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Abstract

Widespread availability of rich educational databases facilitates the use of conditioning strategies

to estimate causal effects with non-experimental data. With dozens, hundreds, or more potential

predictors, variable selection can be useful for practical reasons related to communicating results,

and for statistical reasons related to improving the efficiency of estimators. Background

knowledge should take precedence in deciding which variables to retain. However, with many

potential predictors, theory may be weak, such that functional form relationships are likely to be

unknown. In this paper, I propose a nonparametric method for data-driven variable selection

based on permutation testing with conditional random forest variable importance. The algorithm

automatically handles nonlinear relationships and interactions in its naive implementation.

Through a series of Monte Carlo simulation studies, and a case study with ECLSK data, I find

that the method performs well across a variety of scenarios where other methods fail.

Keywords: Nonparametric conditional independence test, causal inference, variable

selection, average treatment effect, random forest, permutation test
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Variable Selection for Causal Effect Estimation: Nonparametric Conditional Independence

Testing with Random Forests

Introduction

Widespread availability of high-quality educational databases such as the Early Childhood

Longitudinal Study (ECLSK; Tourangeau, Nord, Lé, Pollack, & Atkins-Burnett, 2006) has made

it easier for educational researchers to search for answers to causal research questions with

non-randomized data through conditioning strategies. To identify an average causal effect with

observational data through a conditioning strategy, such as regression estimation or propensity

score analysis, one must assume that the potential outcomes are independent of the assignment

mechanism, conditional on the observed pretreatment variables, X. This empirically untestable

assumption, often referred to as ignorability (Rosenbaum & Rubin, 1983), essentially implies that

all confounding variables have been observed and reliably measured (Steiner, Cook, & Shadish,

2011). Ignorability is more likely to be satisfied if the set of conditioning variables is

comprehensive and large.

From a practical perspective, a researcher using a large database may wish to winnow down

the set of predictors from the dozens, hundreds, or thousands available to a more manageable

number to (a) facilitate interpretation and communication of results1, (b) allow parametric models

to be stably fit, or (c) allow nonparametric algorithms to converge in a reasonable amount of time.

From a statistical perspective, the indiscriminate inclusion of conditioning variables that are not

associated with the potential outcomes will decrease the efficiency of causal effect estimators, even

if ignorability is satisfied (Hahn, 1996, 2004). Substantive knowledge should play a prominent role

in guiding which variables should be retained for conditioning, with an eye toward selecting

multiple variables from heterogeneous domains (Steiner, Cook, Li, & Clark, 2015). However,

especially when the number of candidate variables is large and/or the theory is weak, data-driven

approaches may serve as a useful complement to theory-based variable selection.

In this paper, I develop a computationally feasible algorithm for nonparametric conditional

independence testing that is particularly useful for variable selection in the context of estimating
1While the predictors in a propensity score or outcome model are not of primary interest when estimating an

average causal effect, they are important for a number of reasons relevant to interpretation and communication of
results such as balance checking and reporting, detecting effect heterogeneity and estimating conditional average
treatment effects, and characterizing units deleted for considerations regarding lack of overlap.
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causal effects by conditioning. The algorithm, implemented in R package rfvarsel (to be

submitted to CRAN), is designed to select important predictors through conditional

independence testing based on permutation of conditional random forest variable importance.

Following description of the algorithm, it is tested through Monte Carlo simulations, which reveal

that it performs well (a) in selecting important variables in its naive implementation even when

the relationships between predictors and outcome are nonlinear and (b) in reducing bias and

variability when paired with a variety of causal effect estimators. The algorithm is then applied to

causal effect estimation in a large-scale educational data set, and some connections are made

between the case study findings and expectations based on simulation results and theoretical

considerations. The paper concludes with some discussion.

Theoretical Framework

Let Ti be the dichotomous exposure indicator and let Y 0
i and Y 1

i represent the potential

outcomes for unit i in the event that Ti = 0 or 1, respectively. For notational convenience, I will

suppress the index i going forward. I define variable selection as the process by which a subset of

predictor variables XS ⊂ X is identified with the aim of satisfying unconfoundedness. That is,

{
Y 0, Y 1

}
⊥⊥ T | X =⇒

{
Y 0, Y 1

}
⊥⊥ T | XS .

To estimate an average treatment effect with a conditioning strategy, one or both of

Pr (T |X) or Y j | X, T = j for j ∈ {0, 1} may be modeled. Although many data-driven

approaches to variable selection have been proposed for causal inference applications, I use the

framework proposed by de Luna, Waernbaum, and Richardson (2011) herein because it is aligned

with the definition of variable selection given above, and provides theoretical guarantees regarding

identification of the average causal effect.

It has been shown both analytically (Battacharya & Vogt, 2007) and through simulation

(Austin, Grootendorst, & Anderseon, 2007; Brookhart et al., 2006) that conditioning on

treatment-only predictors (i.e., instrumental variables; IVs) can decrease the efficiency of

propensity score-based estimators, while conditioning on outcome-only predictors can increase

efficiency. Furthermore, conditioning on an IV or a collider variable can amplify bias (Steiner &
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Kim, 2016; Battacharya & Vogt, 2007; Wooldridge, 2009; Pearl, 2010). Although de Luna et al.

(2011) proposed a number of target subsets for variable selection, I focus on the subset they refer

to as XY , because outcome-only predictors are retained in XY , which, when conditioned on,

result in more efficient estimation of average causal effects (Persson, Häggström, Waernbaum, &

de Luna, 2017; Häggström, 2018). The procedure for selecting XY is carried out as follows.

Step 1. For j ∈ {0, 1}, define Xj ⊆ X of minimum cardinality such that

Y j ⊥⊥ X \Xj | Xj , T = j (1)

where X \Xj denotes the set of predictors that are in X but not in Xj .

Step 2. Let XY = X0 ∪X1.

If ignorability holds with X, conditional independence of T and {Y 0, Y 1} will also hold with XY

(de Luna et al., 2011).

As an example, consider the graphical models for the potential outcomes, Y 0 and Y 1,

displayed in Figure 1. To apply the algorithm, begin with the model for Y0 and find the subset,

X0, of minimum size such that Y 0 is conditionally independent of all variables not in X0, given

the variables in X0. Note that the fact that the algorithm also calls for conditioning on T = 0

implies that it may be used with observed data because, for example, Y 0
i is only observed for

units that also have Ti = 0. Here, the minimum subset is X0 = {X3, X4, X6}. Repeat the process

for Y 1, and find that X1 = {X3, X4, X5}. Finally, XY = X0 ∪X1 = {X3, X4, X5, X6}.

Figure 1 . Directed acyclic graphs for potential outcomes Y 0, and Y 1.
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Random Forests and Variable Importance

The XY variable selection procedure is expressed with nonparametric statements of

conditional independence. To maintain freedom from parametric and functional form

assumptions, a method for conditional independence testing that relies on minimal assumptions is

also desired. Random forests are useful because they are based on regression trees (Breiman,

Friedman, Olshen, & Stone, 1984), which nonparametrically handle higher-order interactions and

non-linear relationships.

Regression Trees

A regression tree is an algorithmic tool invented by Breiman et al. (1984) that models the

relationship between a continuous outcome variable, Y , and predictors, X1, . . . , Xp, by iteratively

splitting the data into subgroups based on predictor values. Every split creates two subgroups,

called nodes, and any node that is unsplit is called a terminal node or leaf node. The

tree-predicted value for each member of a node is simply the mean outcome score for all units in

that node. Thus, for unit i in terminal node t, where Nt represents the set of units in t, and |Nt|

represents the number of units in t, the tree-predicted value for unit i is

Ŷi = 1
|Nt|

∑
i∈Nt

Yi.

The adequacy of a regression tree fit may be measured by the deviance, defined for tree S

as the sum of squared prediction errors, or by the closely related mean squared prediction error

(MSPE):

dev(S) =
∑
i

(
Yi − Ŷi

)2

MSPE(S) = dev(S)/
∑
i

1.

At each iteration, the tree-fitting algorithm considers every possible split on every variable,

and the single split that results in the largest decrease in deviance is selected. If left unchecked,

regression trees will continue to split until each terminal node contains only one unit, yielding a

perfect fit to the data. A typical approach to prevent overfitting is to fit a complex tree and then
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“prune” it by dropping nodes according to a regularized solution based on adding a term to the

deviance that penalizes additional nodes (see, e.g., Hastie, Tibshirani, & Friedman, 2009 or

Venables & Ripley, 2002 for details). The value of the penalty term coefficient is typically chosen

by cross validation. See Appendix A for an example in which regression trees are applied to

ECLSK data.

Random Forests and Variable Importance

A single regression tree yields a rather noisy fit to the data. That is, minor changes to the

data can result in drastic changes to the predicted values for certain units. Bagging, short for

bootstrap aggregating, helps to reduce the variability of tree-based predictions by averaging over a

collection of fits produced on bootstrap samples of the data. A random forest (RF) is a collection

of B bagged trees (i.e., B trees grown on bootstrap samples) where, importantly, at each split, a

random sample of m predictors, where m << p, the total number of predictors, is used in

determining the split. Randomly sampling predictors reduces the pairwise correlation between

trees, which further reduces variability. The out-of-bag (OOB) cases for replication b are the cases

that were not part of the bth bootstrap sample. Predicted values are calculated as averages of

predicted values across the B trees.

Breiman (2001) introduced the permutation measure of variable importance. For each

predictor Xj , j ∈ {1, . . . , p}, the RF permutation variable importance is the average change in

OOB MSPE after randomly permuting (i.e., shuffling) the values of only Xj . If Xj is truly

unrelated to the outcome, one would expect, on average, no difference between the accuracy of

the predictions before and after permuting. On the other hand, if Xj is strongly related to the

outcome, one would expect a large difference.

Let B(s) represent the set of OOB cases for tree s. Using notation motivated by Strobl and

Zeiles (2008), the variable importance for predictor Xj for regression tree s ∈ 1, . . . , ntree may be

defined as follows:

VI(s)(Xj) =

∑
i∈B(s)

(
Yi − Ŷ (s)

i,πj

)2

∣∣B(s)
∣∣ −

∑
i∈B(s)

(
Yi − Ŷ (s)

i

)2

∣∣B(s)
∣∣ , (2)
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where Ŷ (s)
i is the predicted value for unit i before and Ŷ (s)

i,πj
is the predicted value after permuting

the values of Xj . The variable importance for predictor Xj is the average, taken over trees in the

random forest.

VI(Xj) = 1
ntree

ntree∑
s=1

V I(s)(Xj). (3)

The importance method described in Equations 2 & 3 will be referred to as traditional RF

permutation importance. A problematic feature of the traditional permutation scheme is that

variables may attain a high level of importance either for their relationship with the outcome Y ,

or for their relationships with other predictor variables that are related to the outcome.

Traditional permutation importance cannot, therefore, disentangle marginal association between

predictor and outcome from conditional association given the other predictors.

Conditional Permutation Importance

Strobl, Boulesteix, Kneib, Augustin, and Zeileis (2008) proposed conditional permutation

importance to disentangle marginal and conditional relations. For each regression tree in the

random forest and for a given predictor variable, Xj , the idea is to isolate the predictive power of

Xj for Y by permuting Xj within fixed levels of the other predictors, X \Xj . For example,

suppose there are three predictors, i.e., X = {X1, X2, X3}, such that X1 is measured on a

continuous scale and X2 and X3 are dichotomous. Assuming enough observed cases, one could

randomly permute the values of X1 within the four subgroups defined by the other two

predictors: X2 = 1, X3 = 1; X2 = 1, X3 = 0; X2 = 0, X3 = 1; and X2 = 0, X3 = 0. This approach

would break the association between X1 and the outcome, as desired. However, by permuting X1

within categories based on the levels of X2 and X3, any predictive power carried by X1 based

solely on its association with the other predictors would still be present after permutation.

Because importance of X1 is defined as the difference in OOB MSPE before and after

permutation, the conditional importance of X1 in this case would reflect the unique contribution

of X1 to the reduction in OOB MSPE after conditioning on X2 and X3: the portion not unique to

X1 would be differenced out.
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With more than a handful of predictors, sparsity due to the “curse of dimensionality”

renders the exact approach implausible. In place of exact conditioning, one could condition on

any balancing score (cf. Rosenbaum & Rubin, 1983) for the target predictor. For example, if the

target predictor (i.e., the one to be permuted) is dichotomous, it may be permuted within strata

based on the propensity score estimated by regressing the target predictor on the remaining

predictors. For continuous or multicategory variables, generalized versions of the propensity score

could be used (e.g., Fong, Hazlett, & Imai, 2018). The approach suggested by Strobl et al. (2008)

is to permute within subgroups based on the random forest regression tree splits. This latter

approach has the benefit of being fully nonparametric.

Nonparametric Conditional Independence Testing

A test of conditional independence, as opposed to one that fails to distinguish between

marginal and conditional association, is particularly important for variable selection in causal

inference applications. Consider the example depicted in Figure 2, where T is the dichotomous

assignment, Y 0 is the potential outcome under T = 0, X1 is a treatment-only predictor, X3 is an

outcome-only predictor, X6 is a confounding variable, and X5 is a collider variable on the

backdoor path from T ← X2 → X5 ← X4 → Y0. Following Equation 1, X0 = {X3, X4, X6}. Note,

however, that X5 is marginally associated with Y0 through X4. Furthermore, the path

X1 → T ← X6 → Y0, which is blocked at T , becomes unblocked when T is conditioned on,

rendering X1 marginally associated with Y0. Thus, in this case, if tests of marginal (as opposed to

conditional) independence are used, two spurious variables, the instrument, X1, and the collider,

X5, are incorrectly retained.

Figure 2 . If tests of marginal, rather than conditional, independence are used to determine X0
with this directed acyclic graph, X1 and X5 are incorrectly retained.
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Permutation Testing with RF Permutation Importance

Permutation testing provides a useful framework for nonparametrically testing individual

variables based on RF importance measures. Rodenburg et al. (2008) used permutation of

traditional RF permutation importance for variable selection and Altmann, Toloşi, Sander, and

Lengauer (2010) summarized the approach, which can be described in four steps.

Step 1. Fit a random forest to calculate baseline importance for all predictors.

Step 2. Create R permuted copies of the predictor matrix, X1,X2, . . . ,XR by randomly

shuffling rows.

Step 3. Run a random forest for each of the R replicates to generate R importance

estimates for each variable.

Step 4. Compare each variable’s baseline importance to its permutation distribution;

Each variable that exceeds the (1 - α) percentile is retained.

The permutation approach operationalized in Steps 1 through 4 does not provide a test of

conditional dependence for each predictor variable. There are two potential solutions to correct

the procedure so that it provides tests of conditional independence between predictors and

outcome, as desired. The first, proposed by Hapfelmeir and Ulm (2013), is to modify Steps 2 and

3 as follows, where p is the number of predictors:

Step 2′. For each j in {1, 2, . . . , p}, create R copies of the predictor matrix by only shuffling

the values of Xj .

Step 3′. For each j in {1, 2, . . . , p}, run a random forest for each of the R replicates to generate

p variable-specific permutation distributions.

This modification requires that p×R random forests be fit. For moderate to large values of

p, especially when coupled with sample sizes that are not small, this approach is computationally

intractable. The second solution, which, to my knowledge, has not been implemented or studied

elsewhere, is to couple the original permutation approach (Steps 1 through 4) with a measure of

conditional RF permutation importance. If conditional RF permutation importance is used in

place of traditional RF permutation importance, shuffling all rows in Step 2 no longer invalidates

the permutation variable selection procedure as a test of conditional independence because the
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baseline importance of each predictor variable only reflects the improvement in OOB MSPE due

to Xj given X \Xj .

I use this latter approach, and build up conditional RF permutation importance as follows:

1. Fit a random forest to the un-permuted data with ntree trees and compute OOB MSPE.

2. For each tree in the random forest,

(a) For j in {1, 2, . . . , p}, fit a regression tree with Xj predicted by X \Xj , and create a

grouping factor, Zj that assigns each unit a group number based on terminal node

membership.

(b) Let Ŷ (s)
i,πj |Zj

denote the tree-predicted value for unit i in tree s after permuting the

values of Xj within the levels of the factor Zj . The tree-specific importance for each

variable is determined as in Equation 2, except that Ŷ (s)
i,πj

is replaced by Ŷ (s)
i,πj |Zj

,

reflecting that shuffling is now conditional on the grouping factor Zj .

3. The overall conditional RF importance for Xj is the average over all trees, as in Equation 3.

The calculation of conditional RF importance requires significantly more computational time than

the calculation of traditional RF importance. To reduce overall runtime, permutation testing with

conditional RF importance is implemented only after first dropping predictors based on

permutation testing with traditional RF importance. In this way, predictors that have no

marginal association with the potential outcomes are dropped quickly, thereby reducing the

dimension of the space over which conditional RF importance is run.

Simulation Studies

To my knowledge, the only other non-parametric approaches that have been studied for

conditional independence testing within the XY framework are kernel smoothing and Bayesian

networks under discrete mutual information. The kernel smoothing method, described in Persson

et al. (2017) and available in package CovSel (Häggström, Persson, Waernbaum, & de Luna,

2015), is computationally demanding. I implemented kernel smoothing with the ECLSK data but

the algorithm had not moved past the first of five “multistarts” after 24 hours running on a mid

2012 Mac Pro with 2 × 3.06 GHz 6-Core Intel Xeon processors and 40 GB RAM, so it was
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abandoned. Gaussian Bayesian networks (GBNs) use mutual information based on Gaussian

log-likelihoods for conditional independence testing, so there is an implicit assumption that

relationships between variables are linear. Häggström (2018) proposed the use of Bayesian

networks with tests of conditional independence based on discrete mutual information (Cover &

Thomas, 2006). To avoid Gaussian distributional assumptions, the method requires that all

continuous variables be discretized. Häggström (2018) found that discrete Bayesian networks

resulted in accurate variable selection for large samples for both linear and nonlinear

data-generation processes.

Variable Selection and Effect Estimation

Simulation studies were planned for four data-generation processes, each based on 100

replications, to probe the performance of the conditional RF importance permutation approach

(RFC) relative to three other methods for high-dimensional variable selection: traditional RF

importance under permutation (RFT), Gaussian Bayesian networks run in package bnlearn

(Scutari, 2010; GBN), and Häggström’s (2018) implementation of discrete Bayesian networks

from packege CovSelHigh (Häggström, 2017; CSH). Both RFC and RFT were implemented in

package rfvarsel. The first outcome evaluated for each of the four data-generation processes was

each algorithm’s accuracy in selecting the variables in the subset XY with data sets of size

N = 500, N = 2000, and N = 5000. Then, given the 100 subsets actually selected by each

algorithm for each sample size, four different methods to estimate average treatment effects were

used to explore the impact of variable selection on bias and efficiency.

First, propensity score analysis was run with propensity scores estimated by generalized

boosted regression models via package twang (Ridgeway, McCaffrey, Morral, Ann, and Burgette

(2015); GBM). Second, propensity score analysis was run with propensity scores estimated by the

covariate balancing propensity score via package CBPS (Fong, Ratkovic, Hazlett, & Imai, 2015;

Imai & Ratkovic, 2014). For both propensity score methods, the average treatment effect was

estimated by inverse propensity weighting. Third, Bayesian additive regression trees (BART)

were run in package bartMachine (Kapelner & Bleich, 2016). For a given data set, BART was

used to estimate the average causal effect by running a single BART model regressing the

outcome on predictors and the treatment indicator. Potential outcomes were then imputed using



RF VARIABLE SELECTION 13

predicted values, and the average difference in imputed potential outcomes was reported as the

estimate of the average causal effect. Fourth, targeted maximum likelihood estimation (TMLE)

was used in conjunction with BART via package tmle (Gruber & van der Laan, 2012; van der

Laan & Gruber, 2010). BART was used to estimate propensity scores and impute potential

outcomes, which were then passed to TMLE to create a doubly robust estimator.

For variable selection, performance was measured by the proportion of replications for

which variables in the target set, XY , were correctly identified, and by the frequency with which

variables outside the target set were incorrectly retained. For causal effect estimation,

performance was measured by average absolute bias and simulation standard deviation, defined as

follows,

Average Absolute Bias = 1
R

R∑
r=1
|τ̂r − τ |

Simulation Standard Deviation =

√√√√ 1
R− 1

R∑
r=1

(
τ̂r − ¯̂τ

)2

where τ is the overall population average treatment effect, τ̂r is the estimate based on the rth

replication, and ¯̂τ is the average of the estimates over the R total replications.

Data Generation

The data-generating processes (DGPs) for Y 0 are displayed graphically in Figure 3; the

DGPs for Y 1 were identical with the exception of a constant treatment effect of 0.5 units. For the

linear case, X1, X2, and X3 have a direct linear effect on both the exposure indicator T and the

potential outcome, Y 0; X4 and X6 have a direct linear effect only on T ; X5 and X7 have a direct

linear effect only on Y 0; and X8 through X100 are noise. X1, X6, X7, and half the noise variables

were simulated as dichotomous. The remaining variables were simulated as standard normal. The

outcome model coefficients were set to 1.0, which yielded semi-partial correlations with the

outcome of .2 for dichotomous variables and .4 for continuous variables, which correspond roughly

with Cohen’s (1988) guidelines for moderate effect sizes for Pearson correlations. Propensity score

model coefficients were set to log(2) ≈ 0.69, so that a one unit increase in each predictor was

associated with a doubling of the odds of assignment to the exposed group.
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The nonlinear DGP was identical with the exception that variables X2 and X3 influence the

exposure and potential outcomes only through their interactions, denoted by filled circles in

Figure 3. The third DGP is identical to the linear case with the exception that X8 is a collider

variable on the back door path from T ← X6 → X8 ← X7 → Y 0. The fourth DGP combines the

nonlinear and collider cases. For all DGPs in Figure 3, XY = {X1, X2, X3, X5, X7}.

1 – Linear 2 – Nonlinear

3 – Collider 4 – Nonlinear and Collider

Figure 3 . Data generating processes for Y 0 for the four simulation studies. Data generation for
Y 1 is identical with the exception of a constant treatment effect.

Motivating considerations for the four data-generating processes are related to expected

differences in performance across the methods with respect to variable selection and estimation

accuracy and precision. Considerations for variable selection:

1. All methods are expected to perform well when the data-generating process is linear.

2. Methods based on RF importance should outperform GBNs and CSH in correctly

identifying variables involved in nonlinear relationships with the potential outcomes. GBNs
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use mutual information based on Gaussian log-likelihoods for conditional independence

testing, so there is an implicit assumption that relationships between variables are linear.

The CSH algorithm is based on the discrete version of mutual information, which does not

assume linearity. However, because continuous variables must be discretized, information

loss will likely result in less sensitivity to detect relationships that will be especially

noticeable for small to moderate sample sizes.

3. RFT, which is the only method of the four that fails to distinguish marginal from

conditional independence, will fail to eliminate collider variables because they are

marginally associated with the potential outcomes.

Considerations for estimation precision and accuracy:

1. IVs and noise variables decrease precision of estimation when conditioned on; thus, all

methods are expected to perform more poorly with respect to finite sample bias and

efficiency when all 100 predictors are included, relative to when only the target set XY is

included.

2. Conditioning on an IV or a collider variable has the potential to amplify bias; thus, large

biases are expected in cases where the incorrect retention of an instrument or collider

co-occurs with the incorrect omission of key confounding variables.

Results - Variable Selection

Variable selection results are shown in Table 4. The bars represent the proportion of 100

replications that included each variable from X1 to X8. Solid bars are used to denote variables

that are part of the target subset XY ; striped bars denote variables that were incorrectly

retained. The numbers reported in the rows labeled “D” and “C” give the total number of noise

variables (X9 through X100) retained across all replications for dichotomous and continuous

predictors, respectively. For example, adding together the values 6 and 7, reported for GBN for

the linear DGP, the combined rate of noise retention was 13/9200, where the number 9200

represents the total number (100 replications × 92 noise variables) of opportunities to retain noise

variables for each cell of the simulation design.
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The overall patterns of results are largely as expected. First, note that GBN performs

remarkably well when relationships are linear (either with or without a collider variable), and

very poorly when relationships are nonlinear. For the nonlinear DGPs, IVs X4 and X6 were

selected with increasing frequency as sample size increased. This is expected because when the

nonlinear terms X2 and X3 are incorrectly omitted and T is conditioned on, as required by

Equation 1, paths from {X4, X6} → T ← {X2, X3} → Y0 become unblocked, and the resultant

associations are detected with more sensitivity at higher sample sizes. As expected, RFT failed to

exclude the collider variable X8. An increase was observed in the incorrect frequency of inclusion

of X4 and X6 for RFT as sample size increases, likely due to marginal associations induced

between the IVs and the potential outcomes due to conditioning on T .

The RFC method performed well across all scenarios. For the moderate and large sample

size conditions, with N = 2000 and N = 5000, RFC correctly retained variables in XY in 100% of

replications across all four data-generation scenarios. Comparing the results for the third and

fourth DGPs across RFT and RFC, it is clear that the use of conditional RF importance

permitted RFC to eliminate the IVs and collider that were incorrectly retained by RFT. For

N = 500, RFT was more sensitive than RFC in correctly retaining important predictors in all

scenarios (e.g., 89% vs 81% for X1 with the linear DGP) 2. RFC was uniformly more sensitive

than CSH across all four DGPs, though CSH selected a lower proportion of IVs and colliders for

some DGPs (e.g., 0% vs 5% for X8 with the fourth DGP with N = 2000).

Results - Estimation

In addition to variables selected by GBN, RFT, RFC, and CSH, the cases of no variable

selection (ALL) and correct selection of the target set XY were also considered. For each of the (6

variable selection methods × 3 sample size conditions × 4 DGPs) 72 cells of the simulation

design, four methods were used to estimate the average causal effect for each of the 100

replications. Results for absolute bias and simulation standard deviations are shown in Figures 5

and 6, respectively. RMSE is not shown because it was dominated by the bias.
2This difference is due to the fact that the implementation of RFC involved a preliminary step wherein RFT was

run first, so some predictors were tested twice. This relative loss of sensitivity could be avoided by leaving out the
preliminary step at the cost of increased computational time, or by using a less stringent Type I error rate for the
first round of testing.
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Figure 4 . Bars represent Monte Carlo simulation study results on the proportion of 100
replications each variable was retained. Solid bars denote variables that were correctly retained
(because they are in XY ); striped bars denote variables that were incorrectly retained. For each
cell, rows labeled D and C give the number of dichotomous and continuous noise variables
incorrectly retained, respectively. GBN = Gaussian Bayesian networks, RF TRAD = traditional
RF permutation importance under permutation, RF COND = conditional RF permutation
importance under permutation, CSH = discrete Bayesian networks.

In every cell of the design and across all estimation methods, the absolute bias based on

conditioning on all 100 predictors (ALL) was larger than the bias due to conditioning only on the

target set, XY . Relative to no variable selection, RFT and RFC always helped. The results for

GBN and CSH were mixed, with substantial bias reduction for linear scenarios but potential for

poor bias reduction or even bias inflation when coupled with nonlinear DGPs. For N = 500,

variable selection with CSH lead to bias increases in some cells due to lack of sensitivity.

Performance with CSH improved markedly for larger sample size conditions.

The variability of estimators after variable selection, as measured by simulation standard

deviation, contributed relatively little to the RMSE; nevertheless, there were some trends with
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respect to variability. After variable selection with CSH, nonparametric estimators (i.e., BART,

TMLE with BART, and propensity score analysis with GBM) were associated with larger

variances. As an example, consider the interaction DGP at N = 5000. For that cell of the design,

91 of 100 replications led to estimates between 0.4 and 0.6 (the true value was 0.5) but the

remaining nine estimates were larger than 1.0. In those nine cases, the CSH procedure had

resulted in the incorrect omission of either X2, X3, or both. GBN, on the other hand, performed

poorly with respect to variable selection for all 100 replications, which led to all 100 estimates

being larger than 1.0, and, therefore, a tight spread around a biased value.

Figure 5 . Each point represents the simulation-based average absolute bias for a given sample
size, variable selection method, and estimation method. Variable selection methods: ALL =
no variable selection, GBN = Gaussian Bayesian networks, RFT = traditional RF permutation
importance under permutation, RFC = conditional RF permutation importance under
permutation, CSH = discrete Bayesian networks, XY = correct selection of the variables in XY .



RF VARIABLE SELECTION 19

Figure 6 . Each point represents the simulation standard deviation for a given sample size,
variable selection method, and estimation method. ALL = no variable selection, GBN =
Gaussian Bayesian networks, RFT = traditional RF permutation importance under permutation,
RFC = conditional RF permutation importance under permutation, CSH = discrete Bayesian
networks, XY = correct selection of the variables in XY .

Case Study

In this section, variable selection methods are applied to ECLSK data to estimate the

average causal effect of exposure to special education services on math achievement in fifth grade.

The data set, which is described in greater detail in Keller and Tipton (2016), includes variables

motivated by Morgan, Frisco, Farkas, and Hibel (2010), who examined the effect of student

exposure to special education services on later social and academic outcomes. There are 429

exposed cases and 6933 comparison cases; the outcome variable and 34 potential predictor

variables are summarized in Table A1. Note that these analyses are mean to be illustrative;

resultant estimates should not be interpreted as robust estimates of the causal effect.



RF VARIABLE SELECTION 20

Results - Variable Selection

Variable selection results are shown in Table 1. Of 34 potential predictors, 12 were retained

by GBN, 10 by RFT, 8 by RFC, and 5 by CSH. The five variables selected by CSH were also

selected by all other methods. Because these data were not simulated, the true value of the

treatment effect is not known. Nevertheless, patterns in the variable selection results correspond

with expectations based on theory and simulation results. For example, RIRT (kindergarten

reading score) was dropped by all methods except RFT. Recall that RFT is the only method of

the four that fails to discriminate between conditional and marginal dependence. The marginal

linear relationship between RIRT and MIRT (kindergarten math score) is quite strong, with an

estimated Pearson correlation of .71. It is plausible that the impact of RIRT on the outcome, 5th

grade math score, although marginally very strong, was conditionally weak after accounting for

MIRT, which would explain why it was dropped by the other algorithms. Another example

involves P1FIRKDG (an indicator for first time in kindergarten) and P1AGEENT (child’s age

when starting kindergarten); both were selected by the RF procedures but not by GBN nor by

CSH. Based on exploratory linear regression modeling, it is found that P1FIRKDG and

P1AGEENT are involved in highly significant and strong two-way interactions. The forest-based

methods may have picked up on these variables because of their strong nonlinear relationships

with the outcome.

Results - Estimation

Average causal effect estimates and 95% confidence intervals are displayed in Figure 7. For

GBM and CBPS, 95% confidence intervals are based on sandwich standard errors from package

survey (Lumley, 2004); for TMLE, asymptotic intervals produced by the tmle package are

reported; for BART, intervals were calculated using a nonparametric bootstrap (percentile

method) based on 50 replications. The naive, unadjusted estimate of the average causal effect of

special education services on fifth grade math achievement is -19.2 points, with 95% confidence

interval given by (-21.5, -17.0).

Adjusting for all 34 covariates drastically and significantly reduced the estimated average

effect to between -5.4 and -1.8, depending on the estimation method, with three of the four 95%
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Variable GBN RFT RFC CSH

DEMOGRAPHIC
GENDER X X X X
WKWHITE X
WKSESL X X X X

ACADEMIC
RIRT X
MIRT X X X X
P1FIRKDG X X
P1AGEENT X X
apprchT1 X X X X
P1HSEVER X

SCHOOL COMPOSITION
S2KMINOR X

FAMILY CONTEXT
P1FSTAMP X X X
P1HMAFB X

HEALTH
C1FMOTOR X X X X
wt_ounces X

PARENT RATING
P1SOLVE X X

TOTAL 12 10 8 5

Table 1
Subset of ECLSK variables retained by at least one variable selection method. GBN = Gaussian
Bayesian networks, RFT = traditional RF permutation importance under permutation, RFC =
conditional RF permutation importance under permutation, CSH = discrete Bayesian networks.
Boldface variable names indicate dichotomous predictors.

confidence intervals excluding zero and, thus, still suggesting a significant negative impact of

exposure to special education services on 5th grade math achievement. Conditioning only on

variables selected by GBN gave estimates between -5.0 and -3.6, also with three of four intervals

excluding zero. Conditioning on variables selected by CSH yielded estimates between -6.4 and

-3.8, with all intervals excluding zero. The use of RFT lead to estimates between -2.4 and 0.1,

with only one interval that excluded zero. Estimates based on RFC were between -3.8 and -1.6

with two of four intervals excluding zero.

There are no randomized experimental results to use as benchmarks for comparison because

of obvious ethical issues. Without recourse to the true causal effect it is not possible to say which

methods were most unbiased. Nevertheless, it is interesting to note that the two RF-based

methods tended to produce estimates closer to zero than any of the other methods, including

conditioning on all 34 available predictors.
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Figure 7 . ECLSK case study results including average treatment effect estimates (points with
cross-hairs) and 95% confidence intervals for the effect of special education services on math
achievement in fifth grade. For effect estimation: GBM = propensity score analysis via
generalized boosted modeling, CPBS = propensity score analysis via covariate balancing
propensity score, TMLE = targeted maximum likelihood, BART = Bayesian additive regression
trees. For variable selection: ALL = no variable selection, GBN = Gaussian Bayesian networks,
RFT = permutation testing with traditional RF permutation importance, RFC = permutation
testing with conditional RF permutation importance, CSH = discrete Bayesian networks.

Discussion

By using conditional RF importance in a permutation testing approach, one gets the best of

both worlds: (a) a non-parametric variable selection algorithm that automatically handles

nonlinear relationships and (b) one that tests the null hypothesis of conditional independence

that is typically desired for causal applications. RF permutation methods were compared with

Gaussian Bayesian networks and discrete Bayesian networks (CSH) through simulation and in a

case study. Unlike GBN, which may fail to detect nonlinear relationships no matter the sample

size, CSH is model free and has ideal properties in the limit. What the simulation results

underscore, however, is that for small to moderate sample sizes, RF-based algorithms can be more
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powerful, especially for detecting nonlinear relationships.

A general limitation with any variable selection method is related to the potential to drop

weak confounding variables due to lack of sensitivity. This could be problematic in a situation in

which there are many very weak confounders that, in aggregate, reduce a non-trivial amount of

bias, but individually are too weak to be detected. The simulations show that sensitivity increases

as sample size increases, as expected. Nevertheless, future work that more specifically addresses

sample size and effect size considerations would be useful.

There are two limitations associated specifically with RF permutation methods for variable

selection. First, RFT and RFC take more time to run than GBN or CSH because permutation

approaches are computationally expensive. Second, as is typically the case with nonparametric

methods, if parametric and functional form assumptions are tenable, methods such as GBN that

capitalize on those assumptions will have slightly better finite-sample properties. This second

point is not a strong limitation, however, because data-driven variable selection, especially with

high-dimensional data, is typically used precisely because there is no strong theory regarding how

variables are related. Furthermore, the consequences of incorrectly making strong functional form

assumptions can be dire, as seen in the biases associated with GBN in nonlinear scenarios.

As expected, RFC correctly eliminated collider variables and instrumental variables that

were incorrectly retained by RFT. The implications for bias, however, were generally modest,

with relatively small gains in accuracy for RFC over RFT. From a causal perspective, the

inclusion of a collider variable (like X8 in simulations 3 and 4) will only cause a problem in terms

of identification of the average causal effect if the backdoor path from T to the potential outcome

is not blocked some other way. Given that ignorability was assumed with the complete set of

predictor variables, RFT will also identify the variable that joins the collider to the potential

outcome (X7 in simulations 3 and 4), thereby blocking the confounding effect of including the

collider. Differences in finite sample bias associated with RFC and RFT may be more drastic in

situations in which ignorability is not satisfied given the observed pretreatment variables X, but

such cases were not investigated; it would be an interesting topic for future research.

With respect to the simulation standard deviations, shown in Figure 6, the simulation SDs

appear to be tied to the variable selection results via the bias; higher variability occurs in tandem

with higher bias and poorer variable selection accuracy. This raises questions about the need to
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account for variability due to the variable selection procedure in confidence intervals and standard

errors. The most straightforward methods to do so involve resampling, which, unfortunately,

compounds computational time.

Note that RFC is an explicit method for variable selection. That is, the RFC procedure is

designed be used as a pre-processing step to select important variables for further analyses. This

is in contrast to methods that select variables implicity by upweighting important variables and

downweighting unimportant ones on the fly. Some examples of methods that do implicit variable

selection are penalized versions of regression such as ridge, lasso, and elastic net (Hastie et al.,

2009) and all methods based on regression trees, which, as described in Appendix A, only make

use of variables that maximize prediction when splitting. BART and GBM are both based on

regression trees and, therefore, do variable selection implicitly by only splitting on important

variables. Nevertheless, the use of RFT and RFC for variable selection always led to less bias

than using the full set of variables with BART and GBM for the simulated data sets examined

herein. As is the case with any simulation study, however, it is not appropriate to make strong

generalizations to data scenarios that are very different.

Expert substantive knowledge and results from prior literature should take precedence in

guiding the selection of important conditioning variables in an attempt to satisfy the ignorability

assumption. However, there are bound to be variables, a large majority in some cases, for which

the theory is weak. It is precisely for variables for which the theory is weak that questions about

conditional independence and functional form relationships are likely to be unanswered.

Simulation results discussed herein confirmed that dropping instrumental variables, colliders, and

spurious noise variables prior to causal effect estimation improved finite sample behavior. The

RFC algorithm performed well in both an absolute sense and relative to other methods for

data-driven variable selection across a variety of conditions. Importantly, no tuning is required;

RFC handles nonlinear relationships and interactions in its naive implementation.
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Appendix A

Table A1

Table A1
Variable Names, Descriptions, and Standardized Mean Differences (d) and Variance Ratios (r) by Special Education
Status

Variable Name Description of Variable Values d r

DEMOGRAPHIC
GENDER Male 0, 1 0.38 0.88
WKWHITE White 0, 1 0.17 0.79
WKSESL Socioeconomic Status [-4.8, 2.8] -0.29 0.89

ACADEMIC
RIRT Kindergarten Reading Score [23.17, 139.36] -0.65 0.53
MIRT Kindergarten Math Score [11.9, 99.0] -0.71 0.77
S2KPUPRI Public School 0, 1 0.44 0.25
P1EXPECT Parental Expectations Integers 1–6 -0.32 1.22
P1FIRKDG First-Time Kindergartener 0, 1 -0.41 3.26
P1AGEENT Child’s Age at K Entry (Months) [54, 79] 0.08 1.08
apprchT1 Approaches to Learning Rating Integers 1–4 -0.70 1.20
P1HSEVER Attended Head Start 0, 1 0.19 1.42
chg14 Ever Changed Schools 0, 1 0.02 1.09

SCHOOL COMPOSITION
avg_RIRT Reading IRT [27.9, 80.0] -0.23 0.79
avg_MIRT Math IRT [16.1, 66.1] -0.18 0.82
avg_SES SES [-2.2, 2.5] -0.16 0.88
avg_apprchT1 Approaches to Learning [1.5, 4.0] -0.14 0.80
S2KMINOR Percent Minority Students Integers 1–5 -0.20 0.77

FAMILY CONTEXT
P1FSTAMP Received Food Stamps 0, 1 0.12 1.26
ONEPARENT One-Parent Family 0, 1 0.13 1.22
STEPPARENT Stepparent Family 0, 1 0.05 1.19
P1NUMSIB Number of Siblings [0, 10] 0.16 1.17
P1HMAFB Mother’s Age at First Birth Years [12, 45] -0.26 1.00
WKCAREPK Nonparental Pre-K Child Care 0, 1 -0.07 1.14

HEALTH
P1EARLY Number of Days Premature [0, 112] 0.19 2.05
wt_ounces Birth Weight (Ounces) [17, 214] -0.11 1.24
C1FMOTOR Fine Motor Skills Integers 0–9 -0.63 1.27
C1GMOTOR Gross Motor Skills Integers 0–8 -0.43 1.54

PARENT RATING OF CHILD
P1HSCALE Overall Health Integers 1–5 0.12 1.17
P1SADLON Sad/Lonely Integers 1–4 0.10 1.32
P1IMPULS Impulsive Integers 1–4 0.41 1.55
P1ATTENI Attentive Integers 1–4 0.72 1.45
P1SOLVE Problem Solving Integers 1–4 0.68 1.55
PSPRONOU Verbal Communication Integers 1–4 0.86 1.51
P1DISABL Child has Disability 0, 1 0.82 2.38

EXPOSURE VARIABLE
F5SPECS Special Education Services 0, 1 NA NA

OUTCOME VARIABLE
C6R4MSCL Fifth Grade Math Score [50.9, 170.7] -0.77 1.40
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Appendix B

A Regression Tree Example with ECLSK Data

In the ECLSK data set, there are 429 exposed cases (i.e., students that received special education

services) and 6933 comparison cases (i.e., students that did not receive special education services).

Here a regression tree will be fit to the 429 exposed cases using package rpart in R. The first step

is to install and then load the rpart package.

R> install.packages("rpart")

R> library(rpart)

Next, prepare the data. eclsk is the name of the data frame that contains the outcome,

C6R4MSCL, the exposure indicator, F5SPECS, and 34 additional predictors. The data are then

subsetted to only use the exposed cases (i.e., cases with F5SPECS value of 1).

R> eclsk_exposed <- eclsk[which(eclsk$F5SPECS == 1), ]

Then, since this will result in a subset for which the F5SPECS variable is 1 for all cases, that

variable is dropped from the data frame.

R> eclsk_exposed <- eclsk_exposed[, -which(names(eclsk) == "F5SPECS")]

Now the regression tree algorithm may be run.

R> rpart1 <- rpart(formula = C6R4MSCL ~ .,

R> data = eclsk_exposed,

R> control = rpart.control(minsplit = 50, cp = .005))

The period on the right side of the formula specifies that the outcome, C6R4MSCL, is to be

predicted by all remaining variables in the data frame. The minsplit value is the minimum

number of cases required in a node for a split to be attempted. Thus, nodes with fewer than

minsplit cases are terminal. Setting minsplit to a larger value is one way to prevent overfitting.

The cp value is a complexity parameter that saves computational time by not considering splits

that decrease overall misfit by cp. Setting cp to a lower value will trigger a more fine-grained

cross-validation table at the expense of more computational time.
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The cross validation plot based on the run shows that cp = .019 is associated with the

lowest cross-validated error. The dashed horizontal line is drawn one SE above the minimum of

the curve. In practice, especially with larger data sets, better predictive performance may be

attained by selecting the first value of cp that is below the horizontal line, even if it is not the

minimum.

Figure B1 . Cross validation plot for the regression tree error for ECLSK exposed cases

Having selected cp = .019, a pruned tree is then created. The output follows.

R> (rpart2 <- prune(rpart1, cp = .019))

n= 429

node), split, n, deviance, yval

* denotes terminal node

1) root 429 325357.50 131.6455

2) MIRT< 31.465 332 188005.50 123.8792

4) MIRT< 19.1725 66 25745.05 105.0488 *

5) MIRT>=19.1725 266 133051.10 128.5515

10) WKSESL< -0.275 103 44190.17 120.4778 *
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11) WKSESL>=-0.275 163 77904.28 133.6533 *

3) MIRT>=31.465 97 48791.18 158.2267

6) RIRT< 45.0375 67 27939.38 151.0906 *

7) RIRT>=45.0375 30 9819.97 174.1640 *

The first line of output gives the sample size. The second line gives a key for interpreting

the remaining output. Node number comes first, followed by the name and position of the

variable on which a split was made, followed by the sample size remaining in each “daughter”

node, followed by each node’s contribution to the deviance, followed by the predicted value for the

node, followed by an asterisk if the node is terminal. The root node represents the data before

any splitting. Thus, the mean of 131.6 reported for the root node is the grand mean of the

outcome variable for the 429 exposed cases. The deviance based on using the grand mean as the

predicted value for all 429 cases is 325,358. The deviance for the final pruned tree can be

calculated by summing each terminal node’s contribution to the deviance: 25,745 + 44,190 +

77,904 + 27,939 + 9,820 = 185,598.

Package rpart.plot, which must be installed and loaded, will be used to plot the regression

tree. The function prp creates the plot.

R> install.packages("rpart.plot")

R> library(rpart.plot)

R> prp(x = rpart4, type = 1, extra = 1,

main = "Regression Tree for ECLSK Treated Cases")

The plot offers a succinct visual display of the information summarized in the output. The

first split was on the kindergarten math pretest score, MIRT, at a score of 31.5. The second split

was also made on MIRT at a score of 19.2, thus modeling a quadratic relationship (MIRT2). The

next split was made on the RIRT variable at a value of 45.0, thus modeling an interaction

between MIRT and RIRT. The final split is on the socioeconomic status variable WKSESL, at a

value of -0.3. The tree-predicted value for the 30 special education students that scored higher

than 31 on the kindergarten math exam and higher than 45 on the kindergarten reading exam is

174; whereas, the tree-predicted value for the 66 special education students that scored lower than

19 on the kindergarten math exam is 105. Other nodes may be interpreted similarly.
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Figure B2 . Regression tree plot for ECLSK exposed cases after pruning


