
Running head: SUBGROUP IDENTIFICATION IN OBSERVATIONAL STUDIES 1

Heterogeneous Subgroup Identification in Observational Studies

Jianshen Chen and Bryan Keller

College Board and Columbia University

Draft – Manuscript Under Review

Author Note

The authors contributed equally. Part of this work was carried out when Jianshen Chen

was employed by Educational Testing Service.



SUBGROUP IDENTIFICATION IN OBSERVATIONAL STUDIES 2

Abstract

Despite the overwhelming focus on the overall average treatment effect in the methodological and

statistical literature, in many cases the efficacy of an educational program or intervention might

vary based on unit background characteristics. The identification of subgroups for which an

educational intervention is particularly effective or, on the other hand, has no effect or is possibly

harmful, may have important practical implications, especially in terms of allocation of resources.

We propose a five-step approach using propensity score matching and regression trees to identify

subgroups with heterogeneous treatment effects in observational studies. Results of two Monte

Carlo simulation studies demonstrate that the proposed approach can accurately identify

heterogeneous subgroups while maintaining Type I error rate. In a case study with ECLS-K data

we find that the effect of exposure to special education services on 5th grade mathematics

achievement varies based on kindergarten mathematics achievement and student gender.
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Heterogeneous Subgroup Identification in Observational Studies

Introduction

Much effort has been devoted to the identification and estimation of overall average

treatment effects with observational data through conditioning strategies such as propensity score

analysis, nonparametric regression estimation, or doubly robust combinations of selection and

outcome models. Despite the overwhelming focus on the overall average treatment effect in the

methodological and statistical literature, in many cases the efficacy of an educational program or

intervention might vary based on unit background characteristics. The identification of subgroups

for which a particular educational intervention is particularly effective or, on the other hand, has

no effect or is possibly harmful, may have important practical implications, especially in terms of

allocation of resources. Recent advances in statistics and causal inference have focused on

understanding such conditional average treatment effects. Nevertheless, methods for detecting

and describing treatment effect heterogeneity with observational data have not entered the

mainstream in education or behavior sciences. In this paper, we describe an exploratory approach

for identification of treatment effect heterogeneity based on propensity score matching, a method

that is familiar to many educational researchers. We then use regression trees, a simple

nonparametric regression technique, to identify subgroups based on background characteristics

that best explain how units respond to treatments.

The organization of this paper is as follows. After a brief review of propensity score analysis

and regression trees, we describe the proposed approach for subgroup identification. Next, we run

a Monte Carlo simulation study to examine (a) the sensitivity and specificity of the method for

detecting treatment effect heterogeneity and (b) the accuracy of estimated conditional average

effects. We then apply the approach in a case study to search for heterogeneous subgroups in the

context of an observational study designed to examine the average causal effect of special

education on mathematics achievement in fifth grade. We conclude with some discussion.

Propensity Score Analysis

In this paper, we consider the simple case of a binary treatment condition, in which

individuals self-select into a “treatment group" or a “control group". Following the general
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notation of the Rubin causal model (Rubin, 1974), let Y 1
i and Y 0

i be the potential outcomes for

individual i under the treatment (Ti = 1) and control (Ti = 0) conditions. The propensity score

for unit i, given a vector of observed covariates X, is defined as the conditional probability that a

subject is assigned to the treatment group, ei(X) = P (Ti = 1|Xi). The average treatment effect

(ATE) for the population is defined as the average of the individual treatment effects:

ATE = E(Y 1
i − Y 0

i ) = E(Y 1
i ) - E(Y 0

i ). Conditional average treatment effects may be defined as

average treatment effect for units with a particular value, or ranges of values, on one or more

covariates: CATE = E(Y 1
i − Y 0

i |Xi = xi).

For identification of the ATE and CATE, propensity score techniques and other

conditioning strategies rely on an important and multipart assumption known as strong

ignorability (Rosenbaum & Rubin, 1983):

1. ignorability: the potential outcomes are independent of the treatment assignment given

observed covariates X; that is, {Y 0, Y 1} ⊥⊥ T |X,

2. reliable measurement: observed covariates X have been reliably measured (Steiner, Cook, &

Shadish, 2011), and

3. positivity: the propensity score for each unit lies strictly between zero and one; that is,

0 < ei(X) < 1 for all i.

When the strong ignorability assumption holds, participants with the same propensity score

have identical distributions on the set of covariates; that is, X ⊥⊥ T |e(X). Thus, by conditioning

on the propensity score, rather than the full set of covariates, it is possible to restore covariate

balance across treatment and control groups to what would have been expected under random

assignment. Furthermore, under strong ignorability, the potential outcomes are independent of

treatment assignment, {Y 0, Y 1} ⊥⊥ T |e(X), so that unbiased treatment effect estimates can be

obtained.

Methods for conditioning on the propensity score include stratification, inverse weighting,

matching and regression adjustment (see, e.g., Stuart, 2010 for a review). In this paper, we focus

on propensity score matching because it stratifies the units into many groups, within which the

individual treatment effect may be approximated. We use optimal full matching (Rosenbaum,
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2002) to create strata because (a) it performs well when compared with other propensity score

conditioning strategies (Kaplan & Chen, 2012; Steiner & Cook, 2013) and (b) it typically results

in many relatively small strata. Having units grouped in many small strata is helpful for

preserving important variability in imputed potential outcomes that would be lost if strata were

too large.

Tree-based Methods

Regression Trees

A regression tree is an algorithmic tool invented by Breiman, Friedman, Olshen, and Stone

(1984) that models the relationship between an outcome variable, Y , and predictors, X1, . . . , Xp,

by iteratively splitting the units into subgroups based on predictor values. Every split creates two

subgroups, called nodes, and any node that is unsplit is called a terminal node. Within each

terminal node, the tree-predicted value for each member of the node is simply the mean outcome

score for all units in the node. Thus, for unit i in terminal node t, where Nt represents the set of

units in t, the tree-predicted value for unit i is Ŷi = 1
|Nt|

∑
i∈Nt

Yi. At each iteration, the deviance,∑
i

(
Ŷi − Yi

)2
, is determined before splitting. Then, every possible split on every variable is

considered, and the split that results in the largest decrease in deviance is selected.

If left unchecked, regression trees would continue to split until each terminal node contained

only one point, yielding a perfect fit to the data. To prevent overfitting of this sort, which would

result in poor prediction accuracy, a stopping rule is imposed. The usual approach for

determining the stopping rule is based on adding a penalty to the deviance based on the number

of terminal nodes in the tree. This approach, referred to as cost-complexity pruning, is

implemented in the rpart package (Therneau, Atkinson, & Ripley, 2015) in R (R Core Team,

2018), which we use to fit regression trees. The implementation of cost-complexity pruning

requires an additional tuning parameter, which is typically selected through cross-validation.

Because regression trees model a response surface with discrete jumps, they can only

roughly approximate a smooth surface, which results in bias. While it is possible to lower the

minimum number of units per terminal node to get a better fit, this leads to overfitting and

results in higher variance. More complex tree-based methods overcome this shortfall by pooling
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results based on many trees. Bootstrap aggregation (bagging), random forests, and boosted trees

all benefit from the nonparametric flexibility of regression trees, but combine them in unique ways

to improve the predictive performance.

The main advantage to using a single regression tree over other, more complex methods

such as those mentioned above, is that the output from a single tree is easily interpretable

because each split results in a partition on some variable. Thus, for meaningfully segmenting a

sample based on variable characteristics (which is our goal in identifying heterogeneous

subgroups), single trees are a useful, if somewhat crude, tool.

Random Forests

Random forests were invented by Breiman (2001). The goal of random forests is to turn

what would otherwise be a rather weak learner (a single tree) into a strong learner by repeatedly

fitting individual regression trees and combining them in an intelligent way. Random forests are

based on aggregated results from fitting regression trees to B bootstrap samples of the data. A

regression tree is grown for each bootstrap sample by recursively splitting until each terminal

node is as small as possible without being smaller than a prespecified minimum node size.

Importantly, each split uses a random sample of only m predictors, where m << p, the total

number of predictors. The resultant set of trees constitute the “random forest”. The out-of-bag

(OOB) cases for replication b are the cases that were not part of the bth bootstrap sample.

Regression predictions are calculated as the average of the predicted values across the B trees.

For our purposes, random forests are useful because they provide a quantitative summary of

each variable’s importance in predicting the outcome. This metric proves extremely useful in

winnowing down a large set of covariates (such as the 34 in our case study) to a more manageable

number of important variables on which we can search for heterogeneous treatment effects. We

use a permutation-based approach for variable selection with random forest variable importance

described in Keller & Zhang, 2018, March.

Identification of Subgroups with Heterogeneous Treatment Effects

Effect heterogeneity is characterized by interactions between one or more covariates and the

treatment variable. Regression trees handle interactions in their naïve implementation, so it is not
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surprising that tree-based methods have played a prominent role in the literature.

Randomized Trials

In particular, a number of tree-based methods have been proposed to identify treatment

effect heterogeneity in randomized experiments. Su, Tsai, Wang, Nickerson, and Li (2009) used

regression trees with a customized loss function designed to measure the strength of treatment by

subgroup interactions. Foster and colleagues (Foster, Taylor, & Ruberg, 2011; Foster, Taylor,

Kaciroti, & Nan, 2015) used random forests to identify covariate regions for binary and

continuous outcomes. Imai and Strauss (2011) fit regression trees followed by Bayesian models to

estimate group-specific treatment effects.

Approaches for identifying effect heterogeneity in randomized experiments based on

methods other than trees have been proposed as well. Imai and Ratkovic (2013) introduced an

algorithm based on regularized support vector machines. Ding, Feller, and Miratrix (2016)

developed a randomization approach to evaluate effect variations that are unexplained by

observed covariates. In a 2017 issue of the Journal of Research on Educational Effectiveness

devoted to variation in treatment effects in randomized trials, Bloom, Raudenbush, Weiss, and

Porter (2017) used mixed effects models to study cross-site variation in program efficacy and

Harding, Morris, and Hill (2017) demonstrated the use of principal stratification to identify local

average treatment effects.

Observational Studies

Despite the aforementioned work in the context of randomized experiments, fewer studies

have aimed to identify effect heterogeneity in observational study settings. Xie, Brand, and Jann

(2012) proposed several methods to detect treatment by propensity score interactions, but did not

consider heterogeneity based on individual covariates. Hsu, Small, and Rosenbaum (2013) and

Hsu, Zubizarreta, Small, and Rosenbaum (2015) developed a framework for sensitivity analysis in

the presence of effect heterogeneity by identifying subgroups of matched-pairs formed using exact

matching and leveraged the method for identification of heterogeneity. Exact matching is ideal

because it requires no functional form or parametric assumptions; however, with many covariates

or a handful of continuously measured covariates, exact matching is not feasible because the
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number of possible combinations of covariate values grows exponentially with the addition of each

new covariate.

Wager and Athey (2018) derived asymptotic results for random forests and applied them to

forests based on trees that are tuned for treatment effect estimation. A strength of their causal

forest algorithm, which directly estimates CATEs, is the recourse to asymptotically-valid

confidence intervals for treatment effect estimates. Like other methods that have been used to

estimate individual treatment effects, such as Bayesian additive regression trees (BART; Hill,

2011), causal forests do not explicitly address identification of heterogeneous subgroups. The

output must be further processed to identify groups for which the treatment is differentially

effective.

The Proposed Method

In this paper, we propose and evaluate an approach for heterogeneous subgroup

identification with observational data that combines propensity score matching and regression

trees. First, optimal full propensity score matching is used to estimate individual treatment

effects within matched strata. Under optimal full matching, each stratum will necessarily have at

least one treated and at least one comparison unit. If ignorability is satisfied with the set of

conditioning variables and the propensity scores are estimated well, then units will be balanced

within matched subgroups (recall, under ignorability, X ⊥⊥ T |e(X)). Thus, we propose impute

missing potential outcomes within strata as follows. Let NTs and NCs be the set of indexes for

treated units and comparison units, respectively, in stratum s, and let |NTs | and |NCs | be their

respective cardinalities. For each i ∈ NTs , define the imputed value for the unobserved potential

outcome under assignment to the comparison group as

Ŷ 0
i = 1

|NCs |
∑

j∈NCs

Y 0
j .

That is, the unobserved potential outcome for each treated unit in stratum s is estimated

by the average of the observed outcomes for the comparison units in the same stratum. The

individual treatment effect (ITE) for each unit i is estimated as Y 1
i − Ŷ 0

i . The imputed potential

outcomes for the comparison units in stratum s are defined analogously.
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The goal of heterogeneous subgroup identification, by definition, is to discover subsets of

the covariate space for which the average effects of the intervention differ. A straightforward way

to operationalize this is to examine which covariates, if any, are related to the ITEs. Regression

trees are particularly well-suited for this task because they partition the covariate space based on

the strength of covariate-outcome relationships. Important partitions identified by regression

trees provide evidence for heterogeneous subgroups.

Criticisms have characterized the practice of subgroup identification as suffering from a lack

of planned statistical approaches that are both valid and sufficiently powered (e.g., Assman,

Pocock, Enos, & Kasten, 2000). In particular, this criticism is salient with respect to regression

trees because, while the use of cross-validation to select tuning parameters optimizes out of

sample predictive performance, it does not address validity concerns, per se. To that end, we

propose the systematic use of permutation-based Type I error rate studies to ensure valid

inferences. The Type I error rate for subgroup detection with a particular cost-complexity tuning

parameter value, cp, may be estimated as follows.

1. Create R copies of the data set, each with identical covariates and each with permuted

yoked outcome/treatment data. By permuting yoked outcome/treatment data, average

treatment effects remain unperturbed, while all covariate relationships with outcome and

treatment are destroyed.

2. For each of the R data sets, estimate propensity scores, create strata via optimal full

matching, impute missing potential outcomes, and run a regression tree with

cost-complexity parameter value fixed to cp.

3. Each replication for which the cp-pruned regression tree splits on any variable is a Type I

error. The total number of Type I errors divided by R gives the approximate level of the

test.

Binary search may be used to iteratively close in on a cp value that approximates a desired

nominal Type I error rate. Although permutation testing has been proposed as a primary method

for detecting treatment effect heterogeneity in randomized experiments (see, e.g., Foster, Nan,

Shen, Kaciroti, & Taylor, 2016), our use of permutation here is solely to generate null

distributions for testing cp tuning parameter values.
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The proposed method for heterogeneous subgroup identification (summarized in five steps):

1. Estimate propensity scores. A vector of estimated propensity scores, ê(X), is created. A

logit model is often used, but nonparametric methods, such as random forests or boosted

CART, align well with our approach because they automatically handle interactions.

2. Estimate individual treatment effects. Units are grouped into strata via optimal full

propensity score matching and ITEs are estimated, as described above.

3. Type I error rate permutation study. The cost-complexity tuning parameter value for the

regression tree is selected based on permutation-based Type I error rate studies. Optionally,

causal variable selection may be applied to reduce the dimension of the covariate space.

4. Identify subgroups. A single regression tree using the cost-complexity tuning value identified

in Step 3 is fit to the estimated ITEs with covariates as predictors. Any subgroup splits

identified by the regression tree are interpreted as evidence for effect heterogeneity on the

variable or variables involved in the splits.

5. Estimate subgroup-specific effects. Perform many-to-many optimal matching again, subject

to the additional constraint that matching takes place within heterogeneous subgroups

identified in Step 4, and estimate overall average and subgroup-specific treatment effects.

We designed two Monte Carlo simulation studies to examine the efficacy of the proposed

method. The studies are intended to explore (a) the ability of the permutation approach to

control Type I error rate as intended, (b) the subsequent power to detect heterogeneous

subgroups when they exist, and (c) the accuracy of estimation of overall and subgroup-specific

treatment effects.

Simulation Study 1

In the first simulation study, we generated data with independent covariates and effect

heterogeneity based on only one covariate. Data generation for Simulation Study 1 is described

next.

1. Covariates x1, x2, . . . , x10 were independently generated from the following distributions,

which were selected to reflect the natural variety of predictor types encountered in practice
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(i.e., continuous, dichotomous and count). Generated samples were of size n = 1000.

x1 ∼ N(0, 1);

x2 ∼ Poisson(2);

x3 ∼ Bernoulli(0.5);

x4 ∼ N(0, 2);

x5 ∼ Bernoulli(0.6);

x6 ∼ Bernoulli(0.3)

x7 ∼ N(−1, 3)

x8 ∼ N(2, 2)

x9 ∼ N(1, 0.8)

x10 ∼ N(2, 1)

2. Let Xi = (xi1, xi2, xi3, xi4, xi5, xi6, xi7, xi8, xi9, xi10)′ be the vector of covariate values for unit

i. The propensity score was modeled as follows,

ei(X) = exp(α+ βXi)
1 + exp(α+ βXi)

, (1)

where the generating coefficients are α = −1 and

β = (0.6, 0.1,−0.3,−0.4, 0.2,−0.3,−0.2, 0.2, 0.5, 0.3). These coefficients range in magnitude

from small to moderate, are both positive and negative, and yield sufficient propensity score

overlap.

3. Values of the treatment assignment vector, T , were determined by comparing the propensity

score ei(X) to a random uniform variable on [0,1], Ui, such that Ti = 1 if Ui ≤ ei(X) and

Ti = 0 otherwise.

4. Potential outcomes were generated as follows,

Y 1
i = ρXi + γ + λI(xi1 > 0.5) + εi1 (2)

Y 0
i = ρXi + εi0, (3)

where ρ = (0.2, 0.1, 0.2,−0.1,−0.2, 0.2,−0.2, 0.1, 0.2, 0.1), ε1, ε0 ∼ N(0, 1) and γ, the

treatment main effect, was set equal to 1.0. The indicator was defined such that

I(xi1 > 0.5) = 1 if xi1 > 0.5 and I(xi1) = 0 if xi1 ≤ 0.5. That is, two heterogeneous

subgroups are defined by covariate x1 with the cutoff value at 0.5. The observed outcome Yi
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was determined by the potential outcomes as follows: Yi = Y 1
i Ti + Y 0

i (1− Ti).

5. Data = {(Yi, Xi, Ti), i = 1, . . . , n}.

6. Replicate the above steps for R = 1000 replications.

The coefficient of the treatment by x1 interaction, denoted by λ in Equation 2, controls the

strength of the effect heterogeneity. To study the sensitivity of the method to correctly detect

heterogeneous subgroups, λ was set to 1, 2, or 3. For those values, semi-partial correlations

between the interaction term and the the outcome variable were, respectively, .12, .21, and .27,

which correspond loosely to Cohen’s (1988) guidelines of .1 and .3 for small and moderate effect

sizes for Pearson correlation.

The true value of the overall average treatment effect may be determined as follows:

ATE = E[Y 1
i − Y 0

i ]

= E[ρXi + γ + λI(xi1) + εi1]− E[ρXi + εi0]

= γ + λE[I(xi1)]

= γ + λ(1− Φ(0.5))

= 1 + λ(0.31),

where the second-to-last equality follows from the fact that x1 ∼ N(0, 1). Thus, ATE = 1.31,

1.62, and 1.93, for λ = 1, 2, and 3, respectively. Bias, simulation standard deviation, and mean

squared error were used to measure the adequacy of the ATE estimators over the R simulation

replications as follows.

Bias = 1
R

R∑
r=1

(
ˆATEr −ATE(λ)

)

SD =

√√√√ 1
R− 1

R∑
r=1

(
ˆATEr − ¯̂ATEr

)2

MSE = 1
R

R∑
r=1

(
ˆATEr −ATE(λ)

)2
,

where ATE(λ) = 1 + λ(0.31).
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The values of subgroup-specific CATEs also depend on the λ values. Recall that the

treatment main effect, γ, was set equal to 1 and the data-generating cutoff value for x1 was set to

be 0.5, so the two subgroup-specific CATEs are calculated as follows:

CATE(λ){x1≤0.5} = E[Y 1 − Y 0|x1 ≤ 0.5] = 1 (4)

CATE(λ){x1>0.5} = E[Y 1 − Y 0|x1 > 0.5] = 1 + λ. (5)

Thus, for λ = 1, 2, and 3, CATE{x1>0.5} = 2, 3 and 4, respectively. For the CATE estimators,

bias and mean squared error are defined as follows.

Bias = 1
R

R∑
r=1

(
ˆCATEr − CATE(λ)

)

MSE = 1
R

R∑
r=1

(
ˆCATEr − CATE(λ)

)2
,

where CATE(λ) is determined as described in Equations (4) and (5).

Results of Simulation Study 1

Cost-complexity tuning parameter values .01, .02 and .03 yielded Type I error rates of .82,

.18 and .03, respectively. After iterative search, we settled on a cost-complexity value of .028,

which was associated with Type I error rate of approximately .05. Thus, we set the

cost-complexity parameter at .028 for subsequent analyses. Results are presented in Table 1,

which displays the proportion of replications for which the method identified subgroups. When

the treatment by covariate interaction was nil (i.e., λ = 0), the Type I error rate was .039, close to

the nominal level of .05, as expected. When the treatment by covariate interaction was small (i.e.,

λ = 1), the correct covariate, x1, was correctly identified as the only predictor of subgroup

heterogeneity in 621 out of 1000 replications. For moderate and large magnitudes (i.e., λ = 2 and

3), x1 was correctly identified as the only predictor of subgroup heterogeneity in all replications.

For λ = 1, the average cut score on x1 for the 621 replications for which the correct
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covariate was identified was 0.52, with a moderately large standard deviation of 0.18; recall the

data-generating cut score was 0.50. For the moderate heterogeneity condition with λ = 2, the

average cut score identified was 0.51, with a standard deviation of 0.5. For the large heterogeneity

condition with λ = 3, the average cut score was also 0.51, with a standard deviation of 0.03.

Table 1
Subgroup Identification Performance across 1000 Replications in Simulation Study 1

Case λ = 0 λ = 1 λ = 2 λ = 3

x1 only 0 621 1000 1000
Split but not on x1 39 12 0 0
No subgroups identified 961 367 0 0
Note. λ is the heterogeneity coefficient; see Equation 2.

Table 2 summarizes the accuracy of estimators of ATEs and subgroup-specific CATEs

through bias, simulation standard deviation, and mean squared error. For each estimator, there is

a row of the table for the “Naive” version and the “Step (5)” version. The “Naive” versions of

estimators are based directly on the regression tree output from Step (4), whereas the “Step (5)”

estimators are based on stratified matching within subgroups, as specified in Step (5). It is also

important to note that when the magnitude of the treatment by x1 interaction was small (i.e.,

λ = 1), our approach correctly identified heterogeneity about 62% of the time. Thus, estimates

for λ = 1 in Table 2 are based on 621 replications.

The overall ATE was estimated without bias across all three values of λ and for both the

naive and Step (5) estimators. As for the conditional effects, the naive estimators carried

relatively large and biases which increased as the strength of the treatment effect modification

increased. In contrast, the Step (5) estimators, which matched propensity scores within

subgroups, were close to unbiased.

Simulation Study 2

Data generation for Study 2 was similar to Study 1 with two exceptions: (a) Study 2

included three correlated covariates and (b) heterogeneous subgroups were defined using two

covariates in Study 2. In particular, for Study 2, x1, x7 and x9 were generated from a multivariate
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Table 2
Accuracy and Precision of Subgroup Treatment Effect Estimates across 1000 Replications in
Simulation Study 1

λ = 1 λ = 2 λ = 3

Estimator Bias SD MSE Bias SD MSE Bias SD MSE

Cut-off value on x1 0.02 0.18 0.03 0.01 0.05 0.00 0.01 0.03 0.00

ATE (Naive) 0.01 0.11 0.01 0.01 0.12 0.01 0.01 0.13 0.02
ATE (Step (5)) 0.01 0.10 0.01 0.00 0.11 0.01 0.00 0.12 0.01

CATE{x1≤0.5} (Naive) 0.10 0.11 0.02 0.25 0.13 0.08 0.36 0.14 0.15
CATE{x1≤0.5} (Step (5)) -0.02 0.17 0.02 0.01 0.17 0.02 0.01 0.17 0.02

CATE{x1>0.5} (Naive) -0.16 0.13 0.05 -0.51 0.14 0.29 -0.77 0.13 0.62
CATE{x1>0.5} (Step (5)) 0.10 0.21 0.05 0.03 0.21 0.04 0.02 0.21 0.04

λ is the heterogeneity coefficient described in Equation 2; note that estimates are based on 621 replications for λ =
1 and 1000 replications for λ = 2 and 3, respectively; “Naive” estimates are obtained from the regression tree output
after Step (4); “Step (5)” estimates are obtained after stratified matching within subgroups.

normal distribution with mean and variance-covariance matrix as follows:

µ =


0

−1

1

 , Σ =


1.0 0.3 0.3

0.3 1.0 0.3

0.3 0.3 1.0

 .

The other seven covariates x2, x3, x4, x5, x6, x8 and x10 were independently generated as in Study

1. Propensity score generating coefficients for Study 2 were set to α = −1 and

β = (0.6, 0.2,−0.3,−0.4, 0.2,−0.3,−0.2, 0.2,−0.5, 0.3) (see Equation 1), and potential outcomes

were generated as follows:

Y 1
i = ρXi + γ + λI(xi1 > 0.5)I(xi3 = 1) + εi1 (6)

Y 0
i = ρXi + εi0, (7)

where ρ = (0.2, 0.1, 0.2,−0.1,−0.2, 0.2,−0.2, 0.1, 0.2, 0.1), εi1, εi0 ∼ N(0, 1) and γ, the treatment

main effect, was set equal to 1. Three heterogeneous subgroups are defined by the indicator

functions. The first subgroup corresponds with xi1 ≤ 0.5 and xi3 = 0; the second subgroup

consists of cases for which either xi1 ≤ 0.5 or xi3 = 0, but not both, and the third subgroup is

when xi1 > 0.5 and xi3 = 1. The observed outcome Yi was determined by the potential outcomes

as follows: Yi = Y 1
i Ti + Y 0

i (1− Ti).
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The coefficient of the treatment by x1 by x3 interaction, denoted by λ in Equation 6,

governs the strength of the heterogeneity across subgroups. As in Study 1, λ was set to 1, 2, or 3.

For those values, semi-partial correlations between the interaction term and the the outcome

variable were, respectively, .12, .22, and .30.

The true value of the overall average treatment effect may be determined as follows:

ATE = E[Y 1
i − Y 0

i ]

= E[ρXi + γ + λI(xi1 > 0.5)I(xi3 = 1) + εi1]− E[ρXi + εi0]

= γ + λE[I(xi1 > 0.5)I(xi3 = 1)]

= γ + λE[xi1 > 0.5]E[xi3 = 1]

= γ + λ(1− Φ(0.5))(0.5)

= 1 + λ(0.31)(0.5)

= 1 + λ(0.155),

Thus, for λ = 1, 2, and 3, the ATE is 1.15, 1.31, and 1.46, respectively. Bias, simulation standard

deviation, and mean squared error are used to measure the adequacy of the ATE estimators over

the R simulation replications, r ∈ {1, . . . , R}, as follows.

Bias = 1
R

R∑
r=1

(
ˆATEr −ATE(λ)

)

SD =

√√√√ 1
R− 1

R∑
r=1

(
ˆATEr − ¯̂ATEr

)2

MSE = 1
R

R∑
r=1

(
ˆATEr −ATE(λ)

)2
,

where ATE(λ) = 1 + λ(0.155).

Because the heterogeneity is based on both x1 and x3, there will be three true subgroups,

no matter whether the first split is on x1 or x3. We denote them as left, middle and right groups,

respectively. When the first split is on x1 and the second split is on x3, the three
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subgroup-specific CATEs may be calculated as follows:

CATE(λ){x1≤0.5;left} = E[Y 1 − Y 0|x1 ≤ 0.5] = 1 (8)

CATE(λ){x1>0.5 & x3=0;middle} = E[Y 1 − Y 0|x1 > 0.5 & x3 = 0] = 1 (9)

CATE(λ){x1>0.5 & x3=1;right} = E[Y 1 − Y 0|x1 > 0.5 & x3 = 1] = 1 + λ. (10)

When the first split is on x3 and the second split is on x1, the three subgroup-specific

CATEs may be calculated as follows:

CATE(λ){x3=0;left} = E[Y 1 − Y 0|x3 = 0] = 1 (11)

CATE(λ){x3=1 & x1≤0.5;middle} = E[Y 1 − Y 0|x3 = 1 & x1 ≤ 0.5] = 1 (12)

CATE(λ){x3=1 & x1>0.5;right} = E[Y 1 − Y 0|x3 = 1 & x1 > 0.5] = 1 + λ. (13)

Thus, for λ = 1, 2, and 3, CATE{x1>0.5 & x3=1} = 2, 3 and 4, respectively. For the CATE

estimators, bias and mean squared error are defined as follows.

Bias = 1
R

R∑
r=1

(
ˆCATEr − CATE(λ)

)

MSE = 1
R

R∑
r=1

(
ˆCATEr − CATE(λ)

)2

where CATE(λ) is determined as described in Equations (8) to (13).

Results of Simulation Study 2

We examined the relationship between cost-complexity tuning parameter values and Type I

error rate through permutation with λ = 0. Cost-complexity values of .01, .02 and .03 yielded

Type I error rates of .70, .09 and .02, respectively. After iterative search we settled on a

cost-complexity value of .023, which corresponded with a Type I error rate of about .04.

Results on subgroup identification performance are presented in Table 3, which displays the

proportion of replications for which the method identified subgroups at λ = 1, 2, 3. When the

treatment by covariate interaction was nil (i.e., λ = 0), the Type I error rate was .051, close to the

desired nominal level of about .04. When the treatment by covariate interaction was relatively
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small (i.e., λ = 1), x1 and x3, were correctly identified as the only two predictors of subgroup

heterogeneity in only 10 out of 1000 replications. For moderate magnitudes of λ (i.e., λ = 2 and

3), the number of correct decisions improved to 658 and 965 out of 1000 replications, respectively.

For λ = 1, the average cut score on x1 for the 10 replications for which the correct covariate was

identified was 0.65, with a standard deviation of 0.35. For λ = 2, the average cut score of x1 for

the 658 replications was 0.55, with a standard deviation of 0.17. For the large heterogeneity

condition with λ = 3, the average cut score of x1 was also 0.55, with a standard deviation of 0.13.

Table 3
Subgroup Identification Performance across 1000 Replications in Simulation Study 2

Case λ = 0 λ = 1 λ = 2 λ = 3

x1 and x3 0 10 658 965
1st split on x1 but 2nd split not on x3 0 77 129 27
1st split on x3 but 2nd split not on x1 3 2 4 2
Split but not on x1 or x3 48 37 32 4
No subgroups identified 949 874 177 2

λ is the heterogeneity coefficient described in Equation 6.

Table 4 summarizes the accuracy of estimators of ATEs and subgroup-specific CATEs

through bias, simulation standard deviation, and mean squared error. As before, the naive

versions of estimators are based directly on the regression tree output from Step (4); whereas,

Step (5) estimators are based on stratified matching within subgroups. It is also important to

note that estimates for λ = 1 in Tables 3 and 4 are based on only 10 replications, so they are

much less stable than for the other two values of λ, which are based on 658 and 965 replications,

respectively.

The results related to accuracy of estimation for Study 2 largely mirror those of Study 1.

As in Study 1, the overall ATE was estimated without bias for both the Naive and Step (5)

estimators. Furthermore, as in Study 1, the CATEs were estimated with large biases via the

Naive approach that were largely corrected with the Step (5) modification. The results of Study 2

diverge from those in Study 1 with respect to the sensitivity to detect heterogeneous subgroups.

In particular, although effect sizes for effect heterogeneity were similar across the two studies at

the three levels of λ, the addition of another predictor governing the subgroups led to a

substantial loss in sensitivity for the small effect size condition in Study 2.
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Table 4
Accuracy and Precision of Subgroup Treatment Effect Estimates across 1000 Replications in
Simulation Study 2

λ = 1 λ = 2 λ = 3

Estimator Bias SD MSE Bias SD MSE Bias SD MSE

Cut-off value on x1 0.15 0.35 0.13 0.05 0.17 0.03 0.05 0.13 0.02

ATE (Naive) -0.01 0.08 0.01 0.00 0.10 0.01 0.00 0.11 0.01
ATE (Step (5)) -0.03 0.10 0.01 -0.00 0.10 0.01 -0.00 0.10 0.01

CATE{left} (Naive) -0.04 0.07 0.01 0.12 0.11 0.03 0.20 0.12 0.05
CATE{left} (Step (5)) -0.11 0.09 0.02 -0.02 0.12 0.01 0.00 0.13 0.02

CATE{middle} (Naive) 0.07 0.12 0.02 0.18 0.15 0.05 0.23 0.16 0.08
CATE{middle} (Step (5)) 0.01 0.25 0.06 0.07 0.25 0.07 0.05 0.26 0.07

CATE{right} (Naive) -0.00 0.06 0.00 -0.62 0.21 0.43 -1.08 0.23 1.21
CATE{right} (Step (5)) 0.35 0.39 0.26 0.05 0.28 0.08 -0.00 0.28 0.08

λ is the heterogeneity coefficient described in Equation (7); note that estimates are based on only 10 replications for
λ = 1, 658 replications for λ = 2, and 965 replications for λ = 3; “Naive” estimates are obtained from the regression
tree output after Step (4); “Step (5)” estimates are obtained after stratified matching within subgroups.

ECLS-K Case Study

The Early Childhood Longitudinal Study-Kindergarten cohort (ECLS-K; NCES, 2001), is a

national longitudinal study focused on child development and early school experiences. The

treatment effects of interest for this case study are related to the impacts of receiving special

education services versus not receiving special education services on mathematics scores measured

during fifth grade (year 2004). The data are motivated by Morgan, Frisco, Farkas, and Hibel

(2010) and were described in Keller and Tipton (2016). Morgan et al. (2010) identified 34

covariates, measured at either kindergarten or first grade, based on theoretical considerations or

prior empirical research results, distributed across six domains: demographic (three variables),

academic (nine variables), school composition (five variables), family context (six variables),

health (four variables), and parent rating of child (seven variables). The covariates are described

in greater detail, including ECLS-K code names, in Keller and Tipton (2016). After eliminating

cases with missing data, the final analytic sample included 7,362 children, among whom 429 had

received special education services and 6,933 had not.

Using the five-step procedure, we first estimated propensity scores using a logit model with

interactions1. For the second step, we used optimal full matching on the estimated propensity
1The usual recommended steps for the specification of the propensity score, including iterative respecification of the

propensity score model to achieve optimal balance, and an examination of overlap on the logit of the propensity score,
are important here, though we do not describe them in detail because our focus is on the detection of heterogeneous
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score logit with a caliper of 0.2 pooled SDs to obtain 371 matched strata; matching was carried

out with package optmatch (Hansen & Klopfer, 2006). The number of children within each

matched stratum ranged from 2 to 501 with a median of 6 and mean of 19. Eighty percent of

matched strata had fewer than 20 children and ninety percent of matched strata had fewer than

39 children in each stratum. For each child, unobserved potential outcomes were imputed by

taking the mean outcome score for all children of opposite exposure status in the same stratum.

Finally, individual treatment effects were estimated as differences, either Y 1
i − Ŷ 0

i or Ŷ 1
i − Y 0

i , as

appropriate.

Next, for step three, we ran a permutation-based Type I error rate study to select the value

of the cost-complexity tuning parameter to use with regression trees. The key for permutation

here is to randomly shuffle yoked outcome/treatment pairs, leaving covariate values fixed. This

scheme ensures that the raw treatment effect is retained for each permutation, while any

relationships between covariates and treatment effects are destroyed. By inducing a lack of

systematic association between covariate values and treatment effects, we ensure that the

permuted data align with the permutation null hypothesis of no effect. Then, permutation testing

may be run with varying values of the regression tree cost-complexity tuning parameter to assess

Type I error rates. Testing based on permutation is particularly useful because, under ignorability

and a no interference assumption, it permits valid testing without reliance on parametric

assumptions (Rubin, 1980; Keller, 2012). Five hundred permuted data sets were created for each

cost-complexity value. Type I error rate was calculated as a proportion over the 500

randomizations for which our method resulted in regression trees with more than one node (i.e.,

at least one split), thereby spuriously indicating covariate-dependent treatment effect

heterogeneity. We found the cost-complexity parameter value of 0.004 was associated with a Type

I error rate of 0.01 for the mathematics outcome variable.

In the fourth step, regression trees were fit using cost-complexity parameter values of 0.004,

with the vector of individual treatment effect estimates used as the outcome variable, to identify

subgroups with heterogeneous treatment effects. Before fitting, we pre-processed the data with a

random forest-based variable selection algorithm (Keller & Zhang, 2018, March) to reduce the

dimension of the space over which we searched for heterogeneity; eight variables were retained.

subgroups. See, e.g., Keller & Tipton, 2016 for a summary of recommended steps in propensity score analysis.
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After fitting, any splits identified by the regression tree were interpreted as evidence of

heterogeneous subgroups. Finally, for step five, we reran optimal full propensity score matching

with the added constraint that matches must be made within subgroups to estimate the overall

ATE and the subgroup-specific CATEs.

Results of the Case Study

Setting the cost-complexity parameter at .004 led to a six-subgroup solution wherein one

subgroup had only 248 units. To increase the likelihood of landing on a stable solution, we

explored two approaches. First, we imposed a constraint on the regression tree so that splits on

nodes with fewer than one thousand units would not be attempted. Second, we increased the

value of the cost-complexity parameter (higher values are more conservative) incrementally until

the tree solution became simpler; we settled on a value of .007. Both approaches led to the same

four-group solution shown in Figure 1.

Figure 1 . Heterogeneous subgroups for the 5th grade mathematics outcome variable with CATEs
estimated by Naive (left panel) and Step (5) (right panel) methods; GENDER = student gender
(male = 1, female = 0); MIRT = kindergarten mathematics score

To interpret the plot for the 5th grade mathematics outcome variable, shown in Figure 1

(left panel), note that the full sample of 7049 students was split into two subgroups, depending on

whether the student’s gender was male or female. The 3524 male students were split into two

groups based on MIRT, thereby modeling an interaction between gender and kindergarten

mathematics score; the 3525 female students were split into two groups based on MIRT as well.

The right panel of Figure 1 shows the CATE estimates after exact matching within subgroups

(i.e., Step (5)). Sample sizes are smaller after exact matching because we used a caliper of 0.2 on

the pooled SD of the logit of the propensity score. See Table 5 for naive and Step (5) estimates of
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the overall ATE and subgroup-specific CATEs.

Estimator Naive Step (5)

n Est n Est

Overall ATE 7049 2.68 6235 -0.11
CATE{MALE; MIRT≥32} 1796 -7.70 1667 6.24
CATE{MALE; MIRT<32} 1728 1.02 1632 -9.59
CATE{FEMALE; MIRT≥32} 1662 2.42 1305 8.91
CATE{FEMALE; MIRT<32} 1863 14.46 1631 -4.32

Table 5
Overall and subgroup-specific estimates of the impact of exposure to special education services on
students’ mathematics achievement in fifth grade; Total sample size n = 7362 is reduced to
n = 7049 due to a caliper of 0.2 pooled SDs of the logit propensity score imposed on matches;
Total sample size is further reduced for Step (5) due to the constraint that matches be made within
subgroups

By using a conservative cost-complexity parameter of 0.007, we can be confident that

subgroup splits are likely not spurious. We found evidence for four heterogeneous subgroups

based on the interaction of student gender and kindergarten mathematics score. Simulation study

results underscore the fact that naive CATE estimates are untrustworthy. Step (5) results, which

were much less biased in our simulations, are shown alongside the naive results in Table 5.

Interpreting the Step (5) estimates, we found evidence for a main effect for kindergarten

mathematics achievement such that exposure to special education is more likely to be helpful for

children who scored above the median. Furthermore, there was a main effect for gender, wherein

the effect of exposure to special education was more beneficial for girls than boys. Finally, gender

and MIRT interact such that the impact of kindergarten mathematics score on the efficacy of

special education was more dramatic for boys.

Conclusion

In this paper we described an approach that identifies subgroups of units in an observational

study for which a treatment is differentially effective based on the values of one or more

covariates. Our approach is accessible because it uses the mechanics of propensity score matching

and simple regression trees, both of which are familiar to applied researchers in education and

behavior science, and easy to implement with existing software packages. We found through

Monte Carlo simulation that the method correctly flagged covariates that interact with treatment
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with high probability when their interaction with treatment was moderately strong or stronger.

Furthermore, we found that by selecting the value of the cost-complexity tuning parameter for the

regression tree fit through permutation testing, it was possible to control the proportion of false

positives to a prespecified nominal level. As is the case with any simulation study, however, it is

not appropriate to make strong generalizations to data scenarios that are very different.

In a case study using data from ECLS-K, we identified student gender and kindergarten

mathematics score as the most important moderators of the effect of special education services on

5th grade mathematics achievement. In particular, we estimated the average effect of exposure to

special education services to be negative (i.e., harmful) for those students with mathematics

pretest scores lower than the median score of 32, and positive (i.e., helpful) for those with

mathematics pretest scores at or above 32. With the inclusion of gender as well, results suggest

that the moderating effect of kindergarten mathematics score is, itself, moderated by a student’s

gender such that exposure to special education was more helpful (and less harmful) for female

students than for their male counterparts.

The results of the case study demonstrate how heterogeneous subgroup identification can

provide meaningful and important results that are of immediate interest to stakeholders such as

teachers, parents, and administrators. But how reliable are the results? First, we must underscore

that the results will only be valid insofar as the assumptions required for identification and

estimation of average causal effects through conditioning strategies, as laid out in Rosenbaum &

Rubin, 1983, are upheld. In our case study, for example, we might be concerned that ignorability

is not satisfied. Although a sensitivity analysis could be carried out to probe the robustness of

estimates to unobserved confounding (Rosenbaum, 2002), we did not do so herein. Furthermore,

the definition of the “treatment” is opaque. Nuances such as total duration, quality of services,

staff training, etc., have not been considered and yet certainly varied from student to student and

site to site. We might also be concerned that there may have been interference between students

assigned to special education in the same schools; aside from accounting for several school-level

covariates, our analyses do not handle school-level nesting.

Concerns about the assumptions required for identification notwithstanding, if we assume

they are met, are the results on the identification of heterogeneous subgroups likely to be

trustworthy using this method? Our simulation results are informative here because they suggest
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that by using cost-complexity tuning parameter values selected through permutation testing, the

Type I error rate for subgroup identification may be held to a nominal level. Thus, we may be

confident that any covariates identified by the procedure as moderators are real, subject to the

usual caveats regarding the possibility of Type I errors. With respect to estimation, although our

simulation results suggest that subgroup-specific estimates based on Step (5) are likely to be

accurate, a limitation of our method is that no standard errors or confidence intervals are

provided for the CATEs. Future research aimed at proposing and evaluating resampling

approaches such as the jackknife, bootstrap, and boosting to attain error bounds on estimated

CATEs with this method would be useful.
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