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Unplanned transfers of patients from general medicalisakgvards to the Intensive Care Unit (ICU) may occur due to
unexpected patient deterioration. Such patients tendwe higher mortality rates and longer length-of-stay thaeddi
admits to the ICU. As such, the medical community has ingestéstantial efforts in the development of patient risk
scores with the intent to identify patients at risk for deteation. In this work, we consider how such risk scores ddod
used to trigger a proactive transfer to the ICU. In this wavk,utilize a retrospective dataset from 21 Kaiser Permanent
Northern California hospitals to estimate the potentialdfit of transferring patients to the ICU at various levelpatient
risk of deterioration. In order to reduce the sensitivityaf findings to key identification and modeling assumptioves,
use a combination of optimal multivariate matching andrimsental variable approaches. Using our empirical resailts
calibrate a simulation model, we find that proactively adimitthe most severe patients could reduce mortality ratds a
length-of-stay without increasing other adverse everaggver, proactive transfers should be used judiciouslyeasgb

too aggressive could increase ICU congestion and degraadityqof care.
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1. Introduction

Intensive Care Units (ICUs) provide care for criticallypktients and often operate near full capacity (Green

2002). ICU admissions in the US have increased by 48.8% frod2 2hrough 2009 (Mullins et &l. 2013),

and the usage of ICUs will likely continue to rise with the ptagion agingl(Mi D8). The high
cost of ICU care and rising use of ICUs make it of increasingriest to develop a better understanding of
the ICU admission decision. In this work, we focus our attenbn the ICU admission decisions for patients

in general medical-surgical wards and the TransitionaeQamit (TCU), because unplanned transfers to

the ICU from these units are associated with worse patietcboues than direct admissions (Barnett et al.

2002 [ Simpson et al. 2005, Luyt etal. 2007). Indeed, thetierga typically have over three times higher
mortality than expected and have longer length-of-stay).By 10 days (Escobar etial. 2011). In this work,
we use a real-time physiologic risk score (Escobar et al2Pfiir patients staying in the general ward and

the TCU to develop an understanding of the potential beraafilscosts of proactively transferring patients

to the ICU based on the risk score before they experiencd dagterioration.
Recognizing the risks associated with unplanned trangfezdJS Institute for Healthcare Improvement

advocates for the development of early warning systemgipatithe work of rapid response teams (RRTS)
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with the hope that this would reduce catastrophic medicahts/sthat can lead to unplanned transfer to the

ICU or in-hospital death on the ward or TCU (Duncan et al. J022rapid response team is a team of
clinicians who bring critical care expertise to the bedsifithe patient who exhibits early signs of clinical

deterioration. No standard detection mechanism exist®RFs. Some teams employ manually assigned

scores such as the Modified Early Warning Score (MEW tal. 2000) and the National Early

Warning Score (NEWS) (Roval College of Physiclans 2012)octanately, these scores are quite coarse

and can suffer from high false positive and false negatitesréEscobar et al. 2012, Gao QH al. 2007).

The setting for our work is Kaiser Permanente Northern @alifi (KPNC), an integrated health care

delivery system that routinely uses severity of illnesslanditudinal comorbidity scores for internal quality

assurance. As is the case with some university hospitals, [¢€ollef et al. (2014)), KPNC is starting to

embed predictive models into the electronic medical re(@MR). KPNC has developed an early warning
system that provides clinicians in the emergency depait(&) and general medical-surgical wards with
a severity of illness score (Laboratory-based Acute PlygioScore, version 2, LAPS2), a longitudinal

comorbidity score (COmorbidity Point Score, COPS2), ad a&h real-time in-hospital deterioration risk

estimate (Early Detection of Impending Physiologic Detexiion score, version 2, EDIP2) (Escobar et al.

2012)2013). The real time scoring system can provide @ingwith deterioration estimates every 6 hours

and has recently been deployed to provide real-time riskesdo alert a RRT at two pilot hospitals. There
are ongoing discussions by KPNC management for furtheiogepnt at additional hospitals.

The EDIP2 score predicts the probability of death or unpdahmansfer from the ward or the TCU to the
ICU for patients who are ‘full code’ (i.e., those who desué fesuscitation efforts in the event of a cardiac
or respiratory arrest) within the next 12 hours, and is updavery 6 hours at 4am, 10am, 4pm and 10pm,
as seen in Figurel 1. The EDIP2 score utilizes vital signsj gigns trends, and laboratory tests from the
past 24—72 hours as well as patient diagnoses and democgdpliietermine a patient’s EDIP2 score. The
EDIP2 score is more than twice as efficient as the manualigres MEWS, i.e., the EDIP2 score results

in less than half the number of “false alarms” as comparel thie MEWS model for identifying the same

-

proportion of all transfers to the ICU (Escobar et al. 20¥2hen using the c-statistic as a measure of model

sensitivity and specificity, the EDIP2 out-performs the aijedl NEWS score and a machine-learning based

eCART model with c-statistic of 0.82 versus 0.79 and 0.7§peetively|(Kipnis et &l. 2016).

The main premise of the EDIP2 score is to alert the RRT of aeptsi risk of deterioration so that
they may consider discrete interventions. “Some inteieestperformed by the response team are simple

(administration of oxygen, intravenous fluids, diuretisd bronchodilators and performance of diagnostic

tests),” but often do not correspond to admitting a patierthe ICU (Jones et &l. 2011). This is in contrast



Figure 1 Timeline for the EDIP2 score
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to what we propose in this work, which is pvoactively admitpatients to the ICU based on their EDIP2
scoredeforethe patient crashes. We will refer to this apeoactive ICU transfer'throughout this paper.
Despite the improved predictive power of the EDIP2 scorerdlare concerns that, if every alert led to
proactive transfer, ICU congestion would substantialtré@ase. As such, the current use of the EDIP2 at
KPNC is only to call the RRT, not necessarily initiate an ashkitn to the ICU. Our goal is to develop
an understanding as to whether such a fear is well-foundaetiftcally, if proactive transfers can reduce
LOS and mortality for individual patients, then it is podsithat proactive ICU transfers will reduce ICU
congestion. However, the actual benefit depends on thesgretagnitude of the reductions in LOS. This
is because by proactively transferring a patient, theregearantee that the patient will consume limited
ICU resources. However, some proactively admitted pagierety never have needed ICU care, so we have
needlessly increased ICU congestion, possibly preveotimgr patients from getting needed care. As such,
the relationship between tH€U load for proactive transfers may be higher or lower than for tiadal,
reactive transfers. Whether it is higher or lower is an erogliquestion, and at the heart of what we are
trying to answer. Moreover, due to the externalities onéepatcan impose on other patients, it is also
important to examine how proactively transferring someepds impacts the ability to treat other patients.
We estimate the heterogeneous effect of ICU transfers ftividtual patients of varying severity, as
measured by the EDIP2 score. Because it is not feasible tduocvmandomized controlled trials which
explore the benefit of ICU admissions, we utilize a comprshiverretrospective dataset of nearly 300,000
hospitalizations. A common challenge with using such ddsais there are often unobserved confounders
which can increase the likelihood of both ICU admission addease patient outcomes (i.e., endogeneity
is present). To address this problem, we utilize an instniatevariable approach and make a number of

design choices to improve the reliability of our estimat&secifically, we utilize a new near-far matching

methodology (Zubizarreta etlal. 2013) that, to the best oknawledge, has not been used in the Operations

Management (OM) literature. Indeed, empirical OM works ethutilize instrumental variables typically
assume the strength of an instrument is given. In contrastake a number of design choices to strengthen
our instrument and reduce the potential biases due to una@zseonfounders. Next, we use a simulation

model to examine how various proactive ICU transfer paticieght impact patient flow and outcomes at the



4

system level. To the best of our knowledge, our work is theétiirsonsider proactive ICU transfers initiated
by a real-time estimate for the probability of deteriorati®ur main contributions can be summarized as:

e We utilize an extensive dataset consisting of 296,381 halgstions across 21 KPNC hospitals to
estimate the impact of ICU transfers on patient mortalisk rand patient length of stay to patients of
varying levels of severity, as measured by the EDIP2 scaned@taset is very comprehensive and includes
both real-time severity scores (EDIP2), longitudinal @atitrajectories (bed histories), as well as patient
demographics; these allow us to better model the complérgéor ICU transfers.

e Our empirical approach is guided by design choices to makesthdy more robust to unobserved
confounders and model misspecification. Specifically, wariet the analysis to the night-time period,
where we find that the effect of the instrument (ICU congedtion the treatment (ICU admission) is
stronger (and thus the estimates are less sensitive tdivindato the exclusion restriction) and use recent
developments in multivariate matching to reduce model dépece in the outcome analyses (and in this
way avoid extrapolating results to regions of the covaisptece where we do not have enough data).

e We conduct a simulation study of patient arrivals to the galinemedical wards and ICU to explore
the impact of different proactive ICU transfer policies.the best of our knowledge, this is the first study
to examine proactive admission based on a predictive mddeslka We find that proactively transfer-
ring patients to the ICU may reduce mortality rates and lesigif-stay, but, if done too aggressively, may
increase ICU readmissions as well as the likelihood of disging a patient from the ICU before he/she has
completed his/her nominal length-of-stay due to the needt@mmodate a new, more severe patient.

The rest of the paper is structured as follows. We finish thisien with a brief summary of related liter-
ature. In Sectiohl2 we present our study setting and dataedtd(3, we describe the empirical challenges
we face as well as our approach to estimating the impact @fgbiree ICU transfers on mortality and LOS.
We present out results in Sectidn 4. In Secfibn 5, we desotibsimulation model and results. Finally, we

provide some concluding remarks and discussion in Selction 6

1.1. Related Literature
Our work is related to three broad areas of research: 1)Hcezalt operations management, 2) the use of
predictive modeling to guide operational decisions, anem3pirical methodologies.

In both the medical and operations management literatareamber of works have examined the flow
of critical patients through the ICU. One area of focus haslamn the fact that patients are more likely to be

discharged when the unit is congested. In turn, these ‘ddrdaxen’ discharged patients are more likely to

be readmitted. Kc and Terwiesch (2012) provides rigorougiecal evidence for this phenomenon while

1.L(2012) considers theoretically and via simuoatihe impact of various discharge strategies. In

contrast to this body of work, we consider the transfer ofgoas into the ICU.



A number of works have also considered the ICU admissionsdati(e.g.. Shmueli et all (2004),

Kim et all (2015)). Our work differs from this body of litetae in a number of important ways. First,

the question we are considering is fundamentally differastwe focus on the combined role of a Rapid
Response Team, a new predictive model of patient risk ofridet¢ion (the EDIP2 score), with proac-
tive ICU transfers from the ward or TCU. Second, as will becdssed in more details, we utilize recent
empirical approaches, which reduce potential biasesdatred by unobserved covariates.

The use of RRT in hospitals has been increasing as a numbéndiés have documented that timely

access to critical care can substantially improve patientsomes (e.g. Evans et al. (2015)). The role of

the RRT is to bring a medical team trained in critical caren®s lbedside of a patient who exhibits signs of
physiologic deterioration. While the RRT may end up recomdieg ICU admission, it is most common for

the RRT to perform simple interventions (e.g. administratif oxygen or intravenous fluids) to stabilize the

patient (Jones et al. 2011). There are also benefits of udRig i a proactive manner (elg. Danesh et al.

2011,2012), Butcher et al. (2013), Guirgis et al. (201BYwever, the proactive aspect does not relate to

the ICU admission decision, as we examine. Rather, the fottlsese works is to proactively round on
high risk patients (e.g. those recently discharged froml@4) in order to appear at the bedside of these
patients prior to the summoning of a RRT, as is traditiondtiye. To the best of our knowledge, our work
is the first to studyroactive admission decisionsloreover, we consider how to make this decision based
on a more accurate, dynamic severity measure, the EDIP2,sewbich measures the likelihood a patient

might need ICU care later.

In this work, we consider using a predictive model (the ED#edre, Escobar etial. (2012)) to make

ICU transfer decisions. There have been substantial sffirtthe medical community to develop predic-
tive models for patient outcomes (e.g readmissions, dadthjssions, etc.). A primary motivation behind
this work has been to utilize such models to guide operatid@eisions and allow clinicians and adminis-
trators to better utilize limited healthcare resourcess HBpproach has been considered in the emergency

department setting (e.L;__P_e_Qk_et l. (2012), Xu and Chancj20This approach has also been considered

in call centers ns etial. 2015). Using simulation, we labkhe impact of proactive transfer policies,

while|Peck et al.| (2012) considers the impact of moving disgbs earlier in the day on congestion. There

have been a number of simulation studies examining the itgdd€U congestion on patient delays and

diversions (e.g. Lowery (1992), Bountourelis et al. (204@2jong others). To the best of our knowledge, we

are the first to examine patient transfer decisions basedasligtive models in addition to being the first to
incorporate the possibility of proactive ICU transfers.iglaver, we use our empirical findings that rely on

causal models to calibrate our simulation model.



More broadly, the tension we examine is a short-term ineréagesource utilization with the intent
of preventing longer-term problems which may arise in therieiand consume even more resources. An
analogous question arises in the manufacturing literdiaoawuse failures during factory operations can be
more costly than replacing a machine before failure, whilim@ too proactive can also become very costly
(seeMgQahl (1965), Pierskalla and Voelker (1976), Barlowt 8roscharn (1996) and related literature). In

the preventative health screening setting, early dem@" ekici and Pliska 1991) and early interventions
rmeci et all 2016) can increase the likelihood of positiuéecomes for cancer patients. Our work is dif-

ferentiated in that we consider a very different problentisg{proactive ICU transfers) and we also utilize
state-of-the-art empirical approaches to rigorouslynessti the causal effect of transferring patients at dif-
ferent severity levels, as measured by the EDIP2 scoredier ¢o calibrate our simulation model.

A major challenge in determining the causal effect of ICUh&fer on patients of varying outcomes is
that it is unethical to conduct a randomized experiment, sonwist rely on observational data, which

can be subject to biases introduced by unobservable ctemrido address this challenge, we utilize an

instrumental variable approach. Similar to Shmueli Pt@ﬁél) and Kim et al.[(2015), we use congestion

in the ICU as an instrumental variable to address the endagenature of the ICU admission decision
and to estimate the impact of denied ICU admission on patiettomes. The strength of an instrumental
variable is measured by its correlation to the endogenoniabla and it is considered to be “weak” if the
correlation is low (Stailif and Stock 1997). As is commorhim émpirical OM literature, Shmueli etlal.
2004) and Kim et &l 5) take the strength of an IV as gareghutilize an instrumental variable analysis

that relies on strong parametric assumptions implied bgessijon models. Unfortunately, it is common for

instrumental variables (IVs) to be weak in healthcare rsgsti where the impact of the IV may vary due
to the complexity in patient conditions and treatment psses, and this can lead to inference problems.

Specifically, IV estimates can be largely biased even witlightsviolation of the exclusion restrictions

and confidence intervals may be misleading (Boundlet al.|,198%ll and Rosenbaum 2008). To address

these challenges, we utilize a new empirical approach teensektain design choices which i) strengthen
the instrumental variable and ii) reduce model dependeédaoeapproach provides a more robust defense
against biases due to unobserved confounders.

Another problem which can be missed when doing routine esjpa analysis is that, with pure model-

based adjustments, a few observations can unduly infludieceesults of a study (see Imbens (2015) and

Rosenbaum (2016)). For instance, if there are a few conbsgivations with very different observed covari-

ates than the available treated observations, then theseoferol observations may exert high leverage in

model-based adjustments and overly influence the effenta®s (see also Gelman and Imbens (2014) and

ronow and Samiii(2016) for related arguments).




To address both the problems of weak instruments as well aelndependence, we draw upon the lit-

erature on design of observational stud_e_s_tRo_s_en| aum, ) and use recent advancements in the

~

methodology of near-far matching (Baiocchi et al. 2010, iZabeta et al. 2013, Yang et/al. 2014). Match-

ing forces the investigators to look closely at the data an@strict the analysis to the regions of common
support and balance of the covariates, thereby reducingxdieat to which the results depend on a specific
functional form of the regression model. Additionally, vestrict the analyses to the night time, where we
find the effect of the instrument on the treatment is strorger violations to the exclusion restriction are

less likely to occur than during the rest of the day. We thesnear-far matching to match observations
that are near in the covariates (and thus, reduce model depee) and far on the instrument (potentially

strengthening the instrument). While such design choiaesatter the main cohort of our analysis, (e.g. so
that our main findings primarily apply to the night time), dgiso also has the benefits of improving the

robustness of our inferences.

2. Study Setting

In this work, we consider a retrospective dataset of all 286 hospitalizations which began at one of 21
hospitals in a single hospital network. We utilize patie@vel data assigned at the time of hospital admission
as well as data which are updated during the patient’s redgpy.

For every hospitalization episode, we have patient levelission data which includes the patient’s age,
gender, admitting hospital, admitting diagnosis, clasaifon of diseases codes, and three severity of iliness
scores which are assigned at the time of hospital admisEi@COmorbidity Point Score 2 (COPS&}ore
captures the patient’s burden from chronic diseases.LHb@ratory Acute Physiology Score 2 (LAPS2)
score which is based on laboratory tests captures illnassige Finally, acomposite hospital mortality

risk score (CHMR)s a predictor for in-hospital death that include@®PS2, LAPSand other patient level

indicators (see Escobar et al. (2013) for more informatiothe@se scores).

Our data provides the admission and discharge date anddimeath unit stayed in as well as the unit’s
level of care. In the hospital system which we study, thesuaie specified as being either the ICU, Tran-
sitional Care Unit (TCU), general medical-surgical wattg bperating room (OR), or the Post-anesthesia
care unit (PACU). Figurgl2 depicts a few hypothetical patmathways.

In addition, all patients in our dataset have EDIP2 scorsigasd every 6 hours while in the ward or TCU
(scores are not assigned to patients in other units). Th@EBdore utilizes vital signs (e.g. temperature and
oxygen saturation), vital signs trends, and laboratoristgem the past 24—72 hours (e.g., glucose levels),

the COPS2, LAPS2 and CHMR severity scores, as well as paii@gimoses and demographics to determine

a patient's EDIP2 score. More details can be found. i - (201R2) and Kipnis et al. (2016).




2.1. Data Selection

We utilize data from all 296,381 hospitalizations to derilze maximum capacity and hourly occupancy
level of the ICU in each of the 21 hospitals. While there is safifferentiation across ICUs (e.g. Medical
versus Surgical ICU), the general practice in the study twalsgs that the boundaries between these units
are relatively fluid. For instance, if the medical ICU is véujl, a patient may be admitted to the surgical
ICU instead. We found that the maximum ICU occupancy vaniethf6 to 34 for the 21 hospitals over our
study period. In the patient flow data, 39% of the total ICUvats come from ED, 8% are from outside the
hospital, 31% come from OR and 22% are from the medical-sakgiards and the TCU.

We now describe our data selection process for our final stothprt. We focus our study on patients
who are admitted to a Medical service via the Emergency Dejant as this comprises the largest
proportion of admitted patients>(60%). Additionally, there are limited standards for the care¢hpa
ways for these types of patients, so that they can be hightiediaas compared to elective admis-
sions and surgical cases. As such, these patients are nkehg 10 experience variation in transfer
decisions due to operational factors, such as the avaijaloif resources, which we can leverage in
our empirical approach to identify the impact of ICU tramsfeecisions on patients of varying sever-
ity. Specifically, because there are no established stdadar which patients should be admitted to
the ICU

1999), patients of similar severity may receive differestec(e.g. ICU transfer versus no ICU transfer) due
to random variation in ICU bed availability, which will allous to estimate the causal effect of ICU transfer
for these patients. We first eliminate 39 hospitalizatioiith wnknown patient gender or missing inpatient
unit code. Next, we eliminated 5,426 hospitalizations beeahere were inconsistent records for the inpa-
tient unit entry/exit times (e.g. discharge took place ptimadmission). 5,998 patients were missing unit
admission and discharge times during their hospital stay.dvdpped 5,781 hospitalizations for patients
who experienced hospital transfers. Finally, we removeefiisodes admitted in the first and last month of
our dataset in order to avoid censored estimates of the |€Upancy level.

The final study cohort consists of 174,632 hospitalizatisom 21 hospitals, among which 13% are
admitted to the ICU at least once. Out of all hospitalizadidh 7% experience a transfer to the ICU from
the ward or TCU. The patient characteristics of the final gttmhort are summarized in Talile 1. CHMR
is an estimated probability of in-hospital death and isgrssil at hospital admission. COPS2 is a measure
of chronic disease burden and a score greater than 65 coslohibeone with 3-4 significant comorbidities
(e.g., diabetes, Chronic Heart Failure, and cancer). LAR8asures a patient’s acute instability over the

24—72 hours preceding hospital admission. A patient wittA®$2 score greater than 110 is considered

very sick, potentially in shock. More details on these ssa@n be found in Escobar e é.L_(ZDlS).




Table 1 Characteristics of the final study cohort, N=174,632
Min Max Mean Median Std. Dev.
First EDIP2 0.000 0.990 .012 .006 .022

Sex (Female=1) 53.80%
CHMR 0.00% 97.58% 4.04% 1.55% 7.39%
COPS2 0 306 45.00 29.00 43.03
LAPS2 0 274 73.24 69.00 36.51
Age 18 109 67.34 70.00 17.71
Arrive Survive and discharge
Patient 1- ) Ward Ward | ICU Ward 7 ,
% £ t3 £ Time
Arrive Die
) 7 i Ward Ward Ward Ward 7 -
Patient 2: >
tl t] Time
Ty Thea Thyz Thes Thia

Figure 2 Examples of patient pathways. Each T; denotes a time when an updated EDIP2 score will be
assigned to a patient if he/she is in the Ward or TCU. Note that there are exactly 6 hours between
each EDIP2 assignment: Tiy1 —T; =6.

2.2. Actions

We define an EDIP2 decision epoch as the time comprised betareEDIP2 score measurement (at 4am,
10am, 4pm and 10pm) and the following 6 hours before the nBXPE score measurement takes place.
For this, we require the patient to be in the ward or TCU beeauikerwise an EDIP2 score would not
be recorded and this would not be an EDIP2 decision epoclh gatient may have multiple EDIP2 deci-
sion epochs during his/her hospital stay. For example, gurie(2 for Patient 1, there are three decision
epochs: (T, Tit1), [Ths1, Thre) @and [Tyi3,Ti14). For Patient 2, there are four EDIP2 decision epochs:
(Th, Ti1) [Tiyrs Thva)s [Thoro, Thrs) @nd[Thys, Tiya)-

At the beginning of each of these epochs, we record whetbgrdtient was transferred to the ICU in the
following 6 hours (i.e., during the decision epoch) and tt@$ anaction If, instead, the patient remains in
the ward or TCU until the next EDIP2 measurement, we refenigasno action Thus, for Patient 1, if we
consider the first EDIP2 decision epodfy( 7}, )), there is no action. On the other hand, if we consider
the second EDIP2 decision epod®y(, ,,7}..-)), then there is an action. For Patient 2, there are 4 decision

epochs and for each of them there is no action.

2.3. Patient Outcomes
In this study, we focus on two measures of patient outcomg@-hospital death\jortality) and (2) length-

of-stay LOS). Because an action can occur at any EDIP2 decision epocimeasure of LOS is defined
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as the remaining hospital LOS from the beginning of the EDdB2ision epoch. In Figufd 2, for Patient
1 the LOS for the first decision epoch would be- ¢t} — T},; for the second decision epoch, it would be
T =t3 — T}, 1; and for the third decision epoch it would be=t} — T}, 3. Tablel2 summarizes the statistics

for in-hospital mortality and hospital residual lengthat@ly considering the first EDIP2 decision epoch.

Table 2 ~ Summary statistics for 2 patient outcomes, N=174,63 2

Mean mortality| Mean LOS since first EDIP2 (hours) Std. Dev.

All 3.2% 90.5 135.2
Transferred to ICU 9.5% 149.1 270.2
Never transferred to ICU 2.2% 81.0 93.4

3. Empirical models and approach
Our goal is to estimate the benefit of ICU admission for pasier different severity as measured by the
EDIP2 score. In this section, we describe the empiricallehgks in addressing this question and our

solution approach.

3.1. Empirical challenges
In our study, we utilize the retrospective patient datasstdbed in Sectidd 2. While this data is quite rich,
we are faced with a number of estimation challenges.

Endogeneity: Physicians consider many factors when deciding whethedaitaa patient to the ICU.
While we will utilize our rich set of data to adjust for hetgemeous patient severity in our models, it is
possible there are unobservable severity factors thakindle both the admission decision and a patient’s
outcome, which can lead to biased inferences when ignohiggpotential source of endogeneity. For
instance, sicker patients are more likely to be admitteti¢ol€U, but they are also more likely to stay in
the hospital longer and/or die, which would suggest thaagitiee ICU admission results iworsepatient
outcomes. To address this concern, we utilize an instrusheatiable approach.

Weak instruments: While instrumental variables can be effective at removindageneity biases, prob-
lems can arise if the instrument is not strongly correlatéti the endogenous variable. If an instrument

is weak, the confidence intervals formed using the asynepdigiribution for two-stage-least-squares may

be misleading and IV estimates can be biased in the same @a@LE estimates are biased (Bound ét al.

1995). Additionally, the IV estimates based on weak ins&ata are highly sensitive to small violations of

the exclusion restriction (Small and Rosenbaum 2008). Toess this problem, we restrict the analysis to a

cohort where our instrument exerts a much stronger influendbe endogenous variable, ICU admission.
Effect modification: Our goal is to estimate the causal effect of admissions ttQhkeat different levels

of the EDIP2 score. In other words, we need to assess how fibet ef ICU admissions is modified by
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the severity of the patients as measured by the EDIP2 scaraisé@/ parametric statistical models for this
purpose. It is important to make sure that there is sufficbetlap in the covariate distributions across

levels of the instrumental variable, so that the prediciohthe models are an interpolation and not an

extrapolation; in doing so, the results will be less depende specific parametric assumptions (Rosenbaum

2010). Without this balancing of covariates, it is possthiat a few, unrepresentative observations, could

impart a large influence over the effect estimates (Imbe A,Zlaosenbag“n 2016).

3.2. Design choices to strengthen the instrument and reduceodel dependence

In our study, to strengthen the instrument and reduce magbentdence, we make two design choices. First,
we restrict the analysis to the night-time period, where we the instrument has a stronger effect on the
treatment so that violations to the exclusion restrictimnlass likely. Second, we use recent advancements
in multivariate matching to reduce model dependence in tit@oone analyses. Naturally, these two choices

will result in a smaller sample for analysis, but they enleathe robustness of the findings to unobserved

confounders. For instance, Small and Rosenbaum (2008) rigtrates that a smaller study cohort with a
stronger instrument is more robust to unobserved biasesatferger study cohort with a weak instrument.
Certainly, these gains come with the caveat that our findirijfundamentally apply to the matched sample
in the night-time period. That said, we will also examinertbationship between our final study cohort and

the original, raw sample to understand when and if our resoéty generalize.

3.2.1. Night-time analysedn our setting, there are four EDIP2 decision epochs eachdday, 10am,

4pm, and 10pm. There is evidence that ICU admission dedsiaay vary by day of the week and time of

the day |(Barnett et al. 2002, Cavallazzi et al. 2010), sotigitsiral to consider whether the impact of ICU

occupancy on ICU admissions also vary by time of day.

In the KPNC hospitals included in our study, nurse staffingelatively constant across the day for a
given unit, with a minimum of one registered nurse for every patients for the ICU, while the minimum
for the ward is 1:4, with TCU staffing ranging between 1:2.%:®. On the other hand, physician staffing on
the ward and TCU can change dramatically over a 24 hour pgvaxticularly outside regular work hours
(7:30 AM to 5:30 PM). Because the physician coverage deeeeasnight, physicians may be more likely
to transfer ‘borderline’ patients to the ICU where they wéteive more constant monitoring. As such, the
differential impact of a busy ICU on deterring ICU admissiamill be more substantiaat night time. We
confirm that this is the case in our data (see Appehndix A). €dibst of our knowledge, we are the first to

leverage the differential impact of ICU occupancy by timelay for our instrumental variable.
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3.2.2. Multivariate matching In observational studies, matching methods are often wsadjtist for

covariates|(Stuart 2010). In these settings, the typical gbmatching is to remove the part of the bias in

the estimated treatment effect due to differences or inmcalsin the observed covariates across treatment
groups. In order to achieve this aim, matching methods salegbset of the observations that have balanced
covariate distributions. Generally, matching methodsused to estimate the effect of treatment under the

identification assumption of “ignorability” or “unconfodedness”, which states that all the relevant covari-

ates have been measured (in other words, that there isiealect observables (Imbens and Wooldridge

2009)). More recently, matching methods have been extetwledtimation with instrumental variables,

which do not require all the relevant covariates to be mesband whose identification assumptions are

thus typically considered to be weaker (Baiocchi et al. 2010

In instrumental variable settings, the goal of matchingoifind a matched sample that is balanced
on the observed covariates and imbalanced (or separatetiednstrument. The first goal attempts to
reduce biases due to imbalances in observed covariates adel misspecification, whereas the second

goal aims at strengthening the instrument. This is achiéyedear-matching on the covariates and far-

matching on the instrument (Baiocchi etlal. 2010). We im@atithis method using integer programming

as in Zubizarreta et (2013)alndla.ng_€tal (2014). SeeeApip(A.1 for details.

3.3. Parametric models
We now introduce the parametric models we use to estimat@dtential benefits of ICU transfers for
patients of varying severity.

In all of our models, we use ICU occupancy as an instrumeraable. In order for ICU occupancy
to be a valid instrument, it needs to satisfy two main assiongt 1) it must have a significant impact
on ICU admission, and 2) it must affect the outcome only tgtothe treatment (the so-called “exclusion

restriction” (Angrist et all 1996)). To examine the first @sption, we use logistic regression to see how

ICU occupancy impacts the ICU transfer decision when autiggor several patient level and seasonality
controls. We find that the ICU occupancy level is significantha 5% level. Next, we consider whether

ICU congestion is correlated with patient severity. If, fostance, high ICU congestion coincided with

the arrival of high severity patients, one could erronepasiribute poorer patient outcomes to the lack
of ICU transfer due to high occupancy rather than to the faat patients already had higher risk of bad

outcomes. This could happen if there is an epidemic or a seaasident which would increase hospital

occupancy levels and also increase the severity of patidfsee little evidence that this could be an issue.
In particular, we run a linear regression of ICU occupancybagerved patient severity scoreSOPS2,

LAPS2and EDIP2 scores—as well as other patient risk factors, addliiat these variables are not relevant
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to ICU occupancy. Assuming that observed patient risk facoe reasonable proxies for unobservable risk

measures, ICU occupancy is unlikely to be related to unebbés risk measures.

We utilize the IV framework in_Angrist et al. (1996) where anis conceptualized as an “encourage-
ment” to receive treatment that affects the outcome onlgugh the treatment. In this framework, the 1V
takes two levels—encouragement and discouragement—wbithspond to non-busy and busy ICUs in
our setting. Formally, we define an ICU to be “busy” when th&JI@cupancy is above tH#" percentile

of its occupancy distribution. An ICU is “not-busy” when tHeU occupancy is below0" percentile of

its occupancy distribution. Following Yang et al. (2014} do not use observations with ICU occupancy

between ther0™ and 90™ percentiles. The larger the separation between these neshblds, the more
variation there will be in the propensity to transfer a pati the ICU, thereby increasing the strength
of the instrument. However, this comes at the cost of elititigaobservations which can be used in the
analysis because the ICU occupancy level falls betweemtbéhresholds, i.e. all observations with ICU
occupancy in(70", 90") percentiles will be dropped. Comparing with other potértigoffs, the {70,
90"} definition strikes a good balance in achieving a relativatgé difference in ICU transfer rates while
dropping a relatively small sample size. We examine othtaffsias robustness tests in Secfion Al.3.1.

Remaining Hospital LOS (LOS): We now present our econometric model for LOS, which is defased
the remaining hospital LOS following the EDIP2 decision &p question (see discussion about Figure 2
in Sectior Z2.B). We use a standard two-stage-least-sq(28&S§) method with probit regression in the first
stage to account for the binary ICU transfer decision.

We let T; be the ICU admission decisiotr; be the instrument of ICU busyness, aid be patient,
hospital and seasonality controls that include patientatgaphics (age, gender), severity scores (EDIP2,
CHMR, COPS2, LAPS2), 38 disease categories, and otheratutic for hospital, day of the week, and
month (see Table_12 in the Appendix for more details). Addiilly, we defin€l’* as the corresponding

latent variable capturing the likelihood of ICU transfere Wave that:
T,=1{T; >0} where T/=X/B+pB:7 +e (1)
ande; is a normally distributed error term. The second equatioounftwo-stage model is then:
logV; = X/ B3 + BuT; +; (2)

wheren; is assumed to be normally distributed and correlated syitNote that we take a natural logarithmic
transformation for the hospital length-of-stay becausatibtribution ofLOSis skewed as is shown in Table
[2. Our estimates include patients who do not survive to halsgischarge, but our results are robust to

excluding them.
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Mortality: We now present our econometric model for mortality. Becaiggality is a binary outcome,

it is more efficient to model the joint determination of mdityaand the ICU transfer decision bi a bivari-

ate probit model and use maximum likelihood estimationgathan two-stage-least-squar
201 ._QLe_QIJLe_ZD_ll).

The treatment equation is the same as before in equafior¢t)the binary outcom#lortality, the

idge

second equation is
V,=1{Y; >0} where Y =X/B;+8Ti+v

and(e,, v;) follows a bivariate normal distribution with correlationefficientp. A likelihood ratio test can

be used to determine whetheis significantly different from zero, i.e. wheth&y is indeed endogenous.

Note that, similar to_Kim et al! (2015), we include a covaitliat measures the average occupancy of

every unit a patient visits during his hospital stay. Thisésause there is evidence (e.9. Kuntz et al. (2014))

that occupancy levels can impact a patient’s outcome, wtiechd potentially invalidate our instrument.
We find that our instrumental variable, ICU occupancy dutigEDIP2 epoch, has a low correlation with

the average occupancy experienced by a patients with datiorecoefficient of -0.168.

4. Empirical Results

In this section, we present and discuss our main empiricallt® First, we examine the impact of our
study design choices in terms of strengthening the instniraed reducing model dependence. Second,
we present our effect estimates. Next, we compare the sasultose obtained under other common study
designs. Finally, in order to provide a better understagdirthe population of patients to which the results

in principle generalize, we describe our matched sampleangpare it to the full patient sample.

4.1. Design Choices

In our study, we make two basic design choices to make theumsint stronger and reduce model depen-
dence. One choice involves using near-far matching to balaovariates and reduce model dependence
(near matching), and separate the matched groups on thenmesit and potentially strengthen the instru-
ment (far matching). The other choice involves confining shedy to the night-time period, when the

instrument is considerably stronger. In our study, we sbie near-far matching problem using integer

programming as in Zubizarreta e £L_(2[)13). We found matgiieups of patients with similar or balanced
covariate distributions for important prognostic facteteh as age and the EDIP2 score, and dissimilar
levels of encouragement to receive the treatment (ICU aiaris More specifically, we matched patients
that faced non-busy ICU units (encouraged patients) tepegithat faced busy ICUs (discouraged patients)

with a 1:5 matching ratio, matching in total 85,208 obseaorat (15,149 discouraged patients; 88% of all
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the available discouraged patients before matching in #ia set). Please see Appendix]A.1 for further
details on the near-far matching implementation usingget@rogramming. Tablés{3415 in AppendixA.2

summarize covariate balance after matching for patierd-reospital-level covariates as well as for other
important seasonality covariates. The tables show that afatching the covariates are well balanced as
per common standards in the causal inference literatura.r@sult, the effect estimates reported below are

less sensitive to model misspecificati QD_LLmIJJQDiZMS).

To evaluate the strength of the instrument after matchiggtrtime decision epochs (instead of using

the full sample), we consider the results of the transfeisitat, which is the first stage in the econometric
models presented in Section13.3. The results are summanmiZedble[3. Despite the fact that the night-time
matched sample has only 40% of the number of observatiomifirst whole-day EDIP2 sample, we see
that the coefficient estimate for the ICU occupan®) {s much larger and has higher statistical significance,
as measured by its p-value. Additionally, when we examirgeaberage marginal effect—defined as the
relative difference in likelihood of ICU admission when #@&J is busy—we see the effect at night-time
is nearly triple that of the whole-day. This provides adutiil support that the night-time instrument has a
much larger impact on ICU transfer decisions than the whlalginstrument. With a stronger instrument in
the first stage of regression, we can be more confident thaettend stage estimation results are less likely

to suffer from unobservable biases.

Table 3 Strength of the IV in the whole-day full sample and the first night-time 1V after match in probit
regression models
Sample Size IV (Std. Err.) P-val. Pct. Incr. in ProAgmif)

Whole-day full sample 168,351 0.098 (0.039) 0.012 34%
Night-time matched sample 84,870 0.201  (0.072) 0.005 95%

4.2. Estimation Results: Effect of Proactive ICU transferson Mortality and LOS
Table[4 summarizes the estimation results for the Mortaitgd Residual LOS models after night-time
matching. Moreover, we present a number of robustness sheltich considers alternative 1V definitions
and additional covariates in Appendix A.3. We find our engaifresults robust to these alternative specifi-
cations. Note that because we are using full MLE to estinfeisd models, the coefficients in the first-stage
are slightly different than those of Talgle 3.

For both outcomes, the instrument is highly significant atli¥o level. Being encouraged for ICU transfer
(when the ICU is not busy) increases the probability of tlanky 97% on average. We estimate that ICU
transfer is associated with a reduction in the average LOBHhours (95% CI: [-40, -31] hrs). We also find

that ICU transfer has a highly significant impact in reduangrtality risk: proactive transfer to the ICU
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reduces the average estimated in-hospital mortality fr&8% to 0.06% (95% ClI: [-2.59%, -2.53%]). Note
that our estimates are for the average effect. While prea¢@U admission may have very little (if any)
effect on low risk patients, the effect may be quite subshfadr high risk patients. Because the mortality
rate for patients on the ward and TCU is very low, this averafflect seems quite large. In practice, it
would rarely be the case that very low severity patients i@mesterred to the ICU. In fact, most medical
literature on rapid response teams involves only checkirthe patients and not necessarily admitting them,
and therefore, the average effect documented in thistiteras typically smaller. That said, the estimated
benefits seem quite large. This may be in part due to Do-NetiRatate (DNR) orders, so that those who
are transferred to the ICU and who conform to our instrumeaitize ones who can actually benefit from
ICU care. We cannot estimate the impact of ICU transfer fdiepés who would never be admitted to the

ICU (either being too sick or too well), regardless of ICU gestion.

Table 4 Estimation results using the night-time IV after mat ching

Y IV (SE) Pct. Incr. in ProbAdmif) Admit(SE) AY 95% ClI
Mortality 0.203** (0.067) 97% -1.665*** (0.162) -2.56%  [-2.59%, -2.53%)]
Residual LOS 0.203* (0.073) 97% -0.841* (0.281) -33.81hrs [-39.55,-30.89]

** *xx Significance at the 1%, 0.1% levels respectively

Our results suggest that proactive ICU transfers can ingopatient outcomes on average. However, we
wish to gain a better understanding of these improvememtpdtients of varying severity, as measured
by their EDIP2 score. To do this, we will obtain the estimataattality and residual length-of-stay (LOS)
when transferred or not transferred to the ICU for each ERE#te and use these estimates to calibrate a

simulation model in Sectidn 5.

4.3. Comparison to Other Study Designs
In the current analyses, we made a number of study designeht increase the reliability and robustness
of our empirical analysis. These choices included focusiieganalysis to the night-time period and using
optimal multivariate matching with an IV. In an effort to uerdtand better the implications of such design
choices, we compare our approach to two common approaéhesing an ordinary least squares approach
without using an IV nor night-time matching, and (ii) usingl® approach but without night-time matching.
These results are summarized in Tdble 5.

As we can see, under (i), ICU admission is estimated to r@swliorse patient outcomes. This effect
is likely to be biased due to endogeneity, since sicker ptiare more likely to be admitted to the ICU
and at the same time suffer worse health outcomes. Undemi)see that the estimated effect of ICU

admission on LOS is not statistically significant. Howeves,believe this may be due to weak instruments.
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Table 5 Estimated regression coefficients (i) without IV nor night-time matching, (ii) with IV but no
night-time matching, (i) (our approach) with 1V and night -time matching.
Estimated Coefficients (s.e.)
Model | Outcome MeasurelV: ICU Occupancy [ICU Admission
i Mortality 0.592***(0.062)
LOS 0.490***(0.028)
ii Mortality 0.095*(0.039) -0.814***(0.256)
LOS 0.097*(0.040) 0.061 (0.112)
iii Mortality 0.203**(0.067) -1.665***(0.162)
LOS 0.203**(0.073) -0.841**(0.281)

“*p <0.001, *p<0.01, "p <0.05

Specifically, the magnitude and significance of the IV is thss that of (iii). In contrast, under (iii), using
both the IV and night-time matching, the 1V is significantta L% level (with a partial F-statistic on 11.029
as compared to 8.638) and ICU admission also consistenpiyowmes the outcomes. As such, we believe

that our estimation results are more robust to unobsenmaiées due to our design choices.

4.4. Description of the Night-Time Matched Sample

In order to design a study that is less sensitive to modelpaigfication and violations to the exclusion

restriction [(Angrist et &l. 1996), we confined our study te tlight time and used multivariate matching

Zubizarreta et al. 2013). Naturally, this implies thatheitit further, untestable, modeling assumptions

the results will fundamentally apply to the night time. Henee follow the work of Imbens (2010) and

Rosenbaum (2010) and emphasize internal validity overextealidity in order to provide more reliable

evidence of the causal effect of ICU admission at differentls of the EDIP2 score. As such, it is not
immediately obvious iffhow our empirical findings will exté to other times during the day.

The night-time analysis is important in two ways. First, eifeour results only apply to the night time,
using these rigorously estimated results to calibrate alsition model would allow us to develop an under-
standing of the potential benefits of proactively admittpagients to the ICUWuring the night This is
valuable from a managerial standpoint, because of the liattnight-time physician staffing tends to be
much lower than during the rest of the day, which makes hasimgutomated early warning system to
inform proactive ICU admissions to be especially usefutddel, as discussed next, we believe that it is
possible that our results may generalize to admission @ggmatduring non-night time decision epochs.

Table[6 summarizes the means of the risk covariates for thedple and night-time matched sample.
We can see that for all risk covariates, except for the EDIRR2e5 the absolute value of the standardized
differences between the full and matched sample are wallthen 0.1, suggesting that these samples are

quite similar (Rosenbaum and R;JtLin 1085). The differenceP2 scores lends more evidence to our

argument that patients are more likely to be admitted to @ie at night, thereby increasing the strength
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of our instrument. We found a similar pattern for 30 other odoidity and seasonality covariates. As the
samples appear very similar on all other dimensions, th&iggestive that our empirical findings may

generalize to non-night time EDIP2 decision epochs.

Table 6  Comparison of Patient Characteristics in Full sampl e versus Matched sample via Standardized
Difference
Full  Matched Std. Dif.
Age 67.35 67.73 —0.02
Sex (Female=1)53.81% 54.57% —0.01
EDIP2 0.012 0.007 0.30
CHMR 0.040 0.037 0.05
COPS2 45.07 44.92 0.00
LAPS2 73.25 72.41 0.02

5. System level effect of proactive admissions

Thus far, we have focused on the impact of ICU transfemnalividual patients of varying EDIP2 risk lev-
els. Our empirical findings provide evidence that such feasscould improve patient outcomes (reducing
mortality risk and LOS) and the magnitude of the impact v@depending on a patient’s severity. Given
these improvements in patient outcomes, it is conceivdiaeproactively admitting patients may reduce
ICU congestion. However, given the limited ICU resourcésygicians naturally have concerns about need-
lessly creating ICU demand. Specifically, by proactivefnsferring patients ‘before thegally need it’,

the near-term ICU congestion will increase, which couldteeaccess issues for other, more critical patients
who may arrive in the near future. However, if this patienll witimately need ICU care later and will
require increased resources, the short-term increasagestion could have long-term benefits. It remains
to understand which scenario is more likely to occur. To ds, tlie utilize a simulation model to examine

the system level impact of proactive ICU admissions on paflew and patient outcomes.

5.1. Model of patient flows

We consider a system with two levels of inpatient care: ICd mon-ICU, where the non-ICU units include
the general medical-surgical ward and a TCU if the hosp#al dne. Our simulation model is depicted in
Figure[3. In this work, we focus specifically on the proacli@&) admission decision and for simplicity
of exposition, we will refer to the non-ICU units as the wardéth the understanding that this includes
the TCU if one exists. Note that this does not account forstiens from the general medical-surgical ward
to the TCU (if the hospital has one), which is a transfer whosesideration that, in theory, could be
triggered by the EDIP2 score in KPNC. In order to focus on tgsjians’ concern of creating unnecessary
over-congestion in the ICU (and because the ICU is often ttgemeck), we assume the ward has ample

capacity, but explicitly account for the limited number &U beds, which we denote QY.



19

Figure 3  Simulation Model
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Patients can arrive to the ICU as transfers from the wardsaoan external arrival stream @firect
Admits (e.g. directly from the ED). Recall that our analysis focuse patients admitted to a medical service
(rather than surgical service which can be impacted byietestirgical schedules), so we model the arrivals

of the external arrivals as a non-homogenous Poisson geag#srate) z(¢), which has been shown to be a

good model for patient arrivals (Kim and Whitt 2014). We amssuhese patients have a hospital LOS which

is lognormally distributed with meaty ;. and standard deviatiar. Moreover, a proportiopg ~ f,,. (p)
of the patient’s hospital LOS is spent in the ICU, whégg(p) is a known probability mass function (pmf)
with finite support orf0, 1]. These patients survive to hospital discharge with knovabability 1 — d .

The second way patients can be admitted to the ICU is viafeafrom the wards. We refer to these
patients asVard Patients. To capture the varying level of severity of patients on trerdy we consider
C patient classes. The arrival (and admission to the wardgpeafor patients of type follows a non-
homogeneous Poisson process with tate),i = 1,2,...,C. Every 6 hours, a patient's EDIP2 score is
updated, so patierits class will now bej € {1,2,...,C}. Alternatively, three other possible events may
occur: the patient may 1) ‘crash’ and require immediate IQthission, 2) fully recover and leave the
hospital, or 3) die and leave the hospital. Because we args@&ston the impact of proactive transfers,
which can occur at each EDIP2 decision epoch, we model thieiteso of a patient’s state on the ward
via a discrete time Markov Chain with transition matfixwith each time-slot corresponding to 6 hours.
If a patient requires immediate ICU transfer duectashingon the ward, he will have a hospital LOS
which is lognormally distributed with mealry . and standard deviation.. We assume that a proportion
pw ~ fny, (p) Of the patient’s hospital LOS is spent in the ICU, whejg, (p) is a known pmf with finite
support. These patients survive to hospital discharge pvitbhability 1 — d.

Direct admits and patients who crash on the ward receiveititeeht prioritization for ICU admission.
If there are no available ICU beds at the time of arrival (@sty), the current ICU patient with the short-

est remaining service time will be “demand-driven discldigi.e., he/she will be discharged in order

to create space to accommodate the incoming, more sevéeatpdc and Terwiesch 2012, Chan et al.
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2012). Demand-driven discharged patients have an ICU risathn rate of-,. External arrival and crashed

patients who are not demand-driven discharged have an I@thrission rate of ;. We do not incor-

porate the impact of demand-driven discharges on in-halspibrtality because, while some studies find

that mortality risk increases with high ICU occupancy atberge (e.d. Chrusch et al. (2009)), others do

not find evidence of an impact (elg. Iwashyna etlal. (2009arG# al. [(2012)). Note that, one could also

consider incorporating rerouting direct-admits or craighegients to other hospitals if all ICU beds are occu-
pied, rather than initiating a demand-driven dischargevéi@r, such inter-hospital transfers are incredibly
rare—especially for critically ill patients—at KPNC. $tilve will examine the state of patients who are
demand-driven discharged to make sure we are not too aggr@sslischarging critical patients.

In principle, any patient in the ward can peoactively transferredo the ICU at each EDIP2 decision
epoch. Such proactive transfers can only occur if there @vaitable ICU bed for the transferred patient. If
there are not enough available beds in the ICU to accommadaeactive ICU transfer requests, the most
at risk patients (those with the highest EDIP2 score) wilgheen priority. If a patient from EDIP2 group
i is proactively transferred to the ICU, he will have a hodgitaS which is lognormally distributed with
meanl/u 4 ; and standard deviatian, ;. Similar to the crashed ward patients, we assume that a giopo
pw ~ fpy,, (p) Of the patient’s hospital LOS is spentin the ICU. These pagisurvive to hospital discharge
with probability 1 — d 4. If this patient is naturally discharged from the ICU (as opgd to demand-driven

discharged), his probability of readmission to the ICUW js. Otherwise, it is-p.

5.2. Model calibration

We now calibrate our simulation model using the available diescribed in Sectidd 2 and our empirical
results from Sectiohl4. Figuté 4 depicts the normalized eogiarrival rates of all patients to the ward

and directly admitted to the ICU in weekends versus weekday® empirical arrival rates are determined
using 12 months of data from all 21 hospitals.) We will schlese normalized arrival rates to vary the load

on the system, which allows us to maintain the relative dehfieom the ward versus direct admits.

5.2.1. Direct Admits We start by considering external arrivals. We use our fulhgat from KPNC to
calibrate the average hospital LOS, standard deviatiohehbspital LOS, the mortality rate, ICU read-
mission rate, and the proportion of hospital LOS spent inl@i¢. We use sample averages to determine
these parameters which are summarized in Table 7. Note thase/the empirical distribution for; (see

Figure[11 in the Appendix). Because patients who are dendamen discharged exhibit higher readmis-

sion rate than those naturally discharged, werseto be 15% larger thanry iesch 2012,

I|._ZQJ 2). If a demand-driven discharged patiemiadmitted to the ICU, we set his hospital LOS

to be 15% longer than the nominaD Sy as suggested by Kc and Terwiesch (2012). Note that the param-
etersur andoy are determined by accounting for the expected number ofmisaibns, so that/up =

E[LOSg](1 - 1g) andoy, = S58L05E,
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Figure 4  Normalized arrival rates of Direct Admits and Ward p atients. Normalized so that the average num-

ber of arrivals (direct admits + ward patients) per day is equ alto 1.
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Table 7 Direct Admit parameters. Note that the readmission r ate for demand-driven discharged patients is

calibrated to be 15% greater than the nominal readmission ra te.

Mean 95% CI

dg (%) 9.41 [9.12,9.69]
5 (%) 15.76 [15.43,16.10]
Elpg] (%) 50.79 [50.49,51.09]
E[LOS}]| (days) 6.52 [6.45, 6.58]
(std. dev.LOSE) (6.78)
"D 1.15 X rg

5.2.2. Ward patients We now turn our attention to the ward patients who may be adctb the ICU
after crashing or via a proactive transfer. In choosing thenlmer of EDIP2 groups and the size of each
group, we must balance having more groups to enable mordiflexin various transfer policies versus
having enough samples within each group to reasonably a&itnansition probabilities between each
EDIP2 group and the absorbing states (crash, death in the @echarge alive). With that in mind, we
elected to have 10 EDIP2 grougs & 10) for illustrative purposes. Additionally, we divide thept@0% of
patients into 5 groups and the bottom 90% into 5 groups, irrta enable more flexibility for proactive
transfers of the most severe patients. Table 8 summariegsattitioning of these 10 groups.

We use our full dataset from KPNC to calibrate the Markovieamsition matrixT € Rjj}"* (see
AppendiXB.1). We can then determine the nominal probgtwficrashing, dying in the ward, and surviving
to hospital discharge when no proactive transfers are depeaglicted by our Markov Chain based simula-
tion model. We find that the mortality rate on the ward is 1.98%tich is comparable to the empirical rate

of 2.2% reported in Tabldg 2.



22

Table 8  Summary statistics of ten EDIP2 groups .

Group Range of EDIP2 Mean Number of observations Proportion

1 [0.000, 0.002] 0.002 28,051 17.6%
2 [0.003,0.004] 0.003 32,358 20.3%
3 [0.005,0.007] 0.006 31,903 20.0%
4 [0.008,0.011] 0.009 23,819 14.9%
5 [0.012,0.023] 0.016 27,002 16.9%
6 [0.024,0.027] 0.025 3,584 2.2%
7 [0.028,0.032] 0.030 3,130 2.0%
8 [0.033,0.040] 0.036 3,138 2.0%
9 [0.041,0.057] 0.048 3,189 2.0%
10 [0.058,1.000] 0.107 3,221 2.0%

We utilize our empirical findings from Sectidh 4 to calibrabe mortality risk and hospital LOS of a
ward patient depending on whether he/she is proactivelyitezthto the ICU or admitted after crashing.
For each patient in EDIP2 groupwe can utilize our empirical results to predict the proligbof death
and predicted hospital LOS if the patient is admitted to ¥ kt their given EDIP2 score (i.e., action
is taken in the current EDIP2 decision epoch). We use theageegpredicted probability and LOS for each
EDIP2 groupi to calibrate the probability of death and LOS for patientwalne proactively admitted to
the ICU. The remaining parameters to calibrate are the jitityaof death and mean residual hospital
LOS if a patient crashes. For patients who are not proagtizdiitted, they will stay in the ward for a
random amount of time. These patients will eventually letineeward either by 1) dying in the ward, 2)
being discharged alive from the ward, or 3) crashing. Thedlpossible absorbing states and the parameters
for crashed patients will determine the expected LOS anbahitity of death if not proactively admitted
as given by our Markov Chain based simulation model. We saiveptimization problem (described in
Appendix[B.2) to determine the crashed parameters with g@ttie of minimizing the relative squared
error between the predicted probability of death (LOS) fraum empirical model when there i@ action
taken at that EDIP2 score versus the probability of deatig)i@dicated by our Markov Chain model.

Similar to the direct admits, we use the empirical distitautfor the proportion of hospital LOS which
is spent in the ICU /) (see Figuré_11 in the Appendix). We use the proportion opatlents who are
transferred to the ICU from the ward who visit the ICU morertlmance during the same hospitalization
as the ICU readmission rates of crashed patients. Finallysat the ICU readmission rates for proactive
patients; 4 ; = 8 x r¢, Vi. For our main simulations, we sgt= 1, but we also run robustness checks for
B € (0,1). Similar to direct admits, we appropriately scale the LO$Hgreadmission rates. To calibrate the
standard deviations for each LOS parameter, we use the saeffecient of variation (0.81) as determined

by the LOS across all ward patients. Taljles 9[and 10 sumnthezearameters for ward patients.
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Table 9  Common Ward patient parameters. Note Table 10  Expected mortality and LOS under
that the readmission rate for demand-driven proactive ICU transfers for 10 EDIP2 groups
discharged patients is the same for ward patients as

EDIP2 Group Mortality (%) | LOS4 ; (days)

direct admits. Parameters which are induced from das Mean std. dev.

other parameters do not include confidence intervals. 1 0.01 0.85 0.68
Mean 95% ClI 2 0.02 0.91 0.74

re (%) 16.88 [16.12, 17.63] i 883 28‘71 8;2
Elpw] (%) 46.92 [46.18, 47.65] 5 011 117 0.95
de (%) 57.28 6 0.18 1.36 1.10
E[LOS¢] (days) 15.09 7 0.28 1.45 1.17
(std. dev.LOS() (12.19) 8 0.39 1.57 1.27

Tp 1.15 xrg 9 0.70 1.85 1.50
A Bxre(f=1) 10 6.84 3.77 3.04

5.3. Proactive ICU Transfer Policies
We consider a number of different ICU transfer policies. Tarts we assume that proactive transfers can
only happen during the night-time decision epoch. This isabse our empirical results fundamentally
apply to the night time sample as described in Sedtioh 4.Apwendix[B.3, we relax this constraint and
consider the potential benefits of proactive transfer ifaptive transfers can occur at any decision epoch
and under the assumption that our empirical results geretrtal other parts of the day.

We define aStatic Threshold Policy by thresholdTz ;.. Any patient in EDIP2 group > Teprps
will be proactively transferred if there are available ICedSs. If the EDIP2 score is below the threshold,
the patient will remain on the ward. For completeness, wesicken all possible proactive transfer policies
with Teprps € {1,...,11}, whereTrp;p, = 11 is the case where no proactive transfers are done. For
comparison, we also consideiRandom Palicy, where, for every available ICU bed, we select a patient
uniformly at random in the ward to proactively admit into t@&J (regardless of EDIP2 score). We will

also considestate-dependent Threshold Policies Sectior 5.b.

5.4. Results
Our baseline simulation considers an ICU with= 15 beds and an aggregate (ward patients and direct
admits) arrival rate of 12.2, 14.2, and 17.4 patients/datieRts can only be proactively transferred to the
ICU during the night-time period. We simulate 1 year with 1ntioof warm-up, over 2,000 iterations.
Figurel® shows the in-hospital mortality rate and averagpial LOS versus ICU occupancy level under
the various proactive transfer policies. Because proadtansfers can reduce the likelihood of death and
average LOS, we see that more aggressive proactive ICUaramsn simultaneously reduce mortality rates
and average LOS. However, these reductions come with agaeerin ICU occupancy. For instance, with a

daily arrival rate of 14.2 patients/day, the nominal ICU wgancy without any proactive transfers (labeled
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Figure 5 In-hospital mortality rate and mean hospital LOS un der various proactive ICU transfer policies,
with 95% confidence intervals. ICU size N = 15. A = daily arrival rate.
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‘Reactive’) is 78.75%. This increases to 80.19% when prealgtadmitting the top 5 EDIP2 groups and

all the way to 85.12% when proactively admitting all 10 EDig2ups. Thus, there is merit to physicians’

concerns about ICU congestion, but it also comes with thefiteaf reduced mortality and LOS.

Figure 6  Adverse event rates under various proactive ICU tra nsfer policies, with 95% confidence intervals.
ICU size N =15. A = 14.2 patients/day.
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As seen in Figurgl6, the impact of increased congestion alsslates to other adverse events—demand-

driven discharges and readmissions. We calculate the diararen discharge rate as the fraction of all

ICU admissions which are discharged due to incoming denindlarly, we calculate the readmission rate

as the fraction of all ICU admissions that are followed bytaroICU admission prior to hospital discharge

(i.e. leaving the system). Interestingly, the differenbbesveen the demand-driven discharge (readmission)
rates are not statistically significant when comparing reaptive transfers (Reactive) to proactively admit-

ting the top five severity group§{p; 2 = 5). Moreover, we find that across all policies, patients wheo ar
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demand-driven discharged stay in the ICU for 80-85% of th&lr LOS, which suggests that these patients

may be sufficiently stable for such transfers (e.g. Lo Q&Q&J)). Still, being very aggressive with proactive
transfers could result in worse care and outcomes. Whiladgigeegate demand-driven discharge rate goes
down with more aggressive proactive transfers (because #re simply many more ICU admissions), the
rate for the most critical patients—direct admits and ceaigbatients—increases. A similar (but smaller in
magnitude) effect exists for ICU readmissions.

Our results suggest that some proactive transfers coutditmgirove quality of care at the system level,
but it must be done carefully. We see that proactively admgitip to 10% of ward patientd’t ;o = 5) can
improve mortality and LOS without substantially increasii€U congestion, demand-driven discharges,
or ICU readmissions. However, proactively admitting 26%wre of ward patientsT(zprpe < 5) can
increase adverse events. Unsurprisingly, the impact aiginge admissions (and the resulting increased
ICU congestion) on readmissions and demand-driven digelsatepends highly on the system load. Figure
[7(a) is an analog to Figuté 6(a) and depicts the impact ofgomiare aggressive with proactive transfers
on demand-driven discharge rates for different arrivasatvhich impacts the average ICU occupancy. We
denote this ag when there are no proactive transfers. We can see that wieesystem is very lightly
loaded (e.gp < 0.3), proactively admitting all 10 EDIP2 groups does not inseedemand-driven discharge
rates. However, as the system load increases, more aggr@ssactive transfers results in an increase of
adverse outcomes. Figure 7(b) summarizes when this irebeggns and we find that proactively admitting
more than the top 5 EDIP2 groups consistently comes with ¢is¢ @f more demand-driven discharges,
thereby supporting our initial observation that proadyivedmitting the most severe patients could save
lives without needlessly clogging the ICU.

Appendix[B.3 provides additional simulation results whidémonstrate the robustness of our main

insights.

5.5. State-Dependent Policies

We also consider a modification of the Static Threshold gplidere instead we consider state-dependent

thresholds (e.g. Altman etlal. (2001)). For these experimeve focus on the baseline scenaridot 15

beds and\ = 14.2 patients/day.

As our model incorporates many features (e.g., deman@udischarges, readmissions, etc.), solving a
dynamic program for the optimal thresholds is computafigr@ohibitive. As such, we consider a set of
state-dependent thresholds and select the best one vitaBonu The family of policies we consider are
parameterized by EDIP2 thresholds,> 75, and a bed threshold3. Suppose there aleavailable ICU
beds. The policy can then be summarized as:

e If b < B, Proactively Admipatients in EDIP2 group> T;.
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Figure 7 ICU size N = 15. p indicates the average ICU occupancy induced by arrival rate s A€
{3.5,4.8,6.6,8.7,10.4,12.2,14.2,17.4,22.0} patients/day.
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e If b> B, Proactively Admipatients in EDIP2 group> T5.

e Otherwise, the patient will remain on the ward.

If 71 = T3, we recover the static threshold policy. We can also geizerdilis to more than 2 thresholds.

We use simulation and an exhaustive search over all possiéle-dependent threshold policies with
two thresholds which can proactively admit 1,.2,, up to 6 EDIP2 groups. Because proactive transfers
reduce mortality and LOS for all patients, aggressive pireadransfers will improve both of these mea-
sures and we find that no state-dependent policy outperfarenstatic threshold policy in mortality and
LOS. However, we do find that the demand-driven dischargereadmission rates for crashed and direct

admits can improve by allowing state-dependent policiekle[11 summarizes the relative difference in

outcomes where we report the ‘best’ state-dependent paéi¢hie one that improves upon the static thresh
old policy in demand-driven discharges and readmissiamnsallso has the lowest mortality rate and mean
LOS. Tabld_1IB in the appendix provide the results when aligWd and 4 thresholds. We find that in some
cases (proactively admitting the top 2 EDIP2 groups) theesdapendent policy can have statistically sig-
nificant improvements in readmissions and demand-drivechdirges, while the mortality rate and LOS are
statistically equal. In some instances (e.g. Top 6), impneents in demand-driven discharge and readmis-
sion rates comes at the expense of increases in mortaliy aaid LOS. That said, these differences are all

less than 5.31% from the static threshold policy, with arrage of less than 1.01%. In a 15-bed ICU, this
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amounts to approximately reducing by 7 demand-driven diggs and 2 readmissions per year. Thus, we
find that while state-dependent policies may be able to ingpatient outcomes, the improvement is very
small. As static threshold policies are easier to conveyitic@ans and implement in practice, we find that

the slight gains achieved with state-dependent policigsmoaibe worth the added complexity.

Table 11 Percentage differences between the best 2-thresho  Id state-dependent policy and static policy

# of groups Mortality LOS DDD.,.qsnea DDDgirecradmit Terashed  Tdirectadmit
Top 1 0.99*  0.07 -1.62* -1.65* -0.34 -0.06
Top 2 0.05 -0.03 -1.83* -1.82* 0.19 -0.35
Top 3 1.23* 0.17* -2.75* -2.59* -0.52 -0.26
Top 4 0.00 0.00 0.00 0.00 0.00 0.00
Top 5 0.53* 0.04 -1.21 -1.40* -0.41 -0.19
Top 6 1.22*  0.84* -5.31* -5.22* -0.48 -0.39

*: p < 0.05 difference in means based on t-tests

6. Conclusion and Discussion

Patients who deteriorate and require unplanned transidtetICU have worse outcomes. In an effort to
mitigate the number of unplanned transfers, the Early Dieteof Impending Physiologic Deterioration
(EDIP2) score was developed to predict the likelihood agpaitivill ‘crash’ and require ICU care. The
sentiment behind this model was that physicians could amqiively based on this score and possibly
admit patients to the ICU before their risk of adverse outesimcreases. In this work, we use empirical and
simulation models to estimate the impact of proactive adinis based on the EDIP2 score on individual
patients, as well as on the collective patients within thepital.

Using a high fidelity simulation model, we find that proaclyv&ansferring the most severe patients
could reduce mortality rates without sacrificing other @atioutcomes; however, proactively transferring
too many patients could result in high ICU congestion so ffetents are more likely to be demand-
driven discharged and/or require ICU readmission. Whilaesgains can be achieved by allowing for more
complex transfer policies, such as those where the sewdripatients to proactively transfer depends on
the number of ICU beds available, we find the difference irconttes to be minimal. Thus, it may be more
reasonable to focus on using simple threshold policieswaie desirable for practical implementation.

Our simulation model has been calibrated from our empifficalings and our extensive dataset. Cer-
tainly, the insights generated from the simulation stu@ytaghly dependent on the reliability of our empir-
ical results and the fidelity of the data. As we are using a lenge data set from multiple hospitals and

because we make a number of important design choices taaseithe reliability and robustness of our
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empirical analysis, we believe the risks of misspecificatice small. While we have run a number of sen-
sitivity analyses to test the robustness of our results, wstmcknowledge that if there are other first order
dynamics that we failed to account for, this could raise tjoas as to the validity of our simulation results.

Our empirical strategy relies on two study design decisi@irst, we restrict our analysis to the night-
time EDIP2 decision epoch in order to strengthen the instntrand reduce the potential biases introduced
by unobserved confounders. Second, we utilize a matchipgpaph to reduce model dependency in order
to enhance the robustness of our estimates. While thessalexcan alter the study sample, this is done in
a careful manner in which to increase the reliability of ostiraates. Such approaches may be beneficial in
other healthcare settings where causal inference is dlgatlg due to weak instruments.

While our design choices have improved the reliability of eatimation results, this is fundamentally
true only for the final study cohort. While we believe that thalitative results likely generalize to the full
population, more work is necessary to confirm whether thisdsed the case.

Despite the limitations of our study, our results have beemluable to our partner hospitals. They

recently deployed a pilot program where the EDIP2 score denaaailable to clinicians on a real-time basis

at two hospitals. It is currently being used to trigger wags to a Rapid Response Team (Escaobarlet al.

2016), but the intent is to have it inform proactive ICU triams. Our study lends support to this goal. More-

over, the results have been communicated to the remainihgg@tals in the hospital system in considering
further deployment of the real-time EDIP2 warning system.
While our findings are specific to the EDIP2, we expect thatitpi@ely, the benefits of proactive ICU

transfer based on the MEWS score (or other scores) wouldnitasito our findings. Of course, because

the EDIP2 is more efficient (Kipnis etial. 2016), the magnitad the benefits will likely be higher in our
study as the EDIP2 is better able to predict who actually a¢€d care.
The EDIP2 score has high specificity and sensitive for all @4pitals in our study setting, including

those with specialized ICUs (Kipnis et al. 2016). As such bebeve that qualitative insights are likely to

exist in hospitals with varying ICU resources. Of course,éiRact magnitude of the benefits of proactively
admitting up to the top 6 EDIP2 groups will vary depending aseemix and size of ICUs.

This work presents a number of interesting directions fourkl research. First, we used simulation to
compare different proactive transfer strategies. Onecbomsider using a stochastic modeling and dynamic
optimization framework to examine whether alternativeigges may be more effective. We note that our
simulation model assumes that any patient with an EDIP2esabove a prespecified threshold will be
admitted to the ICU; however, in practice, the EDIP2 prosigeidance rather than a mandate for physicians

making proactive transfer decisions. One could considkcips with possibly lower EDIP2 thresholds to
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use as an automated alarm to bring physicians to a patieadside for evaluation and information gather-
ing, rather than simply as an ICU transfer alarm. Additibnane could consider explicitly incorporating

the future information provided by the EDIP2 score in defaing an optimal transfer policy in a similar

way that Xu and Chan (2016) uses predictions of future paéigivals to make ED admission decisions.
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Appendix A:  Supplemental Information on Empirical Analysi s

Figure[8 depicts variation in the percentage of ICU trarssbgr ICU occupancy percentile when considering all four
EDIP2 time points (whole-day) versus just the 10pm EDIPZtpoint (night-time). We can see that the difference
between (very) high occupancy (ex.90™ percentile) and low occupanc¥ (50" percentile) is much greater when
restricting to the night-time EDIP2 decision epoch versussidering all four. This suggests the instrument is steong
when only considering the night-time decision epoch. Werrtd the ICU occupancy for all four EDIP2 time points
as the “whole-day instrument” and the ICU occupancy at 10pitha “night-time instrument”. We do not include the
4am-9:59am decision epoch into the night-time instrumieetause nearly half of the decision epoch is staffed by

day-time physician levels. Finally, we find that the niginte effect is strongest during the first four EDIP2 scores.

50% —
B night-time
O whole-day

40%
30% |
20% |

_onnl

0% —

% of ICU admission

[99th, 100th] [95th, 99th) [90th, 95th)  [80th, 90th) [70th, 80th)  (50th, 70th) <=50th

ICU occupancy percentile

Figure 8 Percentage of ICU transfer by ICU occupancy during n ight-time and whole-day

Table 12 Control Variables used in Empirical Analysis

Variables  Description

Age Patient age at time of hospital admission, in years
Gender Males were coded 0 and females 1
EDIP2 Predicted probability of unplanned transfer from tiedical-surgical ward or the TCU to the ICU

or death on the ward within the next 12 hours (Escobarlet d2p@pdated every 6 hours at 4am,
10am, 4pm, 10pm, range in [0, 1]; based on vital signs, laboyaest results, COPS2, LAPS2,
transpired hospital LOS and care directives;

CHMR Predicted in-hospital mortality risk, range in [0, [EScobar et al. 2012); based on primary condition-
specific models that employed age, gender, admission tyjRSP and COPS2;

COPS2 Comorbidity Point Score 2 (Escobar et al. 2013); nteasthronic disease burden during the 12
months prior to hospital admission; integer values rand®,iB06];

LAPS2 Laboratory-based Acute Physiology Score 2 (Escatelf2013); measures a patient’s acute insta-
bility based on lab tests and vital signs 72 hours precedispital admission; integer values range
in [0, 274];

Diagnosis  Primary diagnosis, grouped into 38 broad diseatggories (e.g. pneumonia); categorical variables

Hospital ID 21 hospital IDs; categorical variables

Month/Day Month/Day of week of hospital admission; catégarvariables
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A.1. Matching Formulation

Let 7 ={4,...,tx} be the set of discouraged units, i.e., the subjects thatuenered high ICU conges-
tion, andC = {¢, ..., cc }, the set of encouraged units that faced low ICU congestidth, W< C'. Define
P={p:,....,pp} as the set of observed covariates. Each discouraged anjt has a vector of observed

covariatese, . = {x, ,,,...,X, ,, }, and each encouraged: C has a similar vectoe, . = {x x

S

Let0 <4, . < oo denote the distance between each pair of discouraged andraged units. We solve:

minimize Z Z 8pclpe— A Z Zat,c

teT ceC teT ceC
subjectto Y a, <5, teT
ceC
<1, ceC
2 b 3)
- bk Z Zat,c é Z Z at,cvk,t,c S bk Z Z at.,ca k S Kl
teT ceC teT ceC teT ceC
Z Zatﬂcvkw > ¢y ZZGM, ke K,
teT ceC teT ceC

a,.€{0,1}, teT,ceC
In our studyy, . is the absolute difference between the EDIP2 scores of diaged unit and encouraged

unit ¢, and\ is a tuning parameter (set to the median of&hés) that regulates the trade-off between finding

close matches in the covariates and matching as many paisaible (see Zubizarreta et al. (2013)).

The first two sets of constraints require each discouragi#daibe matched to up to 5 different encour-
aged units (we determined this matching ratio in view of trgé number of available discouraged units
before matching and the low expected efficiency gains ingg@iom a 1:5 to a 1:6 matching ratio under
an additive treatment effect model). The third constraimy @llows each encouraged unit to be matched at
most once. The third set of constraints are the covariamisalconstraints, whebg > 0 is a scalar toler-

ance that defines the maximum level of imbalance allowedk't constraintand, , . = f(z,,) — f(z.,)

for some suitable functiorf(-) of the observed covariates (See Zubizarretalet al. (20T8p.fourth set

of constraints are the imbalance constraints, whegre 0 is a scalar that defines the minimum level of
separation required for thé" constraint.

A.2. Covariate Balance

By means of the integer prograim (3) above (specifically, byasing the balancing constraints described
above), we balanced the means and in some cases the marmyinjaiirat distributions of the covariates.

Tabled 1H-15, show the balance in means for the five risk @teat the seven indicators for day of the
week, and the twelve indicators for calendar month aftechiag. In the tables, the standardize difference
in means for covariatg is defined as——=-2=2«»__ wherez, , andz,, are the sample means for the dis-

V(52 pts2,)/2

couraged and encouraged units after matching,sdpdands? | are the corresponding sample variances
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before matching (Rosenbaum and Rubin 1985). Figlire 9 shuatgtte number of observations for each

hospital in the encouraged and discouraged groups is hgiimijar (with maximum difference of 0.3%).
Since every hospital is almost equally represented in tltewaged and discouraged group after match-
ing, unobserved confounders at the hospital level are vslikaly to bias our estimates. The number of
males and females in the two groups are similarly balancemedis Finally, we matched exactly for the
38 indicators of disease categories, therefore balanbimgpint distribution of the disease categories and
hospitals, and disease categories and sex (we actuallysedpihis constraint by matching separately for
each disease category). In summary, we find that our mataregls is well-balanced, thereby reducing

model dependence and allowing for a more robust estimatteuft enodification.

Table 13 Balance table for risk covariates in

means

Covariate Encouraged Discouraged Std diff Table 15  Balance table for calendar month
Age 67.74 67.69 0.00 Covariate Encouraged Discouraged Std diff
COPS2 44.89 45.07 0.00 January 0.07 012 -017
LAPS2 72.28 73.02 -0.02 February 0.08 0.12 -0.14
CHMR 0.04 0.04  -0.02 March 0.09 0.14 -0.15
EDIP2 0.01 0.01 -0.04 April 0.09 0.10 -0.04

Table 14 Balance table for day-of-week ‘l;/ll;ye 00'9190 06%007 -069029
Covariate  Encouraged Discouraged Std diff July 0.09 0.06 0.13

August 0.09 0.05 0.14

Sunday 0.15 0.14  0.04 September 0.08 0.04  0.16
Monday 0.14 0.18  -0.10 October 0.09 0.06 0.3
Tuesday 0.14 017 -0.09 November 0.09 009 0.2
Wednesday 0.14 0.15  -0.03 December 0.05 0.06 -0.07
Thursday 0.14 0.14 0.01
Friday 0.14 011  0.10
Saturday 0.14 0.11 0.10

0.10
|

B Encouraged
O Discouraged

0.08
1

Frequency

0.04
1

0.02
1

(DLt

2 3 5 7 8 9 10 11 13 14 15 16 17 19 20 21 22 24 25 27 28

0.00
L

Hospital ID

Figure 9 Balance table for hospital ID after match

A.3. Robustness Checks

We now consider the robustness of our initial empirical isaunder alternative specifications.
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A.3.1. Alternative IV Definition In defining the binary instrumental variable from the couatins ICU
occupancy levels, we use the™ percentile and’0" percentile of the ICU occupancy distribution for each
hospital as the threshold for “busy” and “not-busy”. We aised different thresholds, including ttés",
67.5M, 72.5" and75" percentiles as the “not-busy” threshold, &2 and87.5" percentiles as the “busy”

threshold. The estimation results are similar with onlglslichanges in the coefficient estimates.

A.3.2. Additional Covariates In our econometric models, we have included both patiergrigvfactors
and seasonality controls. We also considered includinigatdrs of whether a patient had been admitted to
the ICU or OR before being admitted to an inpatient unit. Wefingistic regression of the ICU transfer
decisions on all patient severity risk factors and seadgrantrols, including the two additional indicators
and constructed a receiver operating characteristic (RfD@)k. An ROC curve is usually used for model
comparisons as it depicts relative trade-offs betweenpnsitive (benefits) and false positive (costs) for

different cut-offs of the parametEL(ZmLeig_and_Qam,cleﬂEL 2 20

(AUC) is a measure of how well a parameter can distinguistvéen the admitted and not admitted groups.

p 4). The area under the ROC curve

Figure[10 shows the ROC curves for the ICU transfer model aodatity model with and without the

two additional risk factors. The DelLong et al. (1988) testlua difference between any two AUCs shows

no significant difference between any two models at the 5%ifssgnce level. Thus, it seems that adding
these covariates does not significantly improve the estimatodel for ICU transfers or mortality. To avoid

over-fitting, we opted not to include the two additional coates as controls.

Figure 10  ROC Curves
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Appendix B:  Supplemental information for Simulation

B.1. Transition Matrix for Ward patients

Patients in the ward are modeled by a discrete time MarkowGhigh the transition probability matri.

There are 10 transient statés {1, 2,...10}, where state denotes the patient is currently in EDIP2 group
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Figure 11 Empirical probability mass function for proporti on of hospital LOS spent in the ICU.
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i. There are 3 absorbing statés: 11 corresponds to a patient crashirig: 12 corresponds to a patients
being discharged alive; and= 13 corresponds to a patient dying in the waild,;,: = 1,2,...,10,j =
1,2,...,13 represents the probability of a patient transitioning freBIP2 groupi to state;j within each
period. We calibratd’; ; from our data using the proportion of transitions to eactesta

Si X¢ UEDIP2 ()=i}x UEDIP2 (t4+1)=j} . - _ 1 o 10°

5 5 EBI P (et i ) P
1{EDIP2(t)=ix1{crash (t+1 . . .
T = Ekztl?EDIPQk(t):i}k ) t=1,2,...10,j =11;
4] T Son >0y HEDIP2) (t)=ix1{dischargey (t+1)}} . 1.9 10,7 — 12
DY {Ethl({)EDIP{Qk(t):i% iy L

1{EDI P2, (t)=ix1{deathy,(t+1 . .

ket ZthIIEEDIPQk(t):i}k , 1=1,2,...10,5 =13.

wherel{z} is an indictor variable equal to 1 if is true; EDIP2,(t) is the EDIP2 group for patierit
during epocht; crashy(t) denotes whether patiehtcrashed during EDIP2 epo¢hdischarge,.(t) denotes
whether patienk is discharged from the ward alive during EDIP2 epociind,death,(t) denotes whether
patientk died in the ward during EDIP2 epo¢hWe sum over all patients, and all EDIP2 epochs, The

estimated transition matrix is:

[0.8134 0.0728 0.0108 0.0020 0.0009 0.0001 0.0001 0.0001 0.0000 0.0001 0.0012 0.0982 0.0003 ]
0.3216 0.4445 0.1223 0.0226 0.0072 0.0004 0.0003 0.0002 0.0003 0.0003 0.0021 0.0774 0.0008
0.0742 0.3491 0.3638 0.1075 0.0345 0.0017 0.0011 0.0009 0.0007 0.0008 0.0031 0.0609 0.0015
0.0229 0.1351 0.3608 0.2844 0.1259 0.0060 0.0040 0.0025 0.0024 0.0021 0.0048 0.0468 0.0023
0.0058 0.0488 0.1682 0.2893 0.3608 0.0287 0.0194 0.0146 0.0105 0.0079 0.0086 0.0330 0.0045
0.0019 0.0147 0.0695 0.1604 0.4567 0.0838 0.0599 0.0475 0.0366 0.0223 0.0140 0.0246 0.0082
0.0013 0.0105 0.0483 0.1249 0.4235 0.1020 0.0829 0.0670 0.0521 0.0364 0.0190 0.0228 0.0090
0.0010 0.0066 0.0320 0.0931 0.3625 0.1068 0.1007 0.1038 0.0817 0.0555 0.0233 0.0214 0.0117
0.0008 0.0043 0.0185 0.0577 0.2678 0.0917 0.1031 0.1292 0.1490 0.1116 0.0320 0.0171 0.0171

| 0.0007 0.0015 0.0074 0.0212 0.1119 0.0444 0.0611 0.0872 0.1557 0.3749 0.0616 0.0143 0.0581 |

B.2. Optimization problem to calibrate crashed parameters

We use our empirical results in Sectidn 4 to determine thdipied mortality rate and LOS for patients

in each of the 10 EDIP2 groups based on whether they are adhaittthat EDIP2 severity level (before
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crashing) versus not. The average predicted values are atip@u in Tabl€ 16. To emphasize the translation
of our empirical findings to the simulation model where pttagclCU admissions are possible, we label
the predictive values when an action is taken (i.e. ICU adimmswithin the 6 hour EDIP2 decision epoch)
at a specific EDIP2 severity scoreRmactive In contrast, we label no action within the epoclresctive
Patients not proactively transferred to the ICU stay in tlaedauntil they crash or are discharged (alive
or dead) from the ward. Thus, our Markov Chain model, with @rttame slots, gives for patients in EDIP2

group: a probability of death)/ D;, and an expected LO3/ LOS;, when not proactively transferred as:

MD; £ P;(deathnot proactively transferrgd= P;(death in wardl+ P,(crash x d¢

MLOS; = E[LOS,|not proactively transferrée- 6 - E[# of periods in warfpatient group] + P;(crash x LOS¢

Our objective is to determingé- in order to minimize the sum of squarpdrcentagesrrors between the
reactive predicted probability of death summarized in @HI8, which we denote by D?, and M D;. As
our empirical results suggest patients proactively trmetl to the ICU have lower mortality risk than if
they crash, we add a constraint thiat > P D, Vi, whereP D is the predicted probability of death with
proactive transfer summarized in Tablé 16. The optimiratimblem is formulated as:

min 3 <PD1R — 1)2
o 4= MD;
s.t.de > PD2 Vi

We formulate and solve a similar optimization problem f@p S :

10 2
. PLOSE
mn > <MLOSZ- - 1)

St.LOSc > PLOSA, Vi

We chose to minimize the sum of squared percentage errort® dioe large variation in the magnitude of
mortality across the 10 EDIP2 groups; e 8L is 25 times that of? Df. Thus, an optimization problem
whose objective is to minimize the sum of squared errors @voesult in ad- which are dominated by the
top EDIP2 group at the cost of not fitting the lower EDIP2 gowll. This is less of an issue for the LOS
optimization model and we find the results for LOS are similader both optimization objective functions.

Solving the optimization problems resultdy, = 57.3% and LOS. = 15.1 days. Tablé 17 summarizes
the mortality rates and mean LOS for each EDIP2 group basemipMarkov Chain model using these
crashed parameters. Recall that we use the predicted pligbabdeath and predicted LOS under ICU

transfers at the given EDIP2 scores for the proactive paemsia our model.
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Table 16 ~ Summary of mean predicted Table 17 Markov Chain model: Expected
mortality risk and LOS for 10 EDIP2 groups when mortality and LOS under proactive and reactive
admitted to the ICU (Proactive) or not admitted ICU transfers for 10 EDIP2 groups
(Reactive) in a given EDIP2 decision epoch.
| Mortality (%) | LOS (day) | Mortality (%) | LOS (day)
EDIP2| Proactive ReactiveProactive Reactive EDIP2| Proactive ReactiveProactive Reactive
Group PDA PDE| PLOS? PLOSE Group PDA MDZE| PLOS? MLOSE
1 0.01 1.26 0.85 1.96 1 0.01 1.73 0.85 2.54
2 0.02 1.83 0.91 2.12 2 0.02 2.30 0.91 2.74
3 0.04 2.42 0.97 2.25 3 0.04 3.04 0.97 2.94
4 0.05 3.20 1.04 2.42 4 0.05 3.96 1.04 3.13
5 0.11 4.84 1.17 2.72 5 0.11 5.56 1.17 3.34
6 0.18 6.90 1.36 3.15 6 0.18 7.62 1.36 351
7 0.28 8.49 1.45 3.36 7 0.28 8.63 1.45 3.58
8 0.39 10.63 1.57 3.64 8 0.39 9.97 1.57 3.64
9 0.70 15.46 1.85 4.29 9 0.70 12.53 1.85 3.73
10 6.84 33.19 3.77 7.47 10 6.84 22.02 3.77 3.79

Table 18 Percentage differences between the best 3- and 4-th  reshold state-dependent policy static policy

3-threshold
# Of grOU p3| Mortallty LOS DDDcrashed DDDdi'rectadmit Tcrashed Tdirectadmit
Top 2 0.19 -0.04 -1.94* -1.02 0.18 -0.50*
Top 3 1.01* 0.27* -2.39* -2.21* -0.50 -0.13
Top 4 0.74* 0.23* -2.01* -1.39* -0.55 -0.17
Top 5 1.09* 0.26* -3.25* -3.17* -0.25 -0.32
Top 6 2.83* 1.73* -7.25* -7.10* -0.80 -0.76*
4-threshold
# Of groups| Mortallty LOS DDDc'r‘ashed DDDdi'r‘ect(Ld'nLit Terashed Tdirectadmit
Top 3 2.04* 0.44* -2.90* -3.04* -0.54 -0.31
Top 4 1.32* 0.31* -2.45*% -2.58* -0.54 -0.22
Top 5 1.31* 0.37* -4.23* -3.93* -0.77 -0.33
Top 6 4.46* 2.52* -8.69* -8.14* -1.35* -0.42

*: p < 0.05 difference in means based on t-tests

B.3. Simulation Robustness Checks
ICU size: We consider 4 different ICU size¥ = 10, 15, 20, 30 operated at approximately 70%, 80% and
90% average ICU occupancy under reactive transfer. Theldréar in-hospital mortality rates and LOS
are highly similar across the 4 ICU sizes. We find that capamibling results in higher demand-driven
discharge and readmission rates for small ICUs with the d&tdedccupancy level (e.g. Figuel12). Despite
the slight changes in the magnitude of the effect of proa@imissions in ICUs of different sizes, we see
the qualitative insights (e.g. proactively admitting ugbt&DIP2 groups can be beneficial) are robust.

Parameter calibration: We also vary the calibration of some of our model primitivepecifically, we
vary 5 =[0.1,0.2,...,0.9], which impacts the ICU readmission rates for proactivedfers, as well as
the mortality and readmission rates for external arrivad}s dndr ) and the readmission rate for crashed

patients (<) over the 95% confidence intervals for these parametersla8itm our results for different ICU
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Figure 12 Demand-driven discharge under 4 ICU sizes at daily arrival rates A =9.7,14.2,18.7,27.8, which
correspond to approximately 80% ICU congestion for each of t he ICUs.
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sizes, we find that qualitative insights are robust to thesetrons in parameter calibration. In fact, we find
that the differences in most outcomes (LOS, mortality radesand-driven discharge) are on average 1.2%
and no more than 3.2%. Becauselirectly impacts the readmission rates for proactive fienssvarying

£ by an order of magnitude (from 1 to 0.1) can have a substantjadct on overall readmission rates.
Specifically, across all of the various parameter combamatiwe find that the mean relative change in ICU
readmission is 5.3% with a maximum of 39.8%, which occurswhe- 0.1.

Proactive transfer during the whole day: We next consider the case where proactive transfers cam occu
during any EDIP2 decision epoch (instead of just the nighetone). Here we assume that our empirical
estimates can be generalized to the whole day. These rasalssimmarized in Figute113. While the main
insights of this scenarios are consistent with our initiadlfings which restrict to night-time proactive trans-
fers, we find that with more frequent proactive ICU transfecidions, the effects on outcomes are more

drastic because proactive ICU transfers are done more ssjgedy.

Figure 13 Proactive transfers can occur throughout the day. N =15 ICU beds. A = 14.2 patients/day.

|-=— Overal e
-4~ Crashed A~
- Direct admits ar

50
-
40
.
% DDD
o s
3

d
t

TSRS o

38

9l ok

20
I
i
-

.6

3
o
-
~
w
IS

5 6 7 8 9 10
# of EDIP2 groups proactively admitted

4.0
3‘4
g

—=— Overall —&- Crashed - Direct admits

in-hospital mortality (%)
average hospital LOS (days)

‘2
g

w_| N N\
E w Tops x s
T()PQ\I -

.
Top10 S oo

1
Li

14 15 16 17

L
!

L

#

|

i

!

#

\

3
ICU readmission rate (%)

T T T T T T T T T T T T
75 80 85 90 95 75 80 85 90 95 0 1 2 3 4 5 6 7 8 9 10

average ICU occupancy (%) average ICU occupancy (%) # of EDIP2 groups proactively admitted

(a) Mortality and LOS versus ICU occu- (b) Demand-driven discharge and read-

pancy. mission rates



	Introduction
	Related Literature

	Study Setting
	Data Selection
	Actions
	Patient Outcomes

	Empirical models and approach
	Empirical challenges
	Design choices to strengthen the instrument and reduce model dependence
	Night-time analyses
	Multivariate matching

	Parametric models

	Empirical Results
	Design Choices
	Estimation Results: Effect of Proactive ICU transfers on Mortality and LOS
	Comparison to Other Study Designs
	Description of the Night-Time Matched Sample

	System level effect of proactive admissions
	Model of patient flows
	Model calibration
	Direct Admits
	Ward patients

	Proactive ICU Transfer Policies
	Results
	State-Dependent Policies

	Conclusion and Discussion
	Supplemental Information on Empirical Analysis
	Matching Formulation
	Covariate Balance
	Robustness Checks
	Alternative IV Definition
	Additional Covariates


	Supplemental information for Simulation 
	Transition Matrix for Ward patients
	Optimization problem to calibrate crashed parameters
	Simulation Robustness Checks


