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Unplanned transfers of patients from general medicalisairgvards to the Intensive Care Unit (ICU) can occur due to
unexpected patient deterioration. Such patients tendve higher mortality rates and longer lengths-of-stay thiaect
admissions to the ICU. As such, the medical community hassited substantial efforts in the development of patiekt ris
scores with the intent to identify patients at risk of deggation. In this work, we consider how one such risk scorddcou
be used to trigger proactive transfers to the ICU. We utiizetrospective dataset from 21 Kaiser Permanente Northern
California hospitals to estimate the potential benefit afisferring patients to the ICU at various levels of patiesk of
deterioration. In order to reduce the sensitivity of our ifiiys to key identification and modeling assumptions, we use
a combination of multivariate matching and instrumentalalsle approaches. Using our empirical results to caléeat
simulation model, we find that proactively transferring thest severe patients could reduce mortality rates andHengt
of-stay without increasing other adverse events; howeeactive transfers should be used judiciously as being too

aggressive could increase ICU congestion and degradeygoabtare.
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1. Introduction

Intensive Care Units (ICUs) provide care for criticallypktients and often operate near full capacity (Green

2002). ICU admissions in the US have increased by 48.8% frod2 2hrough 2009 (Mullins et &l. 2013),

and the usage of ICUs will likely continue to rise with the ptgiion aging(Milbrandt et al. 2008). The

high cost of ICU care and rising use of ICUs make it of incregénterest to develop a better understanding
of the ICU admission decision. In this work, we focus ouriten on ICU admission decisions for patients

in general medical-surgical wards and Transitional Carisl{iiCUs), because unplanned transfers to the

ICU from these units are associated with worse patient ouésathan direct admissions (elg., Barnett et al.
2002) Lu;a_el_a|l. (2007)). We use a physiologic risk scbﬂ:(Qb_a.r_e_t_aUL_ZQ_LZ) that is dynamically updated

for patients staying in the general ward and the TCU to dgvalounderstanding of the potential benefits

and costs of proactively transferring patients to the ICB&obon the risk score before they experience rapid
deterioration.

Recognizing the risks associated with unplanned trangteedJS Institute for Healthcare Improvement
advocates for the development of early warning systemgipatithe work of rapid response teams (RRTS)

with the hope that this would reduce catastrophic medicahts/sthat can lead to unplanned transfer to the
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ICU or in-hospital death on the ward or TCU (Duncan et al. J022rapid response team is a team of
clinicians who bring critical care expertise to the bedsifithe patient who exhibits early signs of clinical

deterioration. No standard detection mechanism exist®RFs. Some teams employ manually assigned

scores such as the Modified Early Warning Score (MEW t al. 2000) and the National Early

Warning Score (NEWS) (Roval College of Physiclans 2012)octannately, these scores are quite coarse

and can suffer from high false positive and false negatitesréEscobar et al. 201 2007).

Our study setting is Kaiser Permanente Northern Califofi{RRNC), an integrated health care delivery

system that routinely uses severity of illness and longitaldcomorbidity scores for internal quality assur-

ance. Similar to some university hospitals (e.g., Kolledle{2014)), KPNC is starting to embed predictive

models into the electronic medical record (EMR). KPNC hasetimed an early warning system that pro-
vides clinicians in the emergency department (ED) and gémeedical-surgical wards with a severity of
illness score (Laboratory-based Acute Physiology Scaesion 2, LAPS?2), a comorbidity score (COmor-

bidity Point Score, COPS2), as well as a dynamic in-hosgéggrioration risk estimate (Early Detection of

Impending Physiologic Deterioration score, version 2, ED)I(Escobar et al. 2012, 2013) which is updated

throughout a patient’s stay in the ward/TCU. The score isatgull every 6 hours and has recently been

deployed to provide dynamic risk scores to alert a RRT at tilad pospitals|(Kipnis et al. 2016).
The EDIP2 score predicts the probability of death or unpdahmansfer from the ward or the TCU to the

ICU for patients who are ‘full code’ (i.e., those who desué fesuscitation efforts in the event of a cardiac
or respiratory arrest) within the next 12 hours, and is updavery 6 hours at 4am, 10am, 4pm and 10pm,
as seen in Figurel 1. The EDIP2 score utilizes vital signsj gigns trends, and laboratory tests from the
past 24—72 hours as well as patient diagnoses and democgdplietermine a patient's EDIP2 score. The
EDIP2 score is more than twice as efficient as the manualigres MEWS, i.e., the EDIP2 score results

in less than half the number of “false alarms” as comparel thie MEWS model for identifying the same

proportion of all transfers to the ICU (Escobar et al. 20¥2hen using the c-statistic as a measure of model

sensitivity and specificity, the EDIP2 out-performs the aijedl NEWS score and a machine-learning based
eCART model with c-statistic of 0.82 versus 0.79 and 0.7€§peetively|(Kipnis et al. 2016).

Figure 1 Timeline for the EDIP2 score
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The main premise of the EDIP2 score is to alert the RRT of aeptdi risk of deterioration so that

they may consider discrete interventions. “Some inteieestperformed by the response team are simple



(administration of oxygen, intravenous fluids, diuretisd bronchodilators and performance of diagnostic

tests),” but often do not correspond to admitting a patiernhé ICU (Jones et él. 2011). This is in contrast

to what we propose, which is fwroactively admit patients to the ICU based on their EDIP2 scdrefere
the patient crashes. We will refer to this apeoactive ICU transfer’ throughout this paper.

Despite the improved predictive power of the EDIP2 scorerdlare concerns that, if every alert led to
proactive transfer, ICU congestion would substantialtréase. As such, the current use of the EDIP2 at
KPNC is only to call the RRT, not necessarily initiate an ashign to the ICU. Our goal is to develop
an understanding as to whether such a fear is well-foundeetifically, if proactive transfers can reduce
LOS and mortality for individual patients, then it is podsithat proactive ICU transfers will reduce ICU
congestion. However, the actual benefit depends on thesgretagnitude of the reductions in LOS. This
is because by proactively transferring a patient, theregaaaantee that the patient will consume limited
ICU resources. However, some proactively admitted patieraty never have needed ICU care, so we have
needlessly increased ICU congestion, possibly prevenotimgr patients from getting needed care. As such,
the relationship between tH€U load for proactive transfers may be higher or lower than for tiadal,
reactive transfers. Whether it is higher or lower is an erogliquestion, and at the heart of what we are
trying to answer. Moreover, due to the externalities onéepatcan impose on other patients, it is also
important to examine how proactively transferring somegpds impacts the ability to treat other patients.

We estimate the effect of ICU transfers for patients of vagyseverity, as measured by the EDIP2 score.
Because it is not feasible to conduct randomized contratiats which explore the benefit of ICU admis-
sions, we utilize a comprehensive retrospective datagetafly 300,000 hospitalizations. A common chal-
lenge with using such datasets is there are often unobseovddunders which can increase the likelihood
of both ICU admission and adverse patient outcomes (i.dg@neity is present). To address this problem,

we utilize an instrumental variable approach and make a eumbdesign choices to improve the relia-

bility of our estimates. Specifically, we utilize a new néarmatching methodology (Baiocchi etial. 2010,

Zubizarreta et al. 2013) that, to the best of our knowledgs, ot been used in the Operations Manage-

ment (OM) literature. Indeed, empirical OM works which i@l instrumental variables typically assume
the strength of an instrument is given. In contrast, we makeraber of design choices to strengthen our
instrument and reduce the potential biases due to unolzbeovdounders. Next, we use a simulation model
to examine how various proactive ICU transfer policies rhigtpact patient flow and outcomes at the sys-
tem level. To the best of our knowledge, our work is the firstaasider proactive ICU transfers initiated
by a dynamically updated severity score. Our main contidingtcan be summarized as:

e We utilize an extensive dataset consisting of 296,381 halgrations across 21 KPNC hospitals to

estimate the impact of ICU transfers on patient mortaligk @nd length of stay for patients of varying
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levels of severity, as measured by the EDIP2 score. Our elaimvery comprehensive and includes a
dynamically updated severity score (EDIP2), longitudipatient trajectories (bed histories), as well as
patient demographics; these allow us to better model thepnsetting for ICU transfers.

e Our empirical approach is guided by design choices to makettidy more robust to unobserved con-
founders and model misspecification. Specifically, we faouisanalysis to the night-time period, where
we find that the effect of the instrument (ICU congestion) lo@ treatment (ICU admission) is stronger
(and thus the estimates are less sensitive to violatiorfset@xclusion restriction) and use recent develop-
ments in multivariate matching to reduce model dependemniteioutcome analyses (and in this way avoid
extrapolating results to regions of the covariate spacaewve do not have enough data).

e We conduct a simulation study of patient arrivals to the galnemedical wards and ICU to explore
the impact of different proactive ICU transfer policies.the best of our knowledge, this is the first study
to examine proactive admission based on a dynamic modeslof Ve find that proactively transferring
patients to the ICU may reduce mortality rates and lengfksay, but, if done too aggressively, may
increase ICU readmissions as well as the likelihood of @isging a patient from the ICU before he/she has

completed his/her nominal length-of-stay due to the neettommodate a new, more severe patient.

1.1. Related Literature
Our work is related to three broad areas of research: 1)Hoezalt operations management, 2) the use of
predictive modeling to guide operational decisions, anem3pirical methodologies.

In both the medical and operations management literatareamber of works have examined the flow
of critical patients through the ICU. One area of focus halmn the fact that patients are more likely to be

discharged when the unitis congested. In turn, these ‘ddrdawen’ discharged patients are more likely to

be readmitted. Kc and Terwiesch (2012) provides rigorougiecal evidence for this phenomenon while

Chan et all. (2012) considers theoretically and via simohathe impact of various discharge strategies. In

contrast to this body of work, we consider the transfer ofgoes into the ICU.

A number of works have also considered the ICU admissionsaeti(e.g.. Shmueli et all (2004),

Kim et all (2015)). Our work differs from this body of litetae in a number of important ways. First,

the question we are considering is fundamentally differastwe focus on the combined role of a Rapid
Response Team, a new dynamic model of patient severity HBZEscore), with proactive ICU transfers
from the ward or TCU. In our study, patients are transferrethfthe ward/TCU to the ICU due to unex-
pected rapid deterioration, which can happen any time duhieir stay in the ward. This means that the ICU
transfer decision in our study is macdmntinuously throughout a patient’s stay in the ward/TCU. In contrast,
the ICU admission decision considered in prior works @etime decision which must be made once the

patient is admitted to the hospital. As such, the nature ®fi@lJ admission decision is different both in



terms of frequency and timing; moreover, the patient pdpria considered are quite different which could
result in differences in the impact of the decision on outesmAnother differentiating factor is that we
utilize recent empirical approaches, which reduce patehiases introduced by unobserved covariates.

The use of RRT in hospitals has been increasing as a numbéundiés have documented that timely

access to critical care can substantially improve patientsomes (e.g. Evans et al. (2015)). The role of

the RRT is to bring a medical team trained in critical caren®s lbedside of a patient who exhibits signs of
physiologic deterioration. While the RRT may end up recomdieg ICU admission, it is most common for

the RRT to perform simple interventions (e.g. administratif oxygen or intravenous fluids) to stabilize the

patientl(Jones et al. 2011). There are also benefits of udRigs i a proactive manner (elg. Danesh ét al.

2012))Butcher et $I (2013), Guirgis et al. (2013)); hoarethe proactive aspect does not relate to the ICU

admission decision, as we examine. Rather, the focus oé thhesks is to proactively round on high risk
patients (e.g. those recently discharged from the ICU) depto appear at the bedside of these patients
prior to the summoning of a RRT, as is traditionally done. fie best of our knowledge, our work is the
first to studyproactive admission decisions. Moreover, we consider how to make this decision based on a
more accurate, dynamic severity measure, the EDIP2 score.

There have been substantial efforts by the medical commtmidevelop predictive models for patient
outcomes (e.g readmissions, death, admissions, etc.)imfapr motivation behind this work has been to
utilize such models to guide operational decisions andvadiiinicians and administrators to better utilize
limited healthcare resources. This approach has beendswasdiin the emergency department setting (e.qg.
Peck et all. (2012), Xu and Chan (2016)) and call centers (6&als2015). In contrast to these prior works,

we do not directly use the predicted probability of detexfmm or death in the ward/TCU provided by the
EDIP2 model. Rather, we use the dynamically updated EDIBgs&s an important covariate to estimate
the effect of ICU admission on patient outcomes for différemlues of the EDIP2 score. Then, using
simulation, we assess the impact of proactive transfecigslfor different severity groups classified by their

EDIP2 scores. There have been a number of simulation stedasining the impact of ICU congestion

on patient delays and diversions (e.g. Lowery (19 ' .1(2012) among others). To the

best of our knowledge, we are the first to rely on causal moetstimate impact of patient transfers
from the ward/TCU at different levels of patient severityaim turn, utilize these estimates to develop an
understanding of the potential benefits of proactivelydfarming patients into the ICU.

More broadly, the tension we examine is a short-term ineréagesource utilization with the intent
of preventing longer-term problems which may arise in therieiand consume even more resources. An
analogous question arises in the manufacturing literdiaoawuse failures during factory operations can be

more costly than replacing a machine before failure, whilim too proactive can also become very costly



(seeMs_Qahl (1965), Pierskalla and Voelker (1976), Barlowt 8roscharn (1996) and related literature). In

the preventative health screening setting, early demiﬁk&&iﬁ.&nﬂ.&l&k 1991) and early interventions
rmeci et all 2016) can increase the likelihood of positiuéecomes for cancer patients. Our work is dif-

ferentiated in that we consider a very different problentisg{proactive ICU transfers) and we also utilize
state-of-the-art empirical approaches to rigorouslyneste the causal effect of transferring patients at dif-
ferent severity levels, as measured by the EDIP2 scoredier @o calibrate our simulation model.

A major challenge in estimating the causal effect of ICU $fanon health outcomes is that it is unethical
to conduct a randomized experiment, so we must rely on ohsenal data, which can be subject to biases
introduced by unobservable covariates. To address thikohe, we utilize an instrumental variable (1V)
approach. In the empirical OM literature, the strength of\ars typically taken as given and instrumental
variable analysis tends to rely on strong parametric assangimplied by regression models. Unfortu-
nately, it is common for IVs to be weak in healthcare settifigduding the setting we study here, and this

can lead to inference problems. Another problem when dangrre regression analysis is that, with pure

model-based adjustments, a few observations can undulgide the results of a study (see Imbens (2015)

and Rosenbaum (2016)). To address both the problems of wstliiments as well as model dependence,

we draw upon the literature on design of observational sgiffRosenbaum 2010) and use recent advance-

ments in the methodology of near-far matching (Baiocchi JL@ L Zubizarreta et al. 2013, Yang et al.
2014).

2. Study Setting
In this work, we consider a retrospective dataset of all 286 hospitalizations which began at one of 21
hospitals in a single hospital network. We utilize pati@vel data assigned at the time of hospital admission
as well as data which are updated during patients’ hospégl s

For every hospitalization episode, we have patient levelission data which includes the patient’s age,
gender, admitting hospital, admitting diagnosis, clasaifon of diseases codes, and three severity of iliness
scores which are assigned at the time of hospital admisEieCOmorbidity Point Score 2 (COPS2) score
is a measure of chronic disease burden and a score greaigdSeuld be someone with 3—4 significant
comorbidities (e.g., diabetes, Chronic Heart Failure, eamter). Thd.aboratory Acute Physiology Score
2 (LAPS2) score is based on laboratory tests and measures a patieatés iastability over the 24-72
hours preceding hospital admission. A patient with a LAPS#egreater than 110 is considered very sick,

potentially in shock. Finally, aomposite hospital mortality risk score (CHMR) is a predictor for in-hospital

death that include€OPS2, LAPS2 and other patient level indicators (see Escobarlet al. (Pfat3nore

information on these scores).



Our data provides the admission and discharge date andadineach unit stayed in as well as the unit’s
level of care. In the hospital system which we study, thesuaie specified as being either the ICU, Tran-
sitional Care Unit (TCU), general medical-surgical watte bperating room (OR), or the post-anesthesia
care unit (PACU). Figurel2 depicts a few hypothetical padtathways.

In addition, all patients in our dataset have EDIP2 scorgigased every 6 hours while in the ward or TCU
(scores are not assigned to patients in other units). Th@EBdore utilizes vital signs (e.g. temperature and
oxygen saturation), vital signs trends, and laboratorstigem the past 24—72 hours (e.g., glucose levels),

the COPS2, LAPS2 and CHMR severity scores, as well as pali@gnoses and demographics to determine

a patient's EDIP2 score. More details can be found. i - (2012) and Kipnis et al. (2016).

2.1. Data Selection

We utilize data from all 296,381 hospitalizations to derilrte maximum capacity and hourly occupancy
level of the ICU in each of the 21 hospitals. While there is satifferentiation across ICUs (e.g. Medical
versus Surgical ICU), the general practice in the study imisgs that the boundaries between these units
are relatively fluid. For instance, if the medical ICU is véujl, a patient may be admitted to the surgical
ICU instead. We found that the maximum ICU occupancy vaniethf6 to 34 for the 21 hospitals over our
study period. In the patient flow data, 39% of the total ICUvals come from ED, 8% are from outside the
hospital, 31% come from OR and 22% are from the medical-sakgiards and the TCU.

We now describe our data selection process for our final stahort. We focus our study on
patients who are admitted to a Medical service via the ED & ¢bmprises the largest propor-
tion of admitted patients 60%). Additionally, there are limited standards for the carehpays
for these types of patients, so that they can be highly varedcompared to elective admissions
and surgical cases. As such, these patients are more likegxperience variation in transfer deci-
sions due to operational factors, such as the availabilityesources, which we can leverage in our
empirical approach to identify the impact of ICU transfercidons on patients of varying sever-
ity. Specifically, because there are no established stdadar which patients should be admitted to

the ICU

1999), patients of similar severity may receive differeatec(e.g. ICU transfer versus no ICU transfer)

due to random variation in ICU bed availability, which willaw us to estimate the causal effect of ICU
transfer for these patients. We first eliminate 39 hospidilbns with unknown patient gender or missing
inpatient unit code. Next, we eliminate 5,426 hospital@at because there are inconsistent records for the
inpatient unit entry/exit times (e.g. discharge took plpder to admission). 5,998 patients are missing unit

admission and discharge times during their hospital staydwdp 5,781 hospitalizations for patients who



experience hospital transfers. Finally, we remove theoelgis admitted in the first and last month of our
dataset in order to avoid censored estimates of the ICU ecmydevel.

The final study cohort consists of 174,632 hospitalizatioms 21 hospitals. Out of all hospitalizations,
14.2% are admitted to the ICU at least once and 4.4% experieni@nsfer to the ICU from the ward or

TCU. The patient characteristics of the final study cohartsaiTmmarized in Tabld 1.

Table 1  Characteristics of the final study cohort, N=174,632
Min Max Mean Median Std. Dev.
FirstEDIP2 0.000 0.990 .012 .006 .022
Female (%) 53.80
CHMR (%) 0.00 97.58 4.04 1.55 7.39
COPS2 0.00 306.00 45.00 29.00 43.03
LAPS2 0.00 274.00 73.24 69.00 36.51
Age 18.00 109.00 67.34 70.00 17.71
Arrive Survive and discharge
Patient 1- ] Ward Ward | ICU Ward i ,
£ t] t t5 Time
Arrive Die
) 7 i Ward Ward Ward Ward 7 -
Patient 2: >
& t] Time
Ty, Tiyeq Tgyz Tiys3 Tyis
Figure 2 Examples of patient pathways. Each T; denotes a time when an updated EDIP2 score will be
assigned to a patient if he/she is in the Ward or TCU. Note that there are exactly 6 hours between
each EDIP2 assignment: Tiy1 —T; =6.
2.2. Actions

We define an EDIP2 decision epoch as the time comprised betareEDIP2 score measurement (at 4am,
10am, 4pm and 10pm) and the following 6 hours before the nBXPE score measurement takes place.
For this, we require the patient to be in the ward or TCU beeauikerwise an EDIP2 score would not
be recorded and this would not be an EDIP2 decision epoclh gatient may have multiple EDIP2 deci-
sion epochs during his/her hospital stay. For example, gurfe{2 for Patient 1, there are three decision
epochs: (T}, Tit1), [Ths1, Thre) @and [Tyi3,Ti14). For Patient 2, there are four EDIP2 decision epochs:
(T, Ts1), [Ties1s Tira), [Tir2, Tirs) @nd[Tis, Thoya).

At the beginning of each of these epochs, we record whetkgydtient was transferred to the ICU in the

following 6 hours (i.e., during the decision epoch) and @ anaction. If, instead, the patient remains in



the ward or TCU until the next EDIP2 measurement, we refehi®dsno action. Thus, for Patient 1, if
we consider the first EDIP2 decision epd@h, 7}, 1), there is no action. On the other hand, if we consider
the second EDIP2 decision epo@h_ 1,7 2), then there is an action. For Patient 2, there are 4 decision

epochs and for each of them there is no action.

2.3. Patient Outcomes

In this study, we focus on two measures of patient outcomig¢s{hospital death\jortality) and (2) length-
of-stay LOS). Because an action can occur at any EDIP2 decision epocimeasure of LOS is defined
as the remaining hospital LOS from the beginning of the EDdB2ision epoch. In Figuid 2, for Patient
1 the LOS for the first decision epoch would be- ¢t} — T}; for the second decision epoch, it would be
7 = t3 — T}.41; and for the third decision epoch it would be= ¢} — T}, ;. Tablel2 summarizes the statistics

for in-hospital mortality and hospital remaining lengthstay considering the first EDIP2 decision epoch.

Table 2 Summary statistics for 2 patient outcomes, N=174,63 2

Mean mortality| Mean LOS since first EDIP2 (hours) Std. Dev.

All 3.2% 90.5 135.2
Transferred to ICU 9.5% 149.1 270.2
Never transferred to ICU 2.2% 81.0 93.4

3. Empirical Models and Approach
Our goal is to estimate the benefit of ICU admission for pasierf different severity. In this section, we

describe the empirical challenges in addressing this gureahd our solution approach.

3.1. Empirical Challenges
In our study, we utilize the retrospective patient datasstdbed in Sectidd 2. While this data is quite rich,
we are faced with a number of estimation challenges.

Endogeneity: Physicians consider many factors when deciding whetheditaitaa patient to the ICU.
While we will utilize our rich set of data to adjust for hetgemeous patient severity in our models, it is
possible there are unobservable severity factors thakinfe both the admission decision and a patient’s
outcome, which can lead to biased inferences when ignohiggpotential source of endogeneity. For
instance, sicker patients are more likely to be admittethédl€U, but they are also more likely to stay in
the hospital longer and/or die, which would suggest that &dhission results imorse patient outcomes.
To address this concern, we utilize an instrumental vagiapproach.

Weak instruments: While instrumental variables can be effective at removindcgeneity biases, prob-

lems can arise if the instrument is not strongly correlatéti the endogenous variable. If an instrument
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is weak, the confidence intervals formed using the asynepdigiribution for two-stage-least-squares may

be misleading and IV estimates can be biased in the same wa@tS estimates are biased (Bound et al.

1995). Additionally, the IV estimates based on weak insgnta are highly sensitive to small violations of

the exclusion restriction (Small and Rosenbaum 2008). Toess this problem, we restrict the analysis to a

cohort where our instrument exerts a much stronger influendbe endogenous variable, ICU admission.
Effect modification: Our goal is to estimate the causal effect of admissions ttGhbleat different levels
of the EDIP2 score. In other words, we need to assess how fibet ef ICU admissions is modified by
the severity of the patients as measured by the EDIP2 scaraisé@/ parametric statistical models for this
purpose. It is important to make sure that there is sufficbetlap in the covariate distributions across

levels of the instrumental variable, so that the predigtiohthe models are an interpolation and not an

extrapolation; in doing so, the results will be less depehde specific parametric assumptians (Rosenbaum

2010). Without this balancing of covariates, it is possthiat a few, unrepresentative observations, could

impart a large influence over the effect estimaltgg (Imbe A,Zlaogenbag“n 2016).

3.2. Design Choices to Strengthen the Instrument and Redud#odel Dependence

In our study, to strengthen the instrument and reduce magbentdence, we make two design choices. First,
we restrict the analysis to the night-time period, where wa fhe instrument has a stronger effect on ICU
admissions so that violations to the exclusion restrictialess likely. Second, we use recent advancements
in multivariate matching to reduce model dependence in tileoone analyses. Naturally, these two choices

will result in a smaller sample for analysis, but they enlgathe robustness of the findings to unobserved

confounders. For instande, Small and Rosenbaum (2008) rmates that a smaller study cohort with a

stronger instrument is more robust to unobserved biasesatferger study cohort with a weak instrument.
Certainly, these gains come with the caveat that our findirijBindamentally apply to the matched sample

in the night-time period.

3.2.1. Night-time Analyses.In our setting, there are four EDIP2 decision epochs eachdday, 10am,

4pm, and 10pm. There is evidence that ICU admission dedsi@ay vary by day of the week and time of

the day|(Barnett et al. 2002, Cavallazzi et al. 2010), sotigitsiral to consider whether the impact of ICU

occupancy on ICU admissions also vary by time of day.

In the KPNC hospitals included in our study, nurse staffingelatively constant across the day for a
given unit, with a minimum of one registered nurse for every patients for the ICU, while the minimum
for the ward is 1:4, with TCU staffing ranging between 1:2.%:@® On the other hand, physician staffing on
the ward and TCU can change dramatically over a 24 hour pgvaxticularly outside regular work hours

(7:30 AM to 5:30 PM). Because the physician coverage deeesatsnight, physicians may be more likely
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to transfer ‘borderline’ patients to the ICU where they witeive more constant monitoring. As such, the
differential impact of a busy ICU on deterring ICU admissiamill be more substantial at night time. We
confirm that this is the case in our data (see Appendix A). mrest to most studies in the empirical OM
literature which tend to take the strength of an IV as givethiegyavailable data, we leverage the differential
impact of ICU occupancy due to operational changes (i.Hirgjdevels) on ICU admission by time of day

to strengthen the IV. This allows us to obtain more robusgtatféstimates on the outcomes.

3.2.2. Multivariate Matching. In observational studies, matching methods are often wsedjtist for

covariates/(Stuart 2010). In these settings, the typical gbmatching is to remove the part of the bias in

the estimated treatment effect due to differences or inmcalsin the observed covariates across treatment
groups. In order to achieve this aim, matching methods salegbset of the observations that have balanced
covariate distributions. Generally, matching methodsused to estimate the effect of treatment under the
identification assumption of “ignorability” or “unconfodedness”, which states that all the relevant covari-
ates have been measured (in other words, that there isiealect observables). More recently, matching
methods have been extended to estimation with instrumesatialbles, which do not require all the relevant
covariates to be measured and whose identification assams@ie thus typically considered to be weaker

(Baiocchi et al. 2010),

In instrumental variable settings, the goal of matchingoidimhd a matched sample that is balanced

on the observed covariates and imbalanced (or separatettednstrument. The first goal attempts to
reduce biases due to imbalances in observed covariates adel misspecification, whereas the second

goal aims at strengthening the instrument. This is achidyedear-matching on the covariates and far-

matching on the instrument (Baiocchi etlal. 2010). We imm@atithis method using integer programming

as in Zubizarreta et al. (2013) and Yang etlal. (2014). SeesApp[A.1 for details.

3.3. Parametric Models
We now introduce the parametric models we use to estimat@dtential benefits of ICU transfers for
patients of varying severity.

In all of our models, we use ICU occupancy as an instrumergable. In order for ICU occupancy
to be a valid instrument, it needs to satisfy two main assiongt 1) it must have a significant impact
on ICU admission, and 2) it must affect the outcome only tgtothe treatment (the so-called “exclusion
restriction” AngnsLeLahLlQﬁ 6)). To examine the first @sption, we use logistic regression to see how

ICU occupancy impacts the ICU transfer decision when anfiggor several patient level and seasonality

controls. We find that the ICU occupancy level is significantha 5% level. Next, we consider whether

ICU congestion is correlated with patient severity. If, fostance, high ICU congestion coincided with
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the arrival of high severity patients, one could erronepasiribute poorer patient outcomes to the lack
of ICU transfer due to high occupancy rather than to the faat patients already had higher risk of bad
outcomes. This could happen if there is an epidemic or a eeasident which would increase hospital
occupancy levels and also increase the severity of patidf@see little evidence that this could be an issue.
In particular, we run a linear regression of ICU occupancybsgerved patient severity scoreEOP2,
LAPS2 and EDIP2 scores—as well as other patient risk factors, addliiat these variables are not relevant
to ICU occupancy. Assuming that observed patient risk facoe reasonable proxies for unobservable risk

measures, ICU occupancy is unlikely to be related to unebbés risk measures.

We utilize the IV framework in_Angrist et al. (1996) where anis conceptualized as an “encourage-

ment” to receive treatment that affects the outcome onlgugh the treatment. In this framework, the 1V
takes two levels—encouragement and discouragement—wbithspond to non-busy and busy ICUs in
our setting. Formally, we define an ICU to be “busy” when th&lI@cupancy is above tH#®™ percentile

of its occupancy distribution. An ICU is “not-busy” when tHeU occupancy is below0" percentile of

its occupancy distribution. Following Yang et al. (2014 do not use observations with ICU occupancy

between ther0™ and 90™ percentiles. The larger the separation between these neshblds, the more
variation there will be in the propensity to transfer a patit the ICU, thereby increasing the strength
of the instrument. However, this comes at the cost of elititigaobservations which can be used in the
analysis because the ICU occupancy level falls betweemtbéhresholds, i.e. all observations with ICU
occupancy in(70™, 90") percentiles will be dropped. Comparing with other potértigoffs, the {70,
90"} definition strikes a good balance in achieving a relativatgé difference in ICU transfer rates while
dropping a relatively small sample size. We examine othtffsias robustness tests in Secfion Al.3.1.

Remaining Hospital LOS (LOS): We now present our econometric model for LOS, which is defased
the remaining hospital LOS following the EDIP2 decision &pm question (see discussion about Figure 2
in Sectio Z.B). We use a standard two-stage-least-sq(28&S§) method with probit regression in the first
stage to account for the binary ICU transfer decision.

We let T; be the ICU admission decisiotr; be the instrument of ICU busyness, aid be patient,
hospital and seasonality controls that include patientatgaphics (age, gender), severity scores (EDIP2,
CHMR, COPS2, LAPS2), 38 disease categories, and otheratutic for hospital, day of the week, and
month (see Table—12 in the Appendix for more details). Addiilly, we definel’s as the corresponding

latent variable capturing the likelihood of ICU transfere\Wave that

logV; = X[ Bs + BT} +n; (2
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wheree; andn; are assumed to be correlated normal random variables. \Weta&tural logarithmic trans-

formation for the hospital length-of-stay because itsriftigtion is skewed (see Tablé 2). Our estimates

include patients who do not survive to hospital dischargéphir results are robust to excluding them.
Mortality: We now present our econometric model for mortality. Becaigdality is a binary outcome,

it is more efficient to model the joint determination of mdityaand the ICU transfer decision bi a bivari-

ate probit model and use maximum likelihood estimationgathan two-stage-least-squar idge

2010). The treatment equation is the same as before in eqgu@fi. For the binary outcomdortality, the

second equation is
V,=1{Y7 >0} where Y =X!B;+8:T;+v

and(e,, v;) follows a bivariate normal distribution with correlationefficientp. A likelihood ratio test can

be used to determine whetheis significantly different from zero, i.e. wheth&y is indeed endogenous.

Note that, similar to_Kim et al! (2015), we include a covaitliat measures the average occupancy of

every unit a patient visits during his hospital stay. Thisésause there is evidence (e.9. Kuntz et al. (2014))

that occupancy levels can impact a patient’s outcome, wbtiechd potentially invalidate our instrument.
We find that our instrumental variable, ICU occupancy dutimgEDIP2 epoch, has a low correlation with

the average occupancy experienced by a patients with datiorecoefficient of -0.168.

4. Empirical Results

In this section, we present and discuss our main empiricallte First, we examine the impact of our
study design choices in terms of strengthening the instniraed reducing model dependence. Second,
we present our effect estimates. Next, we compare the sasuitose obtained under other common study
designs. Finally, in order to provide a better understagdirthe population of patients to which the results

in principle generalize, we describe our matched sampleantpare it to the full patient sample.

4.1. Design Choices

In our study, we make two basic design choices to make theumsint stronger and reduce model depen-
dence. One choice involves using near-far matching to belaovariates and reduce model dependence
(near matching), and separate the matched groups on thenmesit and potentially strengthen the instru-
ment (far matching). The other choice involves confining shedy to the night-time period, when the

instrument is considerably stronger. In our study, we sbie near-far matching problem using integer

programming as in Zubizarreta e 013). We found matgiieups of patients with similar or balanced

covariate distributions for important prognostic facteteh as age and the EDIP2 score, and dissimilar

levels of encouragement to receive the treatment (ICU aidanis More specifically, we matched patients
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that faced non-busy ICUs (encouraged patients) to patieat$aced busy ICUs (discouraged patients) with
a 1:5 matching ratio, matching in total 85,208 observatid®s149 discouraged patients; 88% of all the
available discouraged patients before matching in thesktjaSee AppendixAl1 for further details on the
near-far matching implementation using integer programgmiable$ 113—15 in Appendix A.2 summarize
covariate balance after matching for patient- and hosf#tal covariates as well as for other important
seasonality covariates. The tables show that after maj¢hancovariates are well balanced as per common

standards in the causal inference literature. As a rebeleffect estimates reported below are less sensitive

to model misspecification (Imbens 2015).

To evaluate the strength of the instrument after matchigtrtime decision epochs (instead of using
the full sample), we consider the results of the transfeisitat, which is the first stage in the econometric
models presented in Section13.3. The results are summanmiZedble[3. Despite the fact that the night-time
matched sample has only 40% of the number of observatiomifirst whole-day EDIP2 sample, we see
the coefficient estimate for the ICU occupanty)(is much larger and the p-value is lower. Additionally,
when we examine the average marginal effect—defined as thtveedifference in likelihood of ICU
admission when the ICU is busy—we see the effect at nighg-iisnnearly triple that of the whole-day.
This provides additional support that the night-time instent has a much larger impact on ICU transfer
decisions than the whole-day instrument. With a strong&rument in the first stage of regression, we can

be more confident that the second stage estimation reselkssa likely to suffer from unobservable biases.

Table 3 Strength of the IV in the whole-day full sample and the first night-time 1V after match in probit
regression models

Sample Size IV (Std. Err.) P-val. Pct. Incr. in Pro\@dmit)

Whole-day full sample 168,351 0.098 (0.039) 0.012 34%
Night-time matched sample 84,870 0.201  (0.072) 0.005 95%

4.2. Estimation Results: Effect of ICU Transfers on Mortality and LOS
Table[4 summarizes the estimation results for the mortalitgt remaining LOS models after night-time
matching. Moreover, we present a number of robustness sivelsich considers alternative 1V definitions
and additional covariates in Appendix A.3. We find our engaifiresults robust to these alternative specifi-
cations. Note that because we are using full MLE to estinteised models, the coefficients in the first-stage
are slightly different than those of Taljle 3.

For both outcomes, the instrument is highly significant atlito level. Being encouraged for ICU transfer
(when the ICU is not busy) increases the probability of tranBy 97% on average. We estimate that ICU

transfer is associated with a reduction in the average LC®Blhours (95% CI: [-40, -31] hrs). We also find
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that ICU transfer has a highly significant impact in reducimytality risk: ICU transfer reduces the average
estimated in-hospital mortality from 2.62% to 0.06% (95% [€2.59%, -2.53%]). Note that our estimates
are for the average effect. While ICU admission may have litle (if any) effect on low risk patients, the
effect may be quite substantial for high risk patients. Beeathe mortality rate for patients on the ward
and TCU is very low, this average effect seems quite largpraotice, it would rarely be the case that very
low severity patients are transferred to the ICU. In factstmoedical literature on rapid response teams
involves only checking on the patients and not necessatityiting them, and therefore, the average effect
documented in this literature is typically smaller. Thatdlséhe estimated benefits seem quite large. This
may be in part due to Do-Not-Resuscitate (DNR) orders, sottiwse who are transferred to the ICU and
who conform to our instrument are the ones who can actualefitefrom ICU care. We cannot estimate
the impact of ICU transfer for patients who would never be #tgih to the ICU (either being too sick or

too well), regardless of ICU congestion.

Table 4 Estimation results using the night-time IV after mat ching

Y IV (SE) Pct. Incr. in ProbAdmit) Admit (SE) AY 95% ClI
Mortality 0.203** (0.067) 97% -1.665***(0.162) -2.56% [-2.59%, -2.53%)]
Remaining LOS 0.203** (0.073) 97% -0.841**(0.281) -33.81hrs [-39.55,-30.89]

** *xx Significance at the 1%, 0.1% levels respectively

Our results suggest that ICU transfers can improve patiettiomes on average. We will utilize these
results to obtain the estimated mortality and remainingtlerof-stay (LOS) when transferred or not trans-

ferred to the ICU for patients of varying EDIP2 severity tdilmate a simulation model in Sectigh 5.

4.3. Comparison to Other Study Designs

In the current analyses, we made a number of study designeht increase the reliability and robustness
of our empirical analysis. These choices included focusiileganalysis to the night-time period and using
optimal multivariate matching with an IV. In an effort to uerdtand better the implications of such design
choices, we compare our approach to two common approaéhesing an ordinary least squares approach
without using an IV nor night-time matching, and (ii) usingl® approach but without night-time matching.
These results are summarized in Tdble 5.

As we can see, under (i), ICU admission is estimated to r@swbrse patient outcomes. This effect is
likely to be biased due to endogeneity, since sicker patiarg more likely to be admitted to the ICU and at
the same time suffer worse health outcomes. Under (ii), welsa the estimated effect of ICU admission
on LOS is not statistically significant, but it is under (iiiMe believe the lack of significance in (ii) may

be due to weak instruments. Specifically, the magnitude @fttimate and the p-value of the IV is less
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Table 5 Estimated regression coefficients (i) without IV nor night-time matching, (ii) with IV but no
night-time matching, (i) (our approach) with 1V and night -time matching.
Estimated Coefficients (s.e.)
Model | Outcome MeasurelV: ICU Occupancy [ICU Admission
i Mortality 0.592***(0.062)
LOS 0.490***(0.028)
ii Mortality 0.095*(0.039) -0.814***(0.256)
LOS 0.097*(0.040) 0.061(0.112)
iii Mortality 0.203**(0.067) -1.665***(0.162)
LOS 0.203**(0.073) -0.841**(0.281)

*p <0.001, "*p <0.01, *p <0.05

than that of (iii). Additionally, the partial F-statistis B.638, which is below the rule-of-thumb of 10, while
under (iii), using both the IV and night-time matching, théis significant at the 1% level with a partial
F-statistic of 11.029. As such, we believe that our estiomatesults are more robust to unobservable biases

due to our design choices.

4.4. Description of the Night-Time Matched Sample

In order to design a study that is less sensitive to modelpaisfication and violations to the exclusion

restriction [(Angrist et &l. 1996), we confined our study te tlight time and used multivariate matching

Zubizarreta et al. 2013). Naturally, this implies thathweitit further, untestable, modeling assumptions

the results will fundamentally apply to the night time. Henee follow the work of_Imbens (2010) and

Rosenbaum (2010) and emphasize internal validity overextealidity in order to provide more reliable

evidence of the causal effect of ICU admission at differentls of the EDIP2 score. As such, it is not
immediately obvious iffhow our empirical findings will exte to other times during the day.

The night-time analysis is important in two ways. First, eifeour results only apply to the night time,
using these rigorously estimated results to calibrate alsition model would allow us to develop an under-
standing of the potential benefits of proactively admittpagients to the ICUWuring the night. This is
valuable from a managerial standpoint, because of the liattright-time physician staffing tends to be
much lower than during the rest of the day, which makes hasimgutomated early warning system to
inform proactive ICU admissions especially useful. Secasdliscussed next, we believe that it is possible
that our results may generalize to admission of patientsiguron-night time decision epochs.

Table[6 summarizes the means of the risk covariates for thedmple and night-time matched sample.
We quantify the differences in means using standardizéerdifces (Std. Dif.), which are simply the differ-
ence in means between the two samples standardized by tlagawandard deviation of the two samples.
We can see that for all risk covariates, except for the EDIRR2e5 the absolute value of the standardized

differences between the full and matched sample are wallthen 0.1, suggesting that these samples are
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quite similar LRQ_S_QatlaLLm_a.nd_BLJljzm_lE)SS). The differencEP2 scores lends more evidence to our

argument that patients are more likely to be admitted to@¢ &t night, thereby increasing the strength of

our instrument. We found a similar pattern for 30 other cdmuity and seasonality covariates.

We believe the difference in the strength of the instrumeragable is likely due to the differences in
operational practices between the night time and the edgiyerather than the difference between patient
populations as the samples appear very similar on all otineertsions. That is, physician staffing levels
are lower during the night time, making lack of ICU congestinore likely to act as an encouragement for
ICU transfer, thereby increasing the strength of the IV.&mse of this, it is possible the results from the
night time cohort may generalize to the entire day. Of cquhse assumes the populations are similar based
on unobservables as well. Since we cannot completely ruléheupossibility that there are differences
between the patient populations during the night time aacktitire day, it is possible the empirical findings

will not extend to other times during the day.

Table 6  Comparison of patient characteristics in full sampl e versus matched sample via standardized
difference
Full  Matched Std. Dif.
Age 67.35 67.73 —0.02
Female (%) 53.81 54.57 —0.01
EDIP2 0.012 0.007 0.30
CHMR 0.040 0.037 0.05

COPS2 45.07 44.92 0.00
LAPS2 73.25 72.41 0.02

5. System Level Effect of Proactive Admissions

Thus far, we have focused on the impact of ICU transfemolividual patients of varying EDIP2 risk lev-
els. Our empirical findings provide evidence that such feasscould improve patient outcomes (reducing
mortality risk and LOS) and the magnitude of the impact \&depending on a patient’s severity. Given
these improvements in patient outcomes, it is conceivdiaegroactively admitting patients may reduce
ICU congestion. However, given the limited ICU resourcésygicians naturally have concerns about need-
lessly creating ICU demand. Specifically, by proactivefnsferring patients ‘before thegally need it’,

the near-term ICU congestion will increase, which couldt@eaccess issues for other, more critical patients
who may arrive in the near future. However, if this patienll witimately need ICU care later and will
require increased resources, the short-term increasegestion could have long-term benefits. It remains
to understand which scenario is more likely to occur. To d, tlee utilize a simulation model to examine

the system level impact of proactive ICU admissions on paflew and patient outcomes.
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5.1. Model of Patient Flows

We consider a system with two levels of inpatient care: ICd mon-ICU, where the non-ICU units include
the general medical-surgical ward and a TCU if the hosp#al dne. Our simulation model is depicted in
Figure[3. In this work, we focus specifically on the proacti@&) admission decision and for simplicity
of exposition, we will refer to the non-ICU units as the wardéth the understanding that this includes
the TCU if one exists. Note that this does not account forsiens from the general medical-surgical ward
to the TCU (if the hospital has one), which is a transfer whosesideration that, in theory, could be
triggered by the EDIP2 score in KPNC. In order to focus on tigsgrians’ concern of creating unnecessary
over-congestion in the ICU (and because the ICU is often dt#emeck), we assume the ward has ample

capacity, but explicitly account for the limited number 6U beds, which we denote QY.

Figure 3 Simulation Model
Discharge/death (6

Proactive transfer
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Ward /-O\ ICU . Discharge/death

Nominal discharge
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Discharge/death

Patients can arrive at the ICU as transfers from the wardeocaiviexternal arrival stream Direct Admits
(e.g. directly from the ED). Recall that our analysis fociga patients admitted to a medical service (rather
than surgical service which can be impacted by electiveicalrgchedules), so we model the arrivals of the

direct admits as a non-homogenous Poisson process with sét¢, which has been shown to be a good

model for patient arrivals (Kim and Whitt 2014). We assumesthpatients have a hospital LOS which is

lognormally distributed with meab/ . and standard deviationz. Moreover, a proportiopg ~ f,,.(p)
of the patient’s hospital LOS is spent in the ICU, whége(p) is a known probability mass function (pmf)
with finite support orj0, 1]. The remaining portion of their hospital LOS is spent in therdv These patients
survive to hospital discharge with known probabillty- d .

The second way patients can be admitted to the ICU is viafeafrom the wards. We refer to these
patients asVard Patients. We consider two types of ward patients: (a) those who haea be the ICU
and (b) those who have not. We first describe the dynamics af patients who have not been to the ICU.

To capture the varying level of severity for these patientsconsidelC patient classes. Patients of type
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arrive at the ward according to a non-homogeneous Poissmegs with rate\;(¢),i = 1,2,...,C. Every
6 hours, a patient’s EDIP2 score is updated, so patieotass will now bej € {1,2,...,C}. Alternatively,
three other possible events may occur: the patient may ashtrand require immediate ICU admission,
2) fully recover and leave the hospital, or 3) die and leawehbspital. Because we are focused on the
impact of proactive transfers, which can occur at each ERE2sion epoch, we model the evolution of a
patient’s state on the ward via a discrete time Markov Chath twansition matrixT' with each time-slot
corresponding to 6 hours. If a patient requires immediatd t@nsfer due tarashing on the ward, he
will have a hospital LOS which is lognormally distributedtivimeanl /- and standard deviation.. We
assume that a proportigny ~ f,,,, (p) of the patient’s hospital LOS is spent in the ICU, whege (p) is a
known pmf with finite support. The remainifig— py, proportion is spent in the ward, as a patient (a) who
has been to the ICU. Crashed patients survive to hospitethdige with probability — d.

Direct admits and patients who crash on the ward receiveitieht priority for ICU admission. If there
are no available ICU beds at the time of arrival (or crash dirrent ICU patient with the shortest remain-

ing service time will be “demand-driven discharged”, ifee/she will be discharged in order to create space

to accommodate the incoming, more severe pat ' 2012, Chan etlal. 2012). Demand-

driven discharged patients have an ICU readmission ratg oExternal arrival and crashed patients who
are not demand-driven discharged have an ICU readmissierofa,. We do not incorporate the impact

of demand-driven discharges on in-hospital mortality biseawhile some studies find that mortality risk

increases with high ICU occupancy at discharge (e.g. Chrasal. (2009)), others do not find evidence of

an impact (e.g. lwashyna et al. (2009), Chan et al. (2012))e khat, one could also consider incorporat-

ing rerouting direct-admits or crashed patients to othepitals if all ICU beds are occupied, rather than
initiating a demand-driven discharge. However, such ihtepital transfers are incredibly rare—especially
for critically ill patients—at KPNC. Still, we will examin¢he state of patients who are demand-driven
discharged to make sure we are not too aggressive in disngangtical patients.

In principle, any patient in the ward can peoactively transferred to the ICU at each EDIP2 decision
epoch. Such proactive transfers can only occur if there &vaitable ICU bed for the transferred patient. If
there are not enough available beds in the ICU to accommatgtactive ICU transfer requests, the most
at risk patients (those with the highest EDIP2 score) wilgheen priority. If a patient from EDIP2 group
i is proactively transferred to the ICU, his hospital LOS igriormally distributed with mean/.4 ; and
standard deviation 4 ;. Similar to the crashed ward patients, we assume that a giopy, ~ f,,, (p) of
the patient’s hospital LOS is spent in the ICU. These patisuatvive to hospital discharge with probability
1 — d4. If this patient is naturally discharged from the ICU (as opgd to demand-driven discharged), his
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probability of readmission to the ICU is, ;. Otherwise, it is~p. This proactively admitted patient will be

a type (a) patient who has been to the ICU for the proportierpy, of his/her LOS not spent in the ICU.
Note that for type (a) patients (those in the ward who have be¢he ICU), their mortality risk, read-

mission risk, and LOS are dictated by how they got to the IClé+-as a direct admit, a crashed patient, or

a proactively admitted patient. We do not allow these p&iembe proactively admitted to the ICU.

5.2. Model Calibration

We now calibrate our simulation model using the data deedrib Section 2 and our empirical results from
Section 4. Figuré€l4 depicts the normalized empirical afmages of all patients to the ward and directly
admitted to the ICU in weekends versus weekdays. The erapiraurly arrival rates are determined using
12 months of data from all 21 hospitals and are normalizeagwiaultiplicative factor so that the average
number of arrivals per day is equal to 1. We will scale thegenadized arrival rates to vary the load on the

system, which allows us to maintain the same relative halgtpand from the ward and direct admits.

Figure 4  Normalized arrival rates of Direct Admits and Ward P atients. Normalized so that the average num-
ber of arrivals (direct admits + ward patients) per day is equ alto 1.
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5.2.1. Direct Admits. We start by considering external arrivals. We use our fuihdet from KPNC to

calibrate the average hospital LOS, standard deviatioh@hbspital LOS, the mortality rate, ICU read-
mission rate, and the proportion of hospital LOS spent inl@lg. We use sample averages to determine
these parameters which are summarized in Table 7. Note thase/the empirical distribution for; (see
Figure[11 in the Appendix). Because patients who are dendamdn discharged exhibit higher readmis-
sion rate than those naturally discharged, werseto be 15% larger thanry iesch 2012,
Q_hﬂn_el_a|l|._ZQJ 2). If a demand-driven discharged patiemiadmitted to the ICU, we set his hospital LOS
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to be 15% longer than the nominaD S as suggested by Kc and Terwiesch (2012). Note that the param-
etersur andoy are determined by accounting for the expected number ofwisaibns, so that /up =
E[LOSE](I — TE) andO'E = M

~ E[LOSglpg

Table 7 Direct Admit parameters. Note that the readmission r ate for demand-driven discharged patients is

calibrated to be 15% greater than the nominal readmission ra te.

Mean 95% ClI

dg (%) 9.41 [9.12,9.69]
e (%) 15.76 [15.43,16.10]
Elpg] (%) 50.79 [50.49,51.09]
E[LOS3] (days) 6.52 [6.45, 6.58]
(std. dev.LOSE) (6.78)
"D 1.15 X rg

5.2.2. Ward Patients. We now turn our attention to the ward patients who may be addio the
ICU after crashing or via a proactive transfer. In choosimg mnumber of EDIP2 groups and the size of
each group, we must balance having more groups to enable fiewitgility in various transfer policies
versus having enough samples within each group to reaspratimate transition probabilities between
each EDIP2 group and the absorbing states (crash, death imdid, discharge alive). With that in mind,
we elect to have 10 EDIP2 groupS & 10) for illustrative purposes. Additionally, we divide theptd 0%
of patients into 5 groups and the bottom 90% into 5 groupstderato enable more flexibility for proactive

transfers of the most severe patients. Table 8 summariegsattitioning of these 10 groups.

Table 8  Summary statistics of ten EDIP2 groups .

Group Range of EDIP2 Mean Number of observations Proportion

1 [0.000,0.002] 0.002 28,051 17.6%
2 [0.003,0.004] 0.003 32,358 20.3%
3 [0.005, 0.007] 0.006 31,903 20.0%
4 [0.008,0.011] 0.009 23,819 14.9%
5 [0.012,0.023] 0.016 27,002 16.9%
6 [0.024,0.027] 0.025 3,584 2.2%
7 [0.028,0.032] 0.030 3,130 2.0%
8 [0.033,0.040] 0.036 3,138 2.0%
9 [0.041,0.057] 0.048 3,189 2.0%
10 [0.058,1.000] 0.107 3,221 2.0%

We use our full dataset from KPNC to calibrate the Markovieamsition matrixT € Rjj}"* (see
AppendiXB.1). We can then determine the nominal probgiwficrashing, dying in the ward, and surviving
to hospital discharge when no proactive transfers are depeaglicted by our Markov Chain based simula-

tion model. We find that the mortality rate on the ward is 1.98%ich is comparable to the empirical rate
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of 2.2% reported in Tabld 2. We also conduct a sensitivitjyesigover 1,000 different Markovian transition
matrices selected uniformly at random over the 95% confie@rervals of the estimated transition matrix.
The expected mortality rates for these transition matniaage from 1.04—3.17%.

We leverage our empirical findings from Sectidn 4 to calibtie mortality risk and hospital LOS of a
ward patient depending on whether he/she is proactivelyiteetirto the ICU or admitted after crashing.
For each patient in EDIP2 groupwe can utilize our empirical results to predict the probigbof death
and remaining hospital LOS if the patient is admitted to ¥ lat their given EDIP2 score (i.e., aotion
is taken in the current EDIP2 decision epoch). We use theageepredicted probability and LOS for each
EDIP2 groupi to calibrate the probability of death and LOS for patientwalne proactively admitted to
the ICU. The remaining parameters to calibrate are the pitityaof death and mean remaining hospital
LOS if a patient crashes. For patients who are not proagtizdmitted, they will stay in the ward for a
random amount of time. These patients will eventually letineeward either by 1) dying in the ward, 2)
being discharged alive from the ward, or 3) crashing. Thedlpossible absorbing states and the parameters
for crashed patients will determine the expected LOS anbahitity of death if not proactively admitted
as given by our Markov Chain based simulation model. We satveptimization problem (described in
Appendix[B.2) to determine the crashed parameters with gttite of minimizing the relative squared
error between the predicted probability of death (LOS) fraumn empirical model when there i® action
taken at that EDIP2 score versus the probability of deatig)Li@dicated by our Markov Chain model.

Similar to the direct admits, we use the empirical distiitnutfor the proportion of hospital LOS which
is spent in the ICU /) (see Figuré11 in the Appendix). We use the proportion opatlents who are
transferred to the ICU from the ward who visit the ICU morertlmance during the same hospitalization
as the ICU readmission rates of crashed patients. Finallysat the ICU readmission rates for proactive
patients; 4 ; = 8 x r¢, Vi. For our main simulations, we sgt= 1, but we also run robustness checks for
B € (0,1). Similar to direct admits, we appropriately scale the LO$Hgreadmission rates. To calibrate the
standard deviations for each LOS parameter, we use the saeffecient of variation (0.81) as determined

by the LOS across all ward patients. Taljles 9[and 10 sumnthezearameters for ward patients.

5.3. Proactive ICU Transfer Policies

We consider a number of different ICU transfer policies. farts we assume that proactive transfers can
only happen during the night-time decision epoch. This isabse our empirical results fundamentally
apply to the night time sample as described in Sedfioh 4.Apwendix[B.3, we relax this constraint and
consider the potential benefits of proactive transfer ifaptive transfers can occur at any decision epoch

and under the assumption that our empirical results genetal other parts of the day.
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Table 9  Common Ward Patient parameters. Note Table 10  Expected mortality and LOS under

that the readmission rate for demand-driven proactive ICU transfers for 10 EDIP2 groups
discharged patients is the same for ward patients as

_ ) ) ) EDIP2 Group| Mortality (%) | LOS 4 ; (days)
direct admits. Parameters which are induced from das Mean std. dev.

other parameters do not include confidence intervals. 1 0.01 0.85 0.68
Mean 95% ClI 2 0.02 0.91 0.74
re (%) 16.88 [16.12, 17.63] Z 882 282 8;2
Elpw] (%) 46.92 [46.18, 47.65] 5 0.11 1.17 0.95
de (%) 57.28 6 0.18 1.36 1.10
E[LOS¢] (days) 15.09 7 0.28 1.45 1.17
(std. dev.LOS() (12.19) 8 0.39 1.57 1.27
rp 1.15 xrg 9 0.70 1.85 1.50
A Bxre(f=1) 10 6.84 3.77 3.04

We define aStatic Threshold Policy by thresholdT; »;p». Any patient in EDIP2 group > Teprps
will be proactively transferred if there are available ICedSs. If the EDIP2 score is below the threshold,
the patient will remain on the ward. For completeness, wesiclen all possible proactive transfer policies
with Tpprps € {1,...,11}, whereTrprp, = 11 is the case where no proactive transfers are done. For
comparison, we also consideiRandom Policy, where, for every available ICU bed, we select a patient
uniformly at random in the ward to proactively admit into @) (regardless of EDIP2 score). We will

also consideBtate-dependent Threshold Policies Sectiori 5.b.

5.4. Results
Our baseline simulation considers an ICU with= 15 beds and an aggregate (ward patients and direct
admits) arrival rate of 12.2, 14.2, and 17.4 patients/dayieRts can only be proactively transferred to the
ICU during the night-time period. We simulate 1 year with 1ntioof warm-up, over 2,000 iterations.

Figurel® shows the in-hospital mortality rate and averagpial LOS versus ICU occupancy level under
the various proactive transfer policies. Because proadtansfers can reduce the likelihood of death and
average LOS, we see that more aggressive proactive ICUgramsn simultaneously reduce mortality rates
and average LOS. However, these reductions come with agaserin ICU occupancy. For instance, with a
daily arrival rate of 14.2 patients/day, the nominal ICU @gancy without any proactive transfers (labeled
‘Reactive’) is 78.75%. This increases to 80.19% when prealgtadmitting the top 5 EDIP2 groups and
all the way to 85.12% when proactively admitting all 10 EDig2ups. Thus, there is merit to physicians’
concerns about ICU congestion, but it also comes with thefiteaf reduced mortality and LOS.

As seen in Figurgl6, the impact of increased congestion alsslates to other adverse events—demand-
driven discharges and readmissions. We calculate the diararen discharge rate as the fraction of all

ICU admissions which are discharged due to incoming dentindlarly, we calculate the readmission rate
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Figure 5 In-hospital mortality rate and mean hospital LOS un der various proactive ICU transfer policies,
with 95% confidence intervals. ICU size N = 15. A = daily arrival rate. Proactive transfers can only
take place at night.
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as the fraction of all ICU admissions that are followed bytaeroICU admission prior to hospital discharge
(i.e. leaving the system). Interestingly, the differenlbesveen the demand-driven discharge (readmission)
rates are not statistically significant when comparing reaptive transfers (Reactive) to proactively admit-
ting the top five severity group§{p; 2 = 6). Moreover, we find that across all policies, patients wheo ar
demand-driven discharged stay in the ICU for 80-85% of th&lr LOS, which suggests that these patients
ehp

may be sufficiently stable for such transfers (e.g. Lo

). Still, being very aggressive with proactive
transfers could result in worse care and outcomes. Whilagigeegate demand-driven discharge rate goes

down with more aggressive proactive transfers (because #re simply many more ICU admissions), the
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rate for the most critical patients—direct admits and ceaigbatients—increases. A similar (but smaller in
magnitude) effect exists for ICU readmissions.

Our results suggest that some proactive transfers coutditmgirove quality of care at the system level,
but it must be done carefully. We see that proactively admgitip to 10% of ward patientd¢p;»» = 6) can
improve mortality and LOS without substantially increasii€U congestion, demand-driven discharges,
or ICU readmissions. However, proactively admitting 26%wre of ward patientsT(zprpe < 6) can
increase adverse events. Unsurprisingly, the impact adgiinee admissions (and the resulting increased
ICU congestion) on readmissions and demand-driven digelsatepends highly on the system load. Figure
[7(a) is an analog to Figufé 6(a) and depicts the impact ofgoeiare aggressive with proactive transfers
on demand-driven discharge rates for different arrivasatvhich impacts the average ICU occupancy. We
denote this ag when there are no proactive transfers. We can see that wkesytitem is very lightly
loaded (e.gp < 0.3), proactively admitting all 10 EDIP2 groups does not inseedemand-driven discharge
rates. However, as the system load increases, more aggr@ssactive transfers results in an increase of
adverse outcomes. Figure 7(b) summarizes when this irebesigns and we find that proactively admitting
more than the top 5 EDIP2 groups consistently comes with ¢is¢ af more demand-driven discharges,
thereby supporting our initial observation that proadyivedmitting the most severe patients could save
lives without needlessly clogging the ICU.

Note that in all of our experiments, the random policy is Rad®minated by the static threshold policies.
This is true even when we consider other random policiesindiin to proactively transfer a similar number
of patients as under the static threshold policies. AppdBd provides additional simulation results which

demonstrate the robustness of our main insights.

5.5. State-Dependent Policies
We also consider a modification of the Static Threshold gplidere instead we consider state-dependent

thresholds (e.g. Altman et aJL_(ZS 01)). For these experimave focus on the baseline scenaridot= 15

beds and\ = 14.2 patients/day.

As our model incorporates many features (e.g., deman@udischarges, readmissions, etc.), solving a
dynamic program for the optimal thresholds is computafigrgohibitive. As such, we consider a set of
state-dependent thresholds and select the best one vitaBonu The family of policies we consider are
parameterized by EDIP2 thresholds,> 75, and a bed threshold3. Suppose there afeavailable ICU
beds. Then, 1) I6 < B, Proactively Admit patients in EDIP2 group> T. 2) If b > B, Proactively Admit
patients in EDIP2 group> T;. 3) Otherwise, the patient will remain on the ward71f=T,, we recover

the static threshold policy. We can also generalize thisacenthan 2 thresholds.
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Figure 7 ICU size N = 15. p indicates the average ICU occupancy induced by arrival rate s A€
{3.5,4.8,6.6,8.7,10.4,12.2,14.2,17.4,22.0} patients/day.
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We use simulation and an exhaustive search over all possiéile-dependent threshold policies with
two thresholds which can proactively admit 1,.2,, up to 6 EDIP2 groups. Because proactive transfers
reduce mortality and LOS for all patients, aggressive pgieadransfers will improve both of these mea-
sures and we find that no state-dependent policy outperftrenstatic threshold policy in mortality and
LOS. However, we do find that the demand-driven dischargereadmission rates for crashed and direct
admits can improve by allowing state-dependent policiekle[11 summarizes the relative difference in
outcomes where we report the ‘best’ state-dependent padicie one that improves upon the static thresh-
old policy in demand-driven discharges and readmissiamnsallso has the lowest mortality rate and mean
LOS. Tabld 1B in the appendix provide the results when aligud and 4 thresholds. We find that in some
cases (proactively admitting the top 2 EDIP2 groups) theesdapendent policy can have statistically sig-
nificant improvements in readmissions and demand-drivechdirges, while the mortality rate and LOS are
statistically equal. In some instances (e.g. Top 6), impno@nts in demand-driven discharge and readmis-
sion rates comes at the expense of increases in mortalkity aaid LOS. That said, these differences are all
less than 5.31% from the static threshold policy, with arrage of less than 1.01%. In a 15-bed ICU, this
amounts to approximately reducing by 7 demand-driven digpFs and 2 readmissions per year. Thus, we

find that while state-dependent policies may be able to ingpatient outcomes, the improvement is very
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small. As static threshold policies are easier to conveyibicans and implement in practice, we find that

the slight gains achieved with state-dependent policigsmoaibe worth the added complexity.

Table 11 Percentage differences between the best 2-thresho  |d state-dependent policy and static policy

# of groups Mortality LOS DDDgashed DDDyirect admit Tcrashed Tdirect admit
Top 1l 0.99* 0.07 -1.62* -1.65* -0.34  -0.06
Top 2 0.05 -0.03 -1.83* -1.82* 0.19 -0.35
Top 3 1.23* 0.17* -2.75* -2.59* -0.52 -0.26
Top 4 0.00 0.00 0.00 0.00 0.00 0.00
Top 5 0.53* 0.04 -1.21 -1.40* -0.41 -0.19
Top 6 1.22* 0.84* -531*% -5.22* -0.48 -0.39

*. p < 0.05 difference in means based on t-tests

5.6. Estimated Transfer Policies Used in Practice

We estimate the current ICU transfer policies used in pradi two representative hospitals whose 99th
percentile of the ICU occupancy distribution is 15 beds. ASectior 5.6, we consider state-dependent
threshold policies. We consider the following probit reggien model to estimate the thresholds from the
data. For each patientat EDIP2 alarm time, let occ;, be the number of ICU beds occupied,.,, be the
threshold of admission as a function of the current ICU oangy, X;, be the same control variables used

in the empirical analysis excluding the EDIP2 score, gpé- N (0, 1).

Admity, = H{BrprpoEDIP2; + X0 4 &t > Koeey, (3)

Because the admission threshaigl., can change at any ICU occupancy level, we enumerate over all
possible combinations of the number and location of occapkavel thresholds, and choose the model with
the lowest Bayesian information criterion (BIC) to be théreated empirical admission policy to obtain a
parsimonious model that fits the data. We find the best fit mimdéloth hospitals to be a static policy. The
thresholds of ICU transfer (as measured by the EDIP2 scares).543 and 0.327 for the two hospitals,
regardless of the ICU occupancy. Note that both threshaltimfthe top EDIP2 group (Tablé 8). Therefore,
the estimated admission policies at both hospitals cooresp admitting only the most severe patients. As
we have seen in Figulfe 5, proactively transferring the top8R2 groups (instead of just the top) helps to
reduce both the in-hospital mortality rates and the avek&d@ in hospital without significantly effecting
demand-driven discharge rates and ICU readmission rates, There are potential benefits to extending

the current ICU transfer practice to be more aggressive.
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6. Conclusion and Discussion

Patients who deteriorate and require unplanned transidtetICU have worse outcomes. In an effort to
mitigate the number of unplanned transfers, the EDIP2 sea® developed to predict the likelihood a
patient will ‘crash’ and require ICU care. In this work, we ginically estimate the impact of ICU admis-
sions on patient outcomes for patients with varying seyex measured by the EDIP2. Using a high fidelity
simulation model, we find that proactively transferring thest severe patients could reduce mortality rates
without sacrificing other patient outcomes; however, ptigaly transferring too many patients could result
in high ICU congestion so that patients are more likely to &ednd-driven discharged and/or require ICU
readmission. While some gains can be achieved by allowingnfire complex transfer policies, such as
those where the severity of patients to proactively trangépends on the number of ICU beds available,
we find the difference in outcomes to be minimal. Thus, it mayrtore reasonable to focus on using simple
threshold policies which are desirable for practical impdatation.

Our simulation model has been calibrated from our empificalings and our extensive dataset. Cer-
tainly, the insights generated from the simulation stu@ytaghly dependent on the reliability of our empir-
ical results and the fidelity of the data. As we are using a Venge data set from multiple hospitals and
because we make a number of important design choices toasetthe reliability and robustness of our
empirical analysis, we believe the risks of misspecificatice small. While we have run a number of sen-
sitivity analyses to test the robustness of our results, wstmcknowledge that if there are other first order
dynamics that we fail to account for, this could raise questias to the validity of our simulation results.

Our empirical strategy relies on two study design decisiéirst, we restrict our analysis to the night-
time EDIP2 decision epoch in order to strengthen the instntrand reduce the potential biases introduced
by unobserved confounders. Second, we utilize a matchipgpaph to reduce model dependency in order
to enhance the robustness of our estimates. While thessalexcan alter the study sample, this is done in
a careful manner in which to increase the reliability of ostireates. Such approaches may be beneficial in
other healthcare settings where causal inference is clgitie due to weak instruments. While our design
choices have improved the reliability of our estimatiorutes this is fundamentally true only for the final
study cohort. While we believe that the qualitative reslikedy generalize to the full population, more work
is necessary to confirm whether this is indeed the case.

One limitation of our dataset is the lack of patient codeustathe estimated effect of ICU transfer on
patient outcomes may be overestimated for patients whoaréuth code as they will not be transferred
from the ward/TCU should their condition deteriorate.

Despite the limitations of our study, our results have bewmaluable to our partner hospitals. They

recently deployed a pilot program where the EDIP2 score idena&ailable to clinicians on an hourly basis
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at two hospitals. It is currently being used to trigger wags to a Rapid Response Team (Escaobarlet al.

2016), but the intent is to have it inform proactive ICU triams. Our study lends support to this goal. More-

over, the results have been communicated to the remainihggtals in the hospital system in considering
further deployment of the dynamic EDIP2 warning system.
While our findings are specific to the EDIP2, we expect thatitpi@ely, the benefits of proactive ICU

transfer based on the MEWS score (or other scores) wouldnitasito our findings. Of course, because

the EDIP2 is more efficient (Kipnis etial. 2016), the magnitad the benefits will likely be higher in our

study as the EDIP2 is better able to capture the severityt@ma who may need ICU care.

The EDIP2 score has high specificity and sensitivity for dll@®spitals in our study setting, including

those with specialized ICUs (Kipnis et al. 2016). As such bebeve that qualitative insights are likely to
exist in hospitals with varying ICU resources. Of course,éiact magnitude of the benefits of proactively
admitting up to the top 5 EDIP2 groups will vary depending asaemix and size of ICUs.

This work presents a number of interesting directions fourei research. First, we used simulation to
compare different proactive transfer strategies. Onecbomsider using a stochastic modeling and dynamic
optimization framework to examine whether alternativeigges may be more effective. We note that our
simulation model assumes that any patient with an EDIP2esabove a prespecified threshold will be
admitted to the ICU; however, in practice, the EDIP2 prosigeidance rather than a mandate for physicians
making proactive transfer decisions. One could considkcips with possibly lower EDIP2 thresholds to
use as an automated alarm to bring physicians to a patiesdside for evaluation and information gather-
ing, rather than simply as an ICU transfer alarm. Additibnane could consider explicitly incorporating

the future information provided by the EDIP2 score in deiaing an optimal transfer policy in a similar

way that Xu and Chan (2016) use predictions of future patemtals to make ED admission decisions.
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Appendix A:  Supplemental Information on Empirical Analysi s

Figurel8 depicts variation in the percentage of ICU trarssbgrICU occupancy percentile when considering all four
EDIP2 time points (whole-day) versus just the 10pm EDIPZtpoint (night-time). We can see that the difference
between (very) high occupancy (ex.90™ percentile) and low occupanc¥ (50" percentile) is much greater when
restricting to the night-time EDIP2 decision epoch versussidering all four. This suggests the instrument is steong
when only considering the night-time decision epoch. Werrgd the ICU occupancy for all four EDIP2 time points
as the “whole-day instrument” and the ICU occupancy at 10pthe “night-time instrument”. We do notinclude the
4am-9:59am decision epoch into the night-time instrumieetause nearly half of the decision epoch is staffed by

day-time physician levels. Finally, we find that the niginte effect is strongest during the first four EDIP2 scores.

50% -
B night-time
O whole-day

40% —
30% —
20% —

10% ﬂ

1 ool

[99th, 100th] [95th, 99th)  [90th, 95th)  [80th, 90th)  [70th, 80th) (50th, 70th)  <=50th

% of ICU admission

ICU occupancy percentile

Figure 8 Percentage of ICU transfer by ICU occupancy during n ight-time and whole-day

Table 12  Control Variables used in Empirical Analysis

Variables  Description

Age Patient age at time of hospital admission, in years
Gender Males were coded 0 and females 1
EDIP2 Predicted probability of unplanned transfer from tiedical-surgical ward or the TCU to the ICU

or death on the ward within the next 12 hours (Escobarlet dl2p@ipdated every 6 hours at 4am,
10am, 4pm, 10pm, range in [0, 1]; based on vital signs, laboyaest results, COPS2, LAPS2,
transpired hospital LOS and care directives;

CHMR Predicted in-hospital mortality risk, range in [0, [EScobar et al. 2012); based on primary condition-
specific models that employed age, gender, admission tyjRSP and COPS2;

COPS2 Comorbidity Point Score 2 (Escobar et al. 2013); nreasthronic disease burden during the 12
months prior to hospital admission; integer values rand®,iB06];

LAPS2 Laboratory-based Acute Physiology Score 2 (Escabelf|20138); measures a patient’s acute insta-
bility based on lab tests and vital signs 72 hours precedispital admission; integer values range
in [0, 274];

Diagnosis  Primary diagnosis, grouped into 38 broad diseatsgories (e.g. pneumonia); categorical variables

Hospital ID 21 hospital IDs; categorical variables

Month/Day Month/Day of week of hospital admission; catégairvariables
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A.1. Matching Formulation

Let 7 ={#,..., tv} be the set of discouraged units, i.e., the subjects thatuentered high ICU conges-
tion, andC = {¢,, ..., cc }, the set of encouraged units that faced low ICU congestidth, W< C. Define
P={p1,....pp} as the set of observed covariates. Each discouraged &t has a vector of observed

covariatese, . = {x, ,,,...,X, ,, }, and each encouraged: C has a similar vectoe, . = {x x

epps s Xepp )

Let0 <6, . < oo denote the distance between each pair of discouraged andraged units. We solve:

mingnize Z Z 0p e — A Z Zat,c

teT ceC teT ceC

subject to Zam <5 teT

ceC

Zamgl, ceC

teT (4)
- bk Z Zat,c é Z Z at,cvk,t,c S bk Z Z at.,ca k S Kl
teT ceC teT ceC teT ceC
Z Zatﬂcvkw > ¢y ZZ&W ke K,
teT ceC teT ceC

a,.€{0,1}, teT,ceC
In our studyy, . is the absolute difference between the EDIP2 scores ofdiaged unit and encouraged

unit ¢, and\ is a tuning parameter (set to the median of&hés) that regulates the trade-off between finding

close matches in the covariates and matching as many pgcsatle (see Zubizarreta et al. (2013)).

The first constraint requires each discouraged unit to belmdtto up to 5 different encouraged units (we
determined this matching ratio in view of the large numbeaadilable encouraged units before matching
and the low expected efficiency gains in going from a 1:5 t@aratching ratio under an additive treatment
effect model). The second constraint only allows each eragmd unit to be matched at most once. The third
set of constraints are the covariate balance constraitisted, > 0 is a scalar tolerance that defines the

maximum level of imbalance allowed for ti&' constraint andy, , . = f(z,,) — f(z.,) for some suitable

function f(-) of the observed covariates (see Zubizarreta et al. (20IBg fourth set of constraints are the

imbalance constraints, wheeg > 0 is a scalar that defines the minimum level of separation reduor

the k™" constraint.
A.2. Covariate Balance

By means of the integer prograi (4) above (specifically, bydsing the balancing constraints described
above), we balanced the means and in some cases the marmyinjaiirat distributions of the covariates.

Tabled IBETS, show the balance in means for the five risk @dear the seven indicators for day of the
week, and the twelve indicators for calendar month afterchiag. In the tables, the standardized differ-

ence in means for covariatds defined as——2=22__ wherez, , andz, , are the sample means for the

V(5P ptstp)/2
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discouraged and encouraged units after matchingsanends? , are the corresponding sample variances

before matchin

(Rosenbaum and R

bin

1985). Figlire 9 sHmatshte number of observations for each

hospital in the encouraged and discouraged groups is hgimijar (with maximum difference of 0.3%).

Since every hospital is almost equally represented in tloewaged and discouraged group after match-

ing, unobserved confounders at the hospital level are velikaly to bias our estimates. The number of

males and females in the two groups are similarly balancemedis Finally, we matched exactly for the

38 indicators of disease categories, therefore balanbimgpint distribution of the disease categories and

hospitals, and disease categories and sex (we actuallysgdpthis constraint by matching separately for

each disease category). In summary, we find that our mataragle is well-balanced, thereby reducing

model dependence and allowing for a more robust estimatteuft enodification.

Table 13 Balance table for risk covariates in means

Covariate Encouraged Discouraged Std diff

Age 67.74 67.69 0.00
COPS2 44.89 45.07 0.00
LAPS2 72.28 73.02 -0.02
CHMR 0.04 0.04 -0.02
EDIP2 0.01 0.01 -0.04
Table 14  Balance table for day-of-week
Covariate  Encouraged Discouraged Std diff
Sunday 0.15 0.14 0.04
Monday 0.14 0.18 -0.10
Tuesday 0.14 0.17 -0.09
Wednesday 0.14 0.15 -0.03
Thursday 0.14 0.14 0.01
Friday 0.14 0.11 0.10
Saturday 0.14 0.11 0.10

Frequency

0.02 0.04 0.06 0.08 0.10

0.00

Il

[l

Table 15 Balance table for calendar month

Covariate Encouraged Discouraged Std diff

January
February
March
April

May

June

July
August
September
October
November
December

0.07 0.12
0.08 0.12
0.09 0.14
0.09 0.10
0.09 0.10
0.10 0.07
0.09 0.06
0.09 0.05
0.08 0.04
0.09 0.06
0.09 0.09
0.05 0.06

-0.17
-0.14
-0.15
-0.04
-0.02
0.09
0.13
0.14
0.16
0.13
0.02
-0.07

B Encouraged
O Discouraged

Ll

2 3 5 7 8 9 10 11 13 14 15 16 17 19 20 21 22 24 25 27 28

Hospital ID

Figure 9 Balance table for hospital ID after match

A.3. Robustness Checks

We now consider the robustness of our initial empirical isaunder alternative specifications.
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A.3.1. Alternative IV Definition. In defining the binary instrumental variable from the continos ICU
occupancy levels, we use the™ percentile and’0" percentile of the ICU occupancy distribution for each
hospital as the threshold for “busy” and “not-busy”. We aised different thresholds, including ttés",
67.5M, 72.5" and75" percentiles as the “not-busy” threshold, &2 and87.5" percentiles as the “busy”

threshold. The estimation results are similar with onlglslichanges in the coefficient estimates.

A.3.2. Additional Covariates. In our econometric models, we have included both patiergritg\factors
and seasonality controls. We also considered includinigatdrs of whether a patient had been admitted to
the ICU or OR before being admitted to an inpatient unit. Wa fingistic regression of the ICU transfer
decisions on all patient severity risk factors and sea#graintrols, including the two additional indicators
and constructed a receiver operating characteristic (RSD@) . An ROC curve is usually used for model
comparisons as it depicts relative trade-offs betweenpnsitive (benefits) and false positive (costs) for

different cut-offs of the parametEJ_(ZmLeig_a.nd_C_am[JJk)_eilﬁl)gg'he area under the ROC curve (AUC) is a

measure of how well a parameter can distinguish betweerdtinéted and not admitted groups.

Figure[10 shows the ROC curves for the ICU transfer model aodatity model with and without the

two additional risk factors. The DelLong et al. (1988) testlua difference between any two AUCs shows

no significant difference between any two models at the 5%ifssgnce level. Thus, it seems that adding
these covariates does not significantly improve the estimatodel for ICU transfers or mortality. To avoid

over-fitting, we opted not to include the two additional coates as controls.

Figure 10  ROC Curves
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Appendix B:  Supplemental information for Simulation

B.1. Transition Matrix

for Ward Patients

Patients in the ward are modeled by a discrete time MarkowGhigh the transition probability matri.

There are 10 transient statés {1, 2,...10}, where state denotes the patient is currently in EDIP2 group
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Figure 11 Empirical probability mass function for proporti on of hospital LOS spent in the ICU.
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i. There are 3 absorbing statés: 11 corresponds to a patient crashirig: 12 corresponds to a patients
being discharged alive; and= 13 corresponds to a patient dying in the waid,;,: = 1,2,...,10,j =
1,2,...,13 represents the probability of a patient transitioning freBIP2 groupi to state;j within each
period. We calibratd’; ; from our data using the proportion of transitions to eactesta

Si X¢ UEDIP2 ()=i}x UEDIP2 (t4+1)=j} . - _ 1 o 10°

5 5 {EBI P (et i ) P
1{EDIP2(t)=ix1{crash (t+1 . . .
T =t Ekztl?EDIPQk(t):i}k ) t=1,2,...10,j =11;
4] T Son >0y HEDIP2) (t)=ix1{dischargey (t+1)}} . 1.9 10,7 — 12
DY {Ethl({)EDIP{Qk(t):i% iy L

1{EDI P2, (t)=ix1{deathy,(t+1 . .

ket ZthIIEEDIPQk(t):i}k , 1=1,2,...10,5 =13.

wherel{z} is an indictor variable equal to 1 if is true; EDIP2,(t) is the EDIP2 group for patierit
during epocht; crashy(t) denotes whether patiehtcrashed during EDIP2 epo¢hdischarge,.(t) denotes
whether patienk is discharged from the ward alive during EDIP2 epociind,death,(t) denotes whether
patientk died in the ward during EDIP2 epo¢hWe sum over all patients, and all EDIP2 epochs, The

estimated transition matrix is:

[0.8134 0.0728 0.0108 0.0020 0.0009 0.0001 0.0001 0.0001 0.0000 0.0001 0.0012 0.0982 0.0003 ]
0.3216 0.4445 0.1223 0.0226 0.0072 0.0004 0.0003 0.0002 0.0003 0.0003 0.0021 0.0774 0.0008
0.0742 0.3491 0.3638 0.1075 0.0345 0.0017 0.0011 0.0009 0.0007 0.0008 0.0031 0.0609 0.0015
0.0229 0.1351 0.3608 0.2844 0.1259 0.0060 0.0040 0.0025 0.0024 0.0021 0.0048 0.0468 0.0023
0.0058 0.0488 0.1682 0.2893 0.3608 0.0287 0.0194 0.0146 0.0105 0.0079 0.0086 0.0330 0.0045
0.0019 0.0147 0.0695 0.1604 0.4567 0.0838 0.0599 0.0475 0.0366 0.0223 0.0140 0.0246 0.0082
0.0013 0.0105 0.0483 0.1249 0.4235 0.1020 0.0829 0.0670 0.0521 0.0364 0.0190 0.0228 0.0090
0.0010 0.0066 0.0320 0.0931 0.3625 0.1068 0.1007 0.1038 0.0817 0.0555 0.0233 0.0214 0.0117
0.0008 0.0043 0.0185 0.0577 0.2678 0.0917 0.1031 0.1292 0.1490 0.1116 0.0320 0.0171 0.0171

| 0.0007 0.0015 0.0074 0.0212 0.1119 0.0444 0.0611 0.0872 0.1557 0.3749 0.0616 0.0143 0.0581 |

B.2. Optimization Problem to Calibrate Crashed Parameters

We use our empirical results in Sectidn 4 to determine thdipied mortality rate and LOS for patients

in each of the 10 EDIP2 groups based on whether they are adhaittthat EDIP2 severity level (before
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crashing) versus not. The average predicted values are atip@u in Tabl€ 16. To emphasize the translation
of our empirical findings to the simulation model where pttagclCU admissions are possible, we label
the predictive values when an action is taken (i.e. ICU adimmswithin the 6 hour EDIP2 decision epoch)
at a specific EDIP2 severity scoreR®active. In contrast, we label no action within the epoctRaactive.
Patients not proactively transferred to the ICU stay in tlaedauntil they crash or are discharged (alive
or dead) from the ward. Thus, our Markov Chain model, with @rttame slots, gives for patients in EDIP2

group: a probability of death)/ D;, and an expected LO3/ LOS;, when not proactively transferred as:

MD; £ P;(deathnot proactively transferrgd= P;(death in wardl+ P,(crash x d¢

MLOS; = E[LOS,|not proactively transferrée- 6 - E[# of periods in warfpatient group] + P;(crash x LOS¢

Our objective is to determing- in order to minimize the sum of squarpercentage errors between the
reactive predicted probability of death summarized in @HI8, which we denote by D?, and M D;. As
our empirical results suggest patients proactively trmetl to the ICU have lower mortality risk than if
they crash, we add a constraint thiat > P D, Vi, whereP D is the predicted probability of death with
proactive transfer summarized in Tablé 16. The optimiratimblem is formulated as:

min 3 <PD1R — 1)2
o 4= MD;
s.t.de > PD2 Vi

We formulate and solve a similar optimization problem f@p S :

10 2
. PLOSE
mn > <MLOSZ- - 1)

St.LOSc > PLOSA, Vi

We chose to minimize the sum of squared percentage errort® dioe large variation in the magnitude of
mortality across the 10 EDIP2 groups; e 8L is 25 times that of? Df. Thus, an optimization problem
whose objective is to minimize the sum of squared errors @voesult in ad- which are dominated by the
top EDIP2 group at the cost of not fitting the lower EDIP2 gowll. This is less of an issue for the LOS
optimization model and we find the results for LOS are similader both optimization objective functions.

Solving the optimization problems resultdy, = 57.3% and LOS. = 15.1 days. Tablé 17 summarizes
the mortality rates and mean LOS for each EDIP2 group basemipMarkov Chain model using these
crashed parameters. Recall that we use the predicted pligbabdeath and predicted LOS under ICU

transfers at the given EDIP2 scores for the proactive paemsia our model.
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Table 16 ~ Summary of mean predicted Table 17 Markov Chain model: Expected
mortality risk and LOS for 10 EDIP2 groups when mortality and LOS under proactive and reactive
admitted to the ICU (Proactive) or not admitted ICU transfers for 10 EDIP2 groups
(Reactive) in a given EDIP2 decision epoch
| Mortality (%) | LOS (day) | Mortality (%) | LOS (day)
EDIP2| Proactive ReactiveProactive Reactive EDIP2| Proactive ReactiveProactive Reactive
Group PDA PDE| PLOS? PLOSE Group PDA MDZE| PLOS? MLOSE
1 0.01 1.26 0.85 1.96 1 0.01 1.73 0.85 2.54
2 0.02 1.83 0.91 2.12 2 0.02 2.30 0.91 2.74
3 0.04 2.42 0.97 2.25 3 0.04 3.04 0.97 2.94
4 0.05 3.20 1.04 2.42 4 0.05 3.96 1.04 3.13
5 0.11 4.84 1.17 2.72 5 0.11 5.56 1.17 3.34
6 0.18 6.90 1.36 3.15 6 0.18 7.62 1.36 351
7 0.28 8.49 1.45 3.36 7 0.28 8.63 1.45 3.58
8 0.39 10.63 1.57 3.64 8 0.39 9.97 1.57 3.64
9 0.70 15.46 1.85 4.29 9 0.70 12.53 1.85 3.73
10 6.84 33.19 3.77 7.47 10 6.84 22.02 3.77 3.79

Table 18 Percentage differences between the best 3- and 4-th  reshold state-dependent policy static policy

3-threshold
# Of grOU p3| Mortallty LOS DDDcrashed DDDdi'rectadmit Tcrashed Tdirectadmit
Top 2 0.19 -0.04 -1.94* -1.02 0.18 -0.50*
Top 3 1.01* 0.27* -2.39* -2.21* -0.50 -0.13
Top 4 0.74* 0.23* -2.01* -1.39* -0.55 -0.17
Top 5 1.09* 0.26* -3.25* -3.17* -0.25 -0.32
Top 6 2.83* 1.73* -7.25* -7.10* -0.80 -0.76*
4-threshold
# Of groups| Mortallty LOS DDDc'r‘ashed DDDdi'r‘ect(Ld'nLit Terashed Tdirectadmit
Top 3 2.04* 0.44* -2.90* -3.04* -0.54 -0.31
Top 4 1.32* 0.31* -2.45*% -2.58* -0.54 -0.22
Top 5 1.31* 0.37* -4.23* -3.93* -0.77 -0.33
Top 6 4.46* 2.52* -8.69* -8.14* -1.35* -0.42

*: p < 0.05 difference in means based on t-tests

B.3. Simulation Robustness Checks
ICU size: We consider 4 different ICU size¥ = 10, 15, 20, 30 operated at approximately 70%, 80% and
90% average ICU occupancy under reactive transfer. Theldréar in-hospital mortality rates and LOS
are highly similar across the 4 ICU sizes. We find that capamibling results in higher demand-driven
discharge and readmission rates for small ICUs with the d&tdedccupancy level (e.g. Figuel12). Despite
the slight changes in the magnitude of the effect of proa@imissions in ICUs of different sizes, we see
the qualitative insights (e.g. proactively admitting ugbt&DIP2 groups can be beneficial) are robust.

Parameter calibration: We also vary the calibration of some of our model primitivepecifically, we
vary 5 =[0.1,0.2,...,0.9], which impacts the ICU readmission rates for proactivedfers, as well as
the mortality and readmission rates for external arrivad}s dndr ) and the readmission rate for crashed

patients (<) over the 95% confidence intervals for these parametersla8itm our results for different ICU
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Figure 12 Demand-driven discharge under 4 ICU sizes at daily arrival rates A =9.7,14.2,18.7,27.8, which
correspond to approximately 80% ICU congestion for each of t he ICUs.

9% DDD
30
1 i
T \
. ¥
!
h
t
t
30
1

PR
.

T
o 2 4 & 8 10 o 2 4 & 8 10
# of EDIP2 groups proactively admitted

sizes, we find that qualitative insights are robust to thesiations in parameter calibration. In fact, we find
that the differences in most outcomes (LOS, mortality radesand-driven discharge) are on average 1.2%
and no more than 3.2%. Becauselirectly impacts the readmission rates for proactive fienssvarying

B by an order of magnitude (from 1 to 0.1) can have a substaintjagdct on overall readmission rates.
Specifically, across all of the various parameter combomatiwe find that the mean relative change in ICU
readmission is 5.3% with a maximum of 39.8%, which occurswhe- 0.1.

Proactive transfer during the whole day: We next consider the case where proactive transfers cam occu
during any EDIP2 decision epoch (instead of just the nighetone). Here we assume that our empirical
estimates can be generalized to the whole day. These rasaelssimmarized in Figute113. While the main
insights of this scenarios are consistent with our initiadlfings which restrict to night-time proactive trans-
fers, we find that with more frequent proactive ICU transfecidions, the effects on outcomes are more

drastic because proactive ICU transfers are done more ssjgedy.

Figure 13 Proactive transfers can occur throughout the day. N =15 ICU beds. A = 14.2 patients/day.
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