Chapter 20

Neural Networks for Propensity Score
Estimation: Simulation Results

and Recommendations

Bryan Keller, Jee-Seon Kim, and Peter M. Steiner

Abstract Neural networks have been noted as promising for propensity score
estimation because they algorithmically handle nonlinear relationships and interac-
tions. We examine the performance neural networks as compared with main-effects
logistic regression for propensity score estimation via simulation study. When
the main-effects logistic propensity score model is correctly specified, the two
approaches yield almost identical mean square error. When the logistic propensity
score model is misspecified due to the addition of quadratic terms and interactions
to the data-generating propensity score model, neural networks perform better in
terms of bias and mean square error. We link the performance results to balance on
observed covariates and demonstrate that our results underscore the importance of
checking balance on higher-order covariate terms.

Keywords Propensity score analysis * Neural networks ¢ Logistic regression ¢
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20.1 Introduction

The goal of propensity score analysis is to correct for bias due to confounding in
a non-randomized experiment. The propensity score is defined as the probability of
assignment to the treatment group—we assume a dichotomous treatment variable—
given the observed covariates (Rosenbaum and Rubin 1983). The application of
propensity score analysis involves (1) estimating the propensity score for each
participant and (2) conditioning on the estimated propensity scores to estimate an
average treatment effect.
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In practice, propensity scores are most often estimated by logistic regression.
However, data-mining techniques that algorithmically handle nonlinear relationships
have been noted as promising for propensity score estimation because they are able
to adapt to complex response surfaces in their naive implementations (Westreich
et al. 2010).

To our best knowledge the performance of neural networks for propensity
score estimation has been examined via simulation in only one study (Setoguchi
et al. 2008). The results of that study suggested that neural networks are a
viable alternative to main-effects logistic regression for propensity score estimation,
though the authors caution that more work is needed over a broader range of
scenarios.

We respond to the need for empirical evaluation by contributing a simulation
study which examines the performance of neural networks as compared with main-
effects logistic regression for propensity score estimation. Although we describe
the simulation study in detail below, two aspects deserve particular attention. First,
we use a weight decay smoothing parameter to inhibit over-fitting with neural
networks. Second, we generate data from a pair of models: the propensity score data-
generation model and the outcome data-generation model. The unique aspect here is
that we consider the effect of nonlinear terms in the outcome data-generation model.
In fact, we hypothesize that it is precisely when there are confounding higher-order
terms in both the propensity score data-generation model and the outcome data-
generation model that neural networks will have the potential to most drastically
outperform main-effects logistic regression in terms of bias and mean square error.

The remainder of the paper is organized as follows: in the remainder of this
section we describe propensity score analysis and assumptions required to estimate
the average treatment effect for a population. In the next section we describe logistic
regression and neural networks for propensity score estimation. We then discuss the
method used to condition on the propensity score: optimal full matching. We then
describe the design and results of the simulation study and conclude with some
recommendations.

20.1.1 The Average Treatment Effect

The potential outcomes notation is based on the Neyman—Rubin framework for
causal inference (Holland 1986). Let Z; = 1 if the ith unit was assigned to
the treatment group and Z; = 0 otherwise. Let ¥/ be a response variable such
that each experimental unit has two potential outcomes, Y! and Y?, depending on
assignment Z;.

Two causal quantities which are most commonly of interest are the overall
population average treatment effect v and the population average treatment effect
for the treated 7 (Imbens 2004; Schafer and Kang 2008; Steiner and Cook 2013):

v =E(Y -Y)) = EY) - EXY}) (20.1)
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and
r=EY' -YZ,=1)=EY 2z =1)-EY"Z = 1). (20.2)

We focus on the average treatment effect on the treated, 77, in the simulation
study because it provides an estimate of the effect of treatment on those who
received it, which is often more interesting than the overall treatment effect (Morgan
and Winship 2007).

20.1.2 Assumptions for Identifying and Estimating
the Average Treatment Effect

The propensity score (PS) is defined as the conditional probability of assignment to
the treatment group given the observed covariates X = (Xi,...,X,)" (Rosenbaum
and Rubin 1983). That is,

PS(X) = P(Z = 1|X). (20.3)

Propensity scores may be conditioned upon in an application such as matching,
stratification, or weighting in order to restore covariate balance across groups to
what would have been expected from a randomized experiment. In order for the
propensity score to be effective in eliminating bias some assumptions are necessary.
First, the treatment assignment must be strongly ignorable (Rosenbaum and Rubin
1983; Rubin 1978). Strong ignorability specifies (a) that the potential outcomes are
independent of the treatment assignment given the observed covariates and (b) that
each experimental unit in the population has a true propensity score that lies strictly
between zero and one. That is,

YLyt U z|x (20.4)
and
0<PZ=1X) <. (20.5)

In practice, strong ignorability is satisfied when all of the confounding covariates
(i.e., those that are associated with both treatment assignment and the outcome)
are observed, there is overlap between the propensity score distributions of the
treatment and control groups, and the covariates are measured reliably (Steiner et al.
2011). When there is a lack of overlap, 77 is only identified for the subpopulation of
overlapping units.

Second, it is assumed that there is only one version of the treatment and that the
value of each potential outcome is independent of the particular assignment pattern
in Z. These two assumptions are referred to collectively as the stable unit treatment
value assumption (SUTVA; Rubin 1978, 1980).
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Finally, since true propensity scores are not known in observational study
settings, they must be estimated. Assuming strong ignorability and SUTVA hold,
an additional analytic assumption required for consistent estimation is that the
propensity score estimates are adequate for bias removal. Although the necessary
and sufficient conditions for estimation of adequate propensity scores depend on
the method used to condition on them (Waernbaum 2010), one way to ensure
adequate propensity score estimates is to correctly specify the relationship between
selection Z and covariates X in a parametric model.

In practice, however, the model is never exactly correct. Thus, the focus of the
propensity score estimation literature is on the proposal and evaluation of methods
that attempt to approximately satisfy this analytic assumption.

20.1.3 Covariate Balance

If strong ignorability and SUTVA are satisfied, the propensity score is a balancing
score for X (Rosenbaum and Rubin 1983); that is,

X 1 Z|PS(X). (20.6)

As a result, the extent to which covariate distributions are balanced across treatment
groups may be used as a diagnostic tool for checking the adequacy of the propensity
score estimates.

Balance measures based on means are easy to calculate and have been shown
to outperform other methods in simulation studies (Ali et al. 2014; Belitser et al.
2011), thus, we measure covariate balance with standardized mean differences. The
standardized mean difference for covariate X is

_ Xr—Xc
= 6-7.

d (20.7)

where }_(T and )_(C are the means of treated and control units, respectively, and
67 is the estimated standard deviation for X for treated units. We divide by the
standard deviation of the treated cases instead of the pooled standard deviation
across groups because the value of &7 is not affected by propensity score weighting
when estimating vy (McCaffrey et al. 2004).

To summarize balance over multiple covariates, both measures can be extended
by taking averages. For covariates X1, X5, ..., X, the average standardized absolute
mean difference (ASAMD) is

1 P
ASAMD = - " |dj|. (20.8)
p

i=1
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20.2 Propensity Score Estimation

Logistic regression is the most frequently used method for estimating propensity
scores. For dichotomous outcome Z and covariates X1, X5, ..., X, each vectors of
length N, the multiple logistic regression model is

P(Z =1|X1,X>,.... X))
l g[l “PZ = 1|X,.%,, ...,X,,)} =Bo+ BiXi + BXo + -+ BpX,. (20.9)

We refer to the model in Eq. (20.9) as the main-effects logistic regression because
the model contains one first-order term for each covariate.

The single-layer feed-forward neural network consists of an input layer of p
observed covariates and a constant term, an output layer containing a single unit
for dichotomous classification, and one hidden layer of M unobserved variables and
a constant term (see Fig. 20.1).

The hidden units (H = H, ..., Hy in Fig. 20.1) are created by forming weighted
linear combinations of the input variables and then applying the logistic function
J@) =1/(1+e€™).

The dichotomous exposure variable Z is then used as the outcome in a logistic
regression on the hidden units in the final step. The weights of the network are
similar to regression coefficients in a traditional regression analysis in that larger
weights indicate sharper changes in the slope of the response surface predicted by
the model.

Fig. 20.1 Neural network
with p inputs, M hidden
nodes, and 1 classification
output. The 1s represent
intercepts

matrices
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The model may be expressed as follows:
P(Z = 1|X) = fFXVHWT), (20.10)

where Xyx(p+1) is the matrix of predictors, augmented to include a column of ones,
and Vyx(,+1) and Wix 1) are weight matrices containing the coefficients for the
network. The hidden layer H = £(XV7) is also augmented to include a column of
1s before being multiplied by W7 These augmentations are analogous to including
the constant term for the intercept in the design matrix of a multiple regression and
are represented by encircled 1s in Fig. 20.1.

The size of the hidden layer (M) determines how many parameters the model
will have and, thus, how flexible the network will be in modeling the relationship
between the predictors and the output. Increased flexibility, however, comes at the
cost of an increased risk of overfitting random noise in the data. Weight decay is
a technique which imposes penalties on large weights in the network, as in ridge
regression for linear models, thereby smoothing boundaries and preventing over-
adaptation to the particularities of the data (Hastie et al. 2009; Ripley 1996).

20.3 Propensity Score Application

The goal of the propensity score application step is to condition the outcome on
the estimated propensity score, thereby restoring balance to the observed covariates
and allowing for unbiased estimation of the average treatment effect. Matching
techniques aim to accomplish this goal by identifying groups of individuals from
the treatment and control groups that are as alike as possible according to the logit
of the estimated propensity score. This may be done in a one-to-one, one-to-many,
or many-to-many fashion; full matching refers to the latter case.

The goal of optimal full matching is to define S mutually exclusive strata each
containing at least one treated and one control unit such that the configuration min-
imizes a global measure of distance (Rosenbaum 2002). Because optimal matching
minimizes an overall measure of distance, it avoids the problem of different results
based on matching order which occurs with other matching algorithms such as
nearest neighbor matching.

After groups have been formed by optimal full matching, 7 may be estimated by
taking the difference of weighted averages across treatment and comparison groups.
For t7, weights are calculated as follows:

Ncnr
Nrnc'

ri=2Zi+(1-2) (20.11)

where N is the overall sample size, Ny and N¢ are the number of treated and
comparison units, respectively, and nr and n¢ are the number of treated and
comparison units in the subclass to which unit i belongs, respectively.



20 Neural Networks for Propensity Score Estimation 285

Let T be the set of indexes assigned to the treated condition and let C be the set
of indexes assigned to the comparison condition. Then the estimator for 77 is

2= ZieT AiY; _ ZiEC)UYi
ZieT Ai ZieC Ai

(20.12)

20.4 Simulation Study

The purpose of the simulation is to examine the effect of propensity score estimation
method on bias and mean square error of the treatment effect estimates and on
balance on observed covariates.

20.4.1 Data Generation and Simulation Design

Twelve covariates were independently generated from a standard normal distri-
bution. A correlation structure was induced via Cholesky decomposition so that
pj = 0.3 for all i # j, where p is the Pearson product-moment correlation
coefficient. The main-effects propensity score model is

PS; = (1 +exp{—(Bo + B1 X1 + foXo + - + frXi2}) ™. (20.13)
The complex propensity score model,
PS; = (1 +exp{—(Bo + B1X1 + foXo + -+ + Pr2X1n+

B13X1X12 + BraXoXi1 + B15XoXio + BreXaXi2 + P17 X1 Xs+
BisX5 + B1oX3 + BaoXs + BuXTDH . (20.14)

includes five two-way interaction terms and four quadratic terms in addition to the
main-effects in PS;. The regression coefficients for the propensity score models
were specified as follows:

Bo,--- ,Be =—1.00 —049, —0.18, —-0.40, -0.26, —0.16, 0.51,

B7,- Bia= —0.84, 0.08, —0.31, 0.73, —0.04, —0.34,
Biz, - P17 = —-0.42, -0.26, 0.16, —0.36, 0.31,
Big, -+ P = —0.50, 0.46, 0.30, 0.36.

The regression models used to generate the continuous outcome are shown in
Egs. (20.15) and (20.16). The main-effects outcome model is

Y| =g + a1 X; +axXo + -+ apXip + yZ. (20.15)
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The complex outcome model is

Yo =ap + o1 Xy + ooXp + -+ apXip+
a13X1 X2 + X1 X1 + o5Xo X1 + @16X3X12 + a7 Xy X+
0518X§ + 0619X32 + Olzoxg + 0621X121 + 0622X122 + YZ. (20.16)

For each case i, the dichotomous selection variable Z; was generated by
comparing the propensity score to a random uniform draw from [0,1]. If the uniform
draw was less than or equal to the propensity score for case i, Z; was assigned to be
1; otherwise, Z; was assigned to be 0. In both models, the selection variable was
multiplied by the constant treatment effect y = —0.40. The regression coefficients
for the outcome models were specified as follows.

ap, -+, o6 = 1.00, 0.24, 0.38, —0.50, 0.40, —-0.60, —0.30,

o7, 0y = 0.06, —0.66, 0.58, 0.34, —-0.58, —0.40,
o3, 07 = —-0.21, —-0.14, —-0.49, 0.11, 0.22,
g, L0 = —0.30, 0.41, 0.31, 0.26, —0.20.

The two PS models were crossed with the two outcome models to create four
data-generation conditions. One thousand data sets were simulated and analyzed for
each of the four conditions based on a sample size of 2000. Table 20.1 displays the
standardized initial biases and the probability of treatment assignment for each of
the four scenarios. The standardized initial bias was calculated as the unadjusted
mean difference (treatment minus control) minus the true treatment effect of
—0.4 divided by the standard deviation of the treatment group. The probability of
assignment to the treatment group is simply the proportion of simulated participants
in the population assigned to the treatment group.

Table 20.1 Population

. EEe Scenario | Standardized initial bias | P(Z = 1)
standardized initial bias and

probability of assignment to PS1 x ¥y |0.257 0.332
treatment for each of four PS| XY, 0214 0.332
data generation scenarios PS>, x Y| |0.231 0.418

PSy X Yy | 0.462 0.418

Note: PS| and PS; represent the linear and nonlin-
ear PS data-generating models, respectively; Y1 and
Y represent the linear and nonlinear outcome data-
generating models, respectively.
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20.4.2 Analysis

Logistic regression was run with main effects only for Xy, - -+ , Xj,, as in Eq. (20.9);
neural networks were fit with eight hidden nodes and the weight decay tuning
parameter set at A = 0.10 for the scenarios with linear propensity score model
and A = 0.13 for the nonlinear propensity score models. For the last two data-
generation scenarios (both with PS,) we also estimated propensity scores with the
correctly specified model, displayed in Eq. (20.14), in order to have a baseline for
comparison with the other methods.

In practice, with a single data set, an analyst would select optimal tuning
parameter values for a data mining method by searching over a grid of many possible
choices and settling on the combination which produced the best cross-validated
prediction or the best balance. In order to avoid the prohibitive computational cost
of running a cross-validated grid search at each iteration, we ran such a grid search
on five data sets generated from the linear PS and five data sets generated from
the nonlinear PS and used the results to select sensible values. Our approach for
selecting the value of weight decay (1) for the neural networks was motivated by the
usual design-based recommendations for propensity score model fitting: we selected
the value of A that was associated with the best covariate balance (though ten-fold
cross validation based on prediction yielded similar results).

To assess covariate balance we used a weighted composite of the ASAMD on
first-order terms and the ASAMD on second-order terms. These were weighted
equally in order to assign the same conceptual importance to the class of first-
order terms as the class of second-order terms in determining the resultant balance.
For each dataset, as the value of A increased, the balance improved for a period
and then began to decrease. For the linear propensity score model optimal balance
was attained at about A = 0.10; for the nonlinear propensity score model, optimal
balance was attained at about A = 0.13. Thus these values were used throughout all
1000 simulation replications.

For each replication and for each propensity score estimation method, cases in
the treatment or control group with no counterpart in the opposite group within
0.1 pooled standard deviations of the propensity score logit were considered non-
overlapping and discarded from the analysis. After discarding cases, propensity
scores were re-estimated on the remaining cases and those values were used going
forward. For PS;, both methods resulted in about 4 % of cases being discarded due
to lack of overlap. For PS,, 1 and 7 % of cases were discarded for main-effects
logistic regression and neural networks, respectively.

20.4.3 Results

For the first and second scenarios, the main-effects logistic regression model (see
Eq. (20.13); abbreviated MELR in Table 20.2) was the correctly specified model.
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Table 20.2 Performance metrics averaged over 1000 replications; optimal full matching was
used to estimate the average treatment effect on the treated

Scenario

Metric Method PS1 xY; |PS;xYy [PSo xY; PSyxYp

Bias and MSE

|Bias (%)| MELR 0.07 0.03 25.14 173.80
NN 3.58 3.08 12.73 13.90
LR-20.14 NA NA 0.85 1.94

Bias MELR 0.000 0.000 0.101 0.695
NN —0.014 —0.012 —0.051 0.056
LR-20.14 NA NA 0.003 0.008

SE MELR 0.002 0.004 0.002 0.003
NN 0.002 0.004 0.003 0.004
LR-20.14 NA NA 0.003 0.004

MSE MELR 0.006 0.018 0.014 0.495
NN 0.006 0.016 0.012 0.020
LR-20.14 NA NA 0.012 0.018

Covariate balance

ASAMD on Ist-order terms | MELR 0.042 0.042 0.047 0.048
NN 0.044 0.044 0.074 0.073
LR-20.14 NA NA 0.053 0.055

ASAMD on 2nd-order terms | MELR 0.067 0.067 0.118 0.118
NN 0.059 0.060 0.069 0.069
LR-20.14 NA NA 0.071 0.071

Note: PS1 and PS; represent the simple and complex propensity score data-generating models,
respectively; Y1 and Y7 represent the simple and complex outcome data-generating models,
respectively; MELR: main-effects logistic regression as in Eq. (20.13); NN: neural networks;
LR-20.14: logistic regression as in Eq. (20.14); ASAMD: average standardized absolute mean
difference across the covariates (see Eq.(20.8)); SE: simulation standard error; and MSE:
simulation mean square error

Note that biases associated with MELR were both within two simulation standard
errors of zero, indicating they are not significantly different from zero. For the
third and fourth scenarios, the data-generating model (see Eq. (20.14); abbreviated
LR-20.14 in Table 20.2) was also used to estimate propensity scores. The estimates
based on LR-20.14 for the last two scenarios were also within two simulation
standard errors from zero. Thus, when the propensity score model was correctly
specified, estimates based on optimal full matching were not significantly biased.
Estimates based on neural networks were associated with lower mean square
error than main-effects logistic regression for all four scenarios, including the first
two scenarios, for which the main-effects logistic model was correctly specified.
This finding is not altogether surprising because the feed-forward neural network
can be thought of as a generalization of logistic regression. In particular, by setting
the coefficients in the matrix V and vector vy all equal to zero, the feed-forward
neural network described above is identical to main-effects logistic regression.
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When the data-generating propensity score model was complex, estimates
based on neural networks were far less biased than those based on main-effects
logistic regression. In the last scenario, in which the propensity score and outcome
data-generation models both contained second-order terms, estimates based on
main-effects logistic regression were biased by 174 % of the magnitude of the
treatment effect, while neural networks yielded about 14 % residual bias. Across
all four scenarios, propensity scores based on neural networks resulted in less than
14 % bias.

Regarding covariate balance on first-order terms, the balance attained by the
main-effects logistic regression was better than that attained by neural networks
across the board. On second-order terms, however, the opposite held true, with
greater disparities evident when the data-generating propensity score model was
complex.

20.4.4 Discussion

The results of the simulation study suggest that if the relationship between covari-
ates and selection involves only first-order terms, it does not make much difference
in terms of bias or mean square error whether main-effects logistic regression or
neural networks is used to estimate propensity scores. For the first two scenarios,
both methods were less than 4 % biased, with nearly identical mean square error.

If the true selection model involves more than just linear terms, misspecification
of the logistic propensity score estimation model by way of omitting higher-
order terms creates the potential for bias, the magnitude of which depends on the
relationship between the covariates and the outcome. If nonlinear terms omitted
from the propensity score estimation model are also related to the outcome, as was
the case in scenario 4 (note the common terms in Egs. (20.14) and (20.16)), the bias
may be very large because the omitted terms act as confounding variables that have
not been accounted for.

Importantly, we found that balance checks on first-order terms did not help in
diagnosing this problem. The last column of Table 20.2 reveals that model selection
based exclusively on first-order balance would have favored the main-effects logistic
model over both neural networks and the correctly specified logistic model.

While these results clearly highlight the importance of checking balance on
higher-order terms, they also raise questions. First, in practice, what is the highest-
degree covariate transformation on which balance should be assessed? Second,
how should balance measures on higher-order terms be weighted when comparing
propensity score estimation models or techniques? For example, for an analysis with
10 covariates there are 10, 55, and 220 possible first, second, and third-order terms,
respectively whereas, for an analysis with 20 covariates there are 20, 210, and 1540
possible first, second, and third-order terms, respectively. Further research aimed at
addressing these questions would be useful.
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20.5 Conclusion

Propensity scores are most often estimated by logistic regression in practice
because it is familiar, available in most statistical software packages, and easy to
implement. The most challenging aspect associated with its use is the need for
iterative respecification of the model based on balance checking, which, with many
covariates, is tedious at best and untenable, due either to exhaustion of degrees of
freedom or exhaustion of the analyst, at worst.

Neural networks are promising for propensity score estimation because they
algorithmically deal with nonlinearities in the selection surface, making iterative
respecification unnecessary. We found, through simulation, that propensity scores
estimated by neural networks resulted in better balance on second-order terms than
those estimated by main-effects logistic regression. In practice, the analyst will not
know which higher-order terms (if any) are actually predictive of selection. The
most useful algorithmic approach for propensity score estimation is one which
automatically detects such terms and accounts for them in the propensity score
estimates, which is what neural networks did here.

There are some potential challenges with the implementation of neural networks
as well. First, while the selection of optimal tuning parameter values related to
weight decay and the number of hidden units can be carried out automatically using
packages designed to do cross-validation (we used package caret Kuhn 2014 in
R Core Team 2014), the process is computationally expensive, ranging anywhere
from several seconds to several hours of computational time, depending on the size
of the problem and the speed of the computer. Second, if the neural network results
in poor covariate balance even after selecting optimal tuning parameters, there is
no guidance as to how an analyst should alter the model to improve the balance.
For this second point, however, neural networks are flexible enough such that, if
tuning parameters are carefully selected, this should be a relatively rare occurrence
which might suggest a problem with the suitability of the data for propensity score
analysis, rather than a problem with the neural network specification. Finally, even
with the use of the weight decay smoothing parameter it is possible that with many
noisy covariates neural networks may still overfit the data.

Although neural networks performed favorably relative to main-effects logistic
regression, further research is needed to determine if neural networks continue
to perform well in cases with many weak predictors, when coupled with other
approaches for conditioning on the estimated propensity scores, and compared with
other data-mining methods.

Finally, while we compared neural networks to main-effects logistic regression
because it is the approach most often used in practice, the undiscerning use of the
main-effects logistic model for propensity score estimation is not recommended. In
practice, an analyst using a logistic regression framework for modeling selection
would experiment with various formulations of the model in an iterative process
aimed at maximizing covariate balance. While this approach is difficult to mimic in
a simulation study, the performance of neural networks could be compared with a
custom logistic model created by an experienced analyst in a case study setting.
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