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Emergency Departments (EDs) typically have multiple areas where patients of different acuity levels receive

treatments. In practice, different areas often operate with fixed nurse staffing levels. When there are sub-

stantial imbalances in congestion among different areas, it could be beneficial to deviate from the original

assignment and reassign nurses. However, reassignments typically are only feasible at the beginning of 8-

12-hour shifts, providing partial flexibility in adjusting staffing levels. In this work, we propose a stochastic

queueing network model of patient flow in the ED and study an associated fluid control problem to guide

the reassignment decision for two types of nursing staff. We propose a heuristic solution approach and

investigate its performance both analytically and using simulation. Analytical results and simulation exper-

iments suggest a significant reduction of waiting times in parameter regimes relevant to the ED setting.

We further implement the staffing approach at a large ED. This pilot study highlights several challenges of

implementing operational interventions in the ED, including the difficulty of establishing a clean statistical

environment in such setting. Despite these challenges, we find that guiding reassignment decisions using our

approach is associated with significant improvements to patient flow including a reduction in average total

ED length-of-stay (LOS) of 1.7 hours.
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1. Introduction

Emergency Departments (EDs) provide care for patients for whom timely access to care is often

paramount. Unfortunately, waiting times in EDs are often quite long and this can have substantial

impact on quality of care, patient satisfaction, and employee morale. In this work, we propose an

approach to manage nurse staffing resources with the goal of mitigating time spent in the ED.

In addition, we report the results of a pilot implementation of the approach at the New York

Presbyterian (NYP) Weill Cornell Medical Center (WCMC) ED.

In North America, it is common for EDs to have several areas (also referred to as bays, pods,

or zones). Patients are often routed to these areas based on the severity of their condition and/or
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resource requirements, as measured e.g. by the Emergency Severity Index (ESI) or the Cana-

dian Triage and Acuity Scale (CTAS). For instance, low-acuity patients (ESI/CTAS 4 and 5) are

typically treated in a separate area referred to as the “Fast Track”. In practice, different areas

often operate with fixed staffing levels. Nurse schedules, which determine the shifts and the areas

the nurses will work, are typically specified weeks in advance so that the nurses are able to plan

their lives appropriately. Despite the attractive simplicity of such a dedicated staffing approach,

in instances when there are substantial imbalances in demand among different areas (e.g., due to

regular stochastic fluctuations or external “shocks” caused by pandemics or flu outbreaks), and/or

there are substantial imbalances in supply among different areas (e.g. due to nurse absenteeism),

it could be beneficial to deviate from the original assignment and reassign nurses among the areas.

Despite potential operational benefits, mid-shift reassignments are seldom feasible due to the setup

time nurses require to arrange their work area. More importantly, since nurses often provide care

for multiple patients at a time, mid-shift reassignments could result in handing off the care of

patients to other nursing staff and hence impact continuity of care. However, at the beginning of

shifts, when new nurses arrive, there is an opportunity to reassign nurses to different areas. This

paper is concerned with guiding this reassignment decision.

Our work builds on Chan et al. (2021) which examines how a fixed number of servers should

be assigned to different classes of a queueing system at the beginning of discrete time-intervals

(shifts). They consider a standard parallel queueing system (see, e.g., Dai and Tezcan 2011) with a

fixed number of flexible servers and develop asymptotically optimal reassignment policies with the

objective of minimizing the total expected holding cost of the system incurred over a finite horizon.

Through analysis of an associated fluid control problem, they develop insights into the properties of

“good” reassignment policies. Specifically, they demonstrate the importance of balancing efficiency

– as measured by myopic cost reduction – and excessive idleness – due to the inability to reassign

servers mid-shift. In addition, it is shown that when the parameters are such that the system does

not reach steady-state early into the shift, this partial flexibility with respect to reassignment of

servers can lead to significant cost reduction compared to dedicated staffing.

Nevertheless, there are gaps in the model of Chan et al. (2021) that do not allow for direct

implementation in practice. In particular, the model there is a single-stage queueing system with

a single server type, whereas the provision of care in ED involves a secondary stage for patients

admitted to the hospital, which may utilize a different nursing type. The WCMC ED utilizes two

types of nursing staff: Emergency Department nurses (ED) – who can care for all patients in the ED

– and Emergency Department Inpatient Nurses (EDIN) – who can only care for boarding patients,

i.e., patients who have been treated in the ED and are waiting to be admitted to the hospital and

do not have the credentials to provide care for emergent patients. When the initial treatment of a
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patient concludes and a decision is made to admit the patient to the hospital, the care is handed

over from an ED nurse to an EDIN nurse, unless all EDIN nurses are busy. In the latter case,

the ED nurse continues to be the caregiver until either the patient is admitted to an inpatient

unit or an EDIN nurse becomes available. Since the EDIN staffing levels affect the number of ED

nurses available to serve patients in their “treatment” phase, the reassignment decisions for the

two nursing types are inter-dependent and cannot be made independently, rendering the staffing

solution developed in Chan et al. (2021) not directly applicable. We note that utilizing inpatient

nurses for boarding patients in the ED is a common strategy and not exclusive to WCMC (e.g.,

Baker and Esbenshade 2015).

To address these gaps, we model each area of the ED as a two-stage tandem queueing network,

with the two stages corresponding to the treatment and boarding phases of care, respectively. The

model incorporates a number of important features of patient flow including time-varying arrivals.

The problem is to determine the optimal assignment of available ED and EDIN nurses to the

two phases of care at the beginning of each shift, in order to minimize the total expected average

queue-length over a finite horizon. We present a heuristic solution by analyzing an associated fluid

control problem and evaluate its performance both analytically and using simulation experiments.

The proposed approach provides an assignment that can in principle be implemented in practice.

Nevertheless, our model does not capture all the complexities of a real ED. As such, it is not guar-

anteed that its recommendations will always be followed in practice. In addition, the actual impact

of the intervention may differ from what is estimated using simulation experiments. Therefore, we

conduct a pilot study of our proposed staffing approach in the WCMC ED. Our objectives are

two-fold: (1) to understand the potential translational challenges and nuances of implementing our

(and more broadly any) dynamic staffing algorithm in practice; and (2) to empirically measure the

impact of such an implementation on patient flow metrics in a real ED. For the latter, one would

ideally use an experimental design and randomly assign patients to periods with and without our

staffing approach implemented. Given the infeasibility of this approach in the ED setting, we con-

duct a pre/post comparison of the outcome metrics using reduced form models and supplement

our analysis with extensive sensitivity analysis and robustness checks. In doing so, we also aim to

gain insights on the adequacy and challenges of using this approach in measuring the performance

of complex operational interventions.

Our main contributions and results can be summarized as follows.

A queueing control problem to guide nursing reassignment decisions at the ED : Our queueing

network model explicitly accounts for the two different phases of care (treatment and boarding)

and the two types of nursing staff, and captures the differential impact of ED and EDIN nurses on
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the patient flow. This leads to a new discrete-time stochastic control problem for determining the

assignment of available nursing staff (for each phase of care) to the different areas of the ED.

Solution approach and performance evaluation: We propose an associated fluid control problem

and present a heuristic algorithm to approximately solve it. The heuristic relies on “decoupling”

the assignment decisions for the two types of nursing staff. By analyzing the dynamics of the fluid

model during a shift, we identify parameter regimes where the proposed approach is expected to

perform well. We further use simulation experiments to evaluate the performance of a translation

of our approximate solution for the original stochastic queueing system. The results suggest that

in relevant parameter regimes the proposed reassignment policy can lead to significant reduction

of average queue length compared to the best dedicated staffing.

Pilot implementation at WCMC and empirical study : we conduct a pilot implementation of the

proposed staffing approach and collect pre/post implementation data. Using a linear regression

model, we find that our intervention is associated with a significant improvement to the patient

flow, including a 1.7 hours reduction in the total LOS. These benefits are observed despite real-

world challenges that arise when implementing such an operational intervention, such as an increase

in the arrivals during the ON period and partial compliance with our staffing recommendations.

Robustness checks and sensitivity analysis suggest that our findings are to a large degree robust to

model specifications and potential biases introduced by unobserved confounders. The pilot study

also highlights several challenges of implementing and empirically evaluating the proposed approach

in practice. These findings point to important future research directions and provide useful insights

for implementing other operational interventions in the ED.

The rest of the paper is organized as follows. After discussing the related literature in Section

2, we provide background information for the ED setting in Section 3. In Section 4, we present

the queueing network model and its fluid approximation under dedicated staffing. In Section 5, we

present and analyze the associated fluid control problem under partial flexibility and the proposed

solution approach. Details of the pilot implementation are presented in Section 6 and the pre/post

comparison results are discussed in Section 7. Finally, we conclude in Section 8 with a discussion

of the limitations of our study and future research directions.

2. Related Literature

There have been substantial efforts within the medical community to understand and quantify the

impact of waiting time and LOS in the ED. For instance, increases in waiting have been shown

to be associated with increased mortality rate (Plunkett et al. 2011); increases in total ED LOS

are associated with an increase risk of adverse events (Ackroyd-Stolarz et al. 2011); and, longer

boarding times have been shown to be associated with increased mortality and hospital LOS (Singer

et al. 2011).
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Recognizing the need to improve patient flow in EDs, the Operations Research / Management

community has proposed a number of different strategies to manage patient flow in the ED. In

particular, queueing models of patient flow have been used to guide various control and design

decisions in the ED. Yildiz et al. (2019) use a queueing network model and its steady-state fluid

approximation to investigate the parameter regimes where a provider triage (i.e., an initial assess-

ment performed by a physician) can be economically and operationally beneficial. Zayas-Cabán

et al. (2016) use tandem queues with abandonment to study a Triage-Treat-and-Release program

where nurses or physician assistants are responsible for both triage and treatment of low-acuity

patients. Helm et al. (2011), Saghafian et al. (2012) and Saghafian et al. (2014) use dynamic pro-

gramming to develop patient prioritization strategies to improve flow in the ED. Another stream

of work, e.g., Dobson et al. (2013), Huang et al. (2015) and He et al. (2019), focuses on developing

strategies to balance the tension between treating new patients (i.e., triaged with limited informa-

tion about their health state) and “in-process” patients (i.e., have been assigned a bed and are

awaiting test results and/or additional physician checks).

More closely related to our work are studies that focus on managing ED providers: nurses and

physicians. A large body of literature focuses on shift scheduling and rostering, often assuming

deterministic demand and ignoring queueing dynamics. Other papers focus on determining appro-

priate provider staffing levels. Yom-Tov and Mandelbaum (2014) uses queueing models to determine

staffing levels to stabilize performance metrics given time-varying arrival rates and customers may

have multiple entries into service. Green et al. (2013) develop a Newsvendor-like model to determine

ED nurse staffing levels, which account for the endogenous absenteeism behavior of nurses who are

more likely to not show up for a shift if it is understaffed. Yankovic and Green (2011) use a queueing

model to estimate the impact of nurse-to-patient ratios and nursing capacity on ED overcrowding.

In contrast, in this work we assume that staffing levels and schedules are already determined, and

focus on dynamic assignment of the providers to different areas of the ED. Dynamic assignment

of providers within the ED has also been considered in Cohen et al. (2014), but the focus there is

on continuous allocation of surgeons to the shock rooms and operating rooms in the ED during a

mass casualty incident.

There is a vast literature on the value of flexibility in operations management (see, e.g., Jordan

and Graves 1995 and Tsitsiklis and Xu 2017). In particular, many studies have investigated the

benefits of flexibility in server capabilities in parallel queueing systems. Related examples include

Gurumurthi and Benjaafar (2004), Bassamboo et al. (2006), Iravani et al. (2005, 2011) and Tsitsiklis

and Xu (2013). In this work, we assume that nurses (servers) are capable of working in all areas

(server pools). However, their assignments to different areas can only change at the beginning of 8-

12-hour shifts, providing partial flexibility with respect to adjusting the staffing levels for different
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areas. This also relates our work to the literature on flexible staffing. In this literature, flexibility is

often with respect to delaying the staffing decision until more information regarding the workload

is available. This is common in, for example, the retail and restaurant industries, but has been also

considered in healthcare. For instance, He et al. (2012) utilizes a Newsvendor framework to study

the value of delaying staffing decisions for operating room nurses until case information is revealed.

The partial flexibility considered in this work is different, in that the flexibility is with respect to

the area where nurses work, without the option of adjusting the total number of nurses available.

Despite the growing literature on queueing models of patient flow in the ED, little work has

been done to empirically demonstrate and quantify the benefits of prescriptions obtained from

the models in practice. There are a few examples in the literature that do so, mainly focusing on

improving provider schedules, e.g., Green et al. (2006) and Sir et al. (2017). Our work appears to

be the first to attempt to empirically measure the benefits of a dynamic operational policy in the

ED setting, and highlight the translational challenges.

3. Setting

In order to provide context of our model and the subsequent pilot study, we start by describing

the operations at the WCMC ED. NYP Weill Cornell is an academic medical center and its ED

treats more than 70,000 patients annually at the WCMC ED.

Figure 1 A typical timeline for patients in the ED.

A typical timeline for patients is depicted in Figure 1. Patients arrive to the ED and are seen by

a triage nurse. After some (possibly 0) wait, the patient is seen by a provider. The provider works

to stabilize the patient and may order some tests and/or labs in order to determine a disposition

recommendation. Once the disposition decision is made the patient is prepared for transfer into the

hospital or is discharged home. If a patient is admitted into the hospital, the time from disposition

decision to ED discharge is referred to as the boarding time. A patient’s total LOS is measured from

arrival to discharge from the ED and includes various ‘waits’ throughout the process. Our model

and analysis will primarily focus on the waiting time from triage to provider evaluation. However,

in our pilot evaluation, we also consider other measures of patient flow, including boarding time

and total LOS.



7

Table 1 Patient Areas at WCMC at 7am and 7pm shift

Area A Area B Area C Area U
(24 hours) (24 hours) (24 hours) (7am-12am)

Percentage of patients 26.6% 27.4% 25.7% 20.2%
Average Number of ED nurses per shift 3.867 (0.623) 2.983 (0.624) 3.067 (0.607) 0.617 (0.691)
Average Number of EDIN nurses per shift 0.867 (0.650) 1.633 (0.551) 1.750 (0.508) 0.000 (0.000)
Average ESI 2.793 (0.541) 2.968 (0.431) 2.887 (0.476) 3.865 (0.577)

Note. Mean and standard deviation (in parentheses).

Patients are treated in 4 areas (A, B, C, and U) that are physically separated from each other by

hallways and/or doors. In general, patients are routed to the different areas based upon assessed

severity at triage, i.e., their ESI levels. Areas A, B, and C are staffed 24 hours a day, 7 days a

week. Patients with ESI 1, 2, or 3 are treated in one of these three areas. Area A predominantly

treats trauma patients. Area U, sometimes referred to as the “FastTrack”, is staffed from 7am to

12am, 7 days a week and is primarily used to treat patients with ESI 4 or 5. As is typical with

most EDs, patient arrivals exhibit substantial temporal variation during the day. See Appendix

A.4 for an illustration of the empirical arrival rates.

Nursing schedules for all four areas are set weeks in advanced and are fixed across days and

shifts. One can think of this staffing approach as “dedicated staffing” to each area. Still, if there

is nurse absenteeism and/or large imbalances in patient demand, the charge nurse may reassign

nurses to different areas based on his/her intuition. The majority of nurses are scheduled to 12-hour

shifts that begin at 7am or 7pm. However, there are 2 to 3 nurses that begin their shift at 5pm.

Our analysis focuses on the nurses that begin at 7am or 7pm. Table 1 summarizes the differences

across the four areas with respect to staffing levels, patient load, and ESI levels. The values are

averages over 4 weeks.

4. The Queueing Model and Its Fluid Limit under Dedicated Staffing

To capture salient features of an ED to develop insights into effective nurse staffing, we propose

a stylized queueing system. In particular, we consider a queueing network with I tandem queues

in parallel, each assigned to a corresponding patient class and representing an area in the ED.

Under dedicated staffing, different classes operate independently. Hence, we begin by describing the

model for an arbitrary patient class i∈ I = {1,2, . . . , I} under dedicated staffing. Figure 2 provides

a schematic representation of the model.

Patients in class i arrive to the ED according to a non-stationary Poisson process with a piece-

wise continuous, periodic rate function {λi(t); t ≥ 0}, which is commonly used to model patient

arrivals to the ED (see, e.g., Kim and Whitt 2014). Without loss of generality we assume that the

period is 24 hours; that is, λi(t+ 24) = λi(t) for t≥ 0. We denote the average arrival rate of class i

over a period by Λi, i.e.,

Λi =
1

24

∫ 24

0

λi(s)ds. (1)
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The service time of each patient in class i can be partitioned into two phases. The first phase

corresponds to the stabilization and disposition assessment of the patient and is exponentially

distributed with rate µi. After completing Phase 1, a class i patient will require Phase 2 service

with probability pi ∈ [0,1]. Thus, pi is the probability that a class i patient is admitted to the

hospital from the ED. The ‘service’ (boarding) time of class i customers in Phase 2 is exponentially

distributed with rate νi. A patient who completes Phase 1 of service and remains in the system

(i.e. must be admitted to the hospital) must immediately begin Phase 2 of service. That is, while

new patients may wait in an infinite buffer queue to begin Phase 1 of service, there is no queue for

Phase 2 of service.

Xi(t) Yi(t)

�i(t)

1 � pi

Phase 1 (Treatment)

Ui � (Yi(t) � Wi)
+

Phase 2 (Boarding)

(Waiting) (In-Treatment)

EDIN Nurses

ED Nurses

Wi

(Yi(t) � Wi)
+ED Nurses

Figure 2 A schematic representation of class i of the queueing network and Phase 1 and 2 of service. The

number of ED nurses available in Phase 1 depends on the number of patients in boarding and the

number of available EDIN staff.

There are two types of servers: 1) ED nurses who can treat patients in either phase of service

and 2) EDIN nurses who can only treat boarding (Phase 2) patients. We use the term ‘server’

to capture the nurse capacity required to treat a single patient. In many EDs, nurses can handle

up to 7 patients at a time, so one can think of a single server as 1/7 of a nurse’s capacity. While

both sets of servers are co-located and treat patients who are in the area for class i patients,

they are distinguished by their capabilities. To highlight this differentiation, we refer to the pool

of Wi servers allocated to provide care for boarding patients as Station 2, and to the pool of Ui

servers that provide care for emergent patients in Phase 1 as Station 1. Servers at Station 1 are

flexibly trained, so they can serve both phases of a patient’s service. In particular, if a patient

who just completed Phase 1 service requires Phase 2 service, but there are no available servers in

Station 2, the same Station 1 server provides the service for the patient in Phase 2. The service

is “handed-over” to a server in Station 2 according to a preemptive-resume policy as soon as it

becomes available. At this point, the “borrowed” Station 1 server becomes available to serve Phase

1 patients again.
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Denote by X(t) = (X1(t), . . . ,XI(t)) the stochastic process that keeps track of the number of

patients in Phase 1 with Xi(t) denoting the number of class i patients in Phase 1 (in service or

waiting in queue) at time t. Denote by Q(t) = (Q1(t), . . . ,QI(t)) the process that keeps track of

the number of customers in the queue to begin Phase 1 service in Station 1, with Qi(t) denoting

the number of class i patients in queue. Further, let Y (t) = (Y1(t), . . . , YI(t)) denote the process

that keeps track of the number of patients in Phase 2 with Yi(t) denoting the number of class i

customers in Phase 2 at time t. Define 3× I independent unit-rate Poisson processes denoted by

{Nij(t); t≥ 0} for i∈ I and j ∈ {1,2,3}. Assume that at time t= 0, X(0) and Y (0) satisfy Xi(0)≥ 0

and 0≤ Yi(0)≤Ui +Wi for all i∈ I. Then, the sample paths of the processes X(t), Y (t) and Q(t)

satisfy the following for all i∈ I and t≥ 0:

Xi(t) =Xi(0) +Ni1

(∫ t

0

λi(u)du

)
−Ni2

(
µi

∫ t

0

(
Xi(u)∧

(
Ui− (Yi(u)−Wi)

+
))

du

)
, (2)

Yi(t) = Yi(0) +Ni2

(
piµi

∫ t

0

(
Xi(u)∧

(
Ui− (Yi(u)−Wi)

+
))

du

)
−Ni3

(
νi

∫ t

0

Yi(u)du

)
, (3)

Qi(t) =
(
Xi(t)−

(
Ui− (Yi(t)−Wi)

+
))+

. (4)

In (2)–(3) the number of customers in each phase are obtained by subtracting the total departures

from the total arrivals up to any time t≥ 0 (see, e.g., Mandelbaum et al. 1998 and Pang et al. 2007

for details). Note that at any time t≥ 0, the departure rate from Phase 1 service is determined by

the number of active servers available in Station 1, i.e., (Ui−(Yi(t)−Wi)
+), with (Yi(t)−Wi)

+ ≤Ui
ED servers borrowed to treat Phase 2 patients. This highlights the inter-dependency between the

staffing decisions of the two stations: if Station 2 is understaffed, as patients complete service in

Station 1 and move to Phase 2, Station 1 capacity decreases during the shift, leading to higher

congestion in the queue.

We now formally define the primary metric with respect to which we assess the quality of various

staffing allocations. We measure the performance of the stochastic system based on the expected

time-average queue length over a finite horizon of length T , that is,

E
[

1

T

∫ T

0

Q(t) · e dt
]
, (5)

where e denotes an I-dimensional vector with all values equal to 1. By Little’s Law, minimizing

the above metric is equivalent to minimizing the total expected waiting time. Moreover, as the

horizon length goes to infinity, the metric converges to the long-run average total queue length

(assuming that it exists). Note that if there are substantial differences in wait-tolerance across the

different classes, this could be incorporated by introducing a weight vector and optimizing over the

expected waiting cost. Alternatively, one could introduce staffing constraints for different classes

to ensure minimum service levels are met.



10

Next we describe a deterministic fluid approximation for the transient dynamics of the system

under dedicated staffing. In the fluid approximation, the discrete processes are replaced by contin-

uous deterministic flows and the capacities are also assumed to be continuous. Denote by vectors

x(t) = (x1(t), . . . , xI(t)) and y(t) = (y1(t), . . . , yI(t)), the amount of fluid in Phase 1 (waiting or in

service) and Phase 2 at time t≥ 0, respectively, and let q(t) = (q1(t), . . . , qI(t)) denote the amount of

fluid waiting in queues. Further, denote the vectors of Station 1 and 2 capacities by u= (u1, . . . , uI)

and w = (w1, . . . ,wI), respectively. The fluid trajectories satisfy the following system of ordinary

differential equations (ODEs) for all i∈ I and t≥ 0, analogous to the sample path equations,

ẋi(t) = λi(t)−µi
(
xi(t)∧

(
ui− (yi(t)−wi)+

))
, (6)

ẏi(t) = piµi

(
xi(t)∧

(
ui− (yi(t)−wi)+

))
− νiyi(t), (7)

qi(t) =
(
xi(t)−

(
ui− (yi(t)−wi)+

))+

, (8)

starting from any initial condition satisfying xi(0)≥ 0 and 0≤ yi(0)≤ (ui+wi) for ∀i∈ I. The fluid

approximation can formally be justified as a Functional Strong Law of Large Number (FSLLN)

for the stochastic sample paths in (2)–(3) using Theorem 2.2 of Mandelbaum et al. (1998). To

this end, one considers a sequence of systems indexed by η in which the number of servers, arrival

rates and the initial conditions linearly increase, while the service rates at both phases of service

remain unscaled. For a system with a large number of servers, the fluid equations approximate the

transient dynamics of the sample paths well on compact subsets of R+, with an error of size o(η).

Before closing this section, we make a remark regarding the assumptions of the model. The

assumption of exponential service time distributions, although common in the literature, are less

likely to hold in practice. In Section 5.4 we examine the performance of our reassignment policies

for the case where service time are Log-Normally distributed and show that the policies can still

be effective. Beyond the parametric choice of distribution, the Phase 2 service times depend on the

discharge process from the inpatient department of the hospital and hence can be time-dependent.

Nevertheless, we will provide evidence through our pilot study that the prescriptions obtained from

our model could still useful for guiding the assignment decisions in practice. We provide a more

detailed discussion of the model assumptions in Section 8.

5. The Associated Fluid Control Problem under Partial Flexibility

We now consider the case where nurses can be reassigned at the beginning of each shift. Under this

partially flexible design, we consider a total of n1 and n2 servers that can be assigned to Stations

1 and 2 of any patient class. The assignment of the servers can be changed at the beginning of

shifts of length τ . Once the servers are assigned to a patient class, the dynamics of the system
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are identical to that explained above under dedicated staffing with Ui and Wi determined by the

assignment policy in that shift for i∈ I.

Recall that we refer to the amount of nursing capacity required to treat a single patient as a single

server. Thus, if a single nurse can treat multiple patients at once, the set of feasible allocations

needs to appropriately account for such constraints, i.e., they will be scalar multiples of the patient-

to-nurse ratio. For simplicity of exposition, we assume here that each nurse treats one patient at

a time, with the understanding that the ability of nurses to treat multiple patients simultaneously

can easily be incorporated into the control problem by appropriately defining constraints on the

feasible set of allocations.

Ideally, we would like to find an “admissible” control policy that minimizes the metric in (5).

Due to the multidimensionality of the problem, time-varying dynamics, and the complex interplay

between Stations 1 and 2, solving the stochastic control problem is very challenging. As such, in

the following, we first present an associated fluid control problem that is directly motivated by the

fluid approximations under dedicated staffing. We then propose a solution approach and investigate

its performance in the subsequent sections. For other recent examples of policies derived from fluid

control problems see Chen et al. (2021), Hu et al. (2021) and Chan et al. (2022).

5.1. The Fluid Control Problem

The fluid model under dedicated staffing serves as the initial foundation for the proposed deter-

ministic control problem under the partially flexible design. The problem is to allocate the n1 and

n2 available Station 1 and 2 capacity to each of the I customer classes, at the beginning of shifts

of length τ . Denote by u(t) = (u1(t), . . . , uI(t)) and w(t) = (w1(t), . . . ,wI(t)) the vector of capacity

allocations, where ui(t) and wi(t) are respectively the amount of capacity allocated to Station 1

and 2 of class i ∈ I at time t ≥ 0. The objective is to determine u(t) and w(t) subject to the

capacity constraints and the restriction to control at the beginning of shifts, in order to minimize

the time-average queue length over a finite horizon of length T and starting from a given initial

condition x(0) = x0 and y(0) = y0, satisfying x0 ≥ 0 and 0≤ y0 ≤ (u+w). For any vector a ∈ RI+
denote â = diag(a1, . . . , aI), i.e., its corresponding diagonal matrix and recall that e denotes the

I–dimensional unit vector. The fluid control problem is:

min
(u(·),w(·))

1

T

∫ T

0

q(s) · e ds (9)

s.t. q(t) =
(
x(t)−

(
u(t)− (y(t)−w(t))

+
))+

, ∀t∈ [0, T ], (10)

ẋ(t) = λ(t)− µ̂ ·
(
x(t)∧

(
u(t)− (y(t)−w(t))

+
))

, ∀t∈ [0, T ], (11)

ẏ(t) = p̂ · µ̂ ·
(
x(t)∧

(
u(t)− (y(t)−w(t))

+
))
− ν̂ · y(t), ∀t∈ [0, T ], (12)

x(0) = x0, y(0) = y0, (13)
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u(t) · e≤ n1, w(t) · e≤ n2, ∀t∈ [0, T ], (14)

u(t)≥ 0, w(t)≥ 0 ∀t∈ [0, T ], (15)

Denote by {tk;k ∈K≡ {0, . . . ,N − 1}} the sequence of times corresponding to the start of the shifts

with tk+1− tk = τ > 0 for ∀k. For simplicity, we assume that T =Nτ . A control policy (u(t),w(t))

is said to be an admissible policy if in addition to (11)–(15) it satisfies,

u(t) = u(kτ)≡ u[k] and w(t) =w(kτ)≡w[k], (16)

for t ∈ [tk, tk+1) and ∀k ∈ K. That is, we require the allocations to remain constant over shifts

of length τ . This defines a discrete-time control problem where the goal is to find a sequence of

admissible allocations {(u[k],w[k]);k ∈K} that minimizes the cost function in (9).

In principle, the proposed fluid control problem can be solved numerically, and the solution,

after rounding, can be used as an assignment for the stochastic system. Unfortunately, there are

several challenges associated with this approach. The time-varying dynamics and the large number

of control variables make finding an optimal solution computationally demanding. In addition, a

naive translating the solution for the stochastic system may perform poorly as shown in Chan

et al. (2021) for the simpler single-station system. Motivated by these challenges, we next propose

an intuitive heuristic solution that can be implemented with minimal computational effort and

has good performance in the original stochastic system in parameter regimes relevant to the nurse

staffing application.

5.2. The Proposed Solution Approach

Our objective is to construct a server allocation algorithm that (1) performs well, i.e. achieves

queue length reductions relative to the status-quo dedicated staffing, and (2) is simple to explain

and implement. The second criteria is essential to help facilitate implementation in practice.

We propose a solution approach that utilizes a decoupling of the staffing decisions for Station 1

and 2. The idea is to first determine the required number of Station 2 servers (possibly borrowing

some from Station 1) to manage the boarding phase of service for each class and allocate the

available n2 servers accordingly. The remaining Station 1 servers are then allocated to Phase 1 of

service for the I customer classes. The decoupling reduces the complexity of the allocation problem

and facilitates an intuitive understanding of the underlying allocation algorithm. However, because

Station 1 servers allocated to Phase 2 of service may free up during the shift and can then be used

to serve Phase 1 of service, it is not obvious that such an approach will perform well.

An important consideration of the proposed approach for allocating servers is the possibility of

incurring idleness during the shift. In particular, greedy allocation of servers based on the current
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congestion levels may lead to poor solutions due to the inability to reassign servers during the

shift. If one is too aggressive in allocating servers to a heavily loaded area, the servers in that

area may incur excessive idleness during the shift while other areas have many patients waiting in

the queue. This is particularly important for allocation of ED nurses, since the service times are

relatively shorter in Phase 1 compared to Phase 2, increasing the possibility of mid-shift idleness.

For allocation of Station 2 capacity, this is less of an issue since Phase 2 service times (i.e., boarding

times) are typically longer and in the case of our ED comparable to the length of the shift. In

addition, as the number of available EDIN nurses is typically lower, larger imbalances are required

to result in moving an EDIN nurse to another area. As such, our proposed approach ignores the

possibility of idleness for Station 2 capacity, but carefully accounts for it when allocating the

remaining ED nurses.

Consider the system at the beginning of shift k ∈K with x[k] and y[k] denoting the current value

of the fluid trajectories for Phase 1 and 2 of service. In the following, we describe an algorithm to

obtain an admissible pair (u[k],w[k]) for the shift.

1. Assign Servers to Station 2. For each class, i ∈ I, compute li = yi[k] + pi(xi[k] + Λi), i.e., the

current amount of fluid in Phase 2 plus the average amount of Phase 1 fluid to enter the system

during the shift that will eventually require Phase 2 of service. Allocate the available Station 2

servers proportional to the computed li’s, i.e., let

wi[k] =
li∑
i∈I li

n2. (17)

2. Assign Station 1 servers to unattended Phase 2 patients. Since all patients in Phase 2 of

service must be in service (there is no queue), Station 1 servers have to be “borrowed” to manage

the remaining patients in Phase 2. Set,

n′1 = n1−
∑
i∈I

(yi[k]−wi[k])+, (18)

i.e., the number of remaining Station 1 servers after lending the required number to Station 2.

3. Assign the remaining Station 1 servers to the I customer classes according to the balancing

heuristic of Chan et al. (2021). For each i ∈ I, calculate the maximum capacity ũi such that no

idleness is incurred during the shift. This can be done using bi-section and numerical evaluation of

the ODEs in (11)–(12). If
∑

i∈I ũi[k]<n1, set,

ui[k] = ũi[k] +
1

I

∑
i∈I

ũi[k], ∀i∈ I, (19)

i.e., allocate the remaining capacity equally among the I classes. Otherwise, set

ui[k] =
ũi[k]∑
i∈I ũi[k]

n′1, ∀i∈ I, (20)

i.e., re-normalize the allocations so that they add up to n′1.
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We note that the proposed solution does not provide universally good solutions for the fluid

control problem of Section 5.1. Rather, it provides “good” solutions in a regime that is relevant

to the application considered in this work. We provide analytical and numerical evidence of this

in the following sections. Here, we present an example to illustrate the sample paths and fluid

trajectories of the system under the proposed heuristic; see Figure 3. We consider a two-class

system with n1 = 40, n2 = 16 which correspond to 10 ED nurses and 4 EDIN nurses assuming a

1/4 nurse-to-patient ratio. The system is initialized with X(0) = (50,30) patients in Phase 1 and

Y (0) = (20,12) patients in Phase 2. Service rates are µ= (0.5,0.5) and ν = (0.5,0.5), p= (0.4,0.4)

and the shift length is τ = 12. The arrival rates are given by the sinusoidal function,

λi(t) = Λi +βi sin

(
π(t+ 7)

12

)
, (21)

with Λi = 8.6, βi = −4.3 for i ∈ {1,2}. Observe that the fluid trajectories approximately capture

the dynamics of the system under the heuristic policy.

(a) Phase 1 (b) Phase 2

Figure 3 A sample path of (X(t), Y (t)) and the approximating fluid trajectories (x(t), y(t)) for t∈ [0,24] under the

heuristic policy for a two-class system with n1 = 40, n2 = 16, µ= (0.5,0.5), p= (0.4,0.4), ν = (0.5,0.5),

X(0) = (50,30), Y (0) = (20,12), and shift length τ = 12.

5.3. The Performance of the Proposed Approach: Analytical Results

To provide analytical justification for our proposed solution approach, we focus on understanding

how the Phase 2 dynamics influence staffing decisions in Station 1. Since all patients in Phase 2 of

service must be assigned a server, inadequate Station 2 capacity during the shift would result in

loss of capacity in Station 1. As such, it is not immediately clear whether the decoupling approach

that we propose leads to good solutions.

We start by considering the case where the servers can be continuously allocated, i.e., without the

constraints in (16). Not surprisingly, in this case, the decoupling approach can result in the optimal
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server allocation (See Proposition 3 in Appendix A.1 for a formal statement.) More specifically,

given the optimal allocation in Station 2, one can recover the optimal Station 1 allocation by

optimally allocating the remaining Station 1 capacity to different classes. This, of course, requires

knowing the optimal allocation vector in Station 2 which is, in general, unknown – but it motivates

the approximation idea in our proposed solution method: if we have a “good” allocation for Station

2, we can solve the Station 1 problem by lending the required Station 1 servers to Station 2 and

then allocating the remaining Station 1 servers.

In the presence of the shift constraint, we cannot obtain the optimal discrete-time policy by

simply decoupling as described above. Even if we are given the optimal Phase 2 allocations {w∗[k] :

k ∈K}, finding the optimal Station 1 allocation requires considering the evolution of Station 2 fluid

over the entire shift, not just its value at the beginning of the shift. Therefore, in the following,

we provide a characterization the accuracy of this decoupling strategy under the partially flexible

design, i.e., under the constraints in (16).

To this end, we examine the dynamics of the system over a single shift and for a given allocation

vector. Recall that in our solution approach we ignore the potential loss of capacity in Station 1

as servers move to Station 2. As such, we compare the actual Phase 1 dynamics of class i to an

“isolated” system in which y(t) is held fixed at its initial value y[k] = y(kτ) during the shift. In

comparing the trajectories we seek to understand the extent to which staffing decisions for the

two stations can be made “independently” at the beginning of each shift. An understanding of

the deviation between these two systems provides insight into the parameter regimes where our

proposed heuristic policy in 5.2 is expected to perform well.

For ease of exposition and without loss of generality, we consider the first shift starting at

time t = 0, and denote the allocations for class i with ui ≡ ui[1] and wi ≡ wi[1] for ∀i ∈ I. Since

the dynamics are independent across different classes during the shift, we focus on an arbitrary

customer class i ∈ I. Denote the trajectory of the “isolated” system by x̃i(t), and note that it

satisfies the following ODE for ∀i∈ I and t∈ [0, τ ]:

˙̃xi(t) = λi(t)−µi
(
x̃i(t)∧

(
ui− (y0i −wi)+

))
, (22)

starting at x̃i(0) = xi(0) = x0
i . Note that the Phase 2 trajectory is fixed at its initial value y0i . Our

first result provides conditions under which the Phase 1 dynamics of the isolated system coincides

with that of the original system during a shift.

Proposition 1 Suppose that at the beginning of the shift, there is enough capacity for the initial

Phase 2 fluid, i.e., y0i <wi and the Station 1 queue is non-empty, i.e., x0
i >ui. If the Phase 2 fluid

is initially decreasing, i.e., ẏi(0)< 0, then xi(t) = x̃i(t), ∀t∈ [0, τ ].
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The result holds because a non-empty queue implies that the input rate to Phase 2 is at its

maximum at the beginning of the shift, i.e., piµiui. If enough capacity in allocated to Station 2 to

process this maximal input, no Station 1 capacity will be borrowed during the shift. Hence, under

these conditions, we can allocate Station 1 servers without consideration for Station 2 dynamics.

In contrast, if some of the Station 1 capacity is borrowed to cover for the insufficient capacity at

Station 2, the trajectories of the two systems will deviate. Our next result provides an upper-bound

on the deviation between xi(t) and x̃i(t) when the assumptions of Proposition 1 are not satisfied.

Since the proposed solution approach allocates Station 1 capacity in a way that avoids incurring

idleness (unless there is excess capacity available), we assume that the Station 1 queue remains

nonempty during the shift in the isolated system. Let S denote the set of all allocations (ui,wi),

such that x̃i(t) in (22) does not incur any idleness during the shift, i.e.,

S = {(ui,wi)| x̃i(t)>ui− (y0i −wi)+ ∀t∈ [0, τ ]}. (23)

Proposition 2 Suppose that the allocation for the shift satisfies (ui,wi) ∈ S and that Station 2

capacity is insufficient to serve all initial class i patients, i.e., y0i > wi. Then for all t ∈ [0, τ ], if

ẏi(0)≥ 0,

xi(t)− x̃i(t) =
µiẏi(0)

(piµi + νi)2
(e−(piµi+νi)t− 1 + (piµi + νi)t), (24)

and otherwise,

0≤ x̃i(t)−xi(t)≤
µi
ν2i

max{|ẏi(0)|, |piλ̃i− νiy0i |}(e−νit− 1 + νit), (25)

where λ̃i ≡mins∈[0,τ ] λi(s) denotes the minimum arrival rate during the shift.

In the first case, when Phase 2 trajectory is initially non-decreasing, i.e., ẏ(0)≥ 0, xi(t) grows

faster than x̃i(t) as “active” Station 1 capacity (ui− (yi(t)−wi)+) decreases from its initial value.

Since by assumption x̃i(t) remains above capacity during the shift, it follows that the input rate

into Phase 2 remains independent of the arrival rate, allowing us to exactly obtain the difference

between x̃(t) and x(t). When ẏi(0)< 0, the Phase 1 trajectory xi(t) could remain above capacity for

the entire shift or fall below at some point during the shift. The upper-bound in (25) is obtained by

considering the maximum deviation between the two cases. In either case, we show that both yi(t)

and the total number of active servers at Station 1 deviate from their initial value like O(1+e−νit).

Thus, since the discrepancy between x̃i(t) and xi(t) is a result of assuming a constant number of

available Station 1 servers for x̃i(t), the error is in the order of O(t+ e−νit).

The characterization of error in Proposition 2 provides insights on parameter regimes where

the proposed approach can be expected to perform well. In (24), it can be easily verified that
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for sufficiently large t, the magnitude of the deviation grows with the boarding rate νi, while in

(25) the error grows with νi for all t≥ 0. Moreover, in (24) the magnitude of the error increases

with service rate µi, while in (25) the magnitude of the error increases with the service rate µi for

sufficiently small pi. Therefore, for a sufficiently long shift, we expect the error to be smaller for

longer boarding times. Further, if the admission probability is sufficiently small, we also expect the

performance of our approach to improve with increasing treatment times.

Since the above observations are based on an upper-bound (second case of Proposition 2) we

discuss and illustrate their validity in Appendix A.2 by obtaining a tighter estimate of the error

for the special case of a sinusoidal arrival rate function.

5.4. The Performance of the Proposed Approach: Numerical Experiments

In this section, we evaluate the performance of the proposed solution for the stochastic queueing

network presented in Section 4 using simulation experiments. We compare the performance to that

of the optimal dedicated staffing, which we obtain using simulation. We present the results for

two sets of experiments. In the first set, we evaluate the performance of the solution approach

for parameters calibrated to our implementation setting. In the second set, we vary the system

parameters to illustrate the parameter regimes where the proposed solution does (and does not)

perform well.

We use the proposed solution approach to obtain an allocation for each shift, given the observed

state of the system at the beginning of the shift and the time the shift starts. We then convert

this allocation to an integer assignment using the largest remainder method, i.e., we first apply the

floor function to the allocations and then sequentially assign the remaining capacity in order of the

largest difference between the original assignment and the floored value. In addition, we implement

a non-preemptive version of the reassignment policy, in which nurses are required to complete their

current service before being re-assigned to another class at the beginning of each shift.

We evaluate the performance of the proposed solution both over a finite horizon of length T

and as T →∞. In both cases, we estimate the expected relative reduction in total queue length

in comparison with the best dedicated staffing obtained using the following approach. For the

transient experiments, we simulate all (feasible) dedicated staffing scenarios, and compare the

estimated performance obtained using 100 replications. In the infinite horizon experiments, we first

simulate 10 replications for each scenario to screen out the unstable ones, and keep the top 10

performing scenarios. We then run 40 additional replications for the 10 remaining scenarios and

choose the one with the best estimate.

In all experiments, we consider a four-class system, i.e., I = {1,2,3,4} and use the sinusoidal

arrival rate in (21) with βi = (−Λi/2). We denote the Station 1 and 2 utilizations using ρ1 and ρ2
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where ρ1 = (1/n1)
∑

i∈I(Λi/µi) and ρ2 = 1/(n2)
∑

i∈I(piΛi/νi). Further, we denote the offered class

i load as R1,i = Λi/µi for Station 1 and R2,i = piΛi/µi for Station 2 and let rj = (rj,1, . . . , rj,I) with

rj,i =Rj,i/
∑

i∈IRj,i, where
∑

i∈IRj,i = njρj for j ∈ {1,2}.

5.4.1. Calibrated Experiment We consider a system with parameters calibrated using data

from the WCMC ED. We estimate the arrival rate parameters to be Λ = (1.79,1.75,1.73,2.34) and

β = (−0.67,−0.70,−0.70,−0.98). The estimated service rates are µ= (0.161,0.158,0.162,0.238) in

Phase 1 and ν = (0.063,0.059,0.057,0) for Phase 2, and p= (0.45,0.36,0.45,0). The Phase 1 service

times are estimated using “provider evaluation to decision” samples from the four areas.

(a) Finite Horizon (b) Infinite Horizon

Figure 4 Performance of the proposed reassignment policy in terms of expected reduction in total queue length

compared to dedicated staffing for a system with parameters calibrated using data.

We also consider a nurse-to-patient ratio, which determines the number of patients that can

be treated by a single server at each station. In the data, the number of available nurses and

nurse-to-patient ratios vary across different shifts. In our experiments, we consider 13 ED nurses,

and 8 EDIN nurses and use a ratio of 4 for Station 1 (ED) and 6 for Station 2 (EDIN), which

roughly corresponds to the average capacity observed in our data. We then set the utilizations

to ρ1 = 0.82 and ρ2 = 0.77 so that the system is heavily loaded but can still be stabilized with

dedicated staffing. To observe the effect of system size we also consider a case with 15 ED nurses,

and 9 EDIN nurses, and utilizations ρ1 = 0.75 and ρ2 = 0.70. For the transient experiments, we

set the time horizon to T = 720 and initialize the system at a congested initial state of X(0) =

(1.25n1,0.75n1,1.25n1,0.75n1) and Y (0) = (0.5n2,0.5n2,0.5n2,0).

Figure 4 presents the results for the two system sizes and different shift-lengths. We observe

a significant reduction of total queue length for both the transient and steady-state experiments.

The reductions are largest for τ = 2 (which approximates a continuous-time control) and decrease

as the shift length increases. Still, we observe more than 40% reduction in the long-run average
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total queue length for τ = 12 hour shifts. In the transient experiments, the reductions are much

larger for the smaller system. This can be explained noting that for the small system there are

only 4 stable dedicated staffing options due to the nurse-to-patient ratio. This increases the value

of adding some flexibility, although with a lower ratio, the possible reassignments are also further

limited.

We also repeat the experiments assuming a Log-Normal distribution for the service times in the

simulation and with parameters estimated from the data. We find that although the service times

are more variable than exponential, the heuristic still achieves significant queue-length reductions

(see Appendix A.3 for details). Overall, the results suggest that the proposed heuristic may have

the ability to improve patient flow in an ED in practice.

5.4.2. Illustrative Experiments To further illustrate the performance of the proposed

approach we conducted additional experiments. We summarize the setting and results here and

relegate the details to Appendix A.3. In Experiment 1, we consider a similar setting to that of

the calibrated experiments, but with shorter service and boarding times and higher admission

probability. In doing so, we aim to understand the performance degradation in regimes where the

decoupling approach is expected to have higher error as identified in the results of Section 5.3. We

still observe a significant queue length reduction in both steady-state and transient experiments,

although the gains are smaller compared to the calibrated experiment. In Experiment 2, we con-

sider a case where our heuristic is expected to perform poorly. The utilizations are the same as in

Experiment 1 but the load is unevenly distributed for both stations. Classes 3 and 4 face a smaller

load in Phase 2 despite having a higher input rate. As such, the heuristic under-allocates capacity

to the first two class. We observe that our heuristic performs worse than the best dedicated staffing

for the larger system size and shift length τ = 12. We can expect the heuristic’s performance to

further worsen as the discrepancy between the arrival rate and offered load in Phase 2 widens.

6. Implementation Setting

Beginning with the 7am shift on March 19, 2018, nurses at the NYP Weill Cornell ED were allocated

to areas based on recommendations provided by our heuristic described in Section 5.2. We now

provide details of the implementation.

6.1. Pilot Study

We developed an online Web App (see Appendix A.4 for screenshots) that would take as inputs, ED

and boarding patient census in each area; number of ED and EDIN nurses available; the maximum

number of patients to be assigned to a single ED and EDIN nurse, and provide a recommendation

for assignment of the available nurses to each area. The Web App is also able to take and record the
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actual staffing used during a shift. The recommendation is obtained using the approach proposed

in Section 5.2 and the same parameters as in the calibrated example of Section 5.4. In consultation

with the charge nurse, we allocated a minimum number of ED nurses to each area, and then

allocated the remaining ED nurses according to our solution approach. The minimum assigned

nurses for areas A, B, C, and U were respectively 4, 2, 2, 1, if the number of available ED nurses

was greater than or equal to 9; equal to 1 for all areas if it was between 3 and 9; and 0 otherwise.

For the shifts beginning from 7:00am March 5, 2018 to 7:00pm March 18, 2018 – the ‘OFF’ period

– the charge nurse would input the system state (census and staffing). No staffing recommendation

was provided and the charge nurse would allocate nurses to the different areas using his/her own

experience and knowledge. The implemented allocation was reported through the Web App. For

the shifts beginning from 7:00am March 19, 2018 to 7:00pm April 3, 2018 – the ‘ON’ period –

the charge nurse would input the census and the number of nurses available. The Web App would

output a staffing recommendation, specifying the number of ED and EDIN nurses to allocated to

each area. Finally, to ensure willingness of nurse staffing to participate in the pilot, the charge

nurse had full discretion to follow or not follow the recommended allocation; thus, she would also

report the staffing actually used and if it did not coincide with the recommendation, the reason

why. We note that the same team of charge nurses rotated throughout the pilot and were able to

successfully record the data for all shits. Further, the nursing manager who oversaw the pilot was

the same throughout the pilot.

During the OFF period the actual staffing used coincidentally matched with the full recommen-

dation of our proposed solution 1 out of 28 shifts (3.6%). The recommendation for the allocation of

ED (EDIN) nurses coincided 7 (5) out of 28 shifts (25% (17.9%)). During the ON period, the rec-

ommended staffing allocation was followed fully for 38.9% of the shifts. The ED (EDIN) allocation

was followed 48.6% (55.8%) of shifts. The primary reason provided for why the recommendation

was not followed related to the acuity level of the patients currently in the ED or anticipated to

arrive. That is, either the acuity level of the current patients in one area was higher than usual, or

the charge nurse expected a higher-than-usual number of high-acuity patients to arrive (e.g., due

to bad weather). As we further discuss in Section 8, inability of our model in capturing the acuity

level of patients within areas could be a main contributor to its partial implementation.

6.2. Data

Our data consists of all 7,933 visits who began or ended their visit to the WCMC ED from 12:00am

March 1, 2018 - 12:59pm April 13, 2018. This was done in order to ensure that we had full records

for all patients who were in the ED during the pilot period. The data contains operational level

information (e.g., times stamps for arrival, first treatment, discharge, change to admit status as
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well as assigned area and disposition) and patient level demographic and medical information (e.g.,

age, gender, race and ethnicity, insurance type, ESI level, and Elixhauser score; see Elixhauser

et al. 1998). We restricted our analysis to patients who arrived and departed from the ED from

7:00am March 5, 2018 - 6:59am April 4, 2018. In addition, we excluded patients who were missing

ESI or Elixhauser scores. The final cohort for analysis had 2,413 treated during the OFF period

and 2,644 treated during the ON period.

Table A. 3 in Appendix A.4 presents means and standard deviations for patient characteristics.

For most of them, there are no statistically significant differences during the ON versus OFF period.

However, it appears that patients who arrived to the ED during the ON period were older, had

more chronic diseases (as measured by Elixhauser), and were more likely to be on Medicare.

Table 2 summarizes the outcomes during the ON and OFF period. There is a statistically

significant (at the p < 0.001 level) increase in waiting time of just under 7 minutes, and a statistically

significant (at the p < 0.01 level) increase in provider evaluation to decision time of 35 minutes

(7.7%). We note that during this time period, there was also a 9.6% increase in the number of

patients arriving to the ED during the ON period. More specifically, 10.6% for Area A, 11.9% for

Area B, 11% for Area C, and 3.8% for Area U. On the other hand, all other measures of time

decrease with significance at the p < 0.05 level. This reduction is more than 2 hours for boarding

time and 45 minutes for total ED LOS, as measured from arrival time to discharge. There is no

statistically significant difference in the number of patients who walkout. There is a statistically

significant (at the p= 0.005 level) increase in the number of patients who return to the WCMC ED

within 10 days of initial ED visit. Note that we look at returns within 10 days to avoid censoring

our outcome variable since our data set extends through the end of day of April 13, 2018, which is

10 days following the end of our pilot. While these comparisons do not control for various patient

characteristics and/or staffing and census metrics, they are suggestive that the intervention may

have improved patient flow in the ED, though perhaps at the cost of increasing returns to the ED.

In the next section, we provide more rigorous analysis to explore this hypothesis.

7. Pilot Evaluation

To evaluate the impact of the staffing changes, we conduct a number of regression-based analyses.

Before presenting the results, we discuss some of the challenges of the evaluation.

7.1. Evaluation Challenges

First, the intervention was not implemented in all shifts. Therefore, we cannot measure the impact

of a full implementation (as in our simulation experiments). Instead, we consider the intervention

to be the availability of a decision support tool that provides recommendations regarding the

assignment of nurses to different areas of the ED. Note that even if the recommendations were not
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Table 2 Summary Statistics of Patient Outcomes at WCMC

OFF Period (N = 2,413) ON Period (N = 2,644) Total (N = 5,057) p-value
Waiting time (min) 33.28 (32.78) 40.00 (44.17) 36.80 (39.28) < 0.001
Prov eval. to decision (hrs) 4.50 (3.78) 4.85 (4.45) 4.68 (4.15) 0.003
Boarding time (hrs) 16.72 (15.58) 14.11 (12.22) 15.37 (14.01) < 0.001
Prov eval. to discharge (hrs) 10.09 (12.32) 9.42 (10.29) 9.74 (11.31) 0.036
Total ED LOS (hrs) 10.43 (16.84) 9.68 (10.03) 10.04 (11.16) 0.001
Returns within 10 days 7.0% 9.2% 8.2% 0.005
Walkout 3.2% 3.4% 3.3% 0.619

Note. Mean and standard deviation (in parentheses) shown for continuous variables. p-values provided for testing differences
between the mean (or distribution for categorical variables) in the Off versus On periods. Returns captures the percentage of
patients who returned to the WCMC ED within 10 days of the first ED visit (regardless of the patient’s disposition). Walkout
includes all patients who left without being seen, walked out after evaluation, walked out before evaluation, and left against
medical advice.

fully followed, they could have influenced the staffing decision, e.g. the recommendation could be

partially followed. Second, we know that the number of patients increased substantially during the

ON period. As such, the expected value of the metrics would have likely changed during the ON

period, even in the absence of the intervention. Finally, we assume patients are exogenously assigned

to treatment (ON) or control (OFF). This seems reasonable as patients (and even physicians and

nurses, except for those in leadership positions who signed off on the pilot program) were unaware

of our pilot, so could not have made decisions about visiting the ED based on whether it was

during the ON or OFF period. That said, if patients are systematically less sick in the ON period,

this could violate our assumption and bias our results. In addition, other unobserved confounders,

such as changes in physician staffing or how the staff responded to higher workload during the ON

period, could also potentially bias our results. By our summary statistics in Table A. 3, patients

did not appear to be less sick; if anything they appeared to be more sick during the ON period

(see, e.g., the Elixhauser score). Further, we are not aware of any systematic changes in staffing or

other operational policies in the ED during the ON period. However, we cannot completely rule

out the possibility that unobserved confounders were present during the study period.

When considering the implementation of an operational intervention that impacts staffing and,

therefore, all patients who arrive to the ED during the intervention period, it is not possible to

randomize patients to treatment versus control. This allocation is completely determined by their

independent decision of when to visit the ED. Such realities introduce challenges in establishing

clear, clean statistical inference on the impact of our proposed algorithm. Despite these challenges,

we conduct a standard pre/post implementation analysis followed by a number of additional anal-

yses to examine the robustness of our results.

7.2. Pre and Post Implementation Analysis and Results

For our continuous outcome measures (Waiting time, provider evaluation to disposition decision,

boarding time, provider evaluation to discharge, and total ED LOS), we start with the following
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Table 3 Pre and Post Implementation Results

Waiting Prov Eval Boarding Prov Eval Total Returns Walkout
Time to decision Time to discharge LOS within 10
(min) (hrs) (hrs) (hrs) (hrs) days

ON (θ) 4.03∗∗∗ 0.16 -3.96∗∗∗ -1.73∗∗∗ -1.74∗∗∗ 0.01 0.00
95% CI [1.86,6.21] [-0.09,0.41] [-5.61,-2.31] [-2.35,-1.12] [-2.34,-1.14] [-0.00,0.03] [-0.01,0.01]

Num. of obs. 4758 4753 1286 4758 4817 4817 4817
R2 0.177 0.082 0.081 0.211 0.220 0.049 0.048
Note. Includes controls for age, gender, race, ethnicity, insurance, ESI, Elixhauser, shift, number of nurses, and ED census.
The model for returns also controls for disposition. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Table A. 4 in the appendix provides
the coefficients and 95% confidence intervals for all control variables.

reduced form equation:

yi = βXi + θONi + ξAMi +ψNum Nursesi + γED censusi + εi, (26)

where yi is the continuous outcome of interest. For discrete outcome measures (Returns and Walk-

outs), we use a Linear Probability Model with the same specification as the continuous outcomes

models; the main difference being that yi can only take on values of 0 or 1. For completeness, we

also consider Probit and Logistic models for these discrete outcomes.

In equation (26) Xi is a vector of patient characteristics: age, gender, race, ethnicity, insurance,

ESI, and Elixhauser. AMi is an indicator which is equal to 1 if patient i arrives during the day shift

(i.e., between 7:00am and 6:59pm). Num Nursesi indicates the number of nurses working during

the shift. ED censusi denotes that number of patients in the ED, including those waiting to see a

provider, those “in treatment”, and those boarding. ONi is an indicator which is equal to 1 if the

patient arrives to the ED during the ON period. εi denotes the standard error term. For Returns

to the ED within 10 days, we also control for discharge disposition, as whether or not a patient is

admitted to the hospital could have a substantial impact on the likelihood of return. Due to data

limitations, we are not able to consider longer periods for which returns may occur.

7.2.1. Results Table 3 summarizes our main results by providing the coefficient estimate θ

for patients arriving to the ED during the ON period relative to the OFF period. Full regression

results are provided in Appendix A.4. After controlling for various patient characteristics and

operational metrics, we see that the availability of the new staffing approach is associated with an

increase of 4.03 minutes in waiting time, and a decrease of 3.96, 1.73, and 1.74 hours in boarding

time, provider evaluation to ED discharge time, and total ED LOS, respectively. The impact on

provider evaluation to decision was not statically significant (p-value: 0.200). The impact on all

other continuous outcomes is significant at the p < 0.001 level, although the main driver of the

impact on provider evaluation to discharge and total LOS appears to be the reduction in boarding

time for admitted patients.
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Recall that our queueing model assumes that the service times of patients in each phase of

service are exogenous to the staffing allocation. Thus, the sole improvement to ED flow predicted

by our model is for waiting time. However, the results of our pilot suggest that the waiting time

increased by several minutes. That said, the arrivals to the ED during the ON period increased

significantly, so without our intervention it is possible the waiting time would have increased even

more during the ON Period. We carefully examine this hypothesis in Appendix A.3 using our

calibrated simulation model. We find that under dedicated staffing, the observed increase in arrival

rates can lead to instability and results in a much larger increase in waiting times than the observed

12%, whereas our algorithm can still stabilize all areas and reduce queue-lengths significantly

compared to dedicated staffing. It is important to note that although in our regression model we

control for census, the impact of increased load on waiting times is highly nonlinear, in particular

when the utilization is high. As such, our linear model is unable to properly account for the impact

of large increases in census. We further discuss this point in Section 8.

While our data does not allow us to identify exactly the mechanism which led to the decrease in

other measures, we developed conjectures through discussion with our clinical collaborators. We see

that boarding time is significantly reduced in the ON period. At first glance, this may be unexpected

because the prevailing sentiment is that ED boarding is largely driven by congestion in the inpatient

units, but our intervention did not involve the inpatient units. Our clinical collaborators suggested

that better alignment of nursing staff with patient demand may have reduced the time required

for nurses to complete the hospital admission process. This process is very paper-work intensive

and requires substantial coordination between the nursing staff and the inpatient teams to find

a bed and facilitate hand-offs. Thus, we conjecture that the nurse staffing allocation resulted in

reductions in waiting times between nursing tasks to facilitate the inpatient admission.

We also observe a large decrease in the time spent in the ED once a patient is seen by a provider,

as measured by provider evaluation to discharge and total LOS. Although the majority of the

decrease in provider evaluation to discharge can be attributed to the reduction in boarding time,

the total LOS measure incorporates both the initial waiting time (which appears to increase) and

the time from provider evaluation to discharge (which appears to decrease). Hence, the reduction

in total LOS suggests a reduction in service time which we did not account for in our model.

However, provider evaluation to discharge often involves a number of internal “waits”, e.g., for a

nurse to review the result of a lab or rotate between patients (e.g. Dobson et al. 2013) or finalize

the discharge process for a patient after the discharge decision is made by a physician. Thus, by

better matching nursing availability with patient demand via our new staffing approach, these

mid-process waits could have been reduced.
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Finally, we do not find a statistically significant impact at the p < 0.05 level of the new staffing

approach on returns to the ED in 10 days (p-value = 0.116) or on walkouts (p-value = 0.808). We

see similar results with the logistic and probit models.

We further explore the robustness of these results by: (1) conducting sensitivity analysis with

respect to a hypothetical confounder to see how large of an effect it must have to render the

results statistically insignificant (Appendix A.5); and (2) robustness check with respect to model

specification using alternative sets of covariates (Appendix A.6). These analyses suggest that the

results for all continuous outcomes are quite robust, except for the small increase in waiting time.

The results for binary outcomes are also robust except for the returns to the ED in 10 days, for

which an unobserved confounder could result in a positive and statistically significant coefficient.

8. Discussion and Future Work

In this work, we propose a queueing network model of patient flow to guide the assignment of two

types of nursing staff to different areas of the ED at the beginning of each shift. We formulate an

associated fluid control problem for this queueing network and propose a heuristic solution. By

analyzing the dynamics of the fluid model over a shift, we gain insights into parameter regimes

where the proposed solution can perform well. Simulation experiments confirm these observations

and suggest that the proposed approach can reduce waiting times in a parameter regime relevant

to our ED application.

Through a pilot implementation of our approach and empirical comparison of the pre/post data,

we find that guiding the reassignment of nursing staff using our proposed approach is associated

with significant improvement of patient flow in the ED. These gains are observed despite the fact

that the solution proposed by our model was not fully implemented during all shifts and the

number of patients increased significantly during the ON period. The presence of these real-world

challenges highlight the difficulty of deriving clean statistical inferences of operational interventions

in complex settings such as EDs.

We believe that the simplicity of the proposed approach played an important role in convincing

the ED leadership to conduct the pilot study. In addition, making sure the practical constraints

(e.g., restriction to reassignment at the beginning of the shift, reserving capacity for each area)

were taken into consideration, the easy-to-use Web App, and allowing the practitioners to overrule

the proposed assignment, also contributed to the success of the pilot. At the same time, some of

these modeling choices and simplifications have resulted in discrepancies between the model and

empirical setting and made it more difficult to asses the true impact of our staffing approach. In

particular, since the recommendations of the model were only partially implemented, we cannot

draw any conclusions regrading the impacts of fully following the recommendations and how these
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impacts may generalize to other EDs. In the following, we discuss the limitations of our study and

propose directions for future work to address them.

Model limitations: Some of the discrepancies between the theoretical and empirical results can

be attributed to our modeling assumptions. First, we assume that service times are exogenous

and stationary. Phase 1 service times could however vary depending on the workload assigned

to each nurse and hence may not be exogenous to the nursing assignment. In addition, Phase

2 service times depend on the congestion level and operations of the inpatient wards. As such,

considering a state-dependent service time in Phase 1 and a non-stationary service rate in Phase

2 to capture the dynamics of inpatient ward admissions (see, e.g., Shi et al. 2016 and Dong and

Perry 2020) would improve the fidelity of our model and make it more comparable to the real

ED settings. These extensions can be incorporated rather easily in the fluid model, but solving

the control problem would then become more complicated, requiring a new approach. Second,

when evaluating the performance of our algorithm in the simulation experiments, we assume that

the status-quo policy is (an optimal) dedicated staffing. Our pilot demonstrates deviations from

both policies. That is, during the OFF period the assignments did not always follow a uniform

dedicated staffing, and during the ON period our recommendations were only partially followed.

A primary reason for deviations from both policies appear to be the acuity of the patients within

each area which was not captured in our model. Therefore, an important extension of our model

would be to account for different acuity levels of patients, e.g., by introducing multiple customer

classes within each area. In this case, a control policy would map, not only the number of patients

in each area, but their acuity levels (classes) to a reassignment decision. We note that even by

considering observable variables related to patient acuity, the resulting policy is unlikely to be

perfectly followed in practice. Further, our results suggest that even partial implementation may

be effective. As such, examining the robustness of the performance to level of conformity would be

an interesting topic to consider for future work.

Limitation of the empirical study : Our empirical study highlights several challenges of evalu-

ating the benefits of an operational intervention in the complex ED environment. In particular,

our results suggest that accounting for the nonlinear queueing effects could be critical in accurate

measurements of the benefits of operational policies aimed at reducing congestion. This limitation

can be addressed using more general models such as the non-parametric partially linear model

(Robinson 1988) which may require larger sample sizes and hence a longer pilot. Further, although

sensitivity analysis suggests that our results are to some extent robust to unobserved patient char-

acteristics and operational variables, the inability to account for the potential effect of confounders

is a major limitation of observational studies like ours. In particular, although we have made con-

jectures on the mechanisms behind the observed improvements, we cannot rule out other possible
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mechanisms due to data limitations. Since randomization is practically infeasible in such opera-

tional interventions, using more detailed patient-level and operational variables (e.g. utilization of

inpatient wards) as well as utilizing other study designs such as quasi-experimental designs should

be considered in future studies.

Other extensions: Beyond above points, there are a number of additional extensions that can be

considered in future work. Here, we briefly summarize a few. (1) Our data points to a considerable

variability in the number of available nursing staff (e.g., due to absenteeism) as well as the arrival

rate, which were ignored in our formulation. An extended problem can explicitly account for the

parameter uncertainty and investigate its impact along the same lines as done in the call center

literature, e.g., Harrison and Zeevi (2005) and Atlason et al. (2008) (arrival rate uncertainty) and

Whitt (2006) (arrival and capacity uncertainty). In addition to reassignment decision, a two-stage

formulation can be considered to determine the number of scheduled staff as well as determining

a control policy to assign them to different areas once the available number of staff is realized. (2)

Another mechanism for balancing congestion between the areas is the routing decision. Although

our observations from the data suggest that routing is primarily determined based on the care

requirements of the patients, congestion of different areas does also affect the routing decision.

Investigating the benefits of (partial) congestion-based routing by itself or jointly with server

reassignment could be an interesting area for future work. Again, there are connections to the

call center literature on skill-based routing (see, e.g., Harrison and Zeevi 2005, Armony 2005 and

the references therein), but in the ED context a contextual routing policy which maps, not only

congestion, but also patient characteristics to different areas would be more practical.
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Online Appendix

A.1. Additional Technical Results and Proofs

Proposition 3 Suppose (u∗(t),w∗(t)) and (x∗(t), y∗(t)) solve (9)–(15). Then u∗(t) also solves:

min
u(·)

1

T

∫ T

0

q(t) · e dt, (A1)

s.t. q(t) =
(
x(t)−

(
u(t)− (y∗(t)−w∗(t))

+
))+

, ∀t∈ [0, T ], (A2)

ẋ(t) = λ(t)− µ̂ ·
(
x(t)∧

(
u(t)− (y∗(t)−w∗(t))

+
))

, ∀t∈ [0, T ], (A3)

u(t) · e≤ n1, ∀t∈ [0, T ], (A4)

u(t)≥ 0, ∀t∈ [0, T ], (A5)

x(0) = x0, y(0) = y0. (A6)

Proof of Proposition 3. Let (u∗(t),w∗(t)) be the solution to (9)–(15). Then, redefining u(t) as u(t) −
(y(t)−w(t))+, the claim follows by definition. �

In the following proofs, we make use of the following differential comparison result proved in McNabb

(1986).

Lemma 1 Suppose z1(a)≤ z2(a) and f(t, ·) is Lipschitz continuous. If for all t > a:

ż1(t)− f(t, z1(t))≤ ż2(t)− f(t, z2(t)), (A7)

then z1(t)≤ z2(t) for all t > a.

Proof of Proposition 1. Consider the dynamics of Phase 2 fluid during the shift and observe that,

ẏi(t) = piµi(xi(t)∧ (ui− (yi−wi)+)− νiyi(t) (A8)

≤ piµiui− νiyi(t). (A9)

Now consider the ODE,

˙̃yi(t) = piµiui− νiỹi(t), (A10)

starting from ỹi(t) = y0i , which has the following solution:

ỹi(t) =
(
y0i −

piµiui
νi

)
e−νit +

piµiui
νi

. (A11)

Since x0
i > ui by assumption, it follows from (A9) that ˙̃yi(0) = ẏi(0) which then using (A10) implies that

ỹi(t)< y
0
i for all t∈ [0, τ ]. Next, by (A9) and (A10) we have ẏi(t)− piµiui + νiyi(t)≤ ˙̃yi(t)− piµiui + νiỹi(t),

which implies using Lemma 1 that yi(t)≤ ỹi(t)< y0i <wi. It follows that (yi(t)−wi)+ = (y0i −wi)+ = 0 for

all t ∈ [0, τ ] and hence the claim follows from (6) and (22) noting that xi(t) and x̃i(t) are initialized at the

same value and have the same dynamics during the shift. �
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Proof of Proposition 2. We begin with the case where ẏi(0)> 0 and derive the exact distance between

xi(t) and x̃i(t). Consider the Phase 2 dynamics during the shift governed by the ODE,

ẏi(t) = piµi(xi(t)∧ (ui− (yi(t)−wi)+)− νiyi(t). (A12)

Note that by assumption y0i >wi and x0
i >ui− (y0i −wi) since (ui,wi) ∈ S. Therefore, there exists a t0 > 0,

such that for all t∈ [0, t0):

ẏi(t) = piµi(ui− (yi(t)−wi))− νiyi(t), (A13)

which has the following solution:

yi(t) =
(
y0i −

piµi(ui +wi)

piµi + νi

)
e−(piµi+νi)t +

piµi(ui +wi)

piµi + νi
. (A14)

We now claim that (A14) holds for all t ∈ [0, τ ]. To show this note that by assumption ẏi(0)≥ 0 and hence

y(t) is nondecreasing in t∈ [0, t0]. It follows that,

˙̃xi(t) = λi(t)−µi(ui− (y0i −wi)) (A15)

≤ λi(t)−µi(ui− (yi(t)−wi)) (A16)

= ẋi(t), (A17)

for all t∈ [0, t0] which together with x̃i(0) = xi(0) = x0
i implies that for all t∈ [0, t0],

ui− (yi(t)−wi)≤ ui− (y0i −wi)≤ x̃i(t)≤ xi(t). (A18)

Applying the same argument iteratively starting at t = t0 establishes the claim for all t ∈ [0, τ ]. Thus, we

have for t∈ [0, τ ]:

ẋi(t) = λi(t)−µi(xi(t)∧ (ui− (yi(t)−wi)+)) (A19)

= λi(t)−µi(ui− (yi(t)−wi)) (A20)

= λi(t)−µi(ui− (y0i −wi)− (yi− y0i )) (A21)

= λi(t)−µi
(
ui− (y0i −wi)−

(
y0i −

piµi(ui +wi)

piµi + νi

)
(e−(piµi+νi)t− 1)

)
. (A22)

Integrating and substituting for x̃i(t) we have:

xi(t)− x̃i(t) =
(piµi(ui +wi)

piµi + νi
− y0i

)(e−(piµi+νi)t− 1

piµi + νi
+ t
)
. (A23)

Next, we turn to the case with ẏi(0)≤ 0 where yi(t) is nonincreasing in a neighborhood of 0. We first note

that since ẏi(0)≤ 0, we have using the same argument as in the proof of Proposition 1 that yi(t)< y
0
i for all

t∈ [0, τ ]. Thus,

ẋi(t) = λi(t)−µi(xi(t)∧ (ui− (yi(t)−wi)+)) (A24)

≤ λi(t)−µi(xi(t)∧ (ui− (y0i −wi)+)). (A25)
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Using Lemma 1 we then have that xi(t)≤ x̃i(t) for all t∈ [0, τ ]. Next note that,

ẋi(t) = λi(t)−µi(xi(t)∧ (ui− (yi(t)−wi)+)) (A26)

≥ λi(t)−µixi(t) (A27)

≥ λ̃i−µixi(t), (A28)

and let zi(t) be a solution to the initial value problem,

żi(t) = λ̃i−µizi(t), (A29)

with zi(0) = x0
i . We have,

zi(t) =
(
x0
i −

λ̃i
µi

)
e−µit +

λ̃i
µi

(A30)

≥ x0
i ∧

λ̃i
µi
. (A31)

Applying Lemma 1 we can conclude that xi(t)≥ zi(t)≥ x0
i ∧ (λ̃i/µi) on [0, τ ]. Then, noting that yi(t)< y0i ,

and x0
i ≥ ui− (y0i −wi), we have,

ẏi(t) = piµi(xi(t)∧ (ui− (yi(t)−wi)+))− νiyi(t) (A32)

≥ piµi
(
λ̃i
µi
∧ (ui− (y0i −wi))

)
− νiy0i . (A33)

Again using Lemma 1 we can then conclude that,

yi(t)≥
(
y0i −

piµi(ui +wi− y0i )∧ piλ̃i
νi

)
e−νit +

piµi(ui +wi− y0i )∧ piλ̃i
νi

. (A34)

Going back to ẋi(t) and substituting from (A34) we have,

ẋi(t) = λi(t)−µi(xi(t)∧ (ui− (yi(t)−wi)+)) (A35)

≥ λi(t)−µi(ui− (yi(t)−wi)) (A36)

= λi(t)−µi(ui− (y0i −wi)− (yi(t)− y0i )) (A37)

≥ λi(t)−µi
(
ui− (y0i −wi)−

(
y0i −

piµi(ui +wi− y0i )∧ piλ̃i
νi

)
(e−νit− 1)

)
. (A38)

Integrating and substituting for x̃i(t), we obtain:

xi(t)− x̃i(t)≥−
µi
ν2i

(
νiy

0
i − (piµi(ui +wi− y0i )∧ piλ̃i)

)
(e−νit + νit+C) (A39)

=
µi
ν2i

(
(piµi(ui +wi− y0i )∧ piλ̃i)− νiy0i

)
(e−νit + νit+C) (A40)

=
µi
ν2i

(
ẏi(0)∧ (piλ̃i− νiy0i )

)
(e−νit + νit+C), (A41)

for some constant C, where (A41) follows since ẏi(0) = piµi(ui+wi−y0i )−νiy0i . Substituting the initial value

xi(0) = x̃i(0) = x0
i , and solving for C we obtain the claimed result. �
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A.2. Validity of the observations made in Section 5.3

We first obtain a tighter estimate of the error presented in Proposition 2 for sinusoidal arrivals.

Corollary 1 Let λi(t) = αi + βi sin (π(t+ s)/m) for m > 0 and suppose the assumptions of Proposition 2

hold. Then, in the case with ẏi(0)< 0, we have for all t∈ [0, τ ],

0≤ x̃i(t)−xi(t)≤
µi
ν2i

max

{
|ẏi(0)|,

∣∣∣∣∣pi
(
αi−

mµiβi√
π2 +m2µ2

i

)
− νiy0i

∣∣∣∣∣
}

(e−νit− 1 + νit). (A42)

Proof of Corollary 1. For sinusoidal arrivals, we can obtain an explicit solution to (A29):

zi(t) =
αi
µi

+
(
x0
i −

αi
µi
− mβiK√

π2 +m2µ2
i

)
e−µit +

mβi√
π2 +m2µ2

i

sin
(π(t+ s)

m
− tan−1

( π

mµi

))
≥ x0

i ∧
αi
µi
− mβi√

π2 +m2µ2
i

, (A43)

where K = sin
(
πs
m
− tan−1

(
π
mµi

))
. Replacing (A31) with this lower-bound in the proof of Proposition 2, we

obtain the result. �

Next, we numerically study the effect of system parameters on the average discrepancy between x(t) and

x̃(t) over the length of a τ = 12 hour shift. In Figure A. 1, we present the average deviation (under the

conditions of Corollary 1) for different average boarding and service times and Phase 2 initial conditions.

Other parameters are fixed at n1 = 32 and n2 = 16, p1 = 0.25, x0
1 = 24. The arrival rate is the same sinusoidal

function in (21) with Λ1 = 5.6, β1 =−2.8. We observe that consistent with the discussion in Section 5.3, the

average deviation increases with µi and νi. Also, the error increases with the Phase 2 initial condition, which

aligns with our expectation that number of active Station 1 servers diverges faster from its initial value for

larger |ẏ1(0)|.
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(a) y01 = 12
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(b) y01 = 14

Figure A. 1 Average deviation between x̃1(t) and x1(t) over a τ = 12 hour shift for different boarding and service

rates and two Phase 2 initial conditions of 1(a) y01 = 12 and 1(b) y01 = 14. Other parameters are

n1 = 32, n2 = 16, p1 = 0.25, x01 = 24. The arrival rate is the same as in (21) with Λ1 = 5.6, β1 =−2.8
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A.3. Additional Simulation Experiments

Experiment 1. We consider a similar setting to that of the calibrated experiments, but with shorter service

and boarding times and higher admission probability. In doing so, we aim to understand the performance

degradation in regimes where the decoupling approach is expected to have higher error as identified in

the results of Section 5.3. More specifically, the service times are identical across the four classes in both

phases with µi = νi = 0.5 for i ∈ I. Phase 1 and 2 utilization is set to ρ1 = 0.87 and ρ2 = 0.86, respec-

tively, and p = (0.60,0.48,0.60,0). The Station 1 load is distributed evenly among the classes, i.e., r1 =

(1/4,1/4,1/4,1/4) and Station 2 load is set to r2 = (5/14,4/14,5/14,0). For the transient experiments, the

system is initialized at a similarly congested state as in the calibrated experiments, starting with X(0) =

(1.25n1,0.75n1,1.25n1,0.75n1) and Y (0) = (0.714n2,0.571n2,0.714n2,0). For simplicity we assume a nurse-

to-patient ratio of 1 for both stations. Figure A. 2 presents estimates of the relative total queue length

reduction achieved under the proposed staffing approach for different shift lengths and two system sizes;

n1 = 32, n2 = 14 and n1 = 48, n2 = 21. We still observe a significant queue length reduction in both steady-

state and transient experiments, although the gains are smaller compared to the calibrated experiment.

(a) Finite Horizon (b) Infinite Horizon

Figure A. 2 Experiment 1: Performance of the proposed reassignment policy in terms of expected total aver-

age queue reduction for a system with ρ1 = 0.87, ρ2 = 0.86, r1 = (1/4,1/4,1/4,1/4) and r2 =

(5/14,4/14,5/14,0), µi = νi = 0.5 for i∈ {1,2,3,4}.

Experiment 2. In the second experiment, the utilizations are the same as in Experiment 1 but the load

is unevenly distributed for both stations with r1 = (1/3,1/3,1/6,1/6) and r2 = (3/8,3/8,1/4,0). Service

rates are µi = νi = 0.34 for i ∈ {1,2}, and µi = νi = 0.75 for i ∈ {3,4}. The fraction of patients who require

Phase 2 treatment is p = (0.49,0.49,0.65,0). Note that classes 3 and 4 face a smaller load than 1 and

2, but have higher average arrival rates and admission probabilities. The system is initialized at X(0) =

(1.25n1,0.75n1,1.25n1,0.75n1) and Y (0) = (0.857n2,0.857n2,0.714n2,0). Figure A. 3 presents the results for

different shift lengths and the same system sizes as in Figure A. 2. We observe that our heuristic performs

worse than the best dedicated staffing for the larger system size and shift length τ = 12. This can be attributed

to the heuristic’s strategy for assigning Station 2 servers in (17) without consideration for the boarding times.
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In the second experiment, classes 3 and 4 face a smaller load in Phase 2 despite having a higher input rate. As

such, the heuristic under-allocates capacity to the first two class. We can expect the heuristic’s performance

to further worsen as the discrepancy between the arrival rate and offered load in Phase 2 widens. On the

other hand, when the discrepancy is small – as it is in our implementation setting – we expect the proposed

approach to perform well.

(a) Finite Horizon (b) Infinite Horizon

Figure A. 3 Experiment 2: Performance of the proposed reassignment policy in terms of expected total aver-

age queue reduction for a system with ρ1 = 0.87, ρ2 = 0.86, r1 = (1/3,1/3,1/6,1/6) and r2 =

(3/8,3/8,1/4,0), µi = νi = 0.34 for i∈ {1,2}, and µi = νi = 0.75 for i∈ {3,4}.

Calibrated experiment with Log-Normal service times. To examine the robustness of our policies

to variability in service times, we repeat the calibrated experiment but instead of exponential, use Log-

Normal service times with the same means but standard deviations estimated using data from the OFF

period. The estimated standard deviations were (10.38,12.15,7.86,18.7) and (11.82,13.29,11.84,−) for Phase

1 and Phase 2, respectively. The results are presented in Figure A. 4. Although the Log-Normal service times

in Phase 1 are more variable than the exponential ones used in the main experiments, we still observe a

significant reduction in queue-lengths under our heuristic policy which only utilizes first-order (mean) service

time information.

Calibrated experiment with inflated arrivals. We use our calibrated simulation model to evaluate

the impact of the increased arrival rate in the absence of the intervention (i.e., under the optimal dedicated

staffing) and for a shift-length of 12 hours. More specifically, we inflated the (average) arrival rates in the

simulation by the same percentage the number of arrivals increased for each area during the ON period,

i.e., 10.6% for Area A, 11.9% for Area B, 11% for Area C, and 3.8% for Area U. Table A. 1 presents the

relative increase in expected waiting times under dedicated staffing as a result of inflating the arrival rates.

For n= 52, Areas B and C become unstable in the infinite horizon experiment, and the total waiting time

in Areas C and U increases by above 100%. Similarly, in the finite horizon experiments, we see the total

waiting times increase by more than 100%. For n= 62, we also observe large increases in waiting times. In

particular, for the finite-horizon experiments the waiting times increase by 43%, and for the infinite horizon
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(a) Finite Horizon (b) Infinite Horizon

Figure A. 4 Performance of the proposed reassignment policy with Log-Normal service times.

experiment they increase by 91%. The results suggest that without the intervention the waiting times would

have increased much more than the observed 12%.

To further examine the hypothesis, we investigate the robustness of our staffing approach to changes in

arrival rate. To this end, we repeat the calibrated experiment with the inflated arrival rates but use the

non-inflated arrival rates to obtain the heuristic staffing approach. In doing so we aim to understand whether

our staffing approach could have been able to reduce waiting times in spite of the increase in arrival rates.

Table A. 2 presents the estimated expected queue-lengths under dedicated staffing and the heuristic policy

(which uses the non-inflated arrival rates) for the calibrated experiment with inflated arrivals. Interestingly,

we find that the heuristic is still able to perform well and not only maintain stability in the infinite-horizon

experiments, but also balance and reduce queue-lengths across the areas. In particular, for 12-hour shifts

lengths, the relative queue reductions are comparable to those reported in Section 5.4.

n= 52 n= 60
Area Finite-horizon Infinite-horizon Finite-horizon Infinite-horizon
A 190% (unstable) 57% 161%
B 127% 259% 37% 164%
C 198% (unstable) 35% 163%
U 58% 36% 32% 36%

Table A. 1 Percentage increase in expected waiting time under dedicated staffing and with inflated arrivals.

n= 52 n= 60
Finite-horizon Infinite-horizon Finite-horizon Infinite-horizon

Area Dedicated Heuristic Dedicated Heuristic Dedicated Heuristic Dedicated Heuristic
A 94.48 18.29 (unstable) 4.35 1.43 0.95 11.18 6.25
B 9.46 16.85 4.06 4.46 1.22 1.02 3.37 4.68
C 71.33 17.61 (unstable) 4.35 1.37 0.94 9.59 5.93
U 5.74 18.09 3.65 4.52 3.57 0.99 5.41 5.55
Total 181.01 70.84 (unstable) 17.68 7.59 3.9 29.55 22.41

Table A. 2 Estimated expected queue-lengths in the calibrated experiment with inflated arrival rates.
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A.4. Supplementary Figures and Tables

Table A. 3 Summary Statistics of Patient Covariates at WCMC

OFF Period (N = 2,413) ON Period (N = 2,644) Total (N = 5,057) p-value
Age 53.47 (19.79) 54.93 (20.01) 54.23 (19.92) 0.010
Female 54.7% 55.5% 55.1% 0.577
Race/Ethnicity

White 46.7% 46.8% 46.8% 0.978
Black 16.5% 17.7% 17.1% 0.225
Asian 4.5% 4.8% 4.7% 0.538
Pacific Islander 1.2% 1.0% 1.1% 0.455
Hispanic/Latino 13.7% 14.0% 13.8% 0.773
Other 15.7.7% 16.3% 16.0% 0.565
Unknown 15.4% 13.3% 14.3% 0.036

Insurance 0.004
Private 40.7% 36.6% 38.6%
Medicaid 23.1% 22.3% 22.7%
Medicare 30.2% 34.5% 32.4%
Self-pay 6.0% 6.6% 6.3%

ESI 3.098 (0.65) 3.07 (0.64) 3.08 (0.64) 0.089
Elixhauser Score 2.64 (3.14) 2.86 (3.32) 2.75 (3.24) 0.015
Disposition 0.478

Discharged 65.9% 66.5% 66.2%
Admitted 31.0% 29.8% 30.4%
Other 3.2% 3.7% 3.4%

Note. Mean and standard deviation (in parentheses) shown for continuous variables. p-values provided for testing differences
between the mean (or distribution for categorical variables) in the Off versus On periods.
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Figure A. 5 Average hourly arrival rates at the four areas of WCMC ED over 4 consecutive weeks.
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(a) Inputting census

(b) Inputting the staffing used

Figure A. 6 Screenshots of the Web App used in the Pilot study - inputting the census and generating a

recommendation. The Web App is available at http://nursestaffing.pythonanywhere.com.
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Figure A. 7 Screenshots of the Web App used in the Pilot study - inputting the staffing used

and the reasons for deviation from the recommendation. The Web App is available at

http://nursestaffing.pythonanywhere.com.
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Table A. 4 Pre and Post Implementation Full Results

Waiting Prov Eval Boarding Prov Eval Total
Time to decision Time to discharge LOS
(min) (hrs) (hrs) (hrs) (hrs)

ON (θ) 4.03∗∗∗ 0.16 -3.96∗∗∗ -1.73∗∗∗ -1.74∗∗∗

95% CI [1.86-6.21] [-0.09,0.41] [-5.61,-2.31] [-2.35,-1.12] [-2.34,-1.14]
intercept 5.92 9.09∗∗∗ 16.30∗∗ 21.60∗∗∗ 20.98∗∗∗

95% CI [-7.40,19.23] [7.58,10.60] [5.80,26.81] [17.84,25.36] [17.32,24.64]
Age 0.05 0.00 -0.05 0.01 0.01

95% CI [-0.02,0.13] [-0.00,0.01] [-0.11,0.02] [-0.01,0.03] [-0.01,0.03]
Male -0.68 0.00 -0.05 0.01 0.01

95% CI [-2.73,1.37] [-0.23,0.23] [-2.82,0.30] [-0.03,0.86] [-0.33,0.80]
ESI -7.69∗∗∗ -1.51∗∗∗ 2.05∗ -3.72∗∗∗ -3.75∗∗∗

95% CI [-9.33,-6.04] [-1.70,-1.32] [0.48,3.61] [-4.18,-3.25] [-4.20,-3.29]
Elixhauser 0.67∗∗ 0.03 0.68∗∗∗ 0.99∗∗∗ 0.98∗∗∗

95% CI [0.29,1.05] [-0.02,0.07] [0.44,0.92] [0.89, 1.10] [0.88,1.09]
White 3.31∗ 0.29 0.02 0.49 0.44

95% CI [0.14,6.47] [-0.07,0.65] [-2.64,2.69] [-0.41, 1.38] [-0.43,1.31]
Black 4.92∗ 0.50∗ 2.53 1.13∗ 0.92

95% CI [1.14,8.70] [0.08,0.93] [-0.67,5.73] [0.06, 2.20] [-0.11, 1.96]
Asian 6.28∗ -0.10 1.67 1.32 1.35

95% CI [0.88,11.68] [-0.72,0.51] [-2.55-5.89] [-0.20,2.85] [-0.14,2.84]
Pacific Islander -2.69 -0.69 -7.00 -0.78 -0.35

95% CI [-12.50,7.12] [-1.80,0.42] [-15.30,1.31] [-3.55,2.00] [-3.04,2.35]
Other Race 2.81 0.46∗ 2.92 1.29∗ 1.11

95% CI [-1.23,6.85] [0.01,0.92] [-0.59,6.44] [0.15, 2.44] [-0.00,2.22]
Hispanic/Latino -0.75 -0.12 -0.74 -0.52 -0.48

95% CI [-4.16,2.66] [-0.51,0.26] [-3.62,2.14] [-1.48, 0.45] [-1.41,0.46]
Medicaid 4.78∗∗ 0.53∗∗ 2.15 0.64 0.63

95% CI [1.97,7.58] [0.21,0.85] [-0.45,4.74] [-0.15,1.44] [-0.15,1.40]
Medicare 0.46 0.19 2.50 2.04∗∗∗ 2.11∗∗∗

95% CI [-2.92,3.85] [-0.19,0.57] [-0.07,5.07] [1.09, 3.00] [1.18,3.04]
Self-pay 2.32 0.15 4.72 -0.06 -0.32

95% CI [-2.26,6.90] [-0.36,0.66] [-1.39,10.83] [-1.35,1.23] [-1.54,0.90]
PM Shift 3.59∗∗ 0.90∗∗∗ 0.08 0.16 -0.65∗

95% CI [1.39-5.79] [0.65-1.15] [-1.67,1.84] [-0.46,0.78] [-1.26, -0.05]
Nurses Available -0.98∗∗ -0.10∗∗ -0.86∗∗ -0.44∗∗∗ -0.36∗∗∗

95% CI [-1.63,-0.32] [-0.17,-0.03] [-1.36,-0.36] [-0.62, -0.25] [-0.54,-0.18]
ED Census 0.71∗∗∗ 0.01∗ 0.08∗∗∗ 0.02∗∗ 0.03∗∗∗

95% CI [0.66,0.76] [0.00,0.01] [0.04,0.12] [0.01,0.04] [0.01,0.04]
Num. of obs. 4758 4753 1286 4758 4817
R2 0.177 0.082 0.081 0.211 0.220
Note. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table A. 5 Pre and Post Implementation Results for Returns within 10 days

Linear Probability Model Logit Model Probit Model
ON (θ) 0.01 1.18 1.08

95% CI [-0.00,0.03] [0.94,1.49] [0.96,1.22]
intercept -0.06 0.01∗∗∗ 0.08∗∗∗

95% CI [ -0.16,0.04] [0.00,0.04] [0.04,0.17]
Age 0.00 1.00 1.00

95% CI [-0.00,0.00] [0.99,1.01] [1.00,1.01]
Male 0.02∗ 1.29∗ 1.14∗

95% CI [0.00,0.03] [1.04,1.61] [1.02,1.27]
ESI 0.02∗∗ 1.27∗∗ 1.12∗∗

95% CI [0.01,0.03] [1.06,1.52] [1.03,1.23]
Elixhauser 0.01∗∗∗ 1.15∗∗∗ 1.07∗∗∗

95% CI [0.01,0.02] [1.11, 1.19] [1.05, 1.09]
White 0.06∗∗∗ 3.17∗∗∗ 1.70∗∗∗

95% CI [0.03,0.08] [2.00,5.32] [1.38,2.12]
Black 0.04∗∗ 2.55∗∗∗ 1.54∗∗∗

95% CI [0.01,0.07] [1.54,4.41] [1.22,1.96]
Asian 0.04∗ 2.65∗∗ 1.59∗∗

95% CI [0.00,0.08] [1.31,5.29] [1.15,2.18]
Pacific Islander 0.09∗ 4.42∗∗ 2.06∗∗

95% CI [0.02,0.16] [1.60,11.06] [1.25,3.29]
Other Race 0.04∗∗ 2.70∗∗ 1.57∗∗∗

95% CI [0.01,0.07] [1.57,4.83] [1.22,2.04]
Hispanic/Latino -0.03∗∗ 0.61∗ 0.79∗

95% CI [-0.06,-0.01] [0.41,0.90] [0.65,0.96]
Medicaid 0.05∗∗∗ 1.91∗∗∗ 1.38∗∗∗

95% CI [0.03,0.07] [1.42,2.57] [1.19,1.60]
Medicare 0.02 1.34 1.12

95% CI [-0.01,0.04] [0.94,1.93] [0.93,1.34]
Self-pay 0.01 1.18 1.08

95% CI [-0.03,0.04] [0.70,1.92] [0.84,1.37]
PM Shift 0.03∗∗ 1.38∗∗ 1.18∗∗

95% CI [0.01,0.04] [1.11,1.73] [1.05,1.32]
Nurses Available -0.00 0.98 0.99

95% CI [-0.01,0.00] [0.91,1.05] [0.95,1.02]
ED Census 0.00 1.00 1.00

95% CI [-0.00,0.00] [1.00,1.01] [ 1.00,1.00]
Admitted -0.09∗∗∗ 0.24∗∗∗ 0.51∗∗∗

95% CI [-0.11,-0.07] [0.17,0.34] [0.43,0.60]
Other disposition 0.06∗∗ 1.69∗ 1.36∗

95% CI [0.01,0.10] [1.03,2.67] [1.05,1.74]
Num. of obs. 4817 4817 4817
R2 0.049 0.065 0.106
Note. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Instead of coefficient estimate, Odds Ratio reported
for Logistic Model and Risk Ratio reported for Probit Model.
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Table A. 6 Pre and Post Implementation Results for Walkouts

Linear Probability Model Logit Model Probit Model
ON (θ) 0.00 1.05 1.03

95% CI [-0.01,0.01] [0.74,1.50] [0.88,1.21]
intercept 0.00 0.05∗∗ 0.21∗∗

95% CI [-0.02,0.11] [0.01,0.38] [0.08,0.53]
Age 0.00 1.01 1.00

95% CI [-0.00,0.00] [0.99,1.02] [1.00,1.01]
Male 0.00 1.02 1.02

95% CI [-0.01,0.01] [0.73,1.42] [0.88,1.18]
ESI -0.01∗∗ 0.67∗∗ 0.81∗∗

95% CI [-0.02,-0.00] [0.51,0.88] [0.72,0.92]
Elixhauser 0.00 1.01 1.00

95% CI [-0.00,0.00] [ 0.95,1.08] [0.97,1.03]
White 0.00 1.14 1.05

95% CI [-0.01,0.02] [0.70,1.92] [0.84,1.33]
Black 0.02 1.55 1.21

95% CI [-0.00,0.04] [ 0.90,2.72] [0.94,1.57]
Asian -0.01 0.43 0.69

95% CI [-0.04,0.01] [ 0.10,1.29] [0.39, 1.11]
Pacific Islander -0.04 0.43 0.70

95% CI [-0.09,0.01] [0.07,1.62] [0.33,1.32]
Other Race -0.01 0.60 0.79

95% CI [-0.03,0.01] [ 0.30,1.19] [0.58,1.07]
Hispanic/Latino 0.01 1.54 1.20

95% CI [ -0.00,0.03] [ 0.89,2.55] [ 0.94,1.51]
Medicaid 0.01 1.53 1.21

95% CI [ -0.00,0.03] [0.96,2.44] [0.99,1.49]
Medicare -0.02∗ 0.52∗ 0.79

95% CI [-0.03,-0.00] [0.28,0.69] [0.61,1.02]
Self-pay 0.15∗∗∗ 9.37∗∗∗ 2.94∗∗∗

95% CI [0.13,0.17] [6.03,14.64] [2.37,3.66]
PM Shift 0.01 1.28 1.09

95% CI [-0.00,0.02] [ 0.91,1.79] [0.94,1.27]
Nurses Available -0.00 0.98 1.00

95% CI [-0.00,0.00] [ 0.99,1.01] [1.00,1.00]
ED Census 0.00 1.00 1.00

95% CI [-0.00,0.00] [ 0.99,1.01] [1.00,1.00]
Num. of obs. 4817 4817 4817
R2 0.048 0.054 0.117
Note. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Instead of coefficient estimate, Odds Ratio reported
for Logit Model and Risk Ratio reported for Probit Model.
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A.5. Sensitivity Analysis

A core assumption of our analysis is unconfoundedness. We now explore how sensitive our results are to

this assumption. In our analysis, we assume patients are exogenously assigned to treatment (ON) or control

(OFF). This seems reasonable as patients (and even physicians and nurses, except for those in leadership

positions who signed off on the pilot program) were unaware of our pilot, so could not have made decisions

about visiting the ED based on whether it was during the ON or OFF period. That said, if patients are

systematically less sick in the ON period, this could violate our assumption and bias our results. In particular,

this would make it seem like the intervention reduced time spent in the ED, when the reductions were actually

because less sick patients did not require as much time in the ED. In addition, other unobserved confounders,

such as changes in physician staffing or how the staff responded to higher workload during the ON period,

could also potentially bias our results. By our summary statistics in Table A. 3, patients did not appear to

be less sick; if anything they appeared to be more sick during the ON period (see, e.g., the Elixhauser score).

Further, we are not aware of any systematic changes in staffing or other operational policies in the ED during

the ON period. However, we cannot completely rule out the possibility that unobserved confounders were

present during the study period.

To examine the sensitivity of our results to unobserved variables, we conduct a sensitivity analysis using

the framework of Carnegie et al. (2016) which builds on the approach proposed in Imbens (2003). The idea

is to augment the regression model with a hypothetical unobserved variable and vary its correlation with

both the intervention and outcome variables. It is natural to think of this variable as a linear combination of

all unmeasured confounders. Re-estimating the coefficient of the treatment variable for various correlations,

one can examine how large of an effect size the unobserved variable needs to have in order to invalidate the

results. That is, if the initial coefficient estimate for our treatment (θ) is negative and statistically significant

at the p < 0.05 level, the sensitivity analysis determines how large an effect size the unobserved variable need

to have, in order to make the estimate for θ statistically indistinguishable from 0. One can also consider how

large the effect size needs to be for θ to be positive and statistically significant at the p < 0.05 level.

Figure A. 8 summarizes the sensitivity analysis for our outcome models. The x-axis is the coefficient

specifying the effect size of the unobservable variable on the likelihood of treatment (being admitted during

the ON period). The y-axis is the coefficient specifying the effect size of the unobservable variable on the

outcome (e.g., ED LOS). The origin (0,0) corresponds to our baseline analysis, which assumes there is no

unobserved confounder. Each line corresponds to a contour (magnitude and statistical significance) of the

coefficient estimate of the treatment effect of our nurse staffing intervention. The blue line indicates when

the estimated treatment effect is 0. The space between the black ‘N.S.’ lines indicate where the estimated

treatment effect is statistically no different than 0 at the p < 0.05 level. Anything to the upper-right or

upper-left of these lines indicates when the estimated treatment effect would be the opposite sign of the

baseline model. The inverted blue triangles represent the coefficient estimates for the observable variables

which are negative for the outcome. The red crosses represent the coefficient estimates for the observable

variables which are positive for the outcome. This calibrates one to understand how large the coefficient of

the unobservable confounder must be relative to those of the observable variables.
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We can see that the estimates presented in Table 3 are quite robust across the 5 continuous outcomes.

For instance, for the estimated impact of the treatment on total ED LOS to be insignificant, the unobserved

variable must have had a much larger impact on both the treatment decision and the ED LOS, compared

to those of observable variables. The boarding time model (Figure 8(c)) has one variable that is close to the

N.S. line. Nevertheless, the unobservable variable still needs to have a relatively large effect on treatment

and outcome in order to make the treatment effect statistically indistinguishable from 0. Therefore, while

the sensitivity analysis cannot completely rule out the possibility of an unobservable variable invalidating

our results for the continuous outcome models, it suggests that if such a factor exists, it needs to have

substantially more explanatory power than the observable characteristics.

We also observe that the estimated effect on walkouts appears to be robust. The red cross close to the

N.S. line in Figure 8(g) indicates that, in case a confounder exists, the intervention might have even reduced

the probability of walkouts. On the other hand, there are a couple of covariates that are very close, or even

crossing the N.S. line for returns to the ED. This suggests that the risk of an unobserved confounder resulting

in a positive and statistically significant result is high. That our main results could be considered marginally

significant (e.g. at the p < 0.15 level), suggests that the results for the returns to the ED within 10 days are

not very robust. Thus, while it seems we have compelling evidence that the other measures are quite robust,

we cannot say the same for returns.

A.6. Robustness Checks

To further understand the robustness of our results, we conduct a number of additional regressions with

alternative control variables. Recall that our main model controlled for age, gender, race, ethnicity, insurance,

ESI, Elixhauser, the shift of arrival, the number of nurses working during the shift, and the number of

patients in the ED. More specifically, in addition to the covariates considered in our main model, we conduct

additional analysis controlling for: 1) discharge disposition; 2) average ED census during the ED visit; 3)

the area the patient was assigned; 4) the number of patients waiting, the number of patients in treatment,

and the number of patients boarding instead of ED census; and, 5) the number of patients waiting in the

assigned area, the number of patients in treatment in the assigned area, and the number of patients boarding

in the assigned area instead of ED census.

Table A. 7 summarizes these robustness checks. We can see that, with the exception of waiting time,

the results for the continuous measures are very robust, with respect to both magnitude and statistical

significance. Thus, there seems to be reasonably robust evidence that the new approach to nurse staffing is

associated with a 1 to 3 hour reduction in ‘service time’, as measured by the time from provider evaluation to

discharge, boarding time, and total ED LOS. For waiting time, when replacing ED census with a more fine

grained definition of congestion, the association appears to decrease and in one case no longer statistically

significant. As mentioned earlier, the average arrival rate of patients appeared to be significantly larger

during the ON period compared to the OFF period, and so it is likely that the treatment effect actually

captured some of the increased queueing effects due to the increase load. While controlling for more granular

measures of census reduces the estimated increase, the nonlinear impact of increased congestion is still not

captured in the models.
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(a) Waiting time
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(b) Provider Evaluation to Decision
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(c) Boarding time
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(d) Provider Evaluation to Discharge
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(e) Total ED LOS
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(f) Returns within 10 days
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(g) Walkouts

Figure A. 8 Sensitivity analysis following the approach of Carnegie et al. (2016). Contours indicate where the

estimated treatment effect is equal to 0, or statistically indistinguishable from 0 (N.S.) at the

p < 0.05 level.

We also see that the results for returns within 10 days is robust to model specification, with the estimated

coefficient being equal to 0.01 in all cases, but not statistically significant at the p < 0.05 level. We observe

consistent results for the probit and logistic models, with the p-values being larger than 0.15 for all models.

Similarly, the results for walkouts are robust with the estimates varying between 0.01 and 0.05, but remaining

statistically insignificant across all models.
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Table A. 7 Robustness Checks of Pre and Post Implementation

(1) (2) (3) (4) (5)
discharge Avg ED assigned waiting, waiting,

disposition census area in treatment, in treatment,
boarding boarding in area

Waiting Time (min)
ON (θ) 3.88∗∗∗ 4.44∗∗∗ 4.26∗∗∗ 1.58 2.17∗

95% CI [1.70,6.06] [2.16,6.73] [2.24,6.28] [-0.60,3.76] [0.25,4.09]
Num. of obs. 4758 4758 4756 4758 4756
R2 0.179 0.094 0.291 0.204 0.369

Prov Eval to dec. (hrs)
ON (θ) 0.13 0.16 0.18 0.17 0.22

95% CI [-0.12,0.38] [-0.08,0.41] [-0.05,0.42] [-0.08,0.43] [-0.03,0.46]
Num. of obs. 4753 4753 4751 4753 4751
R2 0.088 0.081 0.149 0.082 0.126

Boarding Time (hrs)
ON (θ) -3.96∗∗∗ -4.19∗∗∗ -3.99∗∗∗ -3.47∗∗∗ -3.97∗∗∗

95% CI [-5.61,-2.31] [-5.85,-2.53] [-5.64, -2.34] [-5.14,-1.80] [-5.62,-2.32]
Num. of obs. 1286 1286 1286 1286 1286
R2 0.081 0.072 0.084 0.091 0.085

Prov Eval to dis. (hrs)
ON (θ) -1.08∗∗∗ -1.75∗∗∗ -1.70∗∗∗ -1.68∗∗∗ -1.67∗∗∗

95% CI [-1.61,-0.54] [-2.37,-1.14] [-2.31,-1.09] [-2.30,-1.05] [-2.28,-1.05]
Num. of obs. 4758 4758 4756 4758 4756
R2 0.412 0.211 0.228 0.212 0.226

Total LOS (hrs)
ON (θ) -1.11∗∗∗ -1.76∗∗∗ -1.70∗∗∗ -1.72∗∗∗ -1.67∗∗∗

95% CI [-1.62,-0.59] [-2.36,-1.16] [-2.29,-1.10] [-2.33,-1.11] [-2.27,-1.07]
Num. of obs. 4817 4817 4807 4817 4807
R2 0.431 0.219 0.241 0.220 0.237

Returns within 10 days
ON (θ) 0.01 0.01 0.01 0.01 0.01

95% CI [-0.00 , 0.03] [-0.00 , 0.03] [-0.00 ,0.03] [-0.00 , 0.03] [-0.00 , 0.03]
Num. of obs. 4817 4817 4807 4817 4807
R2 0.049 0.049 0.049 0.049 0.049

Walkouts
ON (θ) - 0.03 0.02 0.05 0.01

95% CI - [-0.04 , 0.09] [-0.04 ,0.09] [-0.02 , 0.11] [-0.05 , 0.08]
Num. of obs. - 4817 4807 4817 4807
R2 - 0.048 0.045 0.048 0.044

Note. All models include controls for age, gender, race, ethnicity, insurance, ESI, Elixhauser, shift, census,
and number of nurses. In contrast to the other outcomes models, column (1) for Returns within 10 days
excludes discharge disposition as the main model controlled for this. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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