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Two-component mixtures are nonparametrically identified under tail-dominance conditions on the
component distributions if a source of variation is available that affects the mixing proportions
but not the component distributions. We motivate these restrictions through several examples.
One interesting example is a location model where the location parameter is subject to classical
measurement error. The identification analysis suggests very simple closed-form estimators of
the component distributions and mixing proportions based on ratios of intermediate quantiles.
We derive their asymptotic properties using results on tail empirical processes, and we provide
simulation evidence on their finite-sample performance.

1. Introduction. Although finite mixtures are widely used, the dominant mode of inference in

such models is parametric; see, e.g., McLachlan and Peel [2000]. Recent work has established sufficient

conditions for (nonparametric) identification of multivariate mixtures; see, notably, Allman, Matias

and Rhodes [2009], Bonhomme, Jochmans and Robin [2013], Hall and Zhou [2003], and Kasahara and

Shimotsu [2009]. Unfortunately, fewer identifying restrictions are available when the model of interest is

univariate. Several contributions have established identification of mixtures of location models assuming

that the error distribution is symmetric (see Bordes, Mottelet and Vandekerkhove [2006], Butucea and

Vandekerkhove [2011], and Hunter, Wang and Hettmansperger [2007]). Here, we provide conditions

that identify univariate component distributions and associated mixing proportions, and we propose

estimators and analyze their properties. As in most of the recent work (see, e.g., Bordes, Mottelet

and Vandekerkhove [2006] and Hall and Zhou [2003]), our analysis here is confined to mixtures of two

components, which is arguably the dominant case of interest.

The models we consider are characterized by an exclusion restriction. That is, we assume the existence

of a source of variation that shifts the mixing proportions but leaves the component distributions

unchanged. Such an exclusion restriction is natural in several important applications, such as in a

measurement-error model or a hidden Markov model. It is also an implication of the fundamental

conditional-independence restriction underlying the results of Allman, Matias and Rhodes [2009] and

Hall and Zhou [2003]. In Henry, Kitamura and Salanié [2013] it was shown that, given such an exclusion

restriction, both the component distributions and the mixing proportions can be restricted to lie in a

non-trivial set. Here we achieve point-identification by complementing the exclusion restriction with a

mild restriction on the relative tail behavior of the component distributions. This restriction is quite

natural in location model, for example, but can be motivated more generally, as we will discuss in more

detail below.
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Our identification argument readily suggests plug-in estimators of the mixing proportions and the

component distributions. The estimator of the former is based on ratios of intermediate quantiles. The

latter is a simple least-squares estimator. Both estimators are available in closed form and are therefore

easy to implement. The convergence rate of the estimators is determined by the theory of tail empirical

processes (see, e.g., del Barrio, Deheuvels and van de Geer [2007] for a recent account) and is slower

than the parametric one, although it can be brought close to it. The intuition for this is the need to rely

on the tail behavior of the component densities to infer the mixing proportions. Moreover, if the mixing

proportions were known—or could be estimated at the parametric rate—the tail restrictions could be

dispensed with and the implied estimator of the component distributions would equally converge at

the conventional rate.

Below we first describe the mixture model under study and show identification of its components.

These results are next used to motivate the construction of estimators. We provide distribution theory

for these estimators and investigate their small-sample performance by means of a small Monte Carlo

experiment. All technical details are collected in the Appendix. We omit conditioning variables; the

identification analysis extends straightforwardly, and the distribution theory could be extended by

using the local empirical-process results in Einmahl and Mason [1997].

2. Mixtures with tail restrictions. Let (Y,X) ∈ R×X for X ⊆ R be a pair of random variables

for which F (y|x) ≡ P(Y ≤ y|X = x) decomposes as the two-component mixture

(2.1) F (y|x) = G(y)λ(x) +H(y) (1− λ(x))

for distribution functions G : R 7→ [0, 1] and H : R 7→ [0, 1] and a function λ : X 7→ (0, 1) that maps

values x ∈ X into mixing proportions. Everything that follows can be adapted to a situation in which G

and H are supported on a subset of the real line with an appropriate change of notation. We complete

the mixture model with the following assumption.

Assumption 1. The functions G and H are absolutely continuous on R, and λ is non-constant

and bounded away from zero and one on X .

The assumption that the component distributions do not depend on X means that X acts like an

instrumental variable. Non-constancy of λ implies instrument relevance. Bounding λ away from zero

and one ensures that the mixture is irreducible for all x. This could be relaxed at the cost of more

complicated notation. However, bounding the weight function in this manner rules out the possibility

of achieving identification of G and H via an identification-at-infinity argument, which is an approach

that has been studied in a different context; see, e.g., Andrews and Schafgans [1998].

Our setup accommodates many models. We give two leading examples.

Example 1 (Mismeasured treatment). Let T denote a binary treatment indicator. Suppose that T

is subject to classification error. That is, rather than observing T , we observe misclassified treatments,

say X. The distribution of the outcome variable Y given X = x is

F (y|x) = P(Y ≤ y|T = 1, X = x)λ(x) + P(Y ≤ y|T = 0, X = x) (1− λ(x))
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for λ(x) = P(T = 1|X = x). The conventional ignorability assumption states that X and Y are

independent conditionally on T = t for t ∈ {0, 1}. Then the decomposition of F (y|x) is as in (2.1)

with G(y) = P(Y ≤ y|T = 1) and H(y) = P(Y ≤ y|T = 0). Note also that λ is non-constant unless

misclassification in T is completely random.

The problem of identification when the treatment indicator is mismeasured has received considerable

attention, especially in the context of regression models (see, e.g., Bollinger [1996], Lewbel [2007],

and Mahajan [2006]). The conditional ignorability assumption entertained here is an assumption of

non-differential misclassification error and has been routinely made elsewhere (see, e.g., Carroll et al.

[2006]).

Example 2 (Hidden Markov model). In a hidden Markov model, outcomes Y are i.i.d. conditional

on belonging to a latent state S that follows a Markov process. Suppose that S ∈ {0, 1} has first-order

Markov dependence. Then, letting X be the first-order lag of Y , we have that

F (y|x) = P(Y ≤ y|S = 1)P(S = 1|X = x) + P(Y ≤ y|S = 0)P(S = 0|X = x),

which fits (2.1). Further, λ(x) = P(S = 1|X = x) indeed varies with x unless Y and S are independent

or S is independently and identically distributed. The hidden Markov model, or regime-switching model,

nests switching regressions as well as several versions of stochastic-volatility models.

Our identification approach complements the recent results on hidden Markov models that are based on

the availability of multivariate data (see Allman, Matias and Rhodes [2009] and Gassiat and Rousseau

[2013]).

To link our model to the literature on multivariate mixtures we also discuss a third example of a

mixture that can be cast into (2.1).

Example 3 (Multivariate mixture). Suppose (Y,X) are independent conditional on a latent binary

factor T . Then P(X ≤ x, Y ≤ y) factors as a bivariate two-component mixture. Further, because Y

is independent of X given T , the conditional distribution of Y given X admits a representation as in

(2.1), and so does the distribution of X given Y .

Multivariate mixtures with conditionally-independent components have recently received quite some

attention. Hall and Zhou [2003] showed that a two-component mixture is point identified with trivariate

data but is set identified when only bivariate data are available. These bounds can equally be established

using the results in Henry, Kitamura and Salanié [2013].

We will show below that all of G,H, and λ are identified under a dominance condition on the tails

of the component distributions. This condition is given in the next assumption.

Assumption 2 (Tail dominance).

(i) The left tail of G is thinner than the left tail of H, i.e., limy↓−∞G(y)/H(y) = 0.

(ii) The right tail of G is thicker than the right tail of H, i.e., limy↑+∞ (1−H(y))/(1−G(y)) = 0.

Assumption 2 can be motivated by a situation in which large values of the outcome are very likely to

have been drawn from G, and small values are very likely to have been generated from H. An important
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special case where these tail conditions readily follow from the structure of the model is in a location

model, as the following example shows.

Example 4 (Location models). Suppose that Y = µ(T ) + U , where T is a binary treatment

indicator, U ∼ F independent of T , and µ(t) ≡ E[Y |T = t]. Then (2.1) yields

F (y|x) = F (y − µ(1))P(T = 1|X = x) + F (y − µ(0))P(T = 0|X = x).

Suppose that µ(0) < µ(1), and that the derivatives of − ln
(
1 − F (u)

)
and − lnF (u) grow without

bound as u ↑ +∞ and u ↓ −∞, respectively. Then Assumption 2 is satisfied for the distributions

G(y) = F (y − µ(1)) and H(y) = F (y − µ(0)).

Theorem 1 formally states our identification result.

Theorem 1 (Identification). Under Assumptions 1 and 2, G, H, and λ are identified.

The proof is constructive. Fix x′ ∈ X and choose x′′ ∈ X so that λ(x′) 6= λ(x′′). Then

F (y|x′)
F (y|x′′)

=
1 + λ(x′) (G(y)/H(y)− 1)

1 + λ(x′′) (G(y)/H(y)− 1)
,

1− F (y|x′)
1− F (y|x′′)

=
1 + λ(x′) ((1−G(y))/(1−H(y))− 1)

1 + λ(x′′) ((1−G(y))/(1−H(y))− 1)
,

follow from re-arranging (2.1). Taking limits, Assumption 2 further implies that

ζ−(x′, x′′) ≡ lim
y↓−∞

F (y|x′)
F (y|x′′)

=
1− λ(x′)

1− λ(x′′)
, ζ+(x′, x′′) ≡ lim

y↑+∞

1− F (y|x′)
1− F (y|x′′)

=
λ(x′)

λ(x′′)
,(2.2)

which are well-defined. These two equations can be solved for the mixing proportion at x′. This yields

(2.3) λ(x′) =
1− ζ−(x′′, x′)

ζ+(x′′, x′)− ζ−(x′′, x′)
.

Since λ is non-constant, for any x′ ∈ X there exists a x′′ ∈ X for which such a system of equations can

be constructed. The function λ is therefore identified on its entire support. To establish identification

of G and H, first note that, using (2.1),

D(y) ≡ G(y)−H(y) =
F (y|x′′)− F (y|x′)
λ(x′′)− λ(x′)

,

which is identified. Further, for any x ∈ X ,

H(y) = F (y|x)− λ(x)D(y), G(y) = H(y) +D(y),

so that both component distributions are identified. This concludes the proof of Theorem 1.

If we only assume one-sided tail dominance, then one of the component distributions remains

identified.
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Corollary 1 (One-sided dominance). Under Assumption 1, G is identified if Assumption 2(i)

holds and H is identified if Assumption 2(ii) holds.

As an illustration, consider a two-regime stochastic volatility model. Go back to Example 2 and assume

that the outcome has conditional mean zero and conditional variance Sσ2G + (1 − S)σ2H for positive

constants σ2G, σ
2
H . Suppose that σ2G > σ2H . Then G is the distribution associated with a regime that is

characterized by higher volatility. In this case, both tails of G dominate those of H and so Assumption

2(i) fails, but the distribution of the lower-volatility regime, H, remains identified.

3. Estimation and inference. The proof of Theorem 1 suggests simple estimators for both the

distributions G and H and the mixing function λ. We will characterize their asymptotic distribution

under the following sampling conditions.

Assumption 3. X = {x1, x2, . . . , xq} for some finite integer q ≥ 2 and {Yi, Xi}ni=1 constitutes a

random sample on (Y,X).

The results below can be extended to weakly-dependent sequences using convergence results for tail

empirical processes in Rootzén [2009].

Our procedure builds on estimators of the limit quantities in (2.2). These estimators are constructed

based on order statistics of the data. For each x ∈ X , let nx ≡
∑n

i=1 1{Xi = x}, and let

Fn(y|x) ≡ n−1x
n∑
i=1

1{Yi ≤ y,Xi = x}.

For integers ι and κ, let `ιnx and rκnx be the (ι+ 1)th and (n− κ)th order statistics of the subsample in

which the instrument takes on value x. For each (x′, x′′) ∈ X we estimate ζ−(x′, x′′) and ζ+(x′, x′′) by

(3.1) ζ−ιn(x′, x′′) ≡
Fn(`ιnx′′ |x′)
Fn(`ιnx′′ |x′′)

, ζ+κn(x′, x′′) ≡
1− Fn(rκnx′′ |x′)
1− Fn(rκnx′′ |x′′)

.

We will choose the order statistics so that `ιnx ↓ −∞ and rκnx ↑ +∞ as n ↑ +∞ at an appropriate rate.

Assumption 4 (Order statistics). For all x ∈ X , ι/nx ↓ 0 and ι/
√
nx ln lnnx ↑ +∞, and κ/nx ↓ 0

and κ/
√
nx ln lnnx ↑ +∞ as n ↑ +∞.

Note that Fn(`ιnx′′ |x′′) > 0 and Fn(rκnx′′ |x′′) < 1 must hold for ζ−ιn(x′, x′′) and ζ+κn(x′, x′′) to be well

defined, and so it is recommended to inspect the empirical distribution functions when selecting the

order statistics.

With the estimators in (3.1) at hand we can turn to the estimator of λ. Observe that, because λ

need not be strictly monotonic, estimating λ(x) by an average of plug-in estimates of (2.3) can be

problematic because the denominator of some of the contributions can be zero or be arbitrarily close

to it. To avoid such difficulties, we proceed in a different manner. Write ‖·‖ for the Euclidean norm.

Let

ζ+(xj) ≡
(
ζ+(x1, xj), ζ

+(x2, xj), . . . , ζ
+(xj−1, xj), ζ

+(xj+1, xj), . . . , ζ
+(xq, xj)

)′
,
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and define ζ−(xj) in an analogous fashion. Because λ is non-negative, it follows from (2.3) that it can

equally be expressed as λ(x) = ‖1− ζ−(x)‖/‖ζ+(x)− ζ−(x)‖, where 1 is a vector of (q − 1) ones.

Letting ζ−ιn(x) and ζ+κn(x) denote the estimated counterparts of ζ−(x) and ζ+(x), we estimate λ(x) by

λικn (x) =
‖1− ζ−ιn(x)‖

‖ζ+κn(x)− ζ−ιn(x)‖
.

This estimator is immune to the problem just mentioned.

Given an estimator of the mixing proportions, estimators of the distribution functions are readily

constructed via minimum distance. Recall that

F (y|x) = H(y) + λ(x)D(y),

for each (y, x). Letting F (y) ≡ (F (y|x1), F (y|x2), . . . , F (y|xq))′ and λ ≡ (λ(x1), λ(x2), . . . , λ(xq))
′, we

thus have that, for each fixed y, (H(y), D(y))′ = arg minα,β ‖F (y)− α− λβ‖2 . As our estimators of

H(y) and D(y), we therefore use

(Hικ
n (y), Dικ

n (y))′ ≡ arg min
α,β
‖F n(y)− α− λικn β‖

2 ,

where F n(y) and λικn are defined in an obvious manner. Finally, an estimator of G(y) is then easily

constructed as Gικn (y) ≡ Hικ
n (y) + Dικ

n (y). These estimators are convenient because they are available

in closed form. Indeed, Hικ
n (y) and Dικ

n (y) are obtained from the ordinary least-squares regression

of Fn(y|x1), Fn(y|x2), . . . , Fn(y|xq) on the q estimated mixing proportions λικn (x1), λ
ικ
n (x2), . . . , λ

ικ
n (xq)

and a q-vector of ones.

To ensure that the limit distributions of our estimators are free of asymptotic bias, we need an

additional condition on the relative tails of the component distributions.

Assumption 5 (Tail rates). For each x ∈ X ,

G(`ιnx )/H(`ιnx ) = op(1/
√
ι) and (1−H(rκnx ))/(1−G(rκnx )) = op(1/

√
κ)

hold.

The following two examples specialize Assumption 5 to densities with log-concave tails and Pareto

tails, respectively.

Example 5 (Log-concave tails). Suppose that G and H have log-concave tails, i.e.,

− ln (1−G(y)) ∼
(
y

σ+G

)α+
G

, − ln (1−H(y)) ∼
(
y

σ+H

)α+
H

, as y ↑ +∞,

for real numbers α+
G, α

+
H > 1 and σ+G, σ

+
H > 0, and

− lnG(y) ∼
(
y

σ−G

)α−G
, − lnH(y) ∼

(
y

σ−H

)α−H
, as y ↓ −∞,
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for real numbers α−G, α
−
H > 1 and σ−G, σ

−
H > 0. Then Assumption 4 implies Assumption 5 if both

(i) α+
G < α+

H , or α+
G = α+

H and σ+G > σ+H ; and

(ii) α−G > α−H , or α−G = α−H and σ−G < σ−H

hold.

Example 5 does not cover location models with log-concave distributions, for which the α and σ

parameters of H equal those of G. In such models, the tails of the error density converge to zero too

fast to ensure zero asymptotic bias. To assess the sensitivity of our methods, the simulation experiment

below explicitly deals with a mixture of normals, where Assumption 5 fails.

Example 6 (Pareto tails). Let C denote a generic constant. Suppose that G and H have Pareto

tails, i.e.,

(1−G(y)) ∼ C y−α
+
G , (1−H(y)) ∼ C y−α

+
H , as y ↑ +∞,

for positive real numbers α+
H > α+

G and

G(y) ∼ C (−y)−α
−
G , H(y) ∼ C (−y)−α

−
H , as y ↓ −∞,

for positive real numbers α−G < α−H . Then Assumption 4 implies Assumption 5.

The main step in our asymptotic analysis is summarized in the following lemma.

Lemma 1 (Intermediate quantiles). Let Assumptions 1–5 hold. Then, as n ↑ +∞, for each x′, x′′ ∈
X ,

√
κ
(
ζ+κn(x′, x′′)− ζ+(x′, x′′)

) A∼ ζ+(x′, x′′)Z+(x′′)−
√
ζ+(x′, x′′)Z+(x′),

√
ι
(
ζ−ιn(x′, x′′)− ζ−(x′, x′′)

) A∼ ζ−(x′, x′′)Z−(x′′)−
√
ζ−(x′, x′′)Z−(x′),

where the Z+(x) and Z−(x) are standard-normal variates that are both mutually independent and

independent across x.

The asymptotic behavior of λικn ,Gικn , andHικ
n can readily be deduced from Lemma 1 by an application

of the delta method.

Start with λικn . Lemma 1 implies that

√
ι
(
ζ−ιn(x)− ζ−(x)

) d→ N
(
0,Σ(x)

)
, Σ(x) ≡ ζ−(x)ζ−(x)′ + diag{ζ−(x)}.

Write the vector of partial derivatives of ‖1 − ζ−(x)‖ with respect to the ζ−(xi, x) as d(x). Then we

can state the following theorem.

Theorem 2 (Weights). Let Assumptions 1–5 hold. Then, for each x ∈ X ,

√
ι
(
λικn (x)− λ(x)

) d→ N (0, σ2(x)), σ2(x) ≡ d(x)′Σ(x)d(x)

‖ζ+(x)− ζ−(x)‖2
,

as n ↑ +∞.
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Consistency of a plug-in estimator of the asymptotic variance in this theorem is immediate.

From Lemma 1 we can deduce the asymptotic covariance between
√
ιζ−ιn(xl, xi) and

√
ιζ−ιn(xk, xj) for

i 6= j, l 6= i, and k 6= j. Writing this covariance as γi,j(l, k), we have

γi,j(l, k) =



√
ζ−(xl, xi) ζ−(xl, xj) if l = k

−ζ−(xk, xj)
√
ζ−(xj , xi) if l = j, k 6= i

−ζ−(xl, xi)
√
ζ−(xi, xj) if l 6= j, k = i

−ζ−(xj , xi)
√
ζ−(xi, xj)− ζ−(xi, xj)

√
ζ−(xj , xi) if l = j, k = i

0 otherwise

.

This gives the asymptotic covariance between λικn (xi) and λικn (xj) as

υ(xi, xj) ≡
d(xi)

′Ω(xi, xj)d(xj)

‖ζ+(xi)− ζ−(xi)‖ ‖ζ+(xj)− ζ−(xj)‖
,

where Ω(xi, xj) is the asymptotic covariance between
√
ιζ−n (xi) and

√
ιζ−n (xj), constructed using

γi,j(l, k) when i 6= j and using Σ(xi) when i = j. Collect the various υ(xi, xj) in a q × q matrix

and call this matrix Υ. Then
√
ι(λικn − λ)

d→ N (0,Υ) follows.

For any function A of x, let A(x) ≡ q−1
∑q

i=1A(xi). To be able to state the asymptotic variance of

the estimators of H(y) and G(y) for given y we need to introduce the q × 1 vectors

ξH ≡ −
λ(x)(

λ− λ(x)
)′ (
λ− λ(x)

) (F (y)− F (y|x)
)′
, ξG ≡

1− λ(x)(
λ− λ(x)]

)′ (
λ− λ(x)

) (F (y)− F (y|x)
)′
,

where we leave the dependence on y implicit. Theorem 3 provides the limit distributions of the estima-

tors of the component distributions.

Theorem 3 (Distributions). Let Assumptions 1–5 hold. Then, for each y ∈ R,

√
ι
(
Hικ
n (y)−H(y)

) d→ N
(
0, σ2(y;H)

)
,

√
ι
(
Gικn (y)−G(y)

) d→ N
(
0, σ2(y;G)

)
,

where σ2(y;H) ≡ ξHΥξ′H and σ2(y;G) ≡ ξGΥξ′G, as n ↑ +∞.

As a corollary to Theorem 3 we obtain uniform confidence bounds for G and H.

Corollary 2 (Uniform inference). Let Assumptions 1–5 hold. Then

lim
n↑+∞

P

{
sup
y∈R

∣∣∣∣√ι (Gικn (y)−G(y))

σn(y;G)

∣∣∣∣ > zτ/2

}
= τ, lim

n↑+∞
P

{
sup
y∈R

∣∣∣∣√ι (Hικ
n (y)−H(y))

σn(y;H)

∣∣∣∣ > zτ/2

}
= τ,

where zτ denotes the 1 − τ quantile of the standard normal distribution, and σn(y;G) and σn(y;H)

denote plug-in estimators of σ(y;G) and σ(y;H), respectively.



INFERENCE FOR MIXTURES 9

Fig 1. α = .5
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.95 quantile. 10, 000 replications and n = 1, 000.
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Fig 2. α = 1
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Fig 3. α = 2
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Left: G and (λ(0), λ(1)). Right: H and (1 − λ(0), 1 − λ(1)). Upper: .80 quantile. Middle: .90 quantile. Lower:
.95 quantile. 10, 000 replications and n = 1, 000.
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4. Simulation experiment. As a numerical illustration, we simulate data from a location version

of the misclassification problem in Example 1. The observed outcomes were generated from the model

Y = αT + σU, U ∼ N (0, 1),

where the treatment indicator, T , takes on the values −1 and 1, and X = {0, 1}. Treatment was

assigned according to

λ(1) = P(T = 1|X = x) =
1

4
= 1− λ(0),

and X was generated so that P(X = 1) = 1
2 . Under such a data generating process, the R2 of the

regression of Y on T is

R2 =
γ2

1 + γ2
, γ ≡ α

σ
.

We set σ = 1 and present results for α ∈ {.5, 1, 2}, corresponding to R2 ∈ {.20, .50, .80}, and, therefore,

G(y) = Φ(y − α), H(y) = Φ(y + α).

Note that larger values of α make the relative thickness of the tails of G and H more pronounced.

The sample size was fixed to n = 1, 000, and 10, 000 Monte Carlo replications were performed at each

design point. We estimated the distributions G,H and the weights λ(0), λ(1) using the .80, .90, and

.95 quantile of the subsample with X = 0 for rκn0 and the .20, .10, and .05 quantile of the empirical

distribution function of Y given X = 0 for `ιn0 . To ensure our estimates of G and H to be monotonic,

we first computed Gικn and Hικ
n via our least squares procedure described above and then applied a

re-arrangement algorithm Chernozhukov, Fernández-Val and Galichon [2009] on the estimates.

Figures 1–3 present the results for the three values of α. Each figure provides the mean (solid line)

over the point estimates of G and H, the 95% and 5% envelopes of the empirical distribution of the

point estimates (dashed lines), as well as the true curves (solid red line). In each figure, the left plots

concern G, the right plots concern H. The upper (middle; lower) panels corresponds to the estimates

obtained by using the .20th (.10th; .05th) quantile of the empirical conditional distribution of Y given

X = 0 for `ιn0 and the .80th (.90th; .95th) quantile of the same distribution for rκn0 . Below each plot we

provide the mean of the estimates of λ(0) and λ(1) (left) and of 1− λ(0) and 1− λ(1) (right), together

with their standard deviation in square brackets.

For all design points considered the estimates component distributions reflect the shape of the true

distributions well. The bias tends to decrease as the cut-off points `ιn0 and rκn0 are chosen further in the

tails of the relevant empirical distribution. This decrease in bias is most pronounced for the design with

α = .5. For the other designs the effect is much smaller because the tail dominance is much stronger

in these cases due to the larger values of α. Choosing `ιn0 and rκn0 too far in the tails of the relevant

empirical distribution results in larger dispersion of the estimates, however, as is apparent from the

plots. This bias-variance trade-off is intuitive. The variance inflation is further concentrated around

the tails of G and H, which is again in line with expectations.

Similar conclusions can be drawn for the estimator of the mixing proportions. Indeed, the mixing

proportions, too, give roughly correct estimates of the unobserved proportions; recall that λ(0) = 3/4

and λ(1) = 1/4. The bias decreases as α increases. A bias-variance trade-off is again visible. Indeed,

the standard deviation of the point estimates increases roughly be a factor of two as we go down the

plots within a given figure.
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APPENDIX

Technical details for Example 4. Let ϕ(u) ≡ − ln(1− F (u)) and let ϕ′ be its first derivative.

A mean-value expansion gives

1− F (y − µ(0))

1− F (y − µ(1))
= exp (ϕ(y − µ(1))− ϕ(y − µ(0))) = exp

(
−ϕ′(∗) (µ(1)− µ(0))

)
,

where ∗ is some value that lies between y−µ(1) and y−µ(0). As ϕ′ increases without bound as y ↑ +∞
and µ(1) > µ(0), the expression on the right-hand side tends to zero as y increases. Assumption 2(i) is

verified in the same way.

Proof of Theorem 1. The proof is given in the main text.

Proof of Corollary 1. For brevity we only consider identification of H. Let x′, x′′ be as in the

proof of Theorem 1. Under Assumption 2(ii) we can still determine ζ+(x′, x′′) = λ(x′)/λ(x′′), from

which we can learn the ratio
λ(x′′)

λ(x′′)− λ(x′)
=

1

1− ζ+(x′, x′′)
.

Recalling that, for any x ∈ X ,

H(y) = F (y|x)− λ(x)

λ(x′′)− λ(x′)

(
F (y|x′′)− F (y|x′)

)
,

the result follows on evaluating this expression at x = x′′.

Technical details for Example 5 . We verify the second rate; the first follows in an analogous

fashion. Throughout, fix x ∈ X and omit it as argument whenever possible. Assumptions 2(ii) and 4

imply that

1− F (r|x) = (1−G(r)) λ(x) + (1−H(r)) (1− λ(x)) = (1−G(r)) (λ(x) + op(1)) .

Further, because κ/nx = 1− Fn(r|x), adding and subtracting F (r|x) gives

κ

nx
= (1− F (r|x)) + (Fn(r|x)− F (r|x)) = (1− F (r|x)) +Oa.s(

√
(ln lnxx)/nx) = (1− F (r|x)) + op(1).

Put together, we find
κ

nx
= C (1−G(r)) (1 + op(1))
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for some constant C. With G and H having log-concave tails, it then follows from this expression that,

asymptotically, r behaves like
α+
G
√

lnnx. So, because

1−H(r)

1−G(r)
∼ exp

{(
r

σ+G

)α+
G

−
(
r

σ+H

)α+
H

}
,

we have that

1−H(r)

1−G(r)
=

{
Op

(
exp(−(lnnx)α

+
H/α

+
G)
)

if α+
H > α+

G

Op (1/nx) if α+
H = α+

G and σ+H < σ+G
,

from which the conclusion follows.

Technical details for Example 6. The argument is very similar to the one that was used to

verify Example 5. We treat the right tail only. We have

κ

nx
= (1−G(r)) (1 + op(1)) = C r−α

+
G (1 + op(1)) .

Assumption 5 requires that (1−H(r))/(1−G(r)) = o(1/
√
κ), that is, that rα

+
G−α

+
H = op(1/

√
κ). This

rate condition is satisfied when (n
κ

)α+G−α+H
α+
G = op(1/

√
κ),

which can be achieved by setting κ = o(nγ
+

) and ι = o(nγ
−

) for

γ+ ≡
α+
H − α

+
G

α+
H − α

+
G/2

, γ− ≡
α−H − α

−
G

α−H − α
−
G/2

.

Both conditions are weaker than Assumption 4 and therefore implied by it.

Proof of Lemma 1 . Throughout the proof we fix (x′, x′′) and omit them as arguments unless

doing so would cause confusion. We focus on the limit behavior of
√
κ(ζ+ιn − ζ+); the corresponding

result for
√
ι(ζ−ιn − ζ−) follows in an analogous fashion. First note that

√
κ(ζ+ιn − ζ+) =

√
κ(ζ+ιn − ζκ) +

√
κ(ζκ − ζ+),

for ζκ ≡ (1−F (r|x′))/(1−F (r|x′′)). Using Assumption 5 together with a small calculation shows that

√
κ(ζκ − ζ+) =

√
κ

 λ(x′) + 1−H(r)
1−G(r) (1− λ(x′))

λ(x′′) + 1−H(r)
1−G(r) (1− λ(x′′))

− λ(x′)

λ(x′′)

 =
√
κOp

(
1−H(r)

1−G(r)

)
= op(1),

and so the second term is asymptotically negligible. Moving on to the first term, note that

√
κ(ζ+ιn − ζκ) =

√
nx′′

κ

(
ζκGnx′′ (r)−Gnx′ (r)

)
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where Gnx(y) ≡ √nx
(
Fn(y|x)− F (y|x)

)
. Let αn(u) ≡

√
n
(
Un(u)− u

)
where Un denotes the empirical

measure of an i.i.d. sample of size n from U [0, 1]. Then, because F (·|x) is a continuous function for all

x ∈ X by Assumption 1, Gnx′ (y) = αnx
(
1−F (y|x′)

)
and Gnx′′ (y) = αnx

(
1−F (y|x′′)

)
by an application

of the probability integral transform. Thus we may write

(A.1)
√
κ(ζ+ιn − ζκ) =

√
nx′′

κ
ζκ αnx′′

(
1− F (r|x′′)

)
−
√
nx′′

κ
αnx′

(
1− F (r|x′)

)
.

Now, for the first right-hand side term in this expression, by definition of the order statistic r and by

adding and subtracting Fn(r|x′′) and re-arranging,

αnx′′
(
1− F (r|x′′)

)
= αnx′′

(
κ

nx′′
+

1
√
nx′′

Gnx′′ (r)

)
= αnx′′

(
κ

nx′′

{
1 +

√
nx′′

κ
Gnx′′ (r)

})
.

By the law of the iterated logarithm, Gnx′′ (r) = Oa.s(
√

ln lnx′′), so ε ≡ −√nx′′/κGnx′′ (r) = oa.s(1).

Hence, the first term of
√
κ(ζ+ιn − ζκ) equals

(A.2)

√
nx′′

κ
ζκ αnx′′

(
1−F (r|x′′)

)
=

√
nx′′

κ
ζκ αnx′′

(
κ

nx′′
{1− ε}

)
= ζκB(1− ε) + op(1)

A∼ ζ+Z+(x′′),

where B(1− ε) is a sequence of standard Brownian motions and Z+(x′′) is a standard-normal random

variable. Here, the second transition follows from the central limit theorem for tail empirical processes

(see Theorem 2.1 in Einmahl [1992]), which states that

sup
0<t≤1

∣∣∣∣√nx′′

κ
αnx′′

(
κ

nx′′
t

)
−B(t)

∣∣∣∣ = op(1),

and the fact that Brownian motions are almost surely continuous. For the second right-hand side term

in (A.1), on observing that 1−F (r|x′) =
(
1−F (r|x′′)

)
ζκ we can proceed in the same fashion to arrive

at

(A.3)

√
nx′′

κ
αnx′

(
1− F (r|x′)

)
=
√
ζ+
√
nx′

κ

ρ

ζ+
αnx′

(
κ

nx′

ζ+

ρ
{1− ε}

)
+ op(1)

A∼
√
ζ+Z+(x′),

where ρ ≡ limn↑+∞ nx′′/nx′ and Z+(x′) is a standard-normal random variable that by Assumption 3

is independent of Z+(x′′). Combining (A.1) with (A.2) and (A.3) then gives

√
κ(ζ+ιn − ζκ)

A∼ ζ+Z+(x′′)−
√
ζ+Z+(x′)

as claimed.

Proof of Theorem 2. By Lemma 1
√
ι(ζ−ιn(x′, x)− ζ−(x′, x)) and

√
ι(ζ−ιn(x′′, x)− ζ−(x′′, x)) have

an asymptotic covariance that is equal to ζ−(x′, x)ζ−(x′′, x) when x′ 6= x′′ and to ζ−(x′, x)(1+ζ−(x′, x))

otherwise. The result then follows from an application of the delta method.
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Proof of Theorem 3. Since ι/n ↓ 0 as n ↑ +∞, and the empirical distribution function Fn(y|x)

is uniformly consistent, the estimators Hn(y) and Dn(y) are asymptotically equivalent to the intercept

and slope coefficients from the infeasible regression of F (y|xi) on λικn (xi) (i = 1, 2, . . . , q). Furthermore,

√
ι (Dικ

n (y)−D(y)) =

∑q
i=1

√
ι (λικn (xi)− λ(xi))

(
F (y|xi)− F (y|x)

)∑q
i=1

(
λ(xi)− λ(x)

)2 + op(1)

and
√
ι (Hικ

n (y)−H(y)) = −λ(x)
√
ι (Dικ

n (y)−D(y))+op(1), since |λικn (x)−λ(x)| = op(1) for all x ∈ X .

Therefore,

√
ι (Dn(y)−D(y)) =

√
ι

(
F (y)− F (y|x)]

)′(
λ− λ(x)

)′ (
λ− λ(x)

) (λn − λ) + op(1),

and so

√
ι (Hικ

n (y)−H(y)) = ξH
√
ι (λικn − λ) + op(1),

√
ι (Gικn (y)−G(y)) = ξG

√
ι (λικn − λ) + op(1).

The result then follows.

Proof of Corollary 2. Follows directly from Theorem 3 as its proof is uniform in y.
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