds; but

they become more relevant in larger samples, on which we will focus here.

28



We ran experiments for several sets of parameter values, sample sizes n, explanatory power

(through τ), and numbers of draws S. Since the results are similar, we only present here those

we obtained for a sample of 25, 000 observations when the true model has a = 1, s = 1, b = 0,

the covariate has a standard error τ = 2.

We present below the results for S = 50, 100, 20, and 500 simulations. We ran 5,000

simulations in each case, starting from initial values of the parameters drawn randomly from

uniform distributions: a ∼ U [0.5, 1.5], b ∼ U [−0.5, 0.5], and s ∼ U [0.5, 1.5]. Our exact

ML estimator relies on Gaussian quadrature as in equation (23), with 64 points. For each

simulated sample, we estimated the model using both uncorrected SML, and SML with

analytic bias adjustment (ABA), resampling, and Newton-Raphson. The ABA was done

on the objective function, while the resampling was done on the estimator itself. For the

Newton-Raphson correction, we use only k = 1 step, with S∗ = 10 × S draws. Finally, our

resampling correction uses S∗ = S/2 draws.

We faced very few numerical difficulties. The optimization algorithm sometimes stopped

very close to the bounds we had imposed for the heterogeneity parameter, 0.1 ≤ s ≤ 5. In

even fewer cases it failed to find an optimum. Finally, the second derivative of the simulated

log-likelihood was not invertible in a very small number of samples. Altogether, we had to

discard 1.4% to 1.6% of the 5,000 samples, depending on the run. The tables and graphs

below only refer to the remaining samples. We focus on a and s since there is little bias

to correct for in b. We report (Huber) robust means, standard errors and RMSEs. “ABA”

refers to our analytical bias adjustment.

Tables 2, 3 report our results for the mean error of our various SML methods, relative

to the ML estimator. Each row corresponds to a value of the number of simulations S. All

numbers in the last five columns of these tables pertain to the bias due to the approximation;

that is, we compute the “error terms” θ̂n,S− θ̂n, and we average them over the 5,000 samples

(minus the small number that were eliminated due to numerical issues). The standard error

of these averages is about 0.001, so that many of the biases from the corrected estimates are

close to insignificant.

S SML SML+Newton SML+resampling SML+ABA SML+ABA+Newton

50 −0.136 −0.029 −0.034 0.011 0.003
100 −0.072 −0.009 −0.008 0.005 0.003
200 −0.036 −0.002 0.000 0.004 0.003
500 −0.013 0.002 0.003 0.003 0.003

Table 2: Mean error on a

The ”SML” columns in the tables report the biases of the uncorrected SML estimator. It

follows from Table 1 that the theoretical values of the leading term of the bias are −0.165 for
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S SML SML+Newton SML+resampling SML+ABA SML+ABA+Newton

50 −0.226 −0.027 −0.054 0.015 0.002
100 −0.121 −0.012 −0.016 0.005 0.002
200 −0.062 −0.005 −0.003 0.002 0.002
500 −0.025 −0.001 0.001 0.002 0.002

Table 3: Mean error on s

a and −0.270 for s when using S = 50 simulations; since the leading term is in 1/S, it should

be ten times smaller for S = 500. The leading term appears to be a good approximation to

the actual size of the bias in these simulations, and the measured bias is close to proportional

to 1/S. This suggests that the two methods that focus on correcting for the leading term of

the bias, our analytical bias adjustment and the resampling method, should work very well.

ABA in fact does eliminate most of the bias; resampling also works quite well, at least for

S ≥ 100. The Newton step with ten times more simulations reduces the bias, as expected; but

it does not do it quite as effectively as our analytical bias adjustment. In addition, applying

a Newton step after ABA does not reduce the bias further as it is already very small. We

note in passing that for the estimation of s in particular, the Newtonized SML estimator for

S = 50 works about as well as the SML estimator for S = 500, as theory suggests.

The discussion above only bears on bias, but one may legitimately be concerned about the

possibility that our adjustment procedures introduce more noise into the estimates. Figure 1

plots the estimated densities of the error terms θ̂n,S− θ̂n. The improvements in the biases are

obvious. More interesting is the contrasting performance of the methods when it comes to the

dispersion of the errors. While our analytical bias adjustment hardly changes the dispersion,

the Newton procedure reduces it; and the resampling procedure increases it. Since the Newton

adjustment aims at giving the estimator the asymptotic properties of one with ten times more

simulations, it reduces the efficiency loss relative to the MLE. On the other hand, resampling

corrects the S-simulations estimator by using an average of estimators with S∗ = S/2, and

so it introduces more noise.

S SML SML+Newton SML+resampling SML+ABA SML+ABA+Newton

50 0.137 0.032 0.047 0.025 0.012
100 0.074 0.015 0.028 0.018 0.011
200 0.038 0.011 0.022 0.015 0.011
500 0.017 0.010 0.017 0.012 0.011

Table 4: RMSE on a

These trade-offs are reflected in the RMSEs of the error terms, as collected in tables 4

and 5. Correcting the error using analytical bias adjustment or a Newton step reduces the
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Figure 1: Estimation errors due to simulation
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S SML SML+Newton SML+resampling SML+ABA SML+ABA+Newton

50 0.229 0.035 0.077 0.040 0.020
100 0.124 0.023 0.048 0.029 0.018
200 0.066 0.018 0.038 0.024 0.017
500 0.031 0.017 0.028 0.020 0.017

Table 5: RMSE on s

RMSE by similar amounts; but doing both combines the bias-reducing effect of the ABA

and the dispersion-reducing effect of the Newton step to yield a spectacular reduction in the

RMSE. Two other considerations are worth mentioning:

• Ease of implementation: The resampling method wins on that count; the analytical

bias adjustment is not far behind, since it is usually easy to get a formula for the ∆

term and to program it. The Newton method may be more troublesome in models

with more than a few parameters, as it requires a reasonably accurate evaluation of

the matrix of second derivatives. In our experiment, we relied on the fact that the

minimization algorithm itself proceeds by Newton-Raphson steps; after multiplying by

ten the number of simulations, we let the algorithm do exactly one iteration of its line

search. This appears to work very well, and is very easy to implement.

• Computer time: We report in Table 6 the average time each of our five methods took to

produce an estimator (in seconds per sample.) The analytical bias adjustment wins this

comparison hands down. For SML for instance, the evaluation of the corrected objective

function requires the variance of the simulated choice probabilities in addition to their

mean—a very small computational cost. Resampling, as implemented in this study,

roughly doubles the cost of the uncorrected estimator. Newton can be more costly

still, depending on the structure of the model and the care needed to approximate the

Hessian.

S SML SML+Newton SML+resampling SML+ABA SML+ABA+Newton

50 1.8 4.9 4.1 1.9 6.0
100 3.4 9.4 7.2 3.6 10.8
200 6.7 18.6 13.7 6.9 20.6
500 16.4 46.2 33.3 16.9 50.3

Table 6: Computing times (in seconds)

Like all Monte Carlo study, ours can only be illustrative; yet our results suggest that the

resampling method is dominated by the other two. If the Hessian is easy to approximate
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with enough accuracy, then the Newton method is probably the best choice; otherwise, the

analytical bias adjustment seems to be a good choice, at least if the bias induced by the

approximations is the main concern. Finally, combining analytical bias correction with a

Newton step spectacularly reduces the RMSE of the error.

8 Conclusion

We developed in this paper a unifying framework for the analysis of approximate estimators.

We derived bias and variance rates of the approximate estimator relative to the exact esti-

mator, and used them to propose three methods for reducing the bias and the efficiency loss

that result from the approximation. Simulations on the mixed logit model confirm that the

proposed methods work well in finite samples.

We restricted ourselves to estimators where objective function and approximator (as func-

tions of θ) were both smooth. In principle, one could import the arguments of Chen et al

(2003) to handle non-smooth cases. Another approach would be to employ a slight general-

ization of Robinson (1988, Theorem 1) which in our setting would yield

||θ̂n,S − θ̃n|| = OP

(
sup

‖θ−θ0‖≤δ
‖Gn (θ, γ̂S)−Gn (θ, γ)‖

)
+ oP

(
1/
√
n
)
,

for some δ > 0. If one could then strengthen the pointwise bias and variance results derived

here to hold uniformly over ‖θ − θ0‖ ≤ δ, all our results would remain valid.

Also, we require the approximators to be mutually independent, which rules out certain

recursive approximation schemes such as particle filtering. Establishing results for this more

complicated case would be highly useful. One could here try to use the results of Chen and

White (2002) who analyze random dynamic function systems.

Finally, we only allowed for one source of approximation in γ. More general situations

could have several such terms, possibly with quite different properties. As an example, we

could have evaluate a quantity γ1 using simulations, and another term γ2 by discretizing over

a grid and interpolating. We could still write a Taylor expansion as in section 3.1, and evaluate

the corresponding terms. While we have not formally explored this extension, we feel that we

can venture some conjectures. The Newton method would still work, using here both a larger

number of simulations and a more precise grid in computing the Newton correction. The

analytical bias-adjustment method would only work if all sources of approximations were

“stochastic” (unlike γ2 in our example); and then one would focus on the approximation

whose size goes to zero most slowly. As for the resampling method, we would need to use

different choices of m and S∗ along the various dimensions of approximation.
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A Proofs

Proof of Theorem 1. We first note that under (A.1)-(A.2) and (A.3.i),

sup
θ∈Θ
‖Gn (θ, γ0)−G (θ, γ0)‖ →P 0, (24)
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as n→∞; see e.g. Kristensen and Rahbek (2005, Proposition 1). This together with (A.3.ii)

implies that θ̂n is consistent, see e.g. Newey and McFadden (1994, Theorem 2.1).

In the case of ECA’s, we will in the following write γ̂i,S := γ̂S , i = 1, ..., n, so we do not

have to treat the two approximation schemes separately. Then, by part (i)-(ii) of (A.6), for

any λ ≤ 2,

1

n

n∑
i=1

E
[∥∥γ̂i,S − γ0

∥∥λ] ≤ 1

n

n∑
i=1

E
[∥∥γ̂i,S − γ0

∥∥2
]λ/2

=
[
O
(
S−2β

)
+O

(
S−α2

)]λ/2
= o (1) ,

as S → ∞. Thus, by (A.1), part (i) of (A.5), and part (i) of (A.6), where without loss of

generality we assume λ ≤ 2,

E

[
sup
θ∈Θ
‖Gn (θ, γ̂S)−Gn (θ, γ0)‖

]
≤ 1

n

n∑
i=1

E

[
sup
θ∈Θ
‖g (zi; θ, γ̂S)− g (zi; θ, γ0)‖

]

≤ Ḡ0
1

n

n∑
i=1

E
[∥∥γ̂i,S − γ0

∥∥λ]
= oP (1) (25)

Combining this result with eq. (24), we obtain supθ∈Θ ‖Gn (θ, γ̂S)−G (θ, γ0)‖ →P 0.

Together with (A.3), this proves that θ̂n,S is consistent as n, S →∞; see Newey and McFadden

(1994, Theorem 2.1).

To derive more precise rates of the approximate estimator, we first take a Taylor expansion

of Gn(θ, γ̂S) w.r.t. θ:

oP

(
n−1/2

)
= Gn(θ̂n,S , γ̂S) = Gn(θ0, γ̂S) +Hn(θ̄n,S , γ̂S)(θ̂n,S − θ0), (26)

for some θ̄n,S between θ̂n,S and θ0. Since θ̂n,S is consistent, θ̄n,S →P θ0. By the same

arguments used to establish eqs. (24)-(25), Assumption A.4 then ensures that,∥∥Hn

(
θ̄n,S , γ̂S

)
−H0

∥∥ ≤
∥∥Hn

(
θ̄n,S , γ̂S

)
−Hn

(
θ̄n,S , γ0

)∥∥+
∥∥Hn

(
θ̄n,S , γ0

)
−H

(
θ̄n,S , γ0

)∥∥
+
∥∥H (θ̄n,S , γ0

)
−H (θ0, γ0)

∥∥
≤ sup

‖θ−θ0‖≤δ
‖Hn (θ, γ̂S)−Hn (θ, γ0)‖+ sup

‖θ−θ0‖≤δ
‖Hn (θ, γ0)−H (θ, γ0)‖

+
∥∥H (θ̄n,S , γ0

)
−H (θ0, γ0)

∥∥
= oP (1) .
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Going back to eq. (26), we have now shown that

θ̂n,S − θ0 = −H−1
0 Gn(θ0, γ̂S) + oP

(
1/
√
n
)
, θ̂n − θ0 = −H−1

0 Gn(θ0, γ0) + oP
(
1/
√
n
)
.

Subtracting gives

θ̂n,S − θ̂n = −H−1
0 {Gn(θ0, γ̂S)−Gn(θ0, γ0)}+ oP

(
1/
√
n
)
.

We now use the expansion given in eq. (9) with m = 2 and θ = θ0, to get∥∥∥θ̂n,S − θ̂n∥∥∥ = OP

(∥∥∥∥∇Gn(θ0) [∆γ̂S ] +
1

2
∇2Gn(θ0) [∆γ̂S ,∆γ̂S +Rn,S ]

∥∥∥∥)+ oP
(
1/
√
n
)
,

(27)

where ∆γ̂i,S = γ̂i,S − γ0. We first derive the rate of the remainder term Rn,S :

E [‖Rn,S‖] = E

∥∥∥∥Gn(θ0, γ̂S)−Gn(θ0, γ0)−∇Gn(θ0) [∆γ̂S ]− 1

2
∇2Gn(θ0) [∆γ̂S ,∆γ̂S ]

∥∥∥∥
≤ 1

n

n∑
i=1

E

∥∥∥∥gi(θ0, γ̂i,S)− gi(θ0, γ0)−∇gi(θ0)
[
∆γ̂i,S

]
− 1

2
∇2gi(θ0)

[
∆γ̂i,S ,∆γ̂i,S

]∥∥∥∥
≤ Ḡ0

n

n∑
i=1

E
[∥∥∆γ̂i,S

∥∥3
]
,

where we have used A.5(2).

Applying first Minkowski’s inequality and then the inequality (a+ b)p ≤ 2p−1ap + 2p−1bp

(which holds for all a, b > 0 and p ≥ 1), we obtain—dropping the i index:

E[‖∆γ̂S‖
3] = E

[
‖ψS + (E [γ̂S ]− γ0)‖3

]
≤

(
E
[
‖ψS‖

3
]1/3

+ ‖E [γ̂S ]− γ0‖
)3

≤ 4E
[
‖ψS‖

3
]

+ 4 ‖Eγ̂S − γ0‖
3

= O
(
S−α3

)
+O

(
S−3β

)
,

The rates of the first and second order functional differentials of Gn(θ0, γ) are given in

Lemmas 6 and 7 depending on whether the ECA approximator of (10) or the EIA approxi-

mator of eq. (11) is used. By plugging those into eq. (27) together with the rate of Rn,S , we

obtain the desired result.

Proof of Theorem 2. We only give a proof for the case of EIA’s; the proof for ECA’s follows

along the same lines. One can easily show that supθ∈Θ ||∆̇n,S (θ) || = oP (1) as n, S →∞, and

it now follows by the same arguments as in the proof of Theorem 1 that θ̂
AB

n,S is consistent.
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Next, we make a Taylor expansion of eq. (16),

oP

(
n−1/2

)
=
{
Gn(θ0, γ̂S)− ∆̇n,S (θ0)

}
+
{
Hn(θ̄n,S , γ̂S)− ∆̈n,S

(
θ̄n,S

)}
(θ̂

AB

n,S − θ0),

where ∆̈n,S (θ) = ∂∆̇n,S (θ) /∂θ. From the proof of Theorem 1, Hn(θ̄n,S , γ̂S) = H0 + oP (1),

while it is easily shown that ∆̈n,S

(
θ̄n,S

)
= oP (1) as n, S → 0, so that, by the same arguments

as in the proof of Theorem 1,

θ̂
AB

n,S − θ̂n = H−1
0

{
Gn(θ0, γ̂S)− ∆̇n,S(θ0)−Gn(θ0, γ)

}
+ oP

(
1/
√
n
)
.

Suppressing any dependence on θ0, use eq. (9) to write

Gn (γ̂S)− ∆̇n,S −Gn (γ) =

{
1

2
∇2Gn[ψn,S , ψn,S ]− ∆̇n,S

}
+∇Gn[γ̂S − γ] (28)

+
1

2

{
∇2Gn[γ̂S − γ, γ̂S − γ]−∇2Gn[ψn,S , ψn,S ]

}
+Rn,S .

The rates of the second and third terms of eq. (28) are derived in Lemma 7 while Lemma

8 delivers a refinement of Rn,S relative to the rate obtained in the proof of Theorem 1 that

ensures it is negiglible. The crucial term is the first term of eq. (28). Now, recall that

γ̂i = S−1
∑S

s=1wis, and that

∆n,S =
1

2nS2

n∑
i=1

S∑
s=1

∇gi[wis − γ̂i, wis − γ̂i].

Thus, using the bilinearity of (dγ, dγ′) 7→ ∇2gi [dγ, dγ′], and denoting w̄i = E [wi,s] and

eis = wis − w̄i, the first term of eq. (28) can be rewritten as

1

2
∇2Gn[ψn,S , ψn,S ]− ∆̇n,S

=
1

2nS2

n∑
i=1

∑
s 6=t
∇2gi[eis, eit] +

1

2nS2

n∑
i=1

S∑
s=1

∇2gi[eis, eis]−
1

2nS2

n∑
i=1

S∑
s=1

∇gi[wis − γ̂i, wis − γ̂i]

=
1

2nS2

n∑
i=1

∑
s 6=t
∇2gi[eis, eit] +

1

2nS2

n∑
i=1

S∑
s=1

{
∇2gi[eis, eis]−∇gi[wis − γ̂i, wis − γ̂i]

}
=

1

2nS2

n∑
i=1

∑
s 6=t
∇2gi[eis, eit] +

1

2nS2

n∑
i=1

S∑
s=1

{
∇2gi[γ̂i − w̄i, eis] +∇2gi[eis, γ̂i − w̄i]

}
=

1

2nS2

n∑
i=1

∑
s 6=t
∇2gi[eis, eit] +

1

nS

n∑
i=1

∇2gi[γ̂i − w̄i, γ̂i − w̄i]

where the last equality uses the fact that S−1
∑S

s=1 eis = γ̂i − w̄i.
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Start with the first term, and note that E
[
∇2gi[eis, eit]

]
= 0 when s 6= t. Then apply

Lemma 4 with r = 1 to Wi,S := S−2
∑

s 6=t∇
2gi[eis, eit], getting

Var

 1

2nS2

n∑
i=1

∑
s 6=t
∇2gi[eis, eit]

 ≤ C

n
E
[
‖Wi,S‖2+δ

]2/(2+δ)
.

Now Wi,S is a degenerate U -statistic since

E
[
∇2g(zi)[eis, eit]|zi, eit

]
= E

[
∇2g(zi)[eis, eit]|zi, eis

]
= 0.

Given the conditions imposed on {ei,s : 1 ≤ s ≤ S} in (A.7), we can employ U -statistic results

for absolutely regular sequences: Yoshihara (1976, Lemma 3) states that E
[
‖Wi,S‖4 |zi

]
=

O
(
S−4

)
. By inspection of the proof of Yoshihara (1976, Lemma 3), it is easily checked that

in fact, for some constant C > 0 we have E
[
‖Wi,S‖4 |zi

]
≤ CS−4MS (zi), where

MS (zi) := sup
s<t

E
[∥∥∇2g(zi)[eis, eit]

∥∥4+ε |zi
]4/(4+ε)

, for some ε > 0.

Thus, with δ = 2 and using the Lipschitz condition on ∇2g, we obtain

E
[
‖Wi,S‖4

]
≤ CS−4E [MS (zi)]

≤ CS−4E

[
sup
s<t

E
[∥∥∇2g(zi)[eis, eit]

∥∥4+ε |zi
]4/(4+ε)

]
≤ CS−4E

[
b4(zi) sup

s<t
E
[
‖eis (z)]‖4+ε ‖eit (z)]‖4+ε |zi

]4/(4+ε)
]

≤ CS−4E

[
b4(zi)E

[
‖eis (z)]‖8+ε |zi

]4/(8+ε)
]

≤ CS−4
√
E [b8(zi)]E

[
‖eis‖8+2ε

]4/(8+2ε)

= O
(
S−4+µ8/2

)
.

It follows that:
1

2nS2

n∑
i=1

∑
s 6=t
∇2gi[eis, eit] = OP (n−1/2S−1+µ8/4).

As for the second term, by definition γ̂i − w̄i = ψS,i; and it follows from Lemma 5 that

E
[
∇2gi[ψS,i, ψS,i]

]
= O (S−α2) and

1

n

n∑
i=1

(
∇2gi[ψS,i, ψS,i]− E

[
∇2gi[ψS,i, ψS,i]

])
= OP

(
n−1/2S−α4/2

)
.
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Summing up, B̃2 = H−1
0 E

[
∇2Gn[ψn,S , ψn,S ]/2− ∆̇n,S

]
= O

(
S−2+µ2

)
while

Var
(
∇2Gn[ψn,S , ψn,S ]/2− ∆̇n,S

)
= O(n−1S−2+µ8/2) +O

(
n−1S−2+α4

)
.

This completes the proof.

Proof of Theorem 3. We wish to apply the general result in Robinson (1988, Theorem

2), and so need to check that his conditions A.1 and A.3 are satisfied in our application.

His condition A.1 is satisfied by our Assumptions A.1-A.7 since these implies consistency of

the initial estimator for suitable choice of S. Robinson’s condition A.3 is satisfied by the

smoothness conditions imposed on GT (θ, γ̂S) in our Assumption A.1

B Lemmas

To establish the rates for the first and second order differentials, we first establish some useful

auxiliary results:

Lemma 4 Assume that {Wi} is an sequence α-mixing satisfying E [Wi] = 0, E
[
‖Wi‖2r+δ

]
<

∞ for some r ≥ 1 and δ > 0, and with its mixing coefficients αi, i = 1, 2, ..., satisfying

αi ≤ Ai−a for some A > 0, and a > 2r + 4r (r − 1) /δ − 2. Then there exists a constant

C = C (r, a,A) <∞ such that:

E

[∥∥∥∥ 1

n

∑n

i=1
Wi

∥∥∥∥2r
]
≤ n−r × CE

[
‖Wi‖2+δ

]2r/(2+δ)
+ o

(
n−r

)
.

Proof. From Rio (1994), we obtain that

E

[∥∥∥∥ 1

n

∑n

i=1
Wi

∥∥∥∥2r
]
≤ Cr

[
n−rM r

2,α,n + n1−2rM2r,α,n

]
, (29)

where Mp,α,n, p ≥ 2, is defined in Rio (1994) and n1−2r = o (n−r) for r ≥ 1. By Nze and

Doukhan (2004, p. 1040),

Mp,α ≤ E
[
‖Wi‖p+δ

]p/(p+δ)
× (p+ δ) (p− 1)

δ

∞∑
n=0

(n+ 1)p−2+p(p−1)/δ αn, p ≥ 1,

where, given the bound imposed on the mixing coefficients,

∞∑
n=0

(n+ 1)p+p(p−1)/δ−2 αn ≤ C (A, a)

∞∑
n=0

(n+ 1)p+p(p−1)/δ−2−a <∞.
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In particular,

M r
2,α,n ≤ C (r,A, a)E

[
‖Wi‖2+δ

]2r/(2+δ)
, M2r,α ≤ C (r,A, a)E

[
‖Wi‖2r+δ

]2r/(2r+δ)
. (30)

The claimed result now follows by combining eqs. (29) and (30).

Lemma 5 Assume that {zi} satisfies (A.1), and that for ECA or EIA, the γ̂j,S satisfy

(A.6(4)) for j = 1, ..., J . Let m (z; dγ) be a functional satisfying:

E
[
‖m (z; dγ)‖2r+δ

]
<∞, E

[
‖m (z; dγ)‖2+δ

]
≤ M̄ ‖dγ‖

k(2+δ)

, (31)

for some r, k ≥ 1 and δ > 0.

Then, with bS and ψS given in A.5, MS (ψ) = E [m (z;ψS)], and MS (b) = E [m (z; bS)]

the following hold:

(i) For EIA’s,

E

[∥∥∥∥ 1

n

∑n

i=1
{m (zi; bi,S)−MS (b)}

∥∥∥∥2r
]

= O
(
n−r

)
× E

[
‖bS‖k(2+δ)

]2r/(2+δ)
,

E

[∥∥∥∥ 1

n

∑n

i=1

{
m
(
zi;ψi,S

)
−MS (ψ)

}∥∥∥∥2r
]

= O
(
n−r

)
× E

[
‖ψS‖

k(2+δ)
]2r/(2+δ)

.

(ii) For ECA’s, with m̄ (γ) = E [m (z; γ)],

E

[
sup
θ∈Θ

∥∥∥∥ 1

n

∑n

i=1
{m (zi; bS)− m̄ (θ, bS)}

∥∥∥∥2r
]

= O
(
n−r

)
× E

[
‖ψS‖

k(2+δ)
]2r/(2+δ)

.

E

[
sup
θ∈Θ

∥∥∥∥ 1

n

∑n

i=1
{m (zi;ψS)− m̄ (θ, ψS)}

∥∥∥∥2r
]

= O
(
n−r

)
× E

[
‖ψS‖

k(2+δ)
]2r/(2+δ)

,

where E
[
‖m̄ (ψS)‖2r

]
≤ M̄E

[
‖ψS‖

2kr
]
.

(iii) The means satisfy:

‖MS (b)‖ ≤ M̄E
[
‖bS‖k

]
, ‖MS (ψ)‖ ≤ M̄E

[
‖ψS‖

k
]
.

Proof. DefineWi,S := m
(
zi;ψi,S

)
−MS . By assumptions (A.1) and (A.5), for any given value

of S ≥ 1, this is a mixing process. Furthermore, eq. (31) implies that E
[
‖Wi,S‖2r+δ

]
< ∞.
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We can therefore apply Lemma 4

E

[∥∥∥∥ 1

n

∑n

i=1

{
m
(
zi;ψi,S

)
−MS (ψ)

}∥∥∥∥2r
]
≤ Cn−rE

[∥∥m (zi;ψi,S)−MS (ψ)
∥∥2+δ

]2r/(2+δ)
+o
(
n−r

)
where C = C (r, a,A) only depends on r and the mixing coefficients of {zi} and

{
ψi,S

}
. By

eq. (31),

E
[∥∥m (z;ψi,S)∥∥2+δ

]
≤ M̄E

[∥∥ψi,S∥∥k(2+δ)
]
n−r,

and

‖MS (ψ)‖ ≤ E
[∥∥m (zi;ψi,S)∥∥] ≤ M̄E

[∥∥ψi,S∥∥k] .
It is easily seen that the above inequalities still go through when replacing ψi,S with bi,S .

This shows (i) and (iii).

To show the second inequality of (ii), redefine WS,i as WS,i := m (zi;ψS) − m̄ (ψS).

Conditional on ψS , it is easily seen that WS,i satisfies the conditions of Lemma 4 such that

E

[∥∥∥∥ 1

n

∑n

i=1
WS,i

∥∥∥∥2r

|ψS

]
≤ CE

[
‖WS,i‖2+δ |ψS

]
n−r + o

(
n−r

)
,

where C = C (r, a,A); in particular, it does not depend on ψS . Next, observe that

E
[
‖WS,i‖2+δ

]
≤ CE

[
‖m (z;ψS)‖2+δ

]
≤ CM̄E

[
‖ψS‖

k(2+δ)
]
,

and we conclude that

E

[∥∥∥∥ 1

n

∑n

i=1
WS,i

∥∥∥∥2r
]

= E

[
E

[∥∥∥∥ 1

n

∑n

i=1
WS,i

∥∥∥∥2r

|ψS

]]
≤ CE

[
‖ψS‖

k(2+δ)
]
n−r + o

(
n−r

)
.

Finally,

E
[
‖m̄ (ψS)‖2r

]
≤ E

[
‖m (z;ψS)‖2r

]
≤ M̄E

[
‖ψS‖

2rk
]
.

The proof of the first inequality of (ii) follows along the same lines.

Lemma 6 Under A.1-A.4, A.5(2) and A.6(4), the first and second order differentials of Gn

for the ECA yield the rates given in Theorem 1.

Proof. In the following we suppress the dependence on θ0 since this is kept fixed. When the

approximation of Gn(γ) is on the form of eq. (11), the functional differentials are given by

∇Gn [dγ] =
1

n

n∑
i=1

∇gi [dγ] , ∇2Gn
[
dγ, dγ′

]
=

1

n

n∑
i=1

∇2gi
[
dγ, dγ′

]
,
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and dγ and dγ′ are the same for all observations i = 1, . . . , n.

Given A.6(4), the application of the first-order differential to the bias component can be

rewritten as

∇Gn[bS ] = S−β
1

n

n∑
i=1

∇gi
[
b̄
]

+
1

n

n∑
i=1

∇gi
[
bS − S−β b̄

]
.

Now,

E

[
1

n

n∑
i=1

∇gi
[
b̄
]]

= E
[
∇gi

[
b̄
]]
, and

E

[
1

n

n∑
i=1

∥∥∥∇gi [bS − S−β b̄]∥∥∥] ≤ G1

∥∥∥bS − S−β b̄∥∥∥ = o
(
S−β

)
.

By Lemma 5(i) with m (z; dγ) = ∇g (z) [dγ], k = 1 and r = 1,

Var (∇Gn[bS ]) ≤ 1

n
C ‖bS‖2 = O

(
S−2β

n

)
.

Since dγ 7→ ∇gi [dγ] is linear, the conditional mean of the stochastic component of the

first-order term is

E [∇Gn[ψS ]|Zn] =
1

n

n∑
i=1

∇gi [E [ψS |zi]] = 0.

Moreover, define ∇ḡ [γ] = E[∇gi[γ]] (where expectations are taken w.r.t. the observation zi);

then

∇Gn[ψS ] = ∇ḡ (ψS ; θ0) +
1

n

n∑
i=1

{∇gi [ψS ]−∇ḡ [ψ]} .

Recalling the definition of ∇ḡ [ψS ], it follows from Lemma 5(ii) with m (z; dγ) = ∇g (z) [dγ]

and k = 2 that the second term is OP (n−1/2S−α2).

Regarding the second order differential, its application to the bias component satisfies

∇2Gn[bS , bS ] = S−2β 1

n

n∑
i=1

∇2gi
[
b̄, b̄
]

+ oP

(
S−2β

)
;

moreover,

E

[
1

n

n∑
i=1

∇2gi
[
b̄, b̄
]]

= E
[
∇2gi

[
b̄, b̄
]]
,

and, applying Lemma 5(ii) with m (z; dγ) = ∇2g (z) [dγ, dγ], k = 2 and r = 1,

Var
(
∇2Gn[bS , bS ]

)
≤ 1

n
C ‖bS‖4 = O

(
n−1S−4β

)
.
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To bound the variance component, define ∇2ḡ [γ, γ] = E
[
∇2gi [γ, γ]

]
, and write

∇2Gn[ψS , ψS ] = ∇2ḡ [ψS , ψS ] +
1

n

n∑
i=1

(
∇2gi [ψS , ψS ]−∇2ḡ [ψS , ψS ]

)
.

Applying Lemma 5(ii) with m (z; dγ) = ∇2g (z) [dγ, dγ] and r = 1, k = 2, we obtain that

E
∥∥∇2Gn [ψS , ψS ]

∥∥ = OP
(
S−2α2

)
.

Finally, by the same arguments as before, E
[
∇2Gn[ψS , bS ]

]
= 0 while Var

(
∇2Gn[ψS , bS ]

)
=

O(n−1S−α4) and Var
(
∇2Gn[ψS , bS ]

)
= O(n−1S−α2−2β).

Lemma 7 Under A.1-A.4, A.5(2) and A.6(4), the first and second order differentials of

Gn(θ0, γ) for the EIA in (10) yield the rates given in Theorem 1.

Proof. Again, we suppress dependence on θ0. For the EIA, the first and second order

differentials are ∇Gn [dγ] =
∑n

i=1∇gi [dγi] /n and ∇2Gn) [dγ, dγ′] =
∑n

i=1∇
2gi [dγi, dγ

′
i] /n,

for any dγ = (dγ1, ..., dγn) and dγ′ = (dγ′1, ..., dγ
′
n). It is easily seen that the bias components

are the same as those we derived for the ECA in Lemma 6, and so we only consider the

variance components. With Zn = (z1, ..., zn), the mean of the first-order variance component

is zero,

E [∇Gn[ψS ]|Zn] =
1

n

n∑
i=1

∇gi
[
E
[
ψi,S |zi

]]
= 0,

while its variance satisfies, using Lemma 5(i),

Var (∇Gn[ψS ]) ≤ 1

n
CE

[
‖ψS‖

2+
]

= O
(
n−1S−α2

)
.

Applying Lemma 5(i) and (iii) with m (z; dγ) = ∇2g (z) [dγ, dγ] and k = 2, the mean and

the variance of the second order differential satisfy

E
[
∇2Gn[ψS , ψS ]

]
= E

[
∇2gi

[
ψi,S , ψi,S

]]
≤ CE

[∥∥ψi,S∥∥2
]

= O
(
S−α2

)
,

and Var
[
∇2Gn[ψS , ψS ]

]
= O(n−1S−α4). The cross term satisfies E

[
∇2Gn[ψS , bS ]

]
= 0 while

Var
(
∇2Gn[ψS , bS ]

)
= O(n−1S−α2S−2β), and so we can ignore this term since it is of lower

order.

Lemma 8 Assume that A.1-A.4, A.5(3) and A.7(6) hold. Then the rate of the remainder

term Rn,S can be sharpened to:

Rn,S = OP

(
S−3β

)
+OP

(
S−(2−µ4)

)
+O

(
S−(2−µ3)

)
+O

(
n−1/2S−(3−µ6)/2

)
.
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Proof. Since the third-order differential exists, the remainder term in eq. (9) can be further

expanded to obtain Rn,S = ∇3Gn [∆γ̂S ,∆γ̂S ,∆γ̂S ] /6 + R̄n,S where, by A.4(3) and the same

arguments used in the proof of Theorem 1, E
[∥∥R̄n,S∥∥] ≤ Ḡ0E

[∥∥∆γ̂i,S
∥∥4
]

= O
(
S−4β

)
+

O
(
S−(2−µ4)

)
. Regarding the third order term, it is easily checked that the bias component

is of order OP
(
S−3β

)
+ OP

(
n−1/2S−3β

)
by the same arguments employed in Lemma 6, so

what remains is the variance component.

In the case of EIA, the variance component can be written as ∇3Gn [ψS , ψS , ψS ] =∑n
i=1∇

3gi [ψS , ψS , ψS ] /n. By Lemma 5, we obtain:

∇3Gn [ψS , ψS , ψS ]− E
[
∇3Gn [ψS , ψS , ψS ]

]
= O

(
n−1/2S−(3−µ6)/2

)
,

while, due to the independence between simulations,

∣∣E [∇3Gn [ψS , ψS , ψS ]
]∣∣ ≤ 1

S3

S∑
s,t,u=1

∣∣E [∇3gi [ei,s, ei,t, ei,u]
]∣∣

=

∣∣E [∇3gi [ei,s, ei,s, ei,s]
]∣∣

S2

≤ C

S2
E
[
e3
i,s

]
= O(S−(2−µ3)).

In the case of ECA, define ∇3ḡ [γ, γ, γ] = E
[
∇2gi [γ, γ, γ]

]
and write

∇3Gn[ψS , ψS , ψS ] = ∇3ḡ [ψS , ψS , ψS ] +
1

n

n∑
i=1

{
∇3gi [ψS , ψS , ψS ]−∇3ḡ [ψS , ψS , ψS ]

}
.

Applying Lemma 5(ii) withm (z; dγ) = ∇3g (z) [dγ, dγ, dγ], the two terms areOP
(
S−(3/2−µ3)

)
and OP (n−1/2S−(3−µ6)/2) respectively.
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