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Abstract

In this chapter we use the general linear modeling framework to define ANCOVA and
MANCOVA and compare and contrast them with their counterparts, ANOVA and
MANOVA, respectively. In particular, we demonstrate how covariate adjustment leads to
reduction of error variance and, given some assumptions, can remove bias due to
confounding in observational studies. Data examples are used throughout to illustrate key
concepts. We conclude with some general discussion about limitations and extensions.
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1 Introduction

The analysis of covariance (ANCOVA) is an inferential statistical method for
analyzing experimental data that allows for the comparison of two or more group means
while controlling for one or more covariates. As Fisher, who invented the procedure,
explained, the analysis of covariance “combines the advantages and reconciles the
requirements of the two very widely applicable procedures known as regression and analysis
of variance.” (1934, p. 269). ANCOVA improves upon the analysis of variance (ANOVA) in
two key ways. First, by controlling for covariates that are correlated with the outcome, the
ANCOVA test of treatment efficacy (i.e., difference in group means) is typically more
powerful than the analogous ANOVA-based test. Second, in situations where random
assignment fails to provide adequate balance on a confounding variable, or in cases where
random assignment was not implemented, ANCOVA may be used to “control for”
covariates by making linear adjustments to estimated group means that can reduce or
remove bias due to confounding.

The use of ANCOVA to identify average treatment effects – either in the context of a
well-implemented randomized experiment to reduce error variance or in a non-randomized
study to control for confounding – requires assumptions, some of which are more likely to
be tenable in practice than others. In modern usage, the meaning of ANCOVA is
sometimes broadened to include nonlinear transformations of covariates or treatment by
covariate interactions (cf. Huitema, 2011). Our focus herein, however, will be on the use of
ANCOVA in the classical sense, as a method used to test for constant treatment effects
assuming linear functional forms.

Multivariate analysis of variance (MANOVA) extends ANOVA to allow for
simultaneous testing for treatment effects in the presence of multiple outcome variables.
For correlated outcome variables, MANOVA may provide substantially better power to
detect effects than the associated univariate ANOVAs. This same rationale holds when also
controlling for one or more covariates via multivariate ANCOVA (MANCOVA); thus, we
find reason to recommend MANCOVA for scenarios involving multiple correlated outcome
variables.

The remainder of this chapter is organized as follows. In the next section we briefly
define some key terms and describe the general linear F test, which is used to construct
hypothesis tests in ANOVA and ANCOVA. In the third section, because central concepts
in ANCOVA are most meaningful when compared against analogous concepts in ANOVA,
we describe the univariate one-way ANOVA model, give a data example, and discuss
pairwise comparisons of group means through contrast testing. We present the univariate
ANCOVA model in Section 4, where we examine the omnibus F statistic in relation to
ANOVA, give a data example, describe adjusted group means, and discuss the role of
covariate balance in ANCOVA adjustment. We then follow a similar structure for the
multivariate procedures, introducing MANOVA first and following with MANCOVA and a
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data demonstration. We conclude with some discussion.

2 The General Linear F Test

Consider a simple linear regression model for outcome Y and predictor X,

Yi = β0 + β1Xi + εi, (1)

where errors are independent and identically (iid) normally distributed with mean zero and
constant variance; i.e., εi iid∼ N(0, σ2). When data are used to estimate the parameters of
the model, the resulting function may be used to predict the mean of the outcome, Y ,
conditional on the values of the predictor, X. The outputs from this function are called
predictions or fitted values, and the fitted value for the ith unit is denoted as Ŷi as follows,

E[Yi|xi] = Ŷi = β̂0 + β̂1xi,

where β̂0 and β̂1 are, respectively, estimates for β0 and β1. The residual for participant i,
ei, is defined as the difference in observed and predicted values; that is, ei = Yi − Ŷi; see
Figure 1.

Figure 1 . Scatterplot of baseline and outcome data with fitted regression line and residuals

Sums of squared residuals may be used to create measures of model fit. In particular,
sums of squared residuals give a quantitative summary of variation leftover (i.e., not
explained) by the model. The general linear F test provides a framework for constructing
hypothesis tests by comparing regression models using sums of squares (SS). As an
example, to test H0 : β1 = 0 for the simple regression model in Equation 1, a restricted
model is specified in which the parameter to be tested (or parameters, if a joint test is
desired) is fixed to the hypothesized value. Here the restricted model would be Yi = β0 + εi.
The general linear F statistic is defined as

F = (SSR − SSF)/(dfR − dfF )
SSF/dfF

, (2)

where SSR and SSF are the sums of squared residuals, and dfR and dfF are degrees of
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freedom, for the restricted and full models, respectively. If errors εi iid∼ N(0, σ2), then the
statistic F will follow an F distribution under the null hypothesis with dfR − dfF
numerator and dfF denominator degrees of freedom1.

3 Univariate ANOVA

It is helpful to use the analysis of variance (ANOVA) as a starting point from which
to describe the ANCOVA model. For a single-factor experiment, the one-way ANOVA
model may described as follows,

Yij = µ+ αj + εij, (3)

where,

• Yij is the outcome variable for participant i in group j,
• µ is the unweighted average of group means,
• αj is the treatment effect (i.e., µj − µ) for the jth group, and
• εij is idiosyncratic (random) error for participant i in level j.

The εij are assumed to be independent N(0, σ2) random variables. To uniquely define
model parameters, a constraint is typically imposed such that the treatment effects add to
zero, ∑a

j=1 αj = 02. The one-way ANOVA model assumes that any systematic variability in
the outcome is solely due to the treatment factor groupings, and each αj represents the jth
group’s deviation from the overall population mean, µ. Suppose there are a groups in total
with nj participants in the jth group. The omnibus null hypothesis for the one-way
ANOVA is that all treatment effects are identically equal to zero; that is,

H0 : α1 = α2 = · · · = αa = 0.

Table 1
Full and restricted models, parameters, and least-squares estimators for the one-way
ANOVA omnibus test

ANOVA Model Parameters Least-squares estimators
Full Yij = µ+ αj + εij µ µ̂ = ȳ

αj, α2, . . . , αJ α̂j = ȳj − ȳ

Restricted Yij = µ+ εij µ µ̂ = ȳ

1 See Maxwell, Delaney, and Kelley (2018) and Neter, Wasserman, and Kutner (1990) for texts that build
up test statistics for ANOVA and ANCOVA via model comparisons using the general linear F test.
2 Another possibility is to require a weighted sum of the αj to be zero:

∑a
j=1 wjαj = 0. In that case, µ is a

weighted average of group means. For a useful discussion of weighting schemes and implications, see Neter
et al. (1990, p. 554–556).
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Let ȳ and ȳj be estimates of the overall mean and group j mean, respectively. The
sums of squares (SS) decomposition for ANOVA is motivated by the model in Equation 3.
After subtracting the mean µ from both sides, Equation 3 may be expressed as follows,

Yij − µ = αj + εij, (4)

and with sample analogues as

(yij − ȳ) = (ȳj − ȳ) + (yij − ȳj). (5)

The three terms in parentheses in Equation 5 are referred to as deviations. Squaring both
sides, canceling out the middle term on the right hand side because ∑nj

i=1 (yij − ȳj) = 0, and
summing over all i and j leads to the sums of squares decomposition for one-way ANOVA;
see Equation 6. Note the sum of squares “total” do not represent the total squared
variation in the outcome variable because the mean has been subtracted off the left hand
side of the equation. Thus, SST is typically referred to as “corrected for the mean”.

SST; total (corrected) = SSB; between + SSW; within
a∑
j=1

nj∑
i=1

(yij − ȳ)2 =
a∑
j=1

nj (ȳj − ȳ)2 +
a∑
j=1

nj∑
i=1

(yij − ȳj)2 (6)

After substitution and some algebra, the F statistic for the one-way ANOVA
omnibus null hypothesis may be written in terms of SSB and SSW as follows,

F = (SSR − SSF)/(dfR − dfF )
SSF/dfF

= SSB/(a− 1)
SSW/(N − a) , (7)

where N is the total number of participants. If εij iid∼ N(0, σ2), the F statistic will follow an
F distribution with a− 1 numerator and N − a denominator degrees of freedom.

3.1 Data Demonstration

Consider a hypothetical experiment in which a total of N = 15 participants were
randomly assigned to three groups (two treatments and a control) with equal frequency
(i.e., n1 = n2 = n3 = 5). All participants were measured at baseline on a variable known to
be positively correlated with the outcome. The one-way ANOVA restricted model assigns
predicted values to participants based on the overall mean of the outcome variable,
regardless of group membership; whereas, the full model assigns a predicted value to each
participant based on their group mean. The left and right panels of Figure 2 depict the
data by group along with restricted and full models for the one-way ANOVA omnibus null
hypothesis along with dotted lines tracing residuals that contribute to SSR and SSF.

ANOVA results are often displayed in tabular form as in Table 2, which reveals that
SSB = 1890.1 and SSW = 3710.0. The mean squares of 945.1 and 309.8 represent,
respectively, the numerator and denominator of the F statistic. Their quotient is 3.06
which, when compared with an F distribution with 3− 1 = 2 numerator and 15− 3 = 12
denominator df yields a p value of 0.084.
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Figure 2 . ANOVA restricted (left panel) and full (right panel) model fits and residuals

Table 2
ANOVA output table; SS = sum of squares; MS = mean squares; df = degrees of freedom

Source SS df MS F p

Between 1890.1 2 945.1 3.06 0.084
Within 3710.0 12 309.8

3.2 Comparing Group Means

A rejection of the omnibus test null hypothesis signals that at least one of the
treatments had an effect, or, equivalently, that at least one pair of group means differ.
Questions about which group means differ and by how much may be addressed by
estimating and testing contrasts. A contrast is a linear combination of the group means
such that the coefficients add up to 0. That is, ψ is a contrast if it may be written as
follows,

ψ = c1µ1 + c2µ2 + · · ·+ caµa =
a∑
j=1

cjµj, (8)

where ∑j cj = 0. Sample group means may be substituted to obtain an estimate,

ψ̂ = c1ȳ1 + c2ȳ2 + · · ·+ caȳa =
a∑
j=1

cj ȳj, (9)

and null hypotheses of the form H0 : ψ = 0 may be tested by constructing an F statistic,

Fψ =
ψ̂2
/

a∑
j=1

(
cj
nj

)
MSW

. (10)

The statistic Fψ will follow an F distribution under the null hypothesis with 1 numerator
and dfF = N − a denominator degrees of freedom. Contrasts for pairwise comparisons of
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means for treatment groups A and B and the control group, along with estimates, F
statistics, and p-values, are given in Table 3. The estimated group mean differences of 19.4,
26.2, and 7.2 may be directly observed as vertical distances between prediction lines in the
full ANOVA model depicted in the right panel of Figure 2.

Table 3
Table of contrasts, estimates, F statistics, and adjusted p-values for pairwise comparisons
of group means

Comparison ψ ψ̂ F p

A vs. B 1µA − 1µB + 0µC 19.4 3.03 0.23
A vs. Control 1µA + 0µB − 1µC 26.6 5.71 0.08
B vs. Control 0µA + 1µB − 1µC 7.2 0.42 0.80

Note. p-values are adjusted via Tukey’s HSD for a family of
three pairwise comparisons.

4 Univariate ANCOVA

The one-way ANCOVA model extends ANOVA by adding one or more numeric
predictors (i.e., covariates). With a single covariate, Xij, the ANCOVA model may be
written as follows,

Yij = µ+ αj + β1Xij + εij. (11)

where β1 is the slope that quantifies the strength of the linear relationship between the
covariate, X, and the outcome, Y , and other parameters are defined as in Equation 3.

Table 4
Full and restricted models, parameters, and least-squares estimators for the one-way
ANCOVA omnibus test for a model with one covariate

ANCOVA Model Parameters Least-squares estimator
Full Yij = µ+ αj + β1Xij + εij µ

µ̂+ α̂j = ȳj − bW x̄jα1, α2, . . . , αa
β1 β̂1 = bW

Restricted Yij = µ+ β1Xij + εij µ µ̂ = ȳ − bT x̄
β1 β̂1 = bT

The least squares estimator for coefficient β1 under the restricted ANCOVA model,
bT , is referred to as the total or overall regression slope because it ignores group
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membership:

bT =

a∑
j=1

nj∑
i=1

(xij − x̄) (yij − ȳ)

a∑
j=1

nj∑
i=1

(xij − x̄)2
. (12)

The least squares estimator for β1 under the full ANCOVA model, bW , is referred to as the
pooled within-group regression slope because it estimates a single slope by pooling the
numerator and denominator components that would have contributed to the within-group
slopes had they been estimated separately3:

bW =

a∑
j=1

nj∑
i=1

(xij − x̄j) (yij − ȳj)

a∑
j=1

nj∑
i=1

(xij − x̄j)2
. (13)

As with the ANOVA model, the F statistic for testing the omnibus null hypothesis,
H0 : α1 = α2 = · · · = αj, under the ANCOVA model may be built up by making model
comparisons under the general linear F framework. In particular,

F =

SSB −

b2
T

a∑
j=1

nj∑
i=1

(xij − x̄)2 − b2
W

a∑
j=1

nj∑
i=1

(xij − x̄j)2

/(a− 1)SSW − b2
W

a∑
j=1

nj∑
i=1

(xij − x̄j)2

/(N − a− 1)
(14)

=
SSB(adj)

/
(a− 1)

SSW(adj)
/

(N − a− 1)
, (15)

where SSB(adj) and SSW(adj) are sums of squared residuals that have been adjusted for the
linear regression of the outcome on the baseline covariate. The value of SSB(adj) may be
larger or smaller than the unadjusted (ANOVA) value of SSB; however, when participants
are randomly assigned to groups, the value of SSB(adj) will, on average, be identical to the
unadjusted value of SSB.

In contrast, SSW(adj) will always be less than or equal to SSW due to the subtraction
of a non-negative term, which removes within-group variability due to the linear
relationship between the outcome, Y , and the covariate, X, from the residuals. The
stronger the linear relationship between X and Y within groups, the greater the reduction
in SSW(adj) relative to SSW. If the covariate and outcome have no linear relationship in the
sample, the value of b2

W will be zero, and the inclusion of the covariate will have no effect
on SSW. Note that the denominator df , N − a− 1, is decreased by one relative to ANOVA
because one additional parameter, β1, is included in the ANCOVA model.

3 See Wildt and Ahtola (1978) for derivations of bT and bW .
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4.1 Data Demonstration

The left and right panels of Figure 3 depict the restricted and full models for the
one-way ANCOVA omnibus null hypothesis along with dotted lines tracing residuals.
Though it may be difficult to discern from the plot, the slope of the regression line in the
left panel (bT = 3.51) is slightly less steep than the three identical regression slopes in the
right panel (bW = 3.71).

Figure 3 . ANCOVA restricted (left panel) and full (right panel) model fits and residuals

ANCOVA results are displayed in Table 5. It is of interest to compare results with
those of the ANOVA, shown in Table 2. Here we see that SSB(adj) = 1990.3 as compared
with SSB = 1890.1. That this value changed by a small amount, only about 5% here, is
expected because participants were randomly assigned to treatment groups and, therefore,
were well-balanced on the baseline covariate. The change in within-subject variation is
more drastic: SSW(adj) = 1969.4 as compared with SSW = 3710.0. This large reduction of
approximately 50% is also expected due to the strong positive linear relationship between
the covariate and the outcome, and can be seen graphically by noting that the residuals in
the right panel of Figure 3 (ANCOVA full model) are substantially smaller, on average,
than those in the right panel of Figure 2 (ANOVA full model).

The ANCOVA-based test of the omnibus null hypothesis (F(2, 11) = 5.56; p = 0.021)
produced a larger F statistic and smaller p-value than the ANOVA-based test (F(2, 12) =
3.06; p = 0.084), largely due to the reduction in SSW(adj) relative to SSW. That is,
accounting for the linear relationship between the covariate and the outcome carved away a
large portion of the variation that had previously contributed to the error variance.

4.2 Adjusted Group Means

Estimated group means under the ANCOVA full model are no longer equal to
observed sample group means; instead, they are conditional on the value of the covariate
(or covariates, if more than one are included).

E[Yij|xij] = µ̂+ α̂j + bWxij

= ȳj + bW (x̄j − xij) (16)
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Table 5
ANOVA output table for the ANCOVA model; SS = sum of squares; MS = mean squares;
df = degrees of freedom

Source SS df MS F p

Between (adjusted) 1990.3 2 995.2 5.56 0.021
Covariate 1740.6 1 1740.6 9.72 0.010
Within (adjusted) 1969.4 11 179.0

By conditioning on a single value of the covariate, ANCOVA allows us to assess what the
impact of each treatment would have been had all the groups been centered at the same
value on the covariate. For each group, j = 1, . . . , a, the adjusted group mean, ȳ′j, is defined
as the predicted mean of the outcome score given that the covariate is set to its overall
mean, x̄.

ȳ′j = E[Yij|xij = x̄] = ȳj + bW (x̄j − x̄) (17)

Pairwise differences in adjusted group means may be visualized as vertical distances
between regression lines in the right panel of Figure 3.

Table 6
Table of contrasts for pairwise comparisons of adjusted group means

Comparison ψ ψ̂ F p-value
A vs. B 1µA − 1µB + 0µC 15.4 3.22 0.216
A vs. Control 1µA + 0µB − 1µC 28.2 11.08 0.017
B vs. Control 0µA + 1µB − 1µC 12.9 2.21 0.335

Note. p-values are adjusted via Tukey’s HSD for a family of three
pairwise comparisons.

4.3 Covariate Balance, Overlap and ANCOVA Adjustment

A covariate is said to be balanced with respect to the treatment groups if it is
identically distributed across those groups. Covariate balance is expected in
well-implemented randomized experiments because random assignment renders all
covariates, X, statistically independent of the treatment assignment, T ; that is, X ⊥ T . In
non-randomized studies or when randomization becomes complicated by post-treatment
factors such as differential attrition, covariates may be systematically imbalanced4. When
an important baseline covariate is imbalanced, adjustment via ANCOVA may cause

4 While it is possible that a well-implemented randomized experiment may result in poor baseline covariate
balance due to an unlucky randomization, this becomes less and less likely as sample sizes increase. For
small to moderate samples, where chance imbalances are more likely, rerandomization (Morgan & Rubin,
2014; Zhou, Ernst, Morgan, Rubin, & Zhang, 2018) may be used to ensure a minimum level of balance is
achieved.
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unadjusted and adjusted group means and, hence, SSB(adj) and SSB, to differ
systematically. The direction of the difference depends on the severity of the imbalance and
the magnitudes of bT and bW ; see the numerator of Equation 14.

Figure 4 . A two-group experiment with baseline covariate balance (left panel) and
imbalance (right panel)

Consider the stylized diagrams in Figure 4. The data in the left-hand plot display
good covariate balance at baseline, as evidenced by overlapping ranges of covariate values
across groups and identical covariate group means (i.e., x̄1 = x̄2 = x̄). Despite the strong
positive linear relationship between the baseline covariate and the outcome, covariate
adjustment will make no systematic difference to the estimates of treatment effect in cases
of good balance; note that ȳ′2 − ȳ′1 = ȳ2 − ȳ1 in the left panel of Figure 4.

Data in the right-hand plot display covariate imbalance at baseline. If X and T were
truly independent, we would not expect such drastic lack of overlap in covariate values
across groups and differing covariate group means (i.e., x̄1 6= x̄2). In this case, the covariate
X appears to be a confounding variable because it is associated both with the group
assignment and with the outcome variable. If the assumed linear functional forms, as
specified in Equation 11, are correct, estimates based on the adjusted means will remove
confounding bias due to the covariate from effect estimates; note that ȳ′2 − ȳ′1 < ȳ2 − ȳ1.
The trouble is that when covariate imbalance leads to lack of covariate overlap,
assumptions about correct model specification must be made based on extrapolation (i.e.,
in the absence of data), which is not advised.

Although lack of overlap is easy to spot when controlling for only one covariate, it is
more difficult to visualize as more covariates are included. One solution is to estimate the
propensity score, which serves as a unidimensional balance proxy for the full set of
observed covariates (Rosenbaum & Rubin, 1983). There are a number of resources that
provide guidance on best practices for the use of propensity scores for checking overlap
(see, e.g., Keller & Tipton, 2016; Schafer & Kang, 2008; and Steiner & Cook, 2013).

4.4 Assumptions and Limitations

The assumptions required for valid statistical inference in ANCOVA may be
summarized succinctly by the statement, εij iid∼ N(0, σ2).
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1. Errors are statistically independent. That is, after accounting for the variation
explained by the covariates and by group membership, residual variations are
assumed to be independent. This assumption could be violated if, for example,
participants were repeatedly measured. In that case, each participant’s set of
measurements would likely be more highly correlated with one another than with
those of other participants, even after controlling for fixed effects in the model. It is
typically not possible to test the independence assumption with data; instead, logical
arguments based on how the data were collected must be made to defend it.

2. Errors are normally distributed with mean 0 and constant variance. For any
combination of covariate values and/or group indicators, outcome data are assumed
to have been generated from identical normal distributions, each with mean 0 and
constant variance, σ2.

(a) Linearity. The assumption of zero conditional mean implies that the functional
form given in Equation 11 is correctly specified. This can go wrong if the true
relationship between the covariate and the outcome is nonlinear or if there is
effect modification (i.e., the magnitudes and/or directions of treatment effects
vary with the values of a covariate).

(b) Constant variance. When group sizes are equal, or nearly so, ANCOVA-based
tests are generally robust to violations of the constant variance assumption. For
unbalanced group size pairings, however, heterogeneous variances may cause
problematic departures from expected type I error rates. The
Welch-Satterthwaite correction is recommended for such cases because it
maintains nominal type I error rates in the face of group variance heterogeneity
and still is quite powerful relative to alternatives (Tomarken & Serlin, 1986).

(c) Normal distribution. The ANCOVA omnibus null hypothesis test is somewhat
robust to non-normally distributed residuals, in particular as sample sizes grow
larger. Violation of the distributional assumption may invalidate the nominal
type I error rate for smaller samples, especially when coupled with unbalanced
group sizes.

When verifying the tenability of the latter three assumptions with data, we
recommend using a multifaceted approach that includes graphical exploration, estimation
of relevant effect sizes, and the use of hypothesis tests. Other issues such as
multicollinearity and influential observations can have an impact on the stability of results.
For more detailed discussions on checking assumptions see, e.g., Keppel and Wickens
(2004), Huitema (2011), Maxwell et al. (2018), and Fox (2008).

5 Multivariate ANOVA

Multivariate analysis of variance (MANOVA) is a generalization of ANOVA to
multiple dependent variables (DVs). Paralleling Equation 3, the MANOVA model is:

Yij = µ+αj + εij, i = 1, . . . , nj, j = 1, . . . , a, (18)
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where each term is now a p-dimensional vector, and the errors εij are assumed to be
independent multivariate normal Np (0,Σ) variables. As in the univariate case, the
treatment effects may be parameterized to satisfy ∑a

j=1αj = 0. Note that each component
of the observed vector Yij satisfies the univariate model 3 and that the error components
are correlated, but the overall covariance matrix Σ is the same for all groups.

The overall omnibus null hypothesis to be tested is that the vector of treatment
effects for each outcome variable is identical across all groups:

H0 : α1 = α2 = · · · = αa = 0.

Furthermore, the decomposition in Equation 5 still holds in its multivariate version:

(yij − ȳ) = (ȳj − ȳ) + (yij − ȳ). (19)

Since each term in Equation 19 is a vector, it can’t simply be squared; instead outer
products are used, and the resulting equation consists of matrices of sums of squares and
cross products (SSCP):

SSCPT; total (corrected) = SSCPB; between + SSCPW; within
a∑
j=1

nj∑
i=1

(yij − ȳ) (yij − ȳ)′ =
a∑
j=1

nj (ȳj − ȳ) (ȳj − ȳ)′ +
a∑
j=1

nj∑
i=1

(yij − ȳj) (yij − ȳj)′ (20)

The following matrices are multivariate analogues to SSB and SSW:

B =
a∑
j=1

nj (ȳj − ȳ) (ȳj − ȳ)′ (21)

W =
a∑
j=1

nj∑
i=1

(yij − ȳj) (yij − ȳj)′ (22)

In the univariate case the sum of squares SSB and SSW are independently distributed with
χ2 distributions, and in the multivariate case B and W have independent Wishart
distributions.

To test the overall omnibus null hypothesis, a measure of how large the matrices B
and W are is needed. There is no unique way to extend the F -test from Equation 7 to the
multivariate case. Different researchers have proposed different multivariate analogies to
the F -statistic. One of the most commonly used is Wilks’ (1932) Lambda statistic:

Λ = det(W )
det(B +W ) (23)

As Wilks’ Λ is a ratio of the determinants of two Wishart distributed matrices, exact
results for its distribution are not available in general, but there exist relationships to the
F distribution for some special cases of p and a, or an asymptotic χ2 approximation due to
Bartlett (1938). Essentially, Wilks’ Λ arises from the likelihood ratio principle and so does
its asymptotic behavior. Note that more separation among the groups will drive the W
matrix closer to 0; therefore, H0 is rejected for small values of Λ. Wilks’ Λ can also be
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written using the eigenvalues λ1, . . . , λr of the matrix W−1B, where r = rank(B) as:

Λ =
r∏
i=1

1
1 + λi

(24)

As groups become more separated, W becomes closer to being a singular matrix, so the
eigenvalues grow larger. Other approaches for testing H0 due to Pillai, Lawley-Hotelling
and Roy are all based on the same eigenvalues but use them in a different way. For
example, Pillai’s trace statistic is defined as

V = tr((W +B)−1B) =
r∑
i=1

λi
1 + λi

, (25)

and H0 is rejected for large values of V . For very large samples, all four criteria are
indistinguishable. For small to moderate sample sizes, some simulation-based evidence
suggests that Pillai’s trace is more robust to non-normality (Johnson & Wichern, 2007,
p. 336).

If the multivariate omnibus null hypothesis is rejected, it is typically of interest to
know which variables contributed to the rejection of the null hypothesis and which did not.
Rencher and Christensen (2012, p. 195) argue that follow-up univariate ANOVA F -tests do
not change the overall nominal significance level, provided that they are performed only
after rejection of the MANOVA null hypothesis. However, this does not mean that these
univariate F -tests might not suffer from inflated Type II error rates (i.e., lack of power).

This is illustrated in Figure 5, where the true population distribution is a bivariate
normal with mean (0, 0), variances equal to 2 and 1, and a covariance equal to 1, which
results in a high correlation of

√
2/2 ≈ 0.71. This can be thought of as the distribution of

the difference between two groups, which under the null hypothesis should have mean (0,
0). The outermost red ellipse corresponds to the 95% contour of the distribution, which
demarcates the acceptance and rejection regions for the multivariate null hypothesis. The
shaded rectangular area is the Cartesian product of the acceptance regions of the two
univariate tests.

The dot represents a potential sample with mean (2,−1), which is not an unusual
data point if looking at each variable separately, as shown by the fact that the point is
inside the rectangle corresponding to the Bonferroni adjusted simultaneous 95% CIs for the
univariate tests. Such data would result in rejection of the multivariate hypothesis because
under the null hypothesis it is very unlikely to observe data with a large positive Y1 mean
together with a negative Y2 mean. However, neither of the follow-up univariate hypotheses
would be rejected.

6 Multivariate ANCOVA

Multivariate analysis of covariance (MANCOVA) is a combination of the MANOVA
model with a multivariate regression model with one or more predictors. The inclusion of
these covariates leads to noise reduction in the sense that the variance associated with the
covariates is removed from the error variance, thus providing a more powerful test for the
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Figure 5 . A bivariate normal distribution with correlation 0.71. The area outside the red
ellipse represents the rejection region for the multivariate omnibus null hypothesis test.
The area outside the shaded rectangle represents the Bonferroni-corrected rejection region
for (either of the two) univariate omnibus null hypothesis tests. For the sample mean
vector ȳ, the multivariate test rejects while the univariate tests do not. Neither y1 = 2 nor
y2 = −1 is an unlikely observation when taken alone; however, given the correlation
between Y1 and Y2, they are quite unlikely to have been observed together.

difference between the groups. The model with a single covariate may be written as follows,

Yij = µ+αj + β1xi + εij, i = 1, . . . , nj, j = 1, . . . , a, (26)

where each term is a p× 1 vector. The general case is easier to write in matrix notation,

Y
n×p

= Z
n×a

α
a×p

+ X
n×b

β
b×p

+ E
n×p

(27)

where Z is the MANOVA design matrix, and X is the multivariate regression matrix
containing b covariates. The estimates of the coefficients are produced via standard
multivariate regression formulas (see, e.g. Timm, 2002, p. 226). For example, using the
generalized inverse matrix (Z ′Z)− for the case when the MANOVA is overparametrized5,
we have:

α̂ = (Z ′Z)−Z ′(Y −Xβ̂) (28)

Observe that this estimate of the group effects is adjusted by the residual from a regression
on the covariates.

5 Following Timm (2002), we use the superscript − to denote the generalized inverse.
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To test hypotheses about the treatment effects, α, the standard approach is to obtain
the “within” matrix (now called the residual matrix) Wfull from the full model in Equation
27 and the residual matrix Wreduced from the model under the null hypothesis, and then
proceed the same way as in the MANOVA hypothesis, using the eigenvalues of
W−1

full (Wfull −Wreduced). To summarize, the MANCOVA test enjoys the benefits of both
MANOVA (i.e., increased power for rejecting the omnibus test with correlated outcomes)
and ANCOVA (i.e., reduction of within-groups error terms via regression).

6.1 Assumptions and Limitations

Significance tests for MANOVA, MANCOVA, and many other multivariate statistical
analyses are based on the assumption that the data are multivariate normal. More
specifically, the error matrix E in Equation 27 is assumed to contain on each row
independent vectors which are distributed Np(0,Σ).

1. Row vectors are independent. This assumption is analogous to the univariate case
with exception that the observations associated with the same participant are
assumed to be correlated as specified in Σ.

2. Error vectors are multivariate normal with zero mean vector and constant covariance
matrix.

(a) Linearity. In line with the univariate case, the relationships between covariates
and outcome variables are assumed to be correctly specified.

(b) Constant covariance matrix. The assumption that each error vector is
distributed Np(0,Σ) implies identical covariance matrices. This assumption is
the multivariate analogue to the univariate assumption of constant variance.
The assumption may be tested with Box’s M test, though the test is sensitive to
violations of other assumptions such as multivariate normality.

(c) Multivariate normal distribution. Multivariate normality implies that each
outcome variable must be normally distributed, which can be tested with a
number of tests such as Shapiro-Wilks, Anderson-Darling or
Kolmogorov-Smirnov, as well as graphs such as a Q-Q plot. However,
multivariate normality is a stronger assumption than individual univariate
normality, and there are multivariate tests available in many software packages
such as Mardia’s test and the Cox-Small test. Mardia (1971) argues that
reasonably large sample sizes in each group ensure robustness and mitigates the
need for extensive testing, though Rencher and Christensen (2012, p. 210)
suggest checking for gross violations.

MANOVA and MANCOVA procedures are sensitive to outliers. Thus, it is
recommended that tests for outliers are performed with any MANOVA and MANCOVA
analysis. For more discussion of assumptions and their implications see, e.g., Rencher and
Christensen (2012), Johnson and Wichern (2007) and Tabachnick and Fidell (2013).
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6.2 Data Demonstration

Woodworth, O’Brien-Malone, Diamond, and Schüz (2017) replicated a randomized
efficacy study of three web-based positive psychology interventions and a control condition,
and Woodworth, O’Brien-Malone, Diamond, and Schüz (2018) made the data publicly
available. Participants assigned to the gratitude condition were asked to send a letter of
gratitude to someone deserving in their life. Participants assigned to the three good things
condition were asked to write down three good things that happened each day for a week.
Participants assigned to the signature strengths condition completed a survey to assess
character strengths and were asked to use one of their top five strengths each day for a
week. Participants in the comparison group were asked to write about early memories each
day for a week.

Figure 6 . Pretest and posttest scores on two dependent variables for the data
demonstration; note the lack of balance across intervention group means at baseline

Of interest is the effect of the intervention type (a = 4 groups) on the depression and
happiness index scores (p = 2 DVs, correlated at -0.76). For this analysis we focus on the
147 participants who completed baseline and posttest measures. Neither Wilks nor Pillai
MANOVA omnibus tests are significant (p = 0.28). A follow-up analysis with univariate
F -tests on each of the DVs separately agrees with this result. Running a MANCOVA,
controlling for baseline scores as covariates, also results in a nonsignificant omnibus test
result (p = 0.45) via both Wilks and Pillai. The error matrices for the MANOVA and
MANCOVA are:

WMANOV A =
(

17736.79 −15240.07
−15240.07 22637.71

)
, WMANCOV A =

(
8458.66 −5233.99
−5233.99 7714.14

)

As expected, adjusting for baseline scores reduced important components of the error
variance matrix. It is instructive to note that det(WMANCOV A) = 3.8× 107 is 4.5 times
smaller than det(WMANOV A) = 1.7× 108. A similar comparison of the “Between” matrices
(for formulas see Timm, 2002, p. 227), yields

BMANOV A =
(

724.04 −525.16
−525.16 481.89

)
, BMANCOV A =

(
216.39 −23.68
−23.68 18.7

)

In general, for randomized experiments, we do not expect to see large differences in
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the MANOVA and MANCOVA covariate-adjusted between matrices. In this example,
however, the determinant of the between matrix decreased by a factor of almost 21. The
explanation for this large reduction in the magnitudes of the components of the between
matrix is the lack of baseline balance in the analytic sample, perhaps due to
post-randomization attrition. MANOVA fails to account for the baseline differences and
attributes all outcome variation to the treatment. Whereas, with MANCOVA, the baseline
variation in outcomes across treatments is accounted for and, thus, det(B) is substantially
smaller. Note that we use these data to demonstrate the mechanics of the multivariate
procedures. We have skipped over important details such as the verification of the
tenability of assumptions and the reporting of and interpretation of results in context that
should not be neglected in practice.

7 Discussion

Random assignment leads to covariate balance, which renders both ANOVA and
ANCOVA-based estimators of effects unbiased (see the left panel of Figure 4). The purpose
of making ANCOVA adjustments with randomized experimental data is to reduce error
variance, which leads to more precise estimates and more powerful tests. With
observational data, ANCOVA may still be useful in reducing error variance, but it also is
used for another purpose: to reduce bias due to confounding covariates.

The ANCOVA and MANCOVA models, as described in Equations 11 and 26, require
(a) that relationships between covariates and outcomes are linear and (b) that treatment
effects are constant across all covariate values. If either of these assumptions is violated,
estimates based on adjusted means are no longer valid. Furthermore, because extrapolation
is required when covariate imbalance leads to lack of overlap, the validity of the estimates
may be quite sensitive to functional form misspecifications with observational data.

That said, some empirical evidence suggests that in some cases the basic ANCOVA
model can perform quite well with respect to bias reduction with observational data
(Shadish, Clark, & Steiner, 2008); however, simulation evidence suggests that when
functional form assumptions are violated, performance may be substantially improved by
allowing for more flexible modeling, for example, by including covariate by treatment
interaction terms to handle non-constant treatment effects (Schafer & Kang, 2008).

There is a rich and expanding literature on alternatives to ANCOVA for effect
estimation in observational study settings in the causal inference literature; some of these
approaches are reviewed in Schafer and Kang (2008). In recent years, a number of machine
learning alternatives to ANCOVA for causal effect estimation with observational data have
been proposed. These newer methods lack the simplicity and interpretability of ANCOVA
but benefit from algorithmic handling of nonlinearities and interactions in their naive
implementations. Bayesian additive regression trees (Hill, Weiss, & Zhai, 2011) and
targeted maximum likelihood estimation (TMLE; van der Laan & Gruber, 2010) are two
examples that have performed well in data competitions (Dorie, Hill, Shalit, Scott, &
Cervone, 2019). Furthermore, a number of new methods have been proposed for explicitly
detecting and estimating causal effects in the presence of treatment effect heterogeneity. A
special issue in the journal Observational Studies (Volume 5, Issue 2, 2019) is devoted to
the topic.

Our focus here has been on one-way (i.e., single-factor) models for ANCOVA and
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MANCOVA. Of course, it may be of interest to adjust for covariates in experimental
contexts involving two or more factors and their interactions. It poses no problem to
extend to multifactor studies, and a number of texts provide relevant test statistics and
formulas for adjusted cell means in the univariate case (e.g., Neter et al., 1990; Kirk, 1982).
In the multivariate case, one would need to alter the MANOVA design matrix, i.e., Z in
Equation 26, to include the appropriate deviation-coded variables; see Timm (2002, p. 246)
for details.

Finally, after a rejection of the MANCOVA omnibus null hypothesis, as in the
multivariate data demonstration given above, univariate ANCOVA F tests are not the only
options for following up to better understand what contributed to the rejection. Instead,
for example, one might choose to search for the linear combination of outcome variables
that lead to the best separation among treatment groups. This approach, called
discriminant analysis, is beyond the scope of this chapter but is covered in the multivariate
texts referenced herein.
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