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Abstract

In this paper, we use a two-step approach for heterogeneous subgroup identification with
a synthetic data set motivated by the National Study of Learning Mindsets. In the first
step, optimal full propensity score matching is used to estimate stratum-specific treatment
effects. In the second step, regression trees identify key subgroups based on covariates for
which the treatment effect varies. In working with regression trees, we emphasize the role
of the cost-complexity tuning parameter, selected through permutation-based Type I error
rate studies, in justifying inferential decision-making, which we contrast with graphical and
quantitative exploration for future study. Results indicate that the mindset intervention
was effective, overall, in improving student achievement. While our exploratory analyses
identified XC, C1, and X1 as potential effect modifiers worthy of further study, we find
no statistically significant evidence of effect heterogeneity with the exception of urbanicity
category XC = 3, but the finding is not robust to propensity score estimation method.

Keywords: Heterogeneous Treatment Effect, Observational Studies, Propensity Score
Matching, Regression Trees

1. Methodology and Motivation

1.1 Introduction

Despite the overwhelming focus on the overall average treatment effect (ATE) in the statis-
tics and causal inference literatures, there are many scenarios for which the efficacy of a
treatment may vary depending on unit background characteristics. Methods that target
conditional average treatment effects can explain how pretreatment variables interact with
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treatment exposure to cause heterogeneity in treatment efficacy. The identification of such
heterogeneity, to the extent that it exists, is of tremendous interest to stakeholders because it
can provide insight into which types of participants are likely to be helped the most, helped
the least, or even harmed by an intervention. In this paper, we begin with an overview of the
synthetic data set generated for the Workshop for Empirical Investigation of Methods for
Heterogeneity, a workshop that co-occurred with the 2018 Meeting of the Atlantic Causal
Inference Conference in Pittsburgh, PA. We then describe our approach for heterogeneous
subgroup identification based on propensity score matching and regression trees. We then
discuss data analysis results presented at the workshop, followed by the results of further
analyses conducted after the workshop. We conclude with some discussion.

1.2 The Data

The workshop data analyzed herein are synthetic, but were motivated by the National Study
of Learning Mindsets, a randomized controlled trial of an intervention designed to encourage
a growth mindset in high school students (Mindset Scholars Network, 2018). Approximately
10,000 cases, nested in 76 schools, were simulated to emulate an observational study based
on four categorical student-level covariates and six numeric school-level covariates.

The three research questions we were asked to address for the workshop are as follows:

1. Was the mindset intervention effective in improving student achievement?

2. X1 is a measure of the average fixed mindset rating for each school; X2 is a measure of
school-level academic achievement; both were measured before the intervention. Re-
searchers suspect either (a) the effect is largest in middle-achieving schools, or (b) the
effect is decreasing in school-level achievement. Is there any evidence that X1 and/or
X2 moderate the effect of the intervention on student-level academic achievement?

3. Is there evidence that any other covariates moderate the intervention effect?

1.3 Notation

Let Y 1
i and Y 0

i be the potential outcomes (Neyman, 1923; Rubin, 1974) under treatment
(Zi = 1) and comparison (Zi = 0) conditions, respectively. The average treatment effect, or
ATE, is defined as the average of individual treatment effects; that is, ATE = E[Y 1

i − Y 0
i ].

A conditional average treatment effect, or CATE, is defined as the average of individual
treatment effects, given that a vector of covariates Xi1, Xi2, . . . , Xip take on particular
values; that is, CATE = E[Y 1

i − Y 0
i |Xi1 = xi1, Xi2 = xi1, . . . , Xip = xip]. The propensity

score, ei(Xi) = pr(Zi = 1|Xi), is the probability that unit i is assigned to (or selects) the
treatment group, given the observed covariates. For identification of the ATE and CATE,
propensity score analysis, and other conditioning strategies, rely on the strong ignorability
assumption (Rosenbaum and Rubin, 1983), which specifies

1. ignorability : the potential outcomes are independent of the treatment assignment
given observed covariates X; that is, {Y 0, Y 1} ⊥⊥ Z|X,

2. reliable measurement : observed covariates X have been reliably measured (Steiner
et al., 2011), and
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3. positivity : the propensity score for each unit lies strictly between zero and one; that
is, 0 < ei(Xi) < 1 for all i.

The observed outcome for unit i, Yi, is defined via the potential outcomes and the
treatment indicator as Yi = ZiY

1
i + (1− Zi)Y

0
i .

1.4 Methodology

Our approach to heterogeneous subgroup identification is based on the fact that, under
ignorability, X ⊥⊥ Z|e(X) (Rosenbaum and Rubin, 1983). That is, by conditioning on
the propensity score, balance on the observed covariates across treated and comparison
groups may be restored to what would have been expected in a randomized experiment;
namely, covariate distributions are identical (in the limit) across groups. We use optimal
full propensity score matching to stratify units into S strata, each of which contains at
least one treated case and at least one comparison case. For each stratum s ∈ 1, . . . , S, the
estimate of the stratum-specific treatment effect is calculated as the difference in sample
averages, treated group minus comparison group. That is,

ˆATEs =
1

nTs

∑
i∈Ts

Yi −
1

nCs

∑
i∈Cs

Yi,

where Ts and Cs are, respectively, the sets of indices of the treated and comparison cases
in stratum s, and nTs and nCs respectively represent the cardinalities of Ts and Cs. Once
stratum-specific treatment effect estimates have been calculated, we use those values as
estimates of the individual treatment effect for each unit in the stratum. We then regress the
vector of individual treatment effects on the set of predictors using a single regression tree.
Any predictors identified by the regression tree as important, meaning that the regression
tree split on those variables, are interpreted as evidence for effect heterogeneity on the
variable or variables involved in the splits.

1.4.1 Regression Trees

A regression tree is an algorithmic method invented by Breiman et al. (1984) that models the
response surface for an outcome variable, Y , based on predictors, X1, . . . , Xp, by iteratively
splitting units into subgroups based on rectangular regions of predictor values. At each
iteration, a split creates two subgroups, called nodes, and a node that has not been split
is referred to as a terminal node. The predicted value based on the regression tree for any
unit in a terminal node is simply the mean score on the outcome variable for all units in
that node. For unit i in terminal node t, where Nt represents the set of units in t, the
tree-predicted value for unit i is simply the mean score on the outcome variable for all units

in that node: Ŷi = 1
|Nt|

∑
i∈Nt

Yi. The deviance for a tree T , dev(T ) =
∑

i

(
Ŷi − Yi

)2
, is

used as a cost function to determine the split point at each iteration. After considering all
possible splits on all possible variables, the split that yields the largest decrease in deviance
is selected.

If left unchecked, regression trees would continue to split until each terminal node con-
tained only one point. A commonly used approach to prevent this kind of overfitting is
based on adding a term to the squared error that penalizes the number of terminal nodes,
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|T |, in tree T : C(T )cp = dev(T ) + cp|T |. This approach is referred to as cost-complexity
pruning, and is implemented in the rpart package (Therneau et al., 2015) in R (R Core
Team, 2018), which we use to fit regression trees. The tuning parameter, cp, is analogous
to the smoothing parameter in the lasso or regularized regression, and is typically selected
through cross-validation.

2. Workshop Results

In the synthetic workshop data, school sample sizes for the 76 schools ranged from 14 to
529, with a median of 111, and a mean of 136.7. Furthermore, the treatment was non-
randomly assigned within schools, such that each school sample contained a proportion of
treated cases that ranged from about 17% to about 45%. This design feature allowed us
to estimate propensity scores and create matches within schools1. As a result of within-
school matching, all were matched exactly on the five continuously measured school-level
covariates, X1, . . . , X5. For the workshop, we used two methods to estimate propensity
scores: random forests (RF) and generalized boosted modeling (GBM). Both methods are
based on regression trees and, therefore, algorithmically handle interactions and nonlinear
relationships.

2.1 Research Question 1

To address the first question, we used standard propensity score methodology and simply
took weighted averages of stratum-specific treatment effect estimates. The overall ATE
was estimated to be 0.25 or 0.26, based on GBM or RF, respectively, for propensity score
estimation. The distribution of estimated individual treatment effects, along with a vertical
line denoting the average, is shown for the RF analysis in Figure 1. While the results
suggest a positive treatment effect, we did not present standard errors, so we made no
claims regarding evidence for an overall effect.

2.2 Research Question 2

We fit regression trees and varied the level of the complexity parameter to search for het-
erogeneity on X1 and X2. With analyses based on propensity scores estimated by RF and
GBM, we noted, based on the regression tree output shown in Figure 2, that the treatment
effect did appear to vary with X2 and X1.

Figure 2 shows the results of a regression tree fit based on random forests with a com-
plexity parameter of 0.0033. Note that at the root node, the overall ATE is estimated
to be 0.26 based on 8910 cases. The first split was at X2 = −0.71, which led to condi-
tional ATE estimates of ˆCATE{X2<−0.71} = 0.12 and ˆCATE{X2≥−0.71} = 0.29. The next
split was also on X2, thereby modeling a quadratic relationship. In particular, we see that

ˆCATE{X2≥0.83} = 0.23 and ˆCATE{−0.71<X2≤0.83} = 0.31. In other words, the estimated
average treatment effect for schools with academic achievement scores between -0.71 and
0.83 was 0.31, higher than the estimate of 0.12 for schools with pretest achievement below
-0.71, and higher than the estimate of 0.23 for schools with pretest achievement above 0.83.

1. Note, however, that two schools, numbers 11 and 31, were dropped due to insufficient sample sizes of 21
and 14, respectively
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Figure 1: Average Treatment Effect Estimate by the Random Forest (RF) Method

Figure 2: Regression Tree Based on Regressing Individual Treatment Effect Estimates on
Observed Covariates; Propensity Scores Estimated by Random Forests

Finally, the last split was on X1, suggesting that X1 and X2 interacted such that, for those
schools with X2 values in the middle range between -0.71 and 0.83, the treatment was more
effective for schools with fixed mindset scores lower -0.37 at pretest.

Although we did examine the results of ten-fold cross-validation for cp produced by
the rpart package, we encountered multiple situations in which the cross-validated error
rate continued to decrease without bound as the value of the tuning parameter decreased
(i.e., favoring more and more complex tree structures; see Figure 3 for an example). The
advice given in the rpart manual (Therneau et al., 2015) is that “A good choice of cp
for pruning is often the leftmost value for which the mean lies below the horizontal line.”
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Figure 3: Cross-validated error based on output from package rpart; the horizontal line
represents one standard error above the minimum value of the cross-validated
error curve

where the “horizontal line” represents one standard error above the minimum value of the
cross-validated error curve. Despite this rule of thumb, we often encountered tree solutions
that were very volatile at the one SE mark. Thus, a limitation of the exploratory approach
used for the workshop analyses is a lack of rationale for the selection of the cp value, which
had the potential to drastically impact results.

2.3 Research Question 3

We noted that student level variables C1, a fifteen-category race variable, and XC, a four-
category urbanicity variable, were identified in some of the RF and GBM regression tree
fits, but did not discuss their roles in detail.

3. Post-Workshop Analysis

For post-workshop analyses, we included main-effects logistic regression (LR) for propensity
score estimation, in addition to RF and GBM. Propensity score strata based on optimal full
matching were created in each school, as described above. The number of strata per school
varied both with the school sample size and the method of propensity score analysis. For
propensity scores estimated by GBM, for example, the number of strata per school ranged
from 4 for school 13 (n = 24) to 161 for school 62 (n = 529), with a mean of 36 and median
of 27; the numbers of strata based on LR and RF were similar.

Furthermore, we ran a series of Type I error rate studies, using random permutation,
to select cp values that yielded 5% Type I error rate. Following Chen and Keller (Under
Review), for each permutation, we shuffled yoked outcome/treatment pairs while leaving
covariate values fixed. Under this permutation scheme, the overall average treatment effect
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and the covariate marginal distributions and interrelationships remain unperturbed; mean-
while, any dependence between covariates and individual treatment effects is destroyed,
which provides recourse to the permutation null hypothesis of no effect (Rubin, 1980; Keller,
2012).

For research questions 2 and 3 for the post-workshop analyses we distinguish between
testing and exploration. We test for effect heterogeneity by using cp values that were
found, through permutation, to hold the rate of false positives to the nominal 5% level;
results based on these cp values are appropriate for inferential decision-making. We explore
(a) graphically, by examining graphical depictions of key relationships, and (b) quanti-
tatively, by ranking variable importance ratings from random forest fits. Although these
explorations are suitable for hypothesis generation for future study, they are not appropriate
for inferential decision-making.

3.1 Research Question 1

We found that the desired nominal Type I error rate of approximately 5% was attained for
GBM, RF, and LR, respectively, for cp values of 0.006 0.008, and 0.006. The overall ATE
estimates were hardly changed when using the cp values determined through permutation.
For propensity score estimation via GBM, RF, and LR, respectively, the overall ATE es-
timates, with 95% nonparametric bootstrap confidence intervals (percentile method), were
0.25 (0.22, 0.30), 0.26 (0.22, 0.30), and 0.27 (0.24, 0.28).

3.2 Research Questions 2 & 3

3.2.1 Testing

For propensity scores estimated via LR, and with cp = 0.006, one split on variable XC = 3
was flagged. No splits were identified using propensity scores estimated via RF with cp =
0.008, nor via GBM with cp = 0.006. Thus, we found some evidence of effect heterogeneity
based on XC, but the finding was not robust to propensity score specification. There was
no evidence of significant effect heterogeneity for any other covariates.

3.2.2 Exploration

In Figure 4 we plot nonparametric regression curves to show the relationship between school-
level estimates of the average treatment effect on the vertical axis against each school-level
covariate. The notion that the intervention was more effective for schools in a “middle
range” on X2 and with lower values on X1 is not inconsistent with the relationships shown
in the first two panels of Figure 4.

In Figure 5, because the student-level covariates are categorical, we use conditional
boxplots to show how individual treatment effect estimates vary by category across the
five student-level covariates. We note what appears to be considerable variability in both
median and interquartile range across levels of C1, the 15-category race variable. We also
note a lower median for category XC = 3 as compared with the other categories of XC, a
five-category urbanicity variable.

Finally, we fit random forests using the vector of individual treatment effect estimates
as outcome and the school- and student-level variables as predictors to calculate variable
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Figure 4: Average School-Level Treatment Effect as a Function of School-Level Covariates

importance ratings. Because these data constitute a mix of continuously and categorically
measured predictor variables, and especially because several of the categorical variables
have many categories, traditional random forest variable importance (Breiman, 2001) will
result in biased importance rankings by unjustly favoring variables with many categories
(Strobl et al., 2007). Instead, we report variable importance from random forests based
on conditional inference trees, as implemented in R package party Hothorn et al. (2006a),
which produce unbiased importance values with multi-category predictors.

Conditional inference trees differ from traditional recursive partitioning approaches in
that splitting is based on p-values for linear test statistics derived by permutation the-
ory. The p-values are associated with tests of null hypotheses of conditional independence
between each predictor and the response, given the tree structure. At each step, these
statistics are aggregated to form a global test of the null hypothesis. If the result of the
global test is not significant, splitting stops; thus, tree pruning is not needed. If the result
of the global test is significant, the p-values for individual predictors are ranked, and the
next split occurs on the variable with the smallest p-value. By focusing on p-values, which
are not affected by the scales of predictor variables, fair comparisons may be made even for
variables on different scales; see Hothorn et al. (2006b) for more details.

After fitting random forests based on conditional inference trees, we find variable XC
is ranked as the most important predictor of variability in the individual treatment effect
across all three propensity score estimation methods: GBM, RF, and LR. The average
importance ranks across the three PS estimation methods identify XC, X1, and C1 as
the three most important predictors, respectively. Notably, X2 is among the three least
important predictors of effect heterogeneity, according to variable importance rankings.

4. Discussion

We implemented a two-step approach to detect treatment effect heterogeneity character-
ized by (1) optimal full propensity score matching within schools to estimate individual
(stratum-specific) treatment effects, followed by (2) fitting a regression tree of estimated
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Figure 5: Individual Treatment Effect as a Function of Student-Level Predictors by Propen-
sity Score Estimation Method; GBM = Generalized Boosted Modeling, RF =
Random Forests, LR = Logistic Regression

Figure 6: Variable Importance Rankings from Random Forest Runs Regressing the Indi-
vidual Treatment Effect Estimates on the Ten Predictors of Interest
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individual treatment effects on covariates. In the analyses prepared for the workshop, we
focused on the second research question by exploring the relationships between X1, X2,
and estimated school-level treatment effects. For the post-workshop analyses, we further
demarcated analyses by distinguishing between testing and exploration.

In general, our analyses leaned heavily on the regression tree algorithm, which was used
(a) in estimating propensity scores via random forests and boosted modeling, (b) to test for
effect heterogeneity through regression tree analysis of individual treatment effect estimates,
and (c) for additional exploration through conditional random forest variable importance.
With respect to fitting regression trees, we noted that ten-fold cross-validation and the
one SE rule of thumb, both methods typically used to select the cost complexity pruning
parameter, cp, are inconclusive with respect to Type I error rate. Instead, we used a simple
permutation approach to select cp values that yielded the desired Type I error rate and
enabled testing.

For the first research question, we found that the average intervention effect estimates by
different methods were all positive, with 95% bootstrap confidence intervals indicating that
the mindset intervention was effective in improving student achievement. For the second and
third research questions, we found evidence of heterogeneity based on membership in the
third category of the urbanicity variable, but the finding was not robust to propensity score
estimation method. We found no other significant evidence of treatment effect modification.
Based on exploratory analyses, if we were to plan a follow-up study to search for effect
modification, we would recommend focusing on the student-level urbanicity variable, XC,
the student level race variable, C1, and the school-level fixed mindset rating variable, X1.
We would not recommend prioritizing X2, the school-level achievement variable.

As noted by Feller and Holmes (2009), the assumptions required for identification of
CATEs are identical to those required for the overall ATE (i.e., strong ignorability, no
interference between units, single version of each treatment). We assume these key as-
sumptions are met here. Furthermore, the usual recommended steps for the specification
of the propensity score, including iterative respecification to achieve acceptable balance
on observed covariates and an examination of overlap are also important, but details are
omitted because our focus is on heterogeneous subgroup identification. Finally, resampling
approaches such as the jackknife, bootstrap, and boosting may be used to attain error
bounds on ATEs and CATEs estimated via our two-step approach; however, care must be
taken when using resampling techniques to estimate standard errors for estimators that
involve matching (Abadie and Imbens, 2008; Austin and Small, 2014).
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