
389

18
Multilevel Analysis of Assessment Data

Jee-Seon Kim
University of Wisconsin-Madison

Carolyn J. Anderson
University of Illinois at Urbana-Champaign

Bryan Keller
Teachers College, Columbia University

Contents

Introduction.......................................................................................................... 390
Data ....................................................................................................................... 391

PIRLS................................................................................................................. 391
Plausible Value Outcomes.............................................................................. 392
Predictors.......................................................................................................... 394
Exploratory Data Analysis............................................................................. 394
Missing Data....................................................................................................400
Multiple Imputation.......................................................................................400

Multilevel Modeling............................................................................................405
Presentation of the Model..............................................................................405
Empty Model................................................................................................... 407
Modeling Strategy...........................................................................................408
Model Specification and Comparison..........................................................409
R2-Type Measures for Explained Variance.................................................. 412
Incorporating Design Weights....................................................................... 414
Model Diagnostics........................................................................................... 416
Interpretation of Results................................................................................. 418

Discussion............................................................................................................. 419
Other Multilevel Models................................................................................ 419
Current and Future Research in Multilevel Analysis................................420

Acknowledgment................................................................................................. 421
References..............................................................................................................422

© 2014 by Taylor & Francis Group, LLC



390 Handbook of International Large-Scale Assessment

Introduction

Large-scale assessment data often exhibit a multilevel structure as a result 
of either sampling procedures, such as stratified sampling, or contextual 
factors, such as school settings where students are nested within schools, 
or cross-cultural settings where individuals are nested within countries. 
Observations within a cluster are likely to be correlated with one another 
and their dependency should be accounted for in the data analysis to per-
mit valid statistical inferences. Moreover, relationships among variables may 
vary within clusters allowing for more detailed and informative study of 
contextual effects and their correlates.

The notion of clustered data and related issues of dependence are not 
new and have been studied for a long time. For example, the concept of a 
design effect was already used in 1965 by Kish as a required adjustment to 
account for correlations among observations within clusters in random-
ized trials. However, major advances in multilevel analysis have been made 
during the past couple of decades, and more recently, the methodology has 
become increasingly popular across disciplines owing to increased comput-
ing power and the subsequent emergence of user-friendly software. There 
now exist several software packages developed specifically for multilevel 
models, including HLM, MLwiN, and SuperMix (intermixture of MIXOR, 
MIXREG, MIXNO, and MIXPREG), as well as modules available for multi-
level analysis in several general-purpose software packages, such as lme4 
and nlme in R, MIXED, NLMIXED, and GLIMMIX in SAS, and xtreg and 
GLLAMM in STATA. Links to multilevel modeling software are available 
at the Centre for Multilevel Modelling website (www.bristol.ac.uk/cmm/learn-
ing/mmsoftware/). Other general statistical programs that enable some 
form of multilevel modeling include WinBUGS, Latent Gold, and Mplus. 
Although software for multilevel analysis may not be difficult to use for 
most researchers and practitioners with basic computer skills and funda-
mental knowledge of regression, the implementation of the methodology 
with real data is not always straightforward due to the intrinsic complexity 
of multilevel models and the complicated structures often present in mul-
tilevel data. Many national or international datasets are also observational 
or quasi-experimental, have sampling weights for primary and secondary 
sampling units, and/or may include missing data across levels.

This chapter demonstrates a multilevel analysis of large-scale assessment 
data using reading achievement scores and related variables from the 2006 
Progress in International Reading Literacy Study (PIRLS) within the United 
States (Martin et al., 2007). Often a goal of research using such datasets is 
to study factors that potentially impact reading literacy and related issues. 
Initially, we examine descriptive statistics at each level. We then consider a 
multilevel model specification for the data, along with associated assump-
tions, diagnostics, and interpretation. We also address the presence of 
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391Multilevel Analysis of Assessment Data

sampling weights across levels and the need to impute missing data at dif-
ferent levels.

The next section explains the PIRLS 2006 data used for this analysis and 
describes the variables of interest. Such examinations reflect exploratory 
data analysis (EDA) and can be conducted in various ways, for example, by 
inspecting distributions and/or patterns across variables and visualizing 
relationships among them. This step is critical to understand the data and 
also to check whether the planned modeling technique appears appropri-
ate. Subsequent sections discuss steps in applying and evaluating multilevel 
models with large-scale data. The chapter concludes by presenting some 
advanced topics and remaining methodological issues in multilevel mod-
eling, suggesting further readings, and cross-referencing other chapters in 
this volume for specific topics such as nonlinear multilevel models for dis-
crete data, imputing multilevel missing data, and making causal inferences 
based on large-scale assessment data.

Data

PIRLS

PIRLS is an international comparative study of the reading literacy of young 
students. It focuses on the reading achievement and reading behaviors and 
attitudes of fourth-grade students in the United States and students in the 
equivalent of fourth grade across other participating countries. PIRLS was 
first administered in 2001 and included 35 countries, but expanded to 40 
countries in 2006. The assessment includes a written test of reading com-
prehension and a series of questionnaires focusing on the factors associ-
ated with the development of reading literacy. PIRLS is coordinated by the 
International Association for the Evaluation of Educational Achievement.

In PIRLS, two types of reading are assumed that account for most of the 
reading young students do: reading for literary experience and reading to 
acquire and use information. In the assessment, narrative fiction is used to 
assess students’ abilities to read for literary experience, while a variety of 
informational texts are used to assess students’ abilities to acquire and use 
information while reading. The PIRLS assessment contains an equal propor-
tion of texts related to each purpose.

The multilevel analysis in this chapter is illustrated using PIRLS 2006 data 
only from the United States. The data are from a two-stage cluster sample 
with sampling probability weights. In 2006, a nationally representative sam-
ple of fourth-grade students was selected resulting in 5190 students from 
183 schools. Schools were randomly selected first, and then one or two class-
rooms were randomly selected within each school. Although some schools 
have students from two classrooms, most schools have only one classroom 
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392 Handbook of International Large-Scale Assessment

in the study, and we therefore treated the data as consisting of two levels: 
students within schools. The number of students per school ranges from 8 
to 68 with an average equal to 28. Data from both the fourth-grade student 
questionnaire and the school questionnaire are used.

Plausible Value Outcomes

In PIRLS 2006, students were asked to engage in a full repertoire of read-
ing skills and strategies, including retrieving and focusing on specific ideas, 
making simple to more complex inferences, and examining and evaluating 
text features. To provide good coverage of each skill domain, the test items 
required a total of 5 h and 20 min of testing time. However, testing time was 
kept to 1 h and 20 min for each student by clustering items in blocks and 
randomly rotating the blocks of items through the nine student test booklets. 
As a consequence, no student received all items but each item was answered 
by a randomly equivalent sample of students.

The matrix-sampling design used in PIRLS 2006 solicits relatively few 
responses from each sampled student while maintaining a wide range of 
content representation when responses are aggregated across all students. 
In such designs, the advantage of estimating population characteristics effi-
ciently comes at the cost of an inability to make precise statements about 
individuals. More significantly, the amount of uncertainty may be different 
for different individuals. The uncertainty associated with individual profi-
ciency estimates becomes too large to be ignored and a simple aggregation 
of individual student scores can lead to seriously biased estimates of popula-
tion characteristics (Wingersky et al. 1987).

To address this issue, a plausible values methodology by Mislevy (1991) was 
implemented in the current analysis to represent the measured reading 
proficiency of each student. In short, the method uses all available data 
to estimate the characteristics of student populations and subpopulations 
and uses multiply imputed scores, called plausible values, to account for the 
uncertainty. The PIRLS 2006 data consists of five plausible values represent-
ing an overall reading score for each student. We refer to them as reading­
PVl to readingPV5 in this chapter. All five plausible values were used as 
outcomes in our analysis. We explain in the section “Multiple Imputation” 
how results from the five analyses are combined. The distributions of the 
five plausible values are shown in Figure 18.1. The five empirical distri-
butions suggest that the normality assumption appears reasonable. The 
figure also shows that, although plausible values fluctuate within persons 
(e.g., five values for a subject were 525.22, 603.41, 591.00, 621.33, and 583.37), 
the means and standard deviations of the five distributions across persons 
are very close to each other, as well as their general distributional form, as 
one would expect given their generation from the same distributions.
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Figure 18.1
Histograms of plausible values 1 through 5 with sample means and standard deviations for the 
five reading plausible value scores.
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394 Handbook of International Large-Scale Assessment

Predictors

Background questionnaires were administered to collect information about 
student home and school experiences in learning to read. A student ques-
tionnaire addressed student attitudes toward reading and their reading hab-
its. In addition, questionnaires were given to students’ teachers and school 
principals to gather information about school experiences in developing 
reading literacy. In countries other than the United States, a parent question-
naire was also administered.

Along with the outcome variables, a number of explanatory variables were 
selected from both the student and school levels, as they are hypothesized 
to affect or be related to reading performance. Basic summary statistics are 
shown in Table 18.1. In the table, the means and standard deviations for 
subgroups (e.g., female vs. male) were calculated for readingPVl to read­
ingPV5 separately and then averaged. The differences of the statistics across 
the five plausible values are not reported here as the outcome distributions 
are very similar across plausible values, as shown in Figure 18.1, and the 
group means and standard deviations were also stable across the five out-
come variables. For example, the means of readingPVl to readingPV5 
for females (n = 2582) were 541.42, 541.99, 541.54, 541.29, and 542.45. If the 
descriptive statistics were substantially different across the plausible values, 
we would have reported the variability across the plausible values.

Exploratory Data Analysis

EDA is an important part of data analysis. In this section, we describe and 
illustrate various graphical methods that are especially useful for multilevel 
analysis. The particular figures drawn depend on the nature of the predictor 
variables.

We start by examining the relationship between reading scores and possible 
microlevel predictor variables. If predictors are numerical (continuous), a plot 
of student data where each cell of the panel contains a plot of the response 
variable by a predictor variable can be very informative. Linear (alternatively  
quadratic, cubic, or spline) regression curves fit to each school’s data can be 
overlaid in each cell of the panel.* Features to look for in such plots are the 
nature of the relationship between the predictor and response (e.g., Does a lin-
ear relationship seem reasonable? Is the relationship positive, negative, or non-
existent? Is the relationship basically the same for all schools?); the variability 
of the data for each school; and anything anomalous (e.g., Is a predictor that 
was thought to be numerical actually discrete? Is there a school that is very 
different from all the others? Are there outliers in the response or predictor 
variable?). Information about similarities and differences between schools can 
often be better seen by overlaying the school regression lines in a single figure.

*	 If there are a large number of clusters, a random sample of groups can be used.
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395Multilevel Analysis of Assessment Data

Table 18.1

Information about Explanatory Variables

Variable Levels
Percentage 

(%) Mean Std Dev

Level-1 Variables (N = 5190 Students)
female Female

Male




49.78 541.74 70.59
531.51 76.46

enjoyreading Disagreea lot
Disagree a little
Agree a little
Agree a lot











11.50 504.42 67.86
9.72 516.51 68.79
24.95 536.77 68.53
53.83 549.30 74.26

bornUS Student born in US
Student not born in US







92.12 540.71 72.29
507.24 75.04

mombornUS Mother born in US
Mother not born in US
Don’t know









67.57 546.42 71.65
21.55 523.46 72.92
10.88 515.62 72.54

dadbornUS Father born in US
Father not born in US
Don’t know









62.67 547.84 71.41
21.82 524.17 72.59
15.51 518.24 73.14

home25books 25or more books at home
Less than 25 books at home







64.50 552.01 72.09
517.22 67.46

watchTV5H Watch TV 5+ h on normal school day
Watch TV <5 h on normal schoool day







28.37 513.14 70.16
549.51 71.67

comgames5H Play computer/video games 5+ h/day
Play computer/video games  <5 h/day







30.29 513.12 69.39
550.79 71.49

Level-2 Variables (M = 183 Schools)

econDisadv >50% economically disadvantaged
26 50% economically disadvan− ttaged
11 25% economically disadvantaged
<10% economically d

−
iisadvantaged











41.67 511.99 71.88
23.33 542.29 72.07
10.00 557.84 68.39
25.00 567.05 65.61

schoolLIB School has a library
School does not have library







98.29 537.89 73.60

504.45 56.65

Note:	 Values are based on nonmissing data. Mean and standard deviation are based on the 
averages across the reading plausible values.
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396 Handbook of International Large-Scale Assessment

In our PIRLS example, all the predictors are discrete; therefore, we did 
not plot individual student data separately for each school. In Figure 18.2, 
we plot the school mean reading scores for each level of a predictor variable 
and connect the means within school by lines. The same pattern is found for 
each of the five plausible reading scores; therefore, we only present the figure 
for one of the plausible values, readingPVl. With the exception of the mul-
ticategory variables (enjoyreading, mombornUS, and dadbornUS), these 
lines correspond to straight lines. What is apparent in the figure is that there 
is considerable vertical spread among schools and this suggests that school 
regressions will have different intercepts. Also noticeable is the fact that 
some predictors have schools with vastly different slopes. For example, the 
slopes for bornUS are both negative and positive, and they show great vari-
ability among schools. Also important to note is that most students were 
born in the United States. The regression coefficient for bornUS is likely 
to be unstable because of the small proportion of students who were not 
born in the United States. The slopes for hours per day playing video games 
(i.e., compgames5H) also show considerable variability; whereas, the lines 
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Figure 18.2
Panel plot of school mean reading scores plotted by each predictor variable where lines are 
connecting school means.
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397Multilevel Analysis of Assessment Data

for gender are basically flat, which suggests that gender may not be a good 
predictor of reading scores. Since the means for both levels of compgames5 
(more or less than 5 h per day) are based on a relatively large number of 
students, the model fit to the data may require different slopes for comp­
games5H for each school.

Another feature of the data that can be seen in Figure 18.2 is that all the 
predictors should be treated as discrete even if they have three or more cat-
egories. For example, the relationships between reading scores and mom­
bornUS, dadbornUS, and enjoyreading are not linear. Also from Figure 
18.2, we can get a sense of the general direction of the relationship. Reading 
scores on average are shown to be higher for girls, larger values of enjoyment 
of reading, more books in the home, fewer hours playing video games, fewer 
hours watching TV, students born in the United States, and students whose 
mothers and fathers were born in the United States. To see the direction of the 
relationship more clearly, in Figure 18.3, the means taken over all schools and 
plausible values are plotted by each predictor variable, also shown in Table 
18.1. Although the data are clustered, these means are unbiased estimates of 
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Figure 18.3
Panel plot of marginal mean reading scores by each predictor variable.
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the effects of each predictor on the response (Diggle et al. 1994; Verbeke and 
Molenberghs 2000). In the models, the (fixed) regression parameters that are 
the same for all schools (and the average school) are expected to be in the 
same direction as the means illustrated in the figure.

Figures 18.1 and 18.2 focused only on effects at the level of the student. In 
the next figure, we illustrate how effects at the school level can be examined. 
In Figure 18.4, the mean reading scores are plotted for boys and girls at each 
level of econDisadv.* The lines for econDisadv are parallel and suggest 
there is no interaction between gender and econDisadv; however, the ver-
tical spread between the level of economically disadvantaged students at a 
school suggests that this predictor may help account for differences between 
school intercepts. The schools with the lowest percentage of economically 
disadvantaged families (top curve, <10%) have the highest mean reading 
scores, followed by levels of 11–25% and 26–50%, while the lowest reading 
scores are for schools where >50% of families are disadvantaged.

As a final form of EDA, we fit normal least squares regression models with 
only the student (micro)-level predictor variables to each school’s data. Since 
the intercept and regression coefficients are school specific, these regressions 
represent the best possible model fit for the data where goodness of fit can 

*	 If a school-level predictor is continuous, a figure similar to Figure 18.4 can be created by 
discretizing the predictor and computing means for the artificial levels. However, when the 
time to model the data comes, the predictor should be treated as a continuous variable.
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Figure 18.4
Mean reading scores plotted by gender with different lines (means) for different school per-
centages of students from economically disadvantaged families.
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399Multilevel Analysis of Assessment Data

be measured by multiple R2. Since schools with smaller numbers of students 
will tend to be fit better by the model than schools with larger numbers of 
students, the multiple R2s for each school are plotted against school sample 
size. For our PIRLS data, these are plotted in Figure 18.5. Most of the schools’ 
multiple R2s are between .30 and .90, indicating that this set of student-level 
predictors could lead to a good level 1 or student-specific model for the data.

As a global summary statistic, we also computed meta-R2 as

	

meta-

SSTOT SSE

SSTOT

2R =

−
=

=

∑

∑

( )j j

j

M

j

j

M
1

1

where SSTOTj and SSEj are the total sum of squares and the error sum of 
squares, respectively, for school j (Verbeke and Molenberghs 2000). Meta-R2 
measures the proportion of total within-school variability that can be 
explained by linear regression. For our PIRLS data, meta-R2 equals .49. Both 
the R2 and meta-R2 can be used to compare plausible, student-specific mod-
els for the data.

Other exploratory analyses are possible that focus on the random aspects 
of the data and measure how well alternative models may fit the data (e.g., 
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Figure 18.5
Multiple R2s from linear regressions fit to each school’s data plotted against school size with 
meta-R2 indicated by the horizontal line.
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400 Handbook of International Large-Scale Assessment

see Diggle et  al. 1994; Verbeke and Molenberghs 2000); however, a better 
understanding of multilevel modeling is required to explain such analyses. 
Therefore, we forgo these in favor of presenting more about the basic models 
and their properties. While conducting our EDA, we noticed that there are 
missing values on both student and school predictors. In the next section, we 
discuss how we dealt with missing data.

Missing Data

Although the percentages of missingness are not alarmingly high for many 
variables in PIRLS, most variables have missing values, as is often the case in 
large-scale assessment data. The patterns and percentages of missingness at the 
student and school levels are summarized in Tables 18.2 and 18.3. Each row rep-
resents a pattern of missing data where an “X” indicates that the column vari-
able does not have missing values and “.” indicates that the variable has missing 
values. The last two columns give the frequency and percentages with which 
each of the row patterns occur. The variables are ordered from those with the 
least missingness to those with the most missingness. For example, female has 
the least missing with three missing values (0.06%) while comgames5H has the 
most missing with 265 missing values (5.11%) at the student level. Among the 
5190 students and 183 schools, 4570 (88.05%) students and 173 (94.54%) schools 
have no missing values. All of the variables in Table 18.1 as well as the five read-
ing plausible values were used for imputing missing predictor values.

Multiple Imputation

Missing data are a major problem in most large-scale datasets and the clus-
tered structure of multilevel data adds another layer of complexity to the treat-
ment of missing observations. Simply removing students or whole schools due 
to missing data is not only a waste of information but also can result in biased 
parameter estimates (Allison 2002; Enders 2010; Schafer 1997; Van Buuren 2011, 
2012). The program Mplus (Muthén and Muthén 2010) can fit models using 
maximum likelihood estimation (MLE) with missing values on the response 
variable, but MLE cannot handle missing data for the predictor or explana-
tory variables. A multiple imputation approach can impute missing response 
and predictor variables. The missing data mechanism we assume is missing 
at random (MAR), which implies that conditional on the observed data, the 
missing values are independent of the unobserved data or, in other words, the 
missingness itself contains no information about the unobserved values that is 
not also contained in the observed data (Rubin 1976; Snijders and Bosker 2012).

Plausible values are provided for reading proficiency and thus no imputa-
tion is needed for outcomes, but we have missing data at both student and 
school levels with discrete predictors. Relatively little research has been con-
ducted regarding missing clustered data. Most of the work pertains to either 
normally distributed variables (e.g., Chapter 20 of this volume by Shin; Shin 
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403Multilevel Analysis of Assessment Data

and Raudenbush 2007, 2010) or uses simple cases without missing level-2 
variables (Van Buuren 2011, 2012). Neither of these two solutions works for 
our data. Some proposals have been put forth that include dummy variables 
for each cluster (Reiter et al. 2006); however, this presupposes that clusters 
only differ in terms of their intercepts. In our case, we do not want to make 
this assumption and due to the large number of clusters, this method is not 
pursued here. Also rare are proposals for incorporating sampling weights 
into the imputation model for missing data. An exception is Amer (2009), but 
this example only deals with two clusters.

There are two general approaches to impute multivariate missing data: 
joint modeling (JM) and fully conditional specification (FCS) (Van Buuren 
2012). JM imputes missing values in multiple variables simultaneously based 
on the assumption that the data can be described by a multivariate distri-
bution. The multivariate normal distribution is the mostly widely applied, 
although any multivariate distribution can be assumed in theory. On the 
other hand, FCS imputes data on a variable-by-variable basis. FCS requires 
an imputation model for each incomplete variable as the outcome, and cre-
ates imputations per variable in an iterative fashion. As FCS directly specifies 
the conditional distributions from which draws should be made, the method 
does not require specification of a multivariate model for multiple variables. 
An overview of similarities and differences between JM and FCS is provided 
in Van Buuren (2007).

For missing values among binary and ordinal predictors that do not likely 
follow a multivariate normal distribution, we used FCS as implemented in 
the package mice in R (Van Buuren 2011). We used two datasets for imputa-
tion; the school data and student data. The student data (N = 5190) consist 
of all level-1 and level-2 variables, where the level-2 values are constant 
for students within the same schools. The school data (M = 183) consists of 
the same number of variables, where the means of the student-level vari-
ables are used as the corresponding school-level variables. Although we 
acknowledge that our approach of imputing missing values at each level 
separately is not optimal, imputing missing values while preserving the 
multilevel structure is not simple; more complex approaches that may be 

Table 18.3

Missing School-Level Data

Pattern econDisadvN schoolLIB Frequency Percentage

1 X X 173 94.54
2 . X 2 1.09
3 X . 7 3.83
4 . . 1 0.55
Frequency 3 8 183
Percentage 1.64 4.37

Note:	 “X” indicates a nonmissing value and “.” indicates a missing value.
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404 Handbook of International Large-Scale Assessment

superior are described in Swoboda (2011) and Kim and Swoboda (2012). 
However, we at least use information across levels to improve the quality 
of the multiple imputation. For example, the five plausible values at the 
student level are used to impute the missing values of the school-level pre-
dictors, and the school-level predictors are used to impute missing values 
of the student-level predictors.

There appears to be no consensus on the appropriate number of imputed 
datasets (Allison 2002; Enders 2010; Schafer 1997; Van Buuren 2012), and the 
answer may depend on the missing patterns and frequencies. We imputed 
five datasets for the predictors and crossed them with the five plausible value 
outcomes, resulting in 25 datasets for further analysis. The different models 
were all fit to each of the 25 imputed datasets, and we thus obtained 25 dif-
ferent outcomes for each model.

To synthesize results from the multiple datasets for each model, we 
used Little and Rubin’s procedures for combining multiple results, which 
appears to be the generally accepted standard in the imputation literature 
(Little and Rubin 2002; Snijders and Bosker 2012). The Little and Rubin pro-
cedure accounts for two sources of imprecision in the parameter estimates: 
the within-dataset uncertainty and the imputation uncertainty. The within-
dataset uncertainty is accounted for by the standard error of estimate, and 
the imputation uncertainty is accounted for by the variance of the esti-
mates across datasets. This procedure can be presented as follows: Let θ 
be a parameter of interest. The average estimate is obtained across Mimp 
imputed datasets:

	
θ θ=

=
∑1

1
M

m

m

M

imp

imp

ˆ .
	

(18.1)

The within-dataset uncertainty is the average of the squared standard errors,

	
W

M
m

m

M

= ( )
=

∑1 2

1imp
SE

imp

ˆ ,θ

and the between-imputation uncertainty is the variance of the estimate 
across the multiple datasets:

	
B

M
m

m

M

=
−

−( )
=

∑1
1

2

1imp

imp

ˆ .θ θ

These two sources of uncertainty are used to compute the standard errors 
of the average estimate by taking the square root of a weighted sum of the 
two sources as follows:

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

C
ol

um
bi

a 
U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 1

1:
33

 1
4 

D
ec

em
be

r 
20

15
 



405Multilevel Analysis of Assessment Data

	
SE

imp
( ) .θ = + +







W

M
B1

1

	

(18.2)

When we later fit multilevel models, Equations 18.1 and 18.2 are used to 
report results in the tables.

Multilevel Modeling

Multilevel modeling is a statistical methodology with many alternative 
names, including hierarchical linear modeling, mixed modeling, random-
effects modeling, nested modeling, random coefficient modeling, and vari-
ance component analysis. Not surprisingly, the notation for multilevel models 
varies across the literature and software used in various disciplines. While 
we attempt to use notation that is largely consistent with those of the other 
chapters in the volume, readers should expect some differences across other 
resources for multilevel analysis.

Despite subtle or sometimes not-so-subtle differences in notation and ter-
minology across disciplines, there are a number of core concepts that are con-
sistent, such as intraclass correlation (ICC), fixed and random effects, random 
intercepts and random slopes (a.k.a. random coefficients), centering, reliabil-
ity of aggregated variables, within- and between-group covariability, cross-
level interactions, and slopes as outcomes models. Owing to space limits, we 
provide a list of multilevel modeling textbooks at the end of this chapter and 
refer readers to these books for definitions and examples of these concepts.

Presentation of the Model

A single-level regression model can be generalized to a multilevel model by 
allowing a regression coefficient to be random over clusters. Let the outcome 
variable (e.g., reading proficiency) for an individual i in cluster (e.g., school) j 
be Yij, where i = 1,…,nj and j = 1,…,M. The distribution of Yij within a cluster 
is assumed to be normal. The level-1 cluster-specific model can be written as

	

Y xij j pj pij ij

p

P

= + +
=

∑β β ε0

1

,

	

(18.3)

where β0j is the intercept for cluster j, βpj is the regression coefficient of cluster 
j for predictor variable xpij, p = 1,. . .,P, and εij is the student-level random effect 
or error term, usually assumed to be independently and normally distrib-
uted with a zero mean and an unknown variance σ 2 (i.e., εij ~ N(0, σ 2) i.i.d.).
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406 Handbook of International Large-Scale Assessment

While the level-1 model accounts for variability at the student level, the 
level-2 model describes variability between clusters (schools in our analy-
sis). The level-2 models are linear models for each of the level-1 regression 
coefficients:

	

β γ γ

β γ γ

β γ γ

0 00 0 0

1

1 10 1 1

1

0

j q qj j

q

Q

j q qj j

q

Q
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z U

= + +

= + +

= +

=

=

∑

∑
�

zz Uqj Pj

q

Q

+
=

∑
1

,

	

(18.4)

where the zqj’s are predictors or explanatory variables that model systematic 
differences between clusters, q = 1,. . .,Q, the γp0’s are level-2 intercepts, the 
other γ ’s are fixed regression coefficients for level-2 predictors, and the Upj’s 
are unobserved random effects (residuals).

The unexplained, random, or stochastic between-cluster differences are 
modeled as random effects. The distributional assumption for the Upj’s in 
Equation 18.4 is
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(18.5)

where MVN stands for multivariate normal and i.i.d. is for independent and 
identically distributed. For short, Uj ~ MVN(0, T) i.i.d.

Substituting the level-2 equations into the regression coefficients of the 
level-1 model yields a linear mixed-effects model

  

Y x z z U x Uij p pij

p

P

q qj

q

Q

pq qj pj pij j ij= + + + + + +
= =

∑ ∑γ γ γ γ ε00 0

1

0

1

0( ) .
qq

Q

p

P

==
∑∑

11 	

(18.6)

The mixed-effects model shows that γ00 is the overall intercept, the γp0’s are 
fixed regression coefficients for level-1 effects, the γ0q’s are fixed regression 
coefficients for level-2 effects, and the γpq’s are fixed effect regression coeffi-
cients for cross-level interaction terms. The first subscript on γpq corresponds 
to the predictor in the level-1 model and the second subscript corresponds 
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407Multilevel Analysis of Assessment Data

to the predictor in the level-2 model. For example, γ32 is the regression coef-
ficient for the interaction between x3ij and z2j. Random effects consist of the 
random intercept U0j , random slopes Upj , and the error term εij.

Empty Model

Whereas multilevel analysis investigates relationships between predictors 
and outcomes in the context of hierarchical data, it is often useful to consider 
the empty model before entering predictors into the model. The empty model 
consists of the outcome variable (e.g., reading proficiency) and the group 
membership identification variable (e.g., school ID#) as the only variables 
in the model, and is also known as the null model or the unconditional means 
model. The empty model can be presented as

	 Yij j ij= + +γ ε00 0U . 	 (18.7)

Equation 18.7 represents the simplest multilevel model in the two-level 
case, and is identical to a one-way random effects ANOVA model. In addi-
tion to the grand mean of the outcome value, γ00, the model reflects the vari-
ability of the outcome variable as the sum of the between- and within-group 
variance components:

	 var( ) var( ) var( ) .Y Uij j ij= + = +0 00
2ε τ σ 	 (18.8)

The covariance between two observations within the same cluster j is 
equal to the variance of U0j, and can be viewed as the amount of variance 
shared by the two units (e.g., two students within the same school) as a result 
of context:

	 cov( , ) var( ) .Y Y Uij i j j′ = =0 00τ 	 (18.9)

Equation 18.8 shows that the model assumes a constant variance within 
each cluster. This assumption is not required for multilevel models with 
random slopes (see the section “Model Specification and Comparison”). 
Equation 18.9 shows there exists dependency within clusters, unlike the 
independence assumption in single-level models. It also demonstrates that 
the covariance between observations within each cluster is equal to the 
between-group variance.

Based on the between- and within-group variance components, we can 
calculate the correlation between two observations from the same cluster:

	
corr( ) ,,Y Yij i j′ =

+
τ

τ σ
00

00
2

	
(18.10)
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408 Handbook of International Large-Scale Assessment

which is known as the intraclass correlation coefficient and denoted as ρI(Y). 
The intraclass correlation (ICC) can be interpreted as the correlation between 
two observations within a cluster (as defined in Equation 18.10) and also as 
the proportion of the variance accounted for by groups. In other words, the 
ICC indicates the degree of association among observations within clusters. 
The value can be as small as zero (when τ00 = 0) and as large as one (when 
σ 2 = 0). A large ICC reflects a high degree of resemblance within clusters and 
strong dependence among observations. The ICC can also be calculated after 
entering predictors to the model, in which case it is referred to as a residual ICC.

Note that although ρI(Y) is often simplified to ρI, the ICC depends on the vari-
able of interest and different ICCs would be calculated for different variables. 
For example, an ICC of mathematics scores can be higher than an ICC of history 
scores, indicating a stronger correlation among mathematics scores within the 
same classes or schools than history scores. In the PIRLS 2006 US data, we fit 
empty models using readingPVl to readingPV5 separately and combined 
the results (see the section “Multiple Imputation”). The average ICC for read-
ing proficiency was 1244.05/(1244.05 + 4282.11) = .225 with values of .223 to .230 
across the five plausible values. The estimated ICC suggests a total variance of 
5526.16, about 22.5% of which is attributable to differences between schools.

Modeling Strategy

Statistical modeling is a process that is guided by substantive theory, the 
results of exploratory analysis, and results from fitting various models to 
the data. The two most common approaches advocated in the literature on 
linear mixed models are “step-up” and “top-down” methods (Ryoo 2011). 
The step-up method starts with a simple level-1 model including a random 
intercept to which fixed effects are successively added followed by random 
effects (Pinheiro and Bates 2000; Raudenbush and Bryk 2002). The top-down 
approach starts with the most complex polynomial model representing (level 
1) effects and a random intercept, where the first step is to determine the 
correct order of the polynomial and the second step is to build the random 
effects part of the model (Diggle et al. 1994; Verbeke and Molenberghs 2000). 
The top-down approach lends itself better than the step-up approach to lon-
gitudinal data where change is not always linear. The little research that 
exists on the subject of modeling approaches with linear mixed models has 
found that the step-up approach tends to identify the true model in simula-
tions more effectively than the top-down method (Ryoo 2011). In this section, 
a version of the step-up approach is used where we start with simple models 
and work toward more complex ones. Besides the work by Ryoo (2011), a 
reason for preferring this approach is that a model with all potentially inter-
esting fixed and random effects suggested by the exploratory analysis may 
fail as a starting model because complex models are often not supported by 
the data; that is, such models frequently fail to converge or yield improper 
solutions (such as an improper covariance matrix T).
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409Multilevel Analysis of Assessment Data

Model building in multilevel analysis consists of selecting fixed effects for 
the mean structure and random effects for the covariance structure. The two 
structures are not independent. The mean structure aims to explain the sys-
tematic part of the variability of the outcome (e.g., reading proficiency in our 
example) and the covariance structure helps to account for the random or 
unexplained variance in the data. Whereas traditional single-level regres-
sion such as ANCOVA models focus mainly on the mean structure, it is 
critical to specify the appropriate covariance structure in multilevel models 
because an underparameterized covariance structure invalidates statistical 
inferences and an overparameterized covariance structure leads to ineffi-
cient estimation and poor standard errors (Verbeke and Molenberghs 2000). 
Therefore, both appropriate mean and covariance structures are essential for 
making valid conclusions and proper predictions.

Although no strategy guarantees the optimal model or a model that satisfies 
all assumptions, a combination of general modeling guidelines and EDA can 
help find a good model with appropriate mean and covariance structures. We 
propose an eight-step procedure for model building as follows. First, exam-
ine the data using EDA, including the strategies in the section “Exploratory 
Data Analysis.” Second, specify systematic (fixed effects) that are of theoreti-
cal importance. Third, build a random-effects structure (possibly based on 
results of EDA). Fourth, revisit and revise fixed effects based on EDA and con-
duct tests for the fixed effects. Fifth, retest random effects and possibly revise. 
Sixth, repeat/cycle through the fourth and fifth steps. Seventh, conduct model 
diagnostics and residual analysis. Eighth, and finally, interpret results. We 
followed this eight-step strategy for our analysis in this chapter.

Model Specification and Comparison

After the examination of the empty model, we included a set of theoreti-
cally important fixed effects (Model 1), examined potential random effects 
(Models 2 and 3), and considered other predictors that might also be impor-
tant (Model 4). The parameter estimates and model fit indexes of Models 1 
through 4 are shown in Table 18.4. The fixed effect estimates are the means of 
the estimates taken across the 25 imputed datasets using Equation 18.1, and 
the corresponding standard errors are calculated using Equation 18.2 in the 
section “Multiple Imputation”.

One can use either model-based or empirical standard errors to compute 
test statistics for the fixed effects. The model-based standard errors are 
obtained under the assumption that the covariance matrix of the observa-
tions is specified correctly, and the empirical standard errors are based on 
the residuals. The latter are also referred to as Huber–White’s robust sand-
wich standard errors (Huber 1967; White 1980). It is known that model-based 
standard errors tend to be underestimated when a model is misspecified, 
whereas the empirical standard errors are relatively robust to model mis-
specification (Diggle et al. 1994; Raudenbush and Bryk 2002). Kim and Frees 
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410 Handbook of International Large-Scale Assessment

Table 18.4

​Model Coefficients, Standard Errors, and Fit Indexes, Averaged across 25 
(5 Plausible Outcome Values × 5 Independent Variable Imputations) Datasets

Model Model 1 Model 2 Model 3 Model 4

Fixed Effects Coefficient (SE)
Intercept 544.93 (6.08) 545.29 (6.14) 544.19 (6.15) 523.72 (11.95)
female 2.05 (2.20) 2.10 (2.19) 2.08 (2.19) −3.00 (3.64)
enjoyreading (agree a 
little)

−9.32 (2.29) −9.31 (2.29) −9.18 (2.29) −9.13 (2.30)

enjoyreading 
(disagree a little)

−22.78 (3.70) −22.90 (3.70) −22.56 (3.67) −22.28 (3.66)

enjoyreading 
(disagree a lot)

−28.53 (3.60) −28.57 (3.61) −28.65 (3.59) −28.73 (3.58)

bornUS 18.30 (4.10) 18.00 (4.15) 18.01 (4.17) 17.27 (4.25)
dadbornUS (don’t 
know)

−8.40 (3.43) −8.26 (3.45) −8.21 (3.46) −5.55 (4.31)

dadbornUS (yes) 6.84 (3.13) 6.92 (3.13) 7.04 (3.12) 5.32 (3.49)
home25books 16.12 (2.22) 15.99 (2.20) 16.01 (2.21) 15.93 (2.22)
watchTV5H −15.15 (2.52) −15.22 (2.53) −15.09 (2.54) −14.93 (2.55)
comgames5H −16.05 (2.79) −16.14 (2.80) −16.02 (2.85) −15.75 (2.86)
econDisadv (>50%) −42.15 (5.09) −42.45 (5.11) −40.80 (5.05) −45.68 (6.27)
econDisadv (26–50%) −14.62 (5.18) −14.53 (5.23) −14.00 (5.22) −17.19 (6.24)
econDisadv (11–25%) −6.11 (5.93) −6.27 (5.96) −5.82 (5.71) −8.17 (7.77)
mombornUS (don’t 
know)

−5.48 (5.12)

mombornUS (yes) 2.83 (3.51)
schoolLIB 23.82 (9.92)
female ×
econDisadv (>50%)

8.13 (4.67)

female ×
econDisadv (26–50%)

5.61 (5.80)

female × 
econDisadv (11–25%)

3.47 (7.26)

Variance Components Estimate (SE)
σ2 3834.80 (117.33) 3804.26 (116.431) 3773.05 (120.57) 3768.94 (119.92)
Intercept τ00 513.84 (76.12) 520.11 (85.64) 712.09 (131.62) 700.66 (133.84)
Slope (comgames5H) 
τ11

152.87 (91.31) 165.53 (110.43) 162.12 (110.82)

Slope (female) τ22 125.33 (83.38) 114.59 (79.55)
Covariance τ01 −35.50 (72.43) −82.73 (103.61) −75.37 (105.34)
Covariance τ02 −201.15 (86.79) −197.11 (88.31)
Covariance τ12 14.43 (71.42) 2.52 (72.54)

Fit Indexes Mean (SD)
−2 × log-likelihood 57831.47 (83.13) 57826.33 (83.04) 57814.53 (81.98) 57803.22 (83.10)
AIC 57863.47 (83.13) 57862.33 (83.04) 57856.53 (81.98) 57857.22 (83.10)
BIC 57968.35 (83.13) 57980.32 (83.04) 57994.18 (81.98) 58034.19 (83.10)

Note:	 Between-imputation standard deviations for the fit indexes are also presented.
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411Multilevel Analysis of Assessment Data

(2006, 2007) also showed through simulations that model-based standard 
errors are particularly sensitive to misspecification due to omitted variables. 
We used empirical standard errors in our analysis.

In addition to statistical tests for individual regression coefficients using 
t-test statistics, we compared the models by means of likelihood values, Akaike 
Information Criterion (AIC = −2 log-likelihood + 2 × the number of param-
eters), and Bayesian Information Criterion (BIC = −2 log-likelihood + 2 × the 
number of parameters × log(N)). We obtained these model fit indexes for 
each model in the 25 datasets and reported the means and standard devia-
tions of the three indexes across the imputed datasets. As only the likelihood 
function varies across the imputed datasets while the number of parameters 
and sample size stay constant, the standard deviations are the same for the 
three fit indexes for each model.

With respect to evaluating the random effects, standard errors of variance 
components are known to be unreliable in multilevel models, and it is advised 
not to use standard errors to evaluate the significance of variance components. 
Some multilevel software (e.g., package lme4 in R) do not provide standard 
errors for variance components. Instead, a likelihood ratio test statistic based on 
the full and reduced models is used to compare two models with and without 
a random effect. Moreover, the likelihood ratio test for comparing fixed effect 
parameters needs to be modified to test the significance of a random effect, 
as testing variance components deals with a null hypothesis at the boundary 
value (e.g., H0: τ11 = 0) and a directional alternative hypothesis (e.g., H1: τ11 > 0).

A simple modification of the χ2 critical value can account for the otherwise 
overly conservative likelihood ratio test for variance components. Specifically, 
results from simulation studies (Self and Liang 1987; Stram and Lee 1994, 
1995) have shown that when testing H0: τ00 = 0 versus H1: τ00 > 0, the likelihood 
ratio test statistic asymptotically follows a distribution of 1

2 1
2χ  rather than χ1

2. 
The asymptotic distribution of the likelihood ratio test statistic for testing 
an additional random effect (e.g., random slope) is shown to be a mixture of 
χ

1
2
 and χ

2
2  distributions. This implies that for testing the significance of the 

first random slope by comparing −2log-likelihood of Model 1 and Model 2 
(which has two more parameters, τ11 and τ01, than Model 1) at the type I error 
rate of 0.05, the proper critical value is 1

2 1
2 1

2 2
2 1

2 3 84 5 99 4 92χ χ+ = + =( . . ) . ,  
which is smaller than the standard likelihood ratio test critical value with 
two degrees of freedom. For testing the second random slope by comparing 
Model 2 and Model 3 (with three more parameters τ22, τ02, and τ12), we can use 
the critical value of 1

2 2
2 1

2 3
2 1

2 5 99 7 81 6 90χ χ+ = + =( . . ) . . This downward adjust-
ment in the critical values using mixture distributions makes the likelihood 
ratio test for random effects more accurate.

Table 18.4 shows that AIC and BIC disagree in regard to the best fitting 
model for this example. While Model 3 (random slopes of comgames5H and 
female) has the smallest AIC, Model 1 (random intercept only) has the small-
est BIC. At the same time, the four models are nested within each other and 
we can also directly compare them using the likelihood ratio test. To compare 
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412 Handbook of International Large-Scale Assessment

nested models with different fixed effects, such as Model 3 versus Model 4, it 
is important to estimate models using the full information maximum likeli-
hood (FIML) method, not the residual maximum likelihood (REML) method. 
Models 1 through 3 are different only in random effects, and thus both FIML 
and REML methods can be used in comparing them via likelihood values. All 
models in this chapter were estimated by the FIML method.

In the comparison of Model 1 versus Model 2 with the random slope of 
comgames5H, the difference in −2log-likelihood is 5.14, which is greater than 
the critical value of 1

2 1
2 1

2 2
2 4 92χ χ+ = . , suggesting the effects of comgames5H 

vary across schools. In the comparison of Model 2 versus Model 3 with the addi-
tional random slope of female, the difference in −2log-likelihood is 11.80 and is 
greater than the critical value of 1

2 2
2 1

2 3
2 6 90χ χ+ = . , suggesting the effect of gen-

der is also different across schools. Finally, in comparing Model 3 to Model 4 
with the additional predictors of mombornUS, schoolLIB, and the interaction 
female × econDisadv, the standard critical value for the likelihood ratio test 
was used because the difference between the two models involves only fixed 
effects. The difference in −2log-likelihood is 11.31 between Model 3 and Model 
4 with six additional parameters, and this difference is smaller than the critical 
value of χ6

2 14 07= . . Therefore, based on the series of likelihood ratio tests, we 
chose Model 3 as the best-fitting model in our analysis.

Although the summary statistics in Table 18.1 suggest that whether a stu-
dent’s mother was born in the United States is important with respect to 
that student’s reading performance, the effect was not significant in Model 4. 
We suspect this is due to the strong association between dadbornUS and 
mombornUS. Among 5038 students who answered each question as “yes,” 
“no,” or “don’t know,” 84% chose the same category for the two questions. 
Therefore, there is little unique information in mombornUS when dadbor­
nUS is already in the model, and the two highly correlated variables lead to 
multicollinearity in estimation. For a similar reason, we speculate whether 
the school has a library or not seems important based on the mean reading 
performance, but the effect of schoolLIB is not significant when econDisadv 
is already in the model. Those schools without a library all had high percent-
ages of economically disadvantaged students. We also examined a number 
of interactions, including the cross-level interaction female × econDisadv 
but did not observe a significant interaction effect.

R2-Type Measures for Explained Variance

In standard regression models, the R2 index represents the percentage of vari-
ance in the outcome variable that is accounted for by the explanatory vari-
ables. In multilevel models, there are complications with the use of R2 to assess 
prediction. One complication is that there are models at multiple levels that 
represent different sources of variance in the data; within-cluster and between-
cluster models. Therefore, different R2-type measures can be calculated at each 
level, often referred to as R1

2 for a level-1 model and R2
2 for a level-2 model.
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413Multilevel Analysis of Assessment Data

In single-level linear regression, R2 has a number of different interpreta-
tions, including the squared correlation between observed and predicted 
values of the response, the proportional decrease in variance of the response 
given the predictor variables, and the proportional reduction of prediction 
error variance. The definition of the proportional reduction in explained 
variance is problematic in multilevel models because it is theoretically and 
empirically possible that a residual variance at some level of the model will 
increase after adding an explanatory variable, and thus interpreting R2 as 
a simple percentage of variance accounted for (analogous to single-level 
regression analysis) is not recommended.

Snijders and Bosker (1994, 1999) proposed some alternative ways to define 
explained variation that provide less problematic interpretations based on 
the proportional decrease in prediction error variance (i.e., the mean squared 
error of prediction). Specifically, consider a two-level random intercept model 
with variance components at levels 1 and 2, denoted σ 2 and τ00, respectively. 
We will obtain different estimates of the two variance components under an 
empty unconditional model (Equation 18.7) and a conditional model with 
explanatory variables. Denote the estimates from the unconditional model 
as (σ̂ 2 and τ̂ 00)unconditional and the conditional model as (σ̂ 2 and τ̂ 00)conditional. 
Snijders and Bosker (1999) defined their alternative R2 indices as follows. The 
first index is the proportional reduction of error for predicting a level-1 out-
come, and can be computed as

	
R1

2
2

00
2

00
1= − +

+
( )
( )

.
σ τ
σ τ
� �
� �

conditional

unconditional 	
(18.11)

The second index is the proportional reduction of error for predicting a 
group mean, which can be computed as

	
R

n
n

2
2

2
00

2
00

1= − +
+

( )
( )

,
σ τ

σ τ
� �
� �

/
/

conditional

unconditional

�
� 	

(18.12)

where �n is the expected number of level-1 units per level-2 unit. When the 
number of level-1 units, nj, varies greatly across level-2 units, �n can be substi-
tuted by the harmonic mean

	

�n
M

nj
j

M=

=∑ ( )
.

1
1

/

Relative to the arithmetic mean, the harmonic mean gives less weight to 
clusters with much larger sample sizes and thus is more appropriate as the 
expected number of level-1 units per level-2 unit in the population. In the 
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414 Handbook of International Large-Scale Assessment

PIRLS 2006 example, the harmonic mean for the number of students per 
school is 23.39 (as opposed to the arithmetic mean of 28.36).

Note that Equations 18.11 and 18.12 represent R1
2 and R2

2 for a random inter-
cept model as the conditional model. However, our final model (Model 3 in 
Table 18.4) consists of two random slopes. Although R1

2 and R2
2 can be calcu-

lated for random slope models, the process is considerably more complicated 
than for random intercept models, because level-2 variances are not constant 
but functions of explanatory variables. Recchia (2010) developed a SAS macro 
to calculate R1

2 and R2
2 for multilevel models. Alternatively, Snijders and Bosker 

(1999) suggested using approximate R1
2 and R2

2 values based on a random inter-
cept model, because the values of R1

2 and R2
2 for random intercept and random 

slope models are similar when they have the same fixed effects specification.
Following the suggestion by Snijders and Bosker (1999), we calculated 

approximate R1
2 and R2

2 in our example by comparing the empty uncondi-
tional model to the random intercept conditional model, Model 1 in Table 18.4, 
which is identical to our final model except for the two random slopes. We 
obtained R1

2 and R2
2 for each of the 25 datasets and the values are reasonably 

stable across the imputed datasets. At level 1, R1
2 varies from .206 to .225, with 

a mean of .214 (SD = .005), implying that there is a 21.4% reduction in the 
mean square prediction error within schools. At level 2, R2

2 varies from .509 
to .544, with a mean of .525 (SD = .009), implying that we reduced predictive 
error 52.5% for the school means by including explanatory variables.

Incorporating Design Weights

Often with complex, large-scale surveys, the probability of selection of clus-
ters and observations within cluster are unequal. Typically, weights are 
given by the organization conducting the survey that reflect the design of 
the study. When weights are excluded from the modeling, parameter esti-
mates may be biased but efficient; including weights leads to unbiased esti-
mates but less efficient ones. The decision to include design weights or not 
should be based on whether the weights are likely to have an impact or are 
informative, and whether the probability of selection (the sampling model) 
is related to the probability model for the data (i.e., the HLM). To determine 
whether weights are informative, we need to compute them and examine 
their distribution.

We adopted recommendations by Rutkowski et  al. (2010) for computing 
weights in surveys such as the PIRLS. Weights should be computed for each 
level of sampling. Besides having unequal selection probability, all of the 
selected units may not respond. The weights for students (level 1 or second-
ary units) will be computed as the product of student and class weights:

	

w WF WA WF WAij ij ij

i

j j1 � � � � �

�
� ��� ��� � ��� ��

= ×( ) ×( )
student class

,
��

	

(18.13)
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415Multilevel Analysis of Assessment Data

where WFijℓ and WFjℓ are the inverses of the probabilities for the selection of 
students and classes from school j, respectively, and WAijℓ and WAjℓ are the 
weight adjustments for nonresponse for student i and class ℓ from school j, 
respectively. The weight adjustments are for those students and classes that 
were selected but did not choose to participate (Rutkowski et al. 2010). The 
school weights used are

	 w WF WAj j j2 = × , 	 (18.14)

where WFj is the inverse of the probability of selecting school j, and WAj is 
the weight adjustment for school j.

One way to assess the informativeness of the weights is to examine their 
distribution. If the selection probabilities are equal and all selected units 
respond, then the weights would all be equal and their variance would be 
zero. In this case, the sampling would be the same as simple random sam-
pling and the weights could be set to one. In the PIRLS 2006 data, the mean of 
the weights for schools equals 305.42 and their standard deviation is 218.64, 
which suggests that the level 2 weights are informative. For the student level, 
the means of students within schools are mostly equal to one and 74% of the 
schools have standard deviations that equal zero. Of the remaining schools, 
21% have standard deviations that are less than 0.05 and the other 5% have 
standard deviations less than 0.13. These standard deviations suggest that 
the level-1 weights are not informative and will likely have no impact on the 
analysis. Additional methods to assess the informativeness of weights are 
given in Chapter 21 by Anderson, Kim, and Keller.

The weights are typically scaled according to one of two methods that 
were discussed in Pfeffermann et al. (1998). The method used here is to scale 
the weights so that their sum equals the sample size; that is, ∑ =j jw2 183 and 
Σ Σi ij jw n� �1 = .

Weights are incorporated into the model during estimation. The log-
likelihoods for the lowest-level units (i.e., students) are multiplied by their 
respective weights and summed over the values within a cluster. Cluster-
specific values are found by integrating out the random effects (i.e., Upj’s). The 
cluster-specific values are summed after being multiplied by their respective 
weights w2j to yield a function of all the data (Grilli and Pratesi 2004; Rabe-
Hesketh and Skronkal 2006). The parameters that maximize the function are 
maximum pseudolikelihood estimates. They are not maximum likelihood 
estimates because the log-likelihoods are multiplied by weights. For more 
details, see Chapter 21 by Anderson, Kim, and Keller (see also Grilli and 
Pratesi 2004; Rabe-Hesketh and Skronkal 2006).

To illustrate the effect of including weights, we fit Model 3 (our best model 
without weights) with weights. The results are summarized in Table 18.5. 
Since we are using pseudolikelihood estimation, the sandwich or robust esti-
mates of the standard errors are presented. The lower efficiency resulting 
from including weights is evident by comparing the standard errors of the 
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416 Handbook of International Large-Scale Assessment

parameter estimates. The estimates of the standard errors with the weights 
are larger than those without weights. One of the school-level variable effects, 
econDisadv (26–50%) has very different regression coefficient estimates 
(−14.00 vs. −4.86) and is not significant in the model with weights.

Model Diagnostics

Before turning to interpretation, we consider an often neglected part of 
multilevel modeling: investigating whether there are potential violations of 
models assumptions or systematic misfit of the model to data. Snijders and 
Bosker (2012) cover diagnostics for multilevel models in great detail. We will 
restrict our attention to the examination of residuals and the assumption 
of normally distributed random effects and illustrate some of the possible 
methods using Model 3 without weights.

Table 18.5

Model 3 with and without Weights

Model 3 without Weights Model 3 with Weights

Fixed Effects Coef SE t Coef SE t

Intercept 544.19 6.15 88.51 535.07 7.09 75.53
female 2.08 2.19 0.95 2.89 2.84 1.02
enjoyreading (agree a little) −9.18 2.29 −4.01 −9.71 3.21 −3.02
enjoyreading (disagree a little) −22.56 3.67 −6.15 −29.15 4.76 −6.13
enjoyreading (disagree a lot) −28.65 3.59 −7.97 −29.23 4.37 −6.69
bornUS 18.01 4.17 4.32 21.00 5.29 3.97
dadbornUS (don’t know) −8.21 3.46 −2.38 −8.53 4.17 −2.04
dadbornUS (yes) 7.04 3.12 2.26 7.75 3.53 2.19
home25books 16.01 2.21 7.25 17.49 2.59 6.75
watchTV5H −15.09 2.54 −5.94 −13.30 2.86 −4.66
comgames5H −16.02 2.85 −5.61 −16.02 3.08 −5.20
econDisadv (>50%) −40.80 5.05 −8.08 −37.85 6.80 −5.57
econDisadv (26–50%) −14.00 5.22 −2.68 −4.86 6.64 −0.73
econDisadv (11–25%) −5.82 5.71 −1.02 2.10 6.35 0.33

Variance Components Estimate SE Estimate SE

σ2 3773.05 120.57 3719.26 136.67

Intercept τ00 712.09 131.62 771.03 225.17

Slope (comgames5H) τ11 165.53 110.43 151.06 121.20

Slope (female) τ22 125.33 83.38 166.10 112.42

Covariance τ01 −82.73 103.61 −71.53 116.70

Covariance τ02 −201.15 86.79 −227.32 129.01

Covariance τ12 14.43 71.42 45.86 83.41

Note:	 Model coefficients, standard errors, and fit indexes, averaged across 25 (5 plausible out-
come values × 5 independent variable imputations) datasets are shown.
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417Multilevel Analysis of Assessment Data

Figure 18.6 includes various model diagnostic plots. In the top row of plots, 
we examine the cluster-specific or conditional Pearson residuals. These resid-
uals are based on predictions that include both the fixed effects from Table 
18.4 and empirical Bayes estimates of the random effects (i.e., U0j, U1j, and 
U2j). The analogous plots for marginal predictions (i.e., those that excluded 
estimates of the random effects) were similar to those in Figure 18.6. The 
plots for each imputed dataset were very similar to each other; therefore, we 
averaged over the 25 imputed datasets and present a single set of plots.

In Figure 18.6a, conditional Pearson residuals are plotted against predicted 
reading scores. If a model is a reasonable one, we should see a random col-
lection of points, approximately equal residual variances across levels of the 
predicted variables, and no apparent patterns. This is the case in our exam-
ple. A pattern will often be seen when a response variable is subject to either 
a floor or ceiling effect (i.e., scores were bounded either from below or above). 
In such a case, we would likely see a linear relationship. The analogous plot 
for the marginal effects shows a pattern in that there is a maximum pos-
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Figure 18.6
Various model diagnostics for Model 3 that include empirical Bayes estimates for random effects.
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418 Handbook of International Large-Scale Assessment

sible value for the predicted reading scores (i.e., a vertical line of points at 
predicted reading scores equal to around 575).

Figures 18.6b and 18.6c are designed to examine the normality assump-
tion. Figure 18.6b is a histogram of the conditional Pearson residuals with the 
normal distribution overlaid and Figure 18.6c is a Q–Q plot. From the Q–Q 
plot, it appears that the tails of the distribution of residuals are a bit heavy, 
but overall normality seems reasonable.

Figures 18.6d through 18.6f are histograms of the estimated random effects 
with normal distributions overlaid. If the assumption that the random effects 
are multivariate normal is satisfied, then the distribution of estimated Upj’s 
should be normal. Although the estimated Upj’s look roughly normal, this 
only means that the assumption is tenable. It is possible that the true under-
lying distribution of random effects is not normal but the estimates of the 
Upj’s may appear normal (Verbeke and Molenberghs 2000). If the distribution 
of Ûpj  is not normal, then the assumption is not valid.

Interpretation of Results

The final model, Model 3, has 14 regression coefficients and seven random 
effect parameters (variance σ2 at level 1 and a 3 × 3 variance–covariance 
matrix at level 2) with one random intercept and two random slopes. The 
intercept of 544.21 is the expected reading proficiency score when all predic-
tors are zero, implying male students who enjoy reading a lot, were not born 
in the United States, have a father who is also not born in the United States, 
have less than 25 books at home, watch TV or play computer games less 
than 5 h per day, and attend a school where the percentage of economically 
disadvantaged students is less than 10%. Female students who were born 
in the United States, have a father born in the United States, and/or have 
more books at home on average would have better reading performance. On 
the other hand, those who do not enjoy reading as much, watch TV or play 
computer games 5 h or more per day, and/or attend a school with a higher 
percentage of economically disadvantaged students on average would be 
expected to have lower reading proficiency scores.

The random intercept represents heterogeneity across schools in terms of 
their residual reading performance even after accounting for explainable 
differences by the fixed effects. Model 3 has two random slopes, both cor-
responding to predictors that are binary variables. The random slopes sug-
gest that the effects of gender as well as excessive hours on computer games 
vary across schools. Since the two variables are both binary, we can con-
sider four subgroups whose variances are different. For male students who 
spend less than 5 h on computer games (i.e., female = 0, comgames5H = 0), 
the variance of reading proficiency is estimated as ˆ ˆ . .τ σ00

2 4485 88+ =  For 
male students who spend 5 or more hours on computer games, the vari-
ance is ˆ ˆ ˆ ˆ . .τ τ τ σ00

22 4485 6502 22+ + + =  For female students who spend less 
than 5 h on computer games, the variance is ˆ ˆ ˆ ˆ . .τ τ τ σ00

22 4208 7201 11+ + + =  
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419Multilevel Analysis of Assessment Data

Finally, for female students who spend 5 or more hours on computer games, 
the variance is estimated as ˆ ˆ ˆ ˆ ˆ ˆ ˆ . .τ τ τ τ τ τ σ00 11 02 12 22

22 2 2 4235 3101+ + + + + + =  
Therefore, the heterogeneity is the greatest among males who spend less 
than 5 h on computer games. Females who spend less than 5 h on computer 
games (the highest performance group among the four) are the most homo-
geneous group of students.

Discussion

Other Multilevel Models

Although the two-level models in this chapter where students are nested 
within schools are common in large-scale assessment data, other multilevel 
models are also widely used and are gaining greater interest. Three in partic-
ular are worth considering in the analysis of international assessment data: 
three-level models, repeated measures models, and nonlinear models for 
discrete outcomes. For three-level models, countries or other primary sam-
pling units, such as states, districts, or counties, can be entered as the highest 
level. Depending on the number of level-3 units, distributional assumptions, 
and omitted factors, the highest level can be treated as fixed or random. There 
exists an extensive literature on this topic in econometrics (Hausman 1978; 
Hausman and Taylor 1981) and more recently in psychometrics (Kim and 
Frees, 2006, 2007). For example, we can extend the current analysis by con-
sidering another country or two and modeling results for multiple countries 
simultaneously. In such analyses, it should be clarified that the meanings 
of the variables and levels are comparable across countries. However, many 
variables in such analyses need to be analyzed in context and their meanings 
may not be exchangeable across countries (e.g., born in the country, parents 
born in the country, first language, economically disadvantaged, and eligible 
for free or reduced-price meal).

Another important type of multilevel analysis is repeated measures analy-
sis, which includes but is not limited to longitudinal data analysis. As large-
scale assessment data often consist of scores on multiple subjects or multiple 
aspects of a subject (e.g., reading achievement/behavior/attitude or different 
domains of mathematics), several related outcomes can be available for each 
student. In a longitudinal design, students’ performances and attitudes may 
be recorded over time to study intraindividual change as well as interin-
dividual differences. When multiple dependent variables are nested within 
students, these repeated measures can be treated as level-1 units in multi-
level models. In such models, students are often entered as level-2 units, and 
schools are considered as level-3 units. Dependency among the level-1 units 
is usually very high in repeated measures models because the values belong 
to the same students. A flexible variance–covariance structure may be 
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420 Handbook of International Large-Scale Assessment

needed to account for the complex dependency among repeated measures. 
Multivariate multilevel models or latent growth curve models are commonly 
used for multiple subjects with longitudinal assessment data.

Finally, large-scale assessment data almost always include survey 
questionnaires which require respondents to select one of a given set of 
response options, thus yielding discrete outcomes. Discrete outcomes 
data call for the use of alternative models designed to handle their special 
nature. In the context of large-scale assessment studies that use complex 
sampling designs, complications arise because the data are typically clus-
tered data and the probability of selection is not equal for all units. Chapter 
21 by Anderson, Kim, and Keller in this volume is devoted to this issue. 
Multilevel models for discrete outcomes are also referred to as generalized 
linear mixed models.

Current and Future Research in Multilevel Analysis

There was a time when multilevel analysis was considered a highly advanced 
statistical method and only used by a limited number of trained meth-
odologists. In the recent years, however, multilevel modeling has become 
available to many substantive researchers and practitioners, in our opin-
ion largely owing to the publication of accessible textbooks, the availabil-
ity of user-friendly software, and regularly offered courses and workshops. 
Several textbooks appear to be widely used across the disciplines, includ-
ing Raudenbush and Bryk (2002), Snijders and Bosker (2012), Hox (2010), and 
Goldstein (2010).

Multilevel analysis has proven its importance in the social sciences, and the 
methodology has great potential for advancing the design and utilization of 
large-scale assessment data. In educational research, despite immense effort 
and investment, results from educational effectiveness studies remain incon-
sistent (Ehrenberg et al. 2001; Goldhaber and Brewer 1997; Ludwig and Bassi 
1999). There are mixed findings concerning which district, school, teacher, 
neighborhood, family, and student variables make significant differences on 
educational outcomes such as improving students’ academic achievement 
or reducing dropout rates, let alone the size of their effects. More recently, 
the Programme for International Student Assessment (PISA) and other inter-
national assessments have found counterintuitive relationships between 
achievement scores and attitudes at the country level. For example, in the 
PISA 2006 data, students with higher science achievement scores indicated 
more positive attitudes toward science as expected, when the data are ana-
lyzed within countries. However, the relationship between achievement and 
attitudes was reversed at the country level and it was found that high science 
achievement was associated with more negative attitudes based on between-
country correlations (Lu and Bolt, 2012).

Puzzling or inconsistent findings in educational research are due to mul-
tiple factors including inherent difficulties in isolating the effects of variables 

© 2014 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

C
ol

um
bi

a 
U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 1

1:
33

 1
4 

D
ec

em
be

r 
20

15
 



421Multilevel Analysis of Assessment Data

involved in complex educational processes, omitted confounding factors, 
nonrandom missing data and attrition, selection bias related to school and 
program choice, and different dynamics among variables across clusters 
(e.g., countries or schools). Yet, it is often infeasible to design comprehensive 
experimental studies in school settings for apparent ethical and/or practi-
cal reasons. It is also impractical to expect no missing data or missing com-
pletely at random, or to collect all relevant variables to account for selection 
mechanisms and cultural differences.

Consequently, there is always a danger in education as well as other 
areas in the social sciences that decision making and policy implementa-
tion can be based on inaccurate information or in some cases misleading 
findings. Although we attempted to be careful in our model specification 
and diagnostics, the purpose of our data analysis is for demonstrating the 
application of multilevel analysis to large-scale assessment data rather than 
making practical recommendations or drawing substantive conclusions, as 
further investigation is necessary to provide stronger claims of causal infer-
ence between predictors and reading outcomes. Chapter 22 by Robinson 
in this handbook deals with making causal inferences using large-scale 
assessment data.

Despite many advances during the past several decades, there remain 
important theoretical and technical issues to be addressed in multilevel 
analysis. For example, although there exists a large body of literature with 
regard to imputation approaches for missing data, there is a lack of meth-
odological development for effectively imputing missing values while 
preserving yet utilizing the multilevel structure, especially for discrete out-
comes (for continuous outcomes, see Chapter 20 by Shin in this volume). 
Also, whereas various matching designs and strategies have been proposed 
in studies of educational effectiveness with observational data, little has 
been done on matching nonequivalent groups in the context of multilevel 
data. This delayed progress is largely due to the complexity of adapting 
statistical techniques for imputation and matching strategies into the mul-
tilevel framework, as the necessary modifications are not straightforward 
(Steiner et al. 2012). Nonetheless, considering the needs of these techniques 
and active research on these topics, we expect promising methodological 
developments as well as increasing applications of multilevel analysis in 
the coming years.
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