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1. Introduction. This paper presents a general class of dynamic stochastic optimization problems we refer
to as stochastic depletion problems. Our study of this general class of problems is motivated by the fact that a
number of dynamic optimization problems of practical interest are stochastic depletion problems. In fact, certain
deterministic optimization problems that have been the focus of a good amount of recent research are also
special cases of stochastic depletion problems.
Informally, a stochastic depletion problem is specified by item types and activity sets. The use of an activity

results in the depletion of items of various types. In particular, the number of items of a particular type depleted
at any point in time are randomly distributed according to a distribution specified by a set of parameters specific
to the activity employed at that time and the number of items of that type available. The parameters specifying
these distributions are themselves given by exogenous stochastic processes. New items of a given type may
appear and existing items depart according to exogenous stochastic processes. Item depletion generates rewards,
and activities must be selected adaptively over time to accomplish such depletion. An adaptive activity selection
policy in this framework has knowledge of system dynamics and at any given time must select an activity.
An optimal such policy generates maximum total expected reward. We will subsequently see that a number
of difficult dynamic optimization problems ranging from optimal control of parallel server queueing models to
optimal ad-words allocation can be cast as stochastic depletion problems. It is not surprising then, that finding
an optimal control policy for a stochastic depletion problem is, in general, difficult.
We identify two simple properties we refer to as value function monotonicity (VFM) and the immediate

rewards (IR) property that, if satisfied by a stochastic depletion problem, guarantee that a myopic policy generates
expected reward within a factor of 1/2 of the optimal adaptive policy for that problem; that is, the myopic policy
is a 2-approximation algorithm for that problem. This policy is allowed to use all the information available up
to the current point in time and maximizes expected reward earned over the following time step. Both properties
are intuitive: the VFM property states that the optimal total expected reward (or value) accrued in the future
starting from a particular state of the system is nondecreasing in the vector of available items at that state. In
the other direction, the IR property states that the additional value gained by making available additional items
at a particular state of the system is at most the reward earned for the depletion of those items.
We are able to verify both the VFM and IR properties for large families of stochastic depletion problems.

These include stochastic depletion problems for which the total reward for items depleted over time is given by a
nondecreasing submodular function of the vector of items depleted. An available item of a given type is depleted
independent of all other items in the system with a probability that depends on time, the item type, and the
activity employed. We refer to these as submodular stochastic depletion problems. We are also able to address
families of problems where the reward earned for depleting an item is a nonincreasing function of the time of
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depletion, specific to that item’s type. We refer to these as linear decaying stochastic depletion problems. Our
performance analysis of the myopic heuristic is sharp for both these families of stochastic depletion problems.
Our systematic study of the general class of problems presented in this paper results in several contributions

which we now outline.
Stochastic Control Problems: Our framework lets us easily recognize and analyze simple effective heuristic

policies for several high-dimensional stochastic control problems for which finding optimal control policies is
difficult.
For instance, control problems pertaining to several interesting discrete-time queueing models with general

arrival processes and geometric service times may be reduced to stochastic depletion problems provided one
allows for service disciplines with pre-emption. As an example, we consider a discrete-time equivalent of a well-
studied parallel server queueing model that has been an important subject of recent research (see, for instance
Harrison and Zeevi [16], Bassamboo et al. [3, 2]). Finding optimal service policies for such problems is typically
challenging. We identify a simple myopic policy that is a constant factor approximation algorithm for a broad
class of performance metrics. Our policy bears similarities to the so-called “c − �” scheduling rules (see,
for instance, van Mieghem [29]).
As another example we consider problems of dynamic “product line design.” These are problems where a firm

must dynamically adjust the assortment of products it offers for sale so as to maximize expected revenues. Sales
of a given product are influenced by the entire assortment of products offered as well as the prevailing market
sizes for various customer segments. In addition to generating revenues, sales in a given period impact market
sizes in subsequent periods. This represents an important generalization of static product line design problems of
the type considered by van Ryzin and Mahajan [30]. Our analysis yields an effective heuristic that simply calls
for the solution of a sequence of static product line design problems that in effect account for system dynamics
only to a limited extent.
Online algorithms for stochastic variants of well-studied deterministic problems: We show that a myopic

policy earns expected rewards that are within a constant factor of the optimal adaptive policy for what we believe
to be important online stochastic generalizations of a number of problems studied typically in deterministic
settings. The stochastic generalizations we present go beyond what may be modeled in the traditional online
versions of these problems and incorporate features we view as desirable from a modeling perspective. We
present approximation guarantees for these generalizations that are typically no worse (and sometimes, better)
than the best-known guarantees for their deterministic counterparts.
For instance, we are able to provide an efficient myopic policy that is a 2-approximation algorithm for a

stochastic broadcast scheduling problem. Successful data transmission in our broadcast scheduling model is
stochastic which makes it naturally applicable in several communications engineering contexts. With a bound
on the maximal number of simultaneous broadcasts the best-known scheme for the deterministic broadcast
scheduling problem (where page transmission is successful with probability 1) is an offline 4-approximation (Bar-
Noy et al. [1]). With no constraints on the maximal number of simultaneous broadcasts, the best-known offline
algorithm for the deterministic broadcast scheduling problem is a 4/3-approximation due to Gandhi et al. [14]
and the best-known online algorithm for the same scenario is a 2-approximation due to Kim and Chwa [20].
Our contribution to this body of work is to demonstrate that even with stochasticity in data transmission one
can still achieve good constant factor performance guarantees via an adaptive myopic algorithm.
As another example, we consider a stochastic generalization to the AdWords Assignment problem (Fleischer

et al. [12]) where revenues are generated via stochastic clicks on placed ads as opposed to simply via the
placement of an ad as in the deterministic version of the problem. Using an appropriate approximation algorithm
as a subroutine for the myopic problem we demonstrate an efficient �3+ �� myopic scheme which matches the
best-known �3+ ��-approximation algorithm for the deterministic version of the AdWords Assignment problem
due to Goundan and Schulz [15].
A unified framework: We provide an elegant, unified framework for the design and analysis of stochastic

optimization problems that is analogous to that for submodular maximization over simple matroids. In particular,
submodular maximization problems over several simple matroids (such as the cardinality and partition matroid)
can be captured as submodular stochastic depletion problems. A number of interesting problems (such as the
AdWords Assignment problem) are known to be examples of such submodular optimization problems (see
Goundan and Schulz [15], for example). The stochastic depletion framework provides a natural vehicle for the
analysis of stochastic variants of such problems wherein the notion of selecting a set element translates to an
attempt at selection; the success of such an attempt is specified by an exogenous stochastic process.
We anticipate that the characterization of dynamic stochastic optimization problems that admit simple control

policies with constant factor guarantees provided in the present work, is likely to allow for the analysis of simple
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heuristics for a number of problems beyond the handful of examples we have alluded to above. In particular, the
two abstract properties that guarantee the effectiveness of a myopic policy are typically not hard to recognize
and could potentially be established for families of problems outside those discussed here. The remainder of
this paper is organized as follows: In §2 we formally specify the class of stochastic depletion problems. Sec-
tion 3 presents a myopic heuristic for stochastic depletion problems and identifies two simple properties—the
VFM and IR properties—that, if satisfied by a stochastic depletion problem, guarantee that a myopic policy
is a 2-approximation algorithm for that problem. Section 4 verifies the VFM and IR properties for two gen-
eral families of stochastic depletion problems—submodular stochastic depletion problems and linear decaying
stochastic depletion problems while the following two sections discuss a number of applications that lie within
these families. Section 7 concludes with a perspective on interesting directions for further work.

2. Model. We are given a collection of items, each of which belongs to one of M types indexed by m.
There can be at most x̄m items of type m available at any time. Items are depleted via the execution of a suitable
activity from a set of feasible activities �, and depletion of a set of items garners a nonnegative reward we will
formalize shortly. Time is discrete (indexed by t ∈ �0� T �) and in each time-step one must choose to employ
some activity from �; we let T denote the length of the time horizon. We let i index the elements of � and
denote a general element of � by A. Let xt�m denote the number of items of type m that remain at the start of
the tth time-step. Assuming one chooses action A ∈� in the tth time-step, the number of items of each type m
depleted within that time-step is given by a ×M

m=1�0� � � � � xt�m�-valued random vector, XA
t . The distribution of

the random vector XA
t is specified by a parameter Pt�A� which itself is given by an exogenous stochastic process

�Pt�A��, specified for all A and taking values in some compact set �. XA
t is assumed independent of the past

and Pt′�A
′� for all A′� t′ > t, given Pt�A� and the vector of nondepleted items xt . For example, we may have

that �Pt�A�� is a �0�1�M -valued stochastic process and assuming one chooses action A at time t, XA
t�m is an

independent Binomial �xt�m�Pt�m�A�� random variable. In what follows we drop the superscript A from XA
t for

economy, as the dependence on A will be clear from context. We have xt+1�m = xt�m−Xt�m for all m, and receive
a total reward of g�xt� xt+1� t� where g� �M

+ ×�M
+ × �0� T �→�+ satisfies:

Assumption 2.1. For all x�x′ ∈ �M
+ , g�x� x

′� ·� is a nonincreasing, nonnegative function. In addition, we
assume g�x� x′� T �= 0 for all x�x′ ∈�M

+ .

Our objective is to design an adaptive scheduling policy that maximizes total expected reward earned within
the first T time-steps. We define as our state-space the set

� =
{
�x� t�p1� p2� � � � � p����� x ∈×

m
�0�1� � � � � x̄m�� 0≤ t ≤ T � pi ∈�t+1 ∀ i

}
�

In particular, a state is associated with a vector of items remaining to be depleted, time, and a history of the
Pt processes. We denote by x�s� the projection of s onto its first co-ordinate and similarly employ the notation
t�s� and pi�s� for i = 1�2� � � � � ���. We let the random variable St ∈ � denote the state in the tth epoch. We
digress briefly to note that if the Pt processes were assumed to be given a priori—a scenario that will become
relevant to our theoretical analysis in what follows—then the description of the state space may be significantly
simplified. In particular, we may in this case consider as our state space the set

� =
{
�x� t�� x ∈×

m
�0�1� � � � � x̄m�� 0≤ t ≤ T

}
�

where a state is associated with a vector of items remaining to be depleted and time.
Finally, we define the random reward function R� � × � → �+ according to R�s�A� = g�x�s�� x�s� −

Xt�s�� t�s��, where Xt�s� =XA
t�s�. We note that since at time t the realization of Xt from taking a particular action

is unknown, any control policy is a priori unaware of the exact reward accrued from a particular action; only the
distribution of this reward is known. We define a control policy � as a mapping from � to the set of feasible
activities �, and we denote by � the set of all such policies. Define the expected total reward-to-go under a
policy � starting at state s according to:

J ��s�=E

[ T−1∑
t′=t�s�

R�St′ ���St′��
∣∣∣St�s� = s

]
�

We let J ∗�s� = sup�∈� J ��s� denote the maximum expected total reward-to-go under any policy. The supre-
mum in the definition of J ∗ is achieved and we denote by �∗ the corresponding optimal policy; i.e.,
�∗�s� ∈ arg sup�∈� J ��s�. We will refer to the problem of finding such an optimal policy �∗ as a stochastic
depletion problem.



Chan and Farias: Effective Myopic Policies for a Class of Dynamic Optimization Problems
336 Mathematics of Operations Research 34(2), pp. 333–350, © 2009 INFORMS

We remark that our formulation permits modeling exogenous item arrivals and deadlines on the latest permis-
sible time of depletion for a given item. In particular, assuming without loss that x̄m = 1, that is, a given item
type can have at most a single item (otherwise, we could simply refine the definition of a type), we associate
with each type an arrival time "m and a deadline dm ≥ "m. One may then assume that the Pt processes are such
that Xt�m = 0 a�s� for all A ∈� if t � �"m�dm� to model the fact that item type m arrives at time "m and may not
be depleted beyond time dm; see §5.2 for a concrete illustrative example. Such a formulation succinctly assumes
a (known) bound on the total number of arrivals in any given period.
The optimal reward-to-go function (or value function) J ∗ and the optimal scheduling policy �∗ can in principle

be computed via dynamic programming: in particular, letting S�s�A� denote the random next state encountered
upon employing activity A in state s, define the dynamic programming operator � according to:

��J ��s�=max
A∈�

E�R�s�A�+ J �S�s�A���� (1)

for all s ∈ � with t�s�≤ T − 1. J ∗ may then be found as the solution to the Bellman equation �J = J , with
the boundary condition J �s′�= 0 for all s′ with t�s′�= T . The optimal policy �∗ may be found as the greedy
maximizer with respect to J ∗ in (1). Of course, this approach is computationally intractable: even in the event
that the Pt processes are known a priori, the state space (the set of all �x� t�) is exponentially large. As such,
this makes solution of a general stochastic depletion problem pragmatically difficult.
In addition to the above informal description for why we might expect finding an optimal solution to be

a difficult task, one may easily see that special classes of stochastic depletion problems are NP-hard. We
consider one such class here for completeness: Consider “rational clairvoyant” stochastic depletion problems
where the Pt sequences are rational-valued deterministic sequences in �0�1�M . XA

t�m is a Binomial �xt�m�Pt�m�A��

random variable for all t�m�A, independent of the past and XA′
t�m′ for all A′�m′ �= m, given xt�m. We assume

g�xt� xt+1� t� =
∑

m wm�xt�m − xt+1�m� where wm ≥ 0 for all m. The input to such a problem consists of ���
rational-valued sequences of length T , and 2M rational numbers representing the initial number of jobs of each
type and the reward constants, wm, for each type. One may then construct a polynomial time reduction from
the set-cover decision problem (which is NP-complete) to the rational clairvoyant stochastic depletion problem.
This is formalized in the following result:

Theorem 2.1. The rational clairvoyant stochastic depletion problem is NP-hard.

Proof. We reduce the set-cover decision problem to the rational clairvoyant stochastic depletion problem.
An instance of the set-cover decision problem is specified by a ground set �, a cover set � ⊆ 2�, and an
integer k (where k≤ ��� without loss) and we must decide whether a cover (that is a subset of � whose union
is a superset of �) of size ≤ k exists. We reduce this question to the optimal solution of the following rational
clairvoyant stochastic depletion instance: We consider a problem with ��� item-types, and assume we have a
single item of each type. We let each set in � correspond to a feasible activity in the sense that the use of that
activity results in the depletion of all items in that set with probability 1 and the depletion of items outside that
set with probability 0 in any time slot. We let the depletion of a single item result in unit reward, wm = 1, and
assume that the time horizon for scheduling is k. Assuming a polynomial time algorithm for rational clairvoyant
stochastic depletion, the reduced problem would require time that is poly����� ���� k�= O�poly����� �����. If
the optimal solution to this instance of the stochastic depletion problem has total reward ���, we know that there
exists a set-cover of size ≤ k. Conversely, if there exists a set-cover of size ≤ k, then there exists a depletion
policy with total reward ���. Our reduction is thus many-one and polynomial in the size of the input. This
completes the proof. �

We remark that the above reduction can also be used to reduce an interesting optimization problem related
to set-covering—namely that of maximum set-coverage where one may pick at most k elements of � so as to
cover as many elements of � as possible—to a stochastic depletion instance. In fact, this reduction is a special
class of a useful set of reductions we will explore in §6.
We have, in this section, introduced a general class of dynamic stochastic optimization problems that as we

shall see in later sections admit a number of interesting applications. Computing optimal solutions for such
problems is evidently hard; the next section will present and analyze a natural, simple-to-implement heuristic
for such problems.

3. A myopic heuristic for stochastic depletion. A natural heuristic policy one may consider for a stochastic
depletion problem is given by the myopic policy which in state s chooses an activity set A that maximizes
expected reward earned over the following time-step. That is,

�g�s� ∈ argmax
A∈�

E�R�s�A���
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Such a policy is adaptive but ignores the evolution of the system and the impact of the present choice of activity
on rewards in future states. The set � in the myopic problem above is potentially exponentially large. In many
cases however, this set has an implicit polynomial-sized representation (for instance, � may correspond to a set
of matchings) and the myopic maximization problem is efficiently solved. We will later also address the case
where the myopic maximization problem is difficult but one has access to an appropriate near-optimal oracle.

3.1. The myopic heuristic is an online 2-approximation algorithm: Sufficient conditions. Our objective
in this section will be to identify stochastic depletion problems for which the myopic heuristic is guaranteed to
be within a constant factor to optimal. In particular, we will identify stochastic depletion problems for which
we will have, for any state s ∈� , J ∗�s�≤ 2J �g

�s�.
Note that the myopic heuristic does not utilize any information about the evolution of the Pt processes.

In particular, the immediate reward incurred in choosing activity A at some state s is independent of the past
and Pt′�A

′� for all A′� t′ > t�s�, given x�s� and Pt�·�. We will thus assume that the Pt processes are a priori
given sequences; the expected total reward earned under the myopic heuristic in this clairvoyant scenario is
equal to the expected total reward earned under the myopic heuristic for the corresponding sample path of the Pt

processes. We will compare the performance of the myopic heuristic to that of an optimal clairvoyant algorithm
that knows the realizations of the Pt processes a priori. Since an optimal clairvoyant policy must dominate the
optimal policy, it will suffice to demonstrate performance guarantees relative to the optimal clairvoyant policy.
Recall that such an optimal clairvoyant policy may be computed over a reduced state-space:

� =
{
�x� t�� x ∈×

m
�0�1� � � � � x̄m�� 0≤ t ≤ T

}
�

In the sequel, we will only consider such clairvoyant optimal policies; any reference to an optimal policy or value
function in the sequel will pertain to an optimal policy or value function for the clairvoyant problem. Comparing
performance to a clairvoyant policy yields performance guarantees that are valid over individual sample paths
of the Pt processes. In particular, our guarantees will imply that the myopic heuristic is a 2-competitive online
algorithm where the optimal scheme is allowed knowledge of entire sample-paths of the Pt processes but does
not know the realization of Xt until time t+1 (which is somewhat different from the typical competitive analysis
setting).
We now identify two properties that if satisfied by the optimal clairvoyant value function J ∗, will imply our

desired approximation guarantee.

Property 1 (Value Function Monotonicity). Consider states s� s′ satisfying x�s�≥ x�s′�� t�s�= t�s′�.
The VFM property requires that J ∗�s�≥ J ∗�s′�. In words, all else being equal, it is advantageous to start at a
state with a greater number of items available.

Before we describe the second property we find it convenient to introduce some notation. For ' ∈�M
+ , define

a mapping S̃'� � →� according to S̃'�s�= s′ with t�s′�= t�s� and x�s′�m = �x�s�m − 'm�
+ for all m. S̃'�s�

is thus the state obtained if one were permitted to employ some set of activities (which presumably resulted in
Xt = ') but without incurring the use of a time-step.

Property 2 (Immediate Rewards). For all s̄ ∈� and ' ∈×m�0�1� � � � � x�s̄�m�,

J ∗�s̄�≤ g�x�s̄�� x�s̄�−'� t�s̄��+ J ∗�S̃'�s̄���

This property states that it is advantageous if one were able to deplete items without incurring the use of a
time-step. In particular, if instead of starting at some state s̄ ∈� , one started at state S̃'�s̄� and was, in addition,
given reward for the depletion of ' items, this property requires that the value of the second scenario be at least
as large as the first.
The two properties we have developed thus far for the optimal value function J ∗ are essentially all we need to

prove an approximation guarantee for the myopic heuristic. We now present the proof of our main approximation
guarantee which assumes the VFM and IR properties.
We first introduce relevant notation: For ' ∈ �M

+ , define a mapping Ŝ'� � →� that specifies the next state
obtained if one employed an activity set in state s which resulted in Xt�m = 'm ∧ x�s�m for all m. In particular,
we define Ŝ' according to Ŝ'�s�= s′ with t�s′�= t�s�+ 1 and x�s′�m = �x�s�m −'m�

+ for all m.

Theorem 3.1. Assuming J ∗ satisfies Properties 1 and 2, we have for all s ∈� , J ∗�s�≤ 2J �g
�s�.

Proof. The proof proceeds by induction on the number of time-steps that remain in the horizon, T − t�s�.
The claim is trivially true if t�s� = T − 1 since both the myopic and optimal policies coincide in this case.
Consider a state s with t�s� < T − 1 and assume the claim is true for all states s′ with t�s′� > t�s�.
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Now if �∗�s�=�g�s�, then the next states encountered in both systems are identically distributed so that the
induction hypothesis immediately yields the result for state s. Consider the case where �∗�s� �=�g�s�. Denote by
X∗

t�s� and X
g
t�s� random vectors of depleted items in period t�s� under optimal and myopic policies, respectively,

at state s. Let 0 be an M-dimensional 0 vector. We have:

J ∗�s �X∗
t�s��X

g
t�s�� = E�R�s��∗�s�� �X∗

t�s��+ J ∗�ŜX∗
t�s�

�s��

≤ E�R�s��∗�s�� �X∗
t�s��+ J ∗�Ŝ0�s��

≤ E�R�s��∗�s�� �X∗
t�s��+ g�x�s�� x�s�−X

g
t�s�� t�s�+ 1�+ J ∗�S̃X

g
t�s�

�Ŝ0�s���

≤ E�R�s��∗�s�� �X∗
t�s��+ g�x�s�� x�s�−X

g
t�s�� t�s��+ J ∗�S̃X

g
t�s�

�Ŝ0�s���

= E�R�s��∗�s�� �X∗
t�s��+E�R�s��g�s�� �Xg

t�s��+ J ∗�S̃X
g
t�s�

�Ŝ0�s���

= E�R�s��∗�s�� �X∗
t�s��+E�R�s��g�s�� �Xg

t�s��+ J ∗�ŜX
g
t�s�

�s��

≤ E�R�s��∗�s�� �X∗
t�s��+E�R�s��g�s�� �Xg

t�s��+ 2J �g

�ŜX
g
t�s�

�s��� (2)

where the first inequality follows from the assumed VFM property for J ∗ upon noting that x�ŜX∗
t�s�

�s��≤ x�Ŝ0�s��.

The second inequality follows from the IR property assumed of J ∗ upon taking s̄ = Ŝ0�s� and '= X
g
t�s�. The

third inequality follows from Assumption 2.1 since g was assumed nonincreasing in time. The third equality
follows from the identity S̃X

g
t�s�

�Ŝ0�s��= ŜX
g
t�s�

�s� which, in turn, is simply a consequence of the definitions of S̃'

and Ŝ'. The final inequality follows from the induction hypothesis.
Now,

J �g

�s�=E�R�s��g�s��+ J �g

�ŜX
g
t�s�

�s���

and E�R�s��g�s���≥ E�R�s��∗�s��� by the definition of the myopic policy �g so that taking expectations in
(2), we have:

J ∗�s� = E�J ∗�s �X∗
t�s��X

g
t�s���

≤ E�R�s��∗�s���+E�R�s��g�s���+ 2E�J �g

�ŜX
g
t�s�

�s���

≤ 2J �g

�s��

This concludes the proof. �

3.1.1. Performance with an approximate myopic oracle. We will subsequently encounter a number of
examples for which the set � is exponentially large, but admits some implicit polynomial representation allowing
for efficient solutions to the myopic problem

max
A∈�

E�R�s�A���

Sometimes, however, this problem may itself be difficult to solve. In such scenarios the use of an oracle that is
an '-approximation to this subproblem is, in fact, a �1+'�-approximation to the original stochastic depletion
problem. In particular, assume �approx� � →� satisfies

E�R�s��approx�s���≥ 1
'
max
A∈�

E�R�s�A���

for all s ∈ � . One may then establish the following result whose proof is omitted but entirely analogous to
Theorem 3.1 above:

Theorem 3.2. Assuming J ∗ satisfies Properties 1 and 2, we have ∀ s ∈� , J ∗�s�≤ �1+'�J �approx
�s�.

4. Families satisfying the VFM and IR properties. The previous section identified two abstract
properties—namely, the VFM and IR properties, that if satisfied yield uniform performance loss guarantees for
the myopic heuristic, via Theorems 3.1 and 3.2. These properties are, in general, difficult to check. We establish
in this section two simple yet fairly general families of stochastic depletion problems that satisfy Properties 1
and 2 thereby guaranteeing that the myopic heuristic is a 2-approximation algorithm for those families. Although
there may certainly be other families of problems satisfying the VFM and IR properties, the families we identify
in this section accommodate a number of interesting applications which will be the focus of §5 and §6.
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4.1. Submodular stochastic depletion problems. We consider problems for which �Pt�A�� is a �0�1�M -
valued stochastic process for all A ∈ �. Assuming one chooses action A at time t, Xt�m is a Binomial
�xt�m�Pt�m�A�� random variable that, given xt�m and Pt�m�A�, is independent of the past, Xt�m′ for m′ �=m and
Pt′�A

′� for all A′� t′ > t. We assume submodular rewards. In particular, we assume g�xt� xt+1� t�=w�x̄−xt+1�−
w�x̄− xt�, where w� �M

+ →� satisfies:

Assumption 4.1. w� �M
+ →� satisfies:

(i) (Monotonicity) w�y�≥w�y′� for y ≥ y′.
(ii) (Submodularity) For e ∈�M

+ , w�y+ e�−w�y�≤w�y′ + e�−w�y′� if y ≥ y′.

Such a class of functions clearly satisfies Assumption 2.1. We need to demonstrate the VFM and IR properties.
Recall that we will consider a clairvoyant optimal algorithm that knows a priori the realizations of the sample
paths of the Pt processes. We first demonstrate the IR property. It turns out that doing so requires only the
monotonicity of w; the submodularity of w is not required for this property to hold.

Lemma 4.1 (Immediate Rewards). We have for submodular stochastic depletion problems, for all s̄ ∈ �
and ' ∈×m�0�1� � � � � x�s̄�m�,

J ∗�s̄�≤w�x̄− x�s̄�+'�−w�x̄− x�s̄��+ J ∗�S̃'�s̄���

.

Proof. Consider using the optimal policy starting at state s̄, and let S∗
T be the random state under this policy

at the end of the time horizon (that is, at time T ), so that:

J ∗�s̄�=E �w�x̄− x�S∗
T ���−w�x̄− x�s̄��� (3)

where the expectation is over the randomness in the system—namely, the random item depletion defined by the
Pt sequences and chosen activities. Similarly, let S̃∗

T be the random state under the optimal policy at the end of
the time horizon upon starting in state S̃'�s̄� and, as above, we note that

J ∗�S̃'�s̄��=E�w�x̄− x�S̃∗
T ���−w�x̄− x�s̄�+'��

Let us reconsider the optimal policy starting at state s̄ and, in particular, let us partition the initial set of items
into a set of fictitious and real items; we assume that we begin with 'm fictitious items of type m and x�s̄�m−'m

real items of type m. This partitioning serves purely as a labeling of items and does not impact the evolution of
the system in any fashion. In particular, if at some point in time t, we have x

f
t�m and xr

t�m fictitious and real items
of type m respectively, then using activity set A results in the depletion of Xf

t�m and Xr
t�m fictitious and real items

respectively, where X
f
t�m is a Binomial �xf

t�m�Pt�m�A�� random variable and Xr
t�m is a Binomial �xr

t�m�Pt�m�A��

random variable (so that Xf
t�m+Xr

t�m

d=Xt�m). We are left with x
f
t�m−X

f
t�m and xr

t�m−Xr
t�m fictitious and real items

respectively. Let
∑

t X
f
t�m (

∑
t X

r
t�m) denote the number of fictitious (real) items of type m depleted at the end of

the time horizon by the optimal policy starting in state s̄.
We now make two critical observations:
Observation 1. We observe that

∑
t X

f
t�m ≤ 'm for all m by construction.

Observation 2. Due to the fact that given s and a choice of activity, the depletion of a given item of type
m at time t is independent of the past and the depletion of any other item in the system at that time,

∑
t X

r
t�m

may be viewed as the number of items of type m depleted under some induced randomized sub-optimal policy,
say � ′, starting at state S̃'�s̄�. This induced policy � ′ assumes in state S̃'�s̄� the existence of an additional 'm

items of each type m and simulates depletion of those items without garnering any reward for them. It operates
like the optimal policy would but on this modified state. More specifically, letting s0 = S̃'�s̄� and '0 = ', we
have:

� ′�s0�=�∗��x�s0�+'0� t�s0����

Defining '1 = x�S��'0� t�s0����
′�s0��� and s1 = S�s0��

′�s0��,

� ′�s1�=�∗��x�s1�+'1� t�s1����

In general, defining 't = x�S��'t−1� t�st−1���� ′�st−1��� and st = S�st−1�� ′�st−1��,

� ′�st�=�∗��x�st�+'t� t�st����

It is worth noting that '0 −'t =
∑t

t′=t�s̄� X
f
t′ while x�s0�− x�st�=

∑t
t′=t�s̄� X

r
t′ .
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We consequently have:

J ∗�S̃'�s̄�� ≥ J � ′
�S̃'�s̄��

= E

[
w

(
x̄− x�s̄�+'+∑

t

Xr
t

)]
−w�x̄− x�s̄�+'�

≥ E

[
w

(
x̄− x�s̄�+∑

t

Xf
t +

∑
t

Xr
t

)]
−w�x̄− x�s̄�+'�

= E�w�x̄− x�S∗
T ���−w�x̄− x�s̄�+'�

= J ∗�s̄�+w�x̄− x�s̄��−w�x̄− x�s̄�+'��

where the first inequality follows from the optimality of �∗ among all nonanticipatory policies. The first equality
follows from our definition of the policy � ′ in Observation 2 and from the definition of S̃'�s̄�. The second
inequality follows from the monotonicity of the function w and Observation 1:

∑
t X

f
t ≤ '. The second equality

is again by our construction of the X
f
t and Xr

t processes. The final equality follows from (3). This completes
the proof. �

While the IR property required only the monotonicity of w, the VFM property requires both the monotonicity
of w and its submodularity. This result is intuitive: a controller that starts at state s may simply assume that
it starts at state s′ and track state evolution accordingly. Assuming submodular rewards, applying the optimal
policy to this (incorrectly tracked) state trajectory guarantees the policy a total expected reward of at least J ∗�s′�,
so the optimal policy must certainly do at least as well. The submodularity required is somewhat subtle, but it
is simple to construct counterexamples in the absence of submodularity. We have:

Lemma 4.2 (Value Function Monotonicity). We have for submodular stochastic depletion problems, for
all s� s′ ∈� s.t. x�s�≥ x�s′�� t�s�= t�s′�, J ∗�s�≥ J ∗�s′�.

Proof. Consider a coupling of the systems starting at state s and s′ wherein both systems witness identical
sample paths for the item depletion processes defined by the Pt sequences. More precisely, assuming that at
time t, the systems are in states st and s′t respectively, then given Pt , the number of items depleted in both
systems are coupled so that if x�st�≥ x�s′t�, and we employ activity set A in both systems, then, for all m, the
number of successfully depleted items of type m in the st system, Xt�m �∼ Binomial�xt�m�Pt�m�A��� and the
number of successfully depleted items of typem in the s′t system, X

′
t�m �∼Binomial�x′

t�m� Pt�m�A��� satisfy Xt�m =
X ′

t�m + Yt�m where Yt�m is an independent Binomial �x�st�m − x�s′t�m�Pt�m�A�� random variable. A symmetric
situation must hold if x�s′t�≥ x�st�.
Now assume that the system starting at s′ uses an optimal policy whereas the system starting at state s mimics

the actions of the s′ system (call this policy ��). It is simple to see that �� is an admissible nonanticipatory policy.
Under our coupling, we have at t = t�s� that the number of items of type m depleted in the system starting

at state s is greater than the number of items depleted in the system starting at state s′. That is, Xt�m ≥ X ′
t�m.

It then follows that

R�s� ���s�� = w�x̄− x�s�+Xt�−w�x̄− x�s��

≥ w�x̄− x�s�+X ′
t�−w�x̄− x�s��

≥ w�x̄− x�s′�+X ′
t�−w�x̄− x�s′��

= R�s′��∗�s′���

That is, the reward earned in the system starting at state s is higher than that in the system starting at state s′; the
first inequality above uses the monotonicity of w while the second inequality employs the submodularity of w.
Now, in addition, by our coupling, both systems transition to states St�s�+1 and S ′

t�s�+1, respectively, satisfying
x�St�s�+1�= x�s�−Xt = �x�s′�−X ′

t�+ �x�s�− x�s′�− Yt�≥ x�s′�−X ′
t = x�S ′

t�s�+1�, so that we may repeat the
above argument for time t�s�+ 1. Continuing in this fashion we see that in every time step the �� controlled
system starting at state s earns at least as large a reward as the �∗ controlled system starting in state s′. Taking
expectations over the random item depletions (i.e., the Xt and X ′

t processes), we have J ���s� ≥ J ∗�s′�. Since
J ∗�s�≥ J ���s�, we are done. �

In light of Lemmas 4.1 and 4.2, Theorem 3.1 lets us conclude that the myopic heuristic is a 2-approximation
algorithm for submodular stochastic depletion problems.
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4.2. Linear decaying stochastic depletion problems. We consider here a family of stochastic depletion
problems closely related to the family just considered that also admit the VFM and IR properties and are
particularly useful for many applications. As before, we consider problems for which �Pt�A�� is a �0�1�M -valued
stochastic process for all A ∈�. Assuming one chooses action A at time t, Xt�m is a Binomial �xt�m�Pt�m�A��
random variable that, given xt�m and Pt�m�A�, is independent of the past, Xt�m′ for m′ �=m, and Pt′�A

′� for all
A′� t′ > t. We assume linear rewards that are nonincreasing in time. In particular, we assume g�xt� xt+1� t� =∑

m wm�t�xt�m − xt+1�m�, where wm�t is a nonnegative, nonincreasing function of t for all m (for the special case
where wt�m =wm ≥ 0 for all t this is merely a special case of a submodular stochastic depletion problem model
we have considered). We can verify the immediate rewards property for such systems via a proof found in
the appendix that closely follows Lemma 4.1. Again, recall that the following results apply to the clairvoyant
optimal policy.

Lemma 4.3 (Immediate Rewards). We have for linear decaying stochastic depletion problems, for all s̄ ∈�
and ' ∈×m�0�1� � � � � x�s̄�m�,

J ∗�s̄�≤∑
m

'mwt�s̄��m + J ∗(S̃'�s̄�
)
�

In addition, we may verify the VFM property. The proof of the following lemma is essentially identical to
that of Lemma 4.2 and is omitted.

Lemma 4.4 (Value Function Monotonicity). We have for linear decaying stochastic depletion problems,
for all s� s′ ∈� s.t. x�s�≥ x�s′�, t�s�= t�s′�, J ∗�s�≥ J ∗�s′��

In light of Lemmas 4.3 and 4.4, Theorem 3.1 lets us conclude that the myopic heuristic is a 2-approximation
algorithm for linear decaying stochastic depletion problems.

4.3. A worst case example. Having established the VFM and IR properties for the two families of stochastic
depletion problems just discussed, we immediately have that the myopic policy has expected value within a
factor of 1/2 of the optimal policy for problems from either family. This analysis is sharp. In particular, we now
present a problem instance that is, in fact, a member of both problem families and for which we have that the
optimal policy has expected value that is a factor of 2− � better than the myopic policy; � > 0 can be made
arbitrarily small.
Example 4.1 (Myopic Sub-Optimality). Consider the case where M = 2 and T = 2, g�x� x′� t� =

�x1−x′
1�+�1−���x2−x′

2�. Assume that x̄1 = x̄2 = 1 and that x0�1 = x0�2 = 1. Let �= �1�2�. The (deterministic)
Pt processes are defined as:

For A= 1 � P0�1�1�= 1� P0�2�1�= 0� P1�1�1�= 1� P1�2�1�= 0�

For A= 2 � P0�1�2�= 0� P0�2�2�= 1� P1�1�2�= 0� P1�2�2�= 0�

In words, the item of type m = 1 may be depleted in either time-step via the use of A = 1, whereas the
item of type m= 2 may be depleted only in the first time-step via A= 2. Only one of activity 1 or 2 may be
employed within a given time-step. The myopic heuristic will first choose activity set �1� (which earns a reward
of 1 via the depletion of the m = 1 type item) over activity set �2� (which earns a reward of 1− � via the
depletion of the m= 2 type job). Consequently, under the myopic heuristic, x1�1 = 0� x1�2 = 1, and the heuristic
is unable to complete the one remaining job in the second time-step, earning a total reward of 1. An optimal
schedule would first choose activity set �2� (which earns a reward of 1−� via the completion of the m= 2 type
job). Consequently, under the optimal schedule, x1�1 = 1� x1�2 = 0, and the schedule is able to complete the one
remaining job in the second time-step via the use of activity set �1� earning a total reward of 2− �. We thus
see that J ∗�s0�= �2− ��J �g

�s0� here.

5. Applications: Stochastic control. In the previous section, we presented two families of stochastic deple-
tion problems for which the myopic heuristic is a 2-approximation algorithm. We now consider several problems
of stochastic control that are easily seen to be members of these families. We thereby establish uniform perfor-
mance guarantees for myopic policies for these stochastic control problems.

5.1. Service policies for simple queueing models. The following is a discrete time version of a parallel-
server queueing model that has received a good deal of attention: We have I buffers and J servers. Each buffer
sees a general discrete time arrival process with the restriction that a given buffer can see at most a single arrival
in a given time slot. For example, each buffer i may see an independent Bernoulli�/i� arrival process. A given
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server j may be used to service any single job in the system in a given time slot. In particular, should server j
be used to service a job arriving to buffer i, the service time is assumed to be an independent geometric random
variable with mean �i� j (possibly �). We allow for pre-emption in our service discipline. While allowing for
pre-emption is unrealistic in some scenarios—for instance, in a call-center—it is quite realistic for many other
applications of the parallel server model such as parallel or distributed computing. Consider the following natural
objective: completion of a job that arrives at buffer i earns a nonnegative reward ri�d, where d is the time that
job has remained in the system (that is, the delay experienced by that job). We assume ri�d is nonincreasing in
d. At every point in time one must decide on a matching between servers and available jobs with a view to
maximizing the expected reward earned over T periods.
It is not difficult to see that the above problem is an example of a linear decaying stochastic depletion problem.

In particular, we define an item type for every tuple �i� "�, where i= 1�2� � � � � I and " = 0�1� � � � � T − 1. Thus
an item type m is associated with an arrival buffer im and an arrival time "m. We can have at most a single item
of a given type; i.e., x̄m = 1. The set of feasible activities � is simply the set of all matchings of servers to item
types. Given a particular matching, the probability of depletion for a given item type (or job), is determined by
the server matched to that job or 0 if no server is matched to it. Of course, a job may not be depleted prior to
arrival. In particular, we have for item type m= �im� "m�,

Pt�m�A�= 1t≥"m

(∑
j

1�i� j�∈A1
/
�i� j

)
�

We define our reward function g according to g�xt� xt+1� t�=
∑

m wm�t�xt�m − xt+1�m�, where we assume wm�t =
rim� �t−"m�+ . In particular, the reward generated in the tth time step is given by

∑I
i=1

∑t
t′=0 ri� t−t′Xi� t−t′ , where

Xi� t−t′ = 1 if a job arriving to buffer i at the start of time-step t′ was completed at time t, and is 0 otherwise.
Since both the VFM and IR properties hold for this family of stochastic depletion problems, we have via
Lemmas 4.3 and 4.4, and Theorem 3.1 that the myopic policy generates total expected rewards that are within
a factor of 1/2 of the optimal policy. In fact, we have shown that this performance guarantee holds relative to
an optimal policy that has full knowledge of the entire job-arrival process!
Continuous time variants of the problem above have been the subject of much study and results on optimal

control policies in various asymptotic parameter regimes are available (for example, see Bassamboo et al. [3]);
the formulation we have discussed focuses on a different objective and a nonasymptotic parameter regime, thus
complementing that body of work. Although distinct, it is interesting to note the similarity of our myopic policy
with the so-called c − � scheduling rules (see for instance, van Mieghem [29]) for scheduling jobs arriving
to multiple buffers served by a single server with a view to minimizing total delay cost (every job incurs a
buffer-dependent, typically linear, delay cost). In another example, still closer to our work, Buyukkoc et al. [4]
consider scheduling jobs arriving to multiple buffers served by a single server in discrete time and show the c−�
rule to be optimal for arbitrary arrival processes and geometric service times if the service discipline permits
pre-emption. Relative to Buyukkoc et al. [4], we consider in our model the situation with multiple servers,
each of which can serve some subset of buffers. However, we maximize reward as opposed to minimizing cost.
Rewards decrease with delay incurred in a piecewise linear fashion, eventually decreasing to zero; our model
cannot accommodate negative rewards. In contrast, in the c−� setting (necessarily nonnegative) costs increase
linearly with delay.

5.2. Stochastic broadcast scheduling. We consider a broadcast communication system where a single data
item may be simultaneously transmitted to multiple users. In particular, we consider the following problem: we
have a set of U users (indexed by u) and a finite set of data items or “pages,” P = �1� � � � � n�, indexed by i. In
every time slot " ∈ �1� � � � � T − 1�, any given user may generate a request for some page (or pages) he has not
requested in the past. We assume that every request for a page is associated with a deadline d ∈ �1� � � � � T −1�.
Should a request for page i by user u be successfully satisfied prior to its deadline, the transmitter earns
nonnegative reward ru

i . We assume that the arrival process governing requests from users, as well as the deadlines
associated with those requests, are exogenous stochastic processes and further assume a (known) bound on the
number of requests that may arrive in any given time slot. In each time slot, a single page can be transmitted
(although in what follows we could also consider allowing up to b pages). Due to the broadcast nature of the
system, this page may be transmitted simultaneously to up to k≥ 1 users. The communication channel to users
is stochastic, so that should a page be transmitted to a particular user u in time t, that user receives the page
with some channel-dependent probability Pu

t which is itself an exogenous stochastic process. In each time slot,
one must decide which page to transmit and to which k users to maximize the expected reward accrued over T
time slots.
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Approximation algorithms for deterministic broadcast scheduling (where transmissions are successful with
probability 1 so that Pu

t = 1 for all t� u) have received quite a bit of attention. The best-known approximation
algorithm is a 4-approximation due to Bar-Noy et al. [1]. Without any constraints on the number of requests
that can be satisfied by a single broadcast (i.e., k = �), the best-known algorithm is a 4/3-approximation
algorithm due to Gandhi et al. [14]. The best-known online algorithm for the same is a 2-approximation due
to Kim and Chwa [20]. Specializing to this deterministic case, our myopic online algorithm improves upon the
offline results for “finite batching” in Bar-Noy et al. [1] albeit for uniform item sizes. Modeling stochasticity
in communication channels to users is important since in real-world systems, congestion and various physical
phenomena cause significant uncertainty in the successful transmission of pages. Scheduling communications
over stochastic channels is, of course, the focus of a substantial body of work in communications engineering.
See, for instance, Eryilmaz et al. [10], Su and Tassiulas [27], Ren et al. [25] for models closely related to
the broadcast scheduling model we have presented. Most of that body of work is either simulation driven or
focuses on coarser performance metrics (such as throughput optimality). A recent push in packetized multimedia
scheduling has examined the case of utility maximization in lossy networks (see Chou and Miao [6] and related
work). In this stream of work, each packet is associated with a weight that represents the reduction in distortion
achieved with the reception of that packet, much like our formulation. Many of these formulations call for
the solution of intractable optimization problems and heuristics such as the greedy heuristic, or heuristics with
limited look-ahead, become essential.
The stochastic broadcast scheduling problem we have presented may be cast as a linear decaying stochastic

depletion problem. Every request is associated with four parameters �u� i� "�d� representing the user, page, time
of request, and request deadline, respectively. We associate an item type with each such request. Thus an item
type m is identified by a request by user um for page im, with an arrival time, "m, and deadline, dm. An activity
A ∈� is simply an assignment of a given page to k users. Given a particular choice of activity A, the probability
of depletion of a particular item type is simply given by the quality of the channel to the user corresponding
to that type, Pu

t , provided that user u is served under activity A; else it is 0. Of course a request may not be
satisfied prior to its arrival or following the expiration of its deadline, so that for item type m= �um� im� "m�dm�:

Pt�m�A�= 1dm>t≥"m
1�im�um�∈AP

um
t �

We define our reward function g according to g�xt� xt+1� t�=
∑

m wm�xt�m−xt+1�m�, where we assume wm = r
um
im
.

This is a linear decaying stochastic depletion problem and since both the VFM and IR properties hold for this
family of stochastic depletion problems, we have via Theorem 3.1 that the myopic policy generates expected
value that is within a factor of 1/2 of the optimal policy. Moreover, the complexity of the heuristic is essentially
the lowest we may expect for this problem; i.e., computational complexity grows linearly with the number of
requests to be considered and the horizon. This is also substantially lower than some of the tailored approximation
methods (such as Gandhi et al. [14]) that require solving linear programs with a number of variables that grows
linearly with the number of requests and the length of the horizon.
It is interesting to consider a special case of the stochastic broadcast scheduling problem we have presented:

In particular, assuming that all requests are known at time t = 0 and further, that all these requests have deadline T ,
the myopic policy is, in fact, optimal if the channel to each user is “static,” i.e., Pu

t =Cu, for all u and if at most
a single packet may be broadcast to all (or up to k) users in any time step. This is established via an interchange
argument; the proof of the following lemma may be found in the appendix. The result for the case where k <�
may be established via an essentially identical (but notationally cumbersome) interchange argument.

Lemma 5.1. Suppose all requests are available at t = 0 and share deadline T . Then, if Pu
t is constant (=Cu)

for all u, and at most a single packet may be broadcast to all users in a given time step (i.e., b= 1 and k=�),
then J �g

�s0�= J ∗�s0� for all s0 ∈� .

Lemma 5.1 allows one to interpret the myopic heuristic for the general stochastic broadcast scheduling problem
as one that at every time-step t makes the simplifying assumption that all channels are static with success
probabilities given by Pu

t and that no further arrivals will be observed. This is, in fact, a common engineering
design principle for scheduling over dynamic channels. For instance, Tsibonis and Geogiadis [28], Dua and
Bambos [7, 9], Huang et al. [18], Dua and Bambos [8], and Chou and Miao [6] all derive optimal scheduling
policies for problems similar to the broadcast scheduling problem here under the assumption of a static channel
and other simplifying assumptions. The hope is that in conjunction with frequent channel state re-estimation
(that is, frequent re-estimation of channel success probabilities), the use of scheduling schemes so derived may
prove to be a very effective heuristic. In addition to being simple to implement and typically fast in practice,
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such an approach is robust to errors in specifying channel dynamics. Lemma 5.1 and Theorem 3.1 thus lend
theoretical support to this popular design principle. In particular, one may simply design a scheduling scheme
assuming a static channel; one then employs this scheme in tandem with repeated channel re-estimation. Put
another way, simply accounting for channel state suffices to obtain levels of performance within 50% to optimal.

5.3. Dynamic product-line design. Consider a firm that is capable of producing an array of related products
that may potentially be sold to one or more customer segments, each distinguished by its willingness to pay for
various product features. For a variety of reasons (manufacturing capacity and cost, marketing capabilities, etc.),
the firm may be constrained in the number of different products it is capable of simultaneously offering for sale.
Further, external competition may impose limitations on the prices the firm can post for a given product. Faced
with these restrictions, the firm must decide on a product line to offer with a view to maximizing revenues. This
is the essence of product-line “design” problems that have been extensively considered in the operations research
and marketing literature. For instance, the classic third-degree price-discrimination model of Pigou [24] forms
the basis of design principles that center on explicit market segmentation (see Frank et al. [13]). Alternatively,
assuming a model of customer preference for various product attributes, one may consider optimizing the
attributes of products offered for sale to maximize revenues; customers “self-select” product types that are of
greatest appeal in this case. A number of product-line design problems of this type have been considered in past
literature; Moorthy [22], Kohli and Sukumar [21], van Ryzin and Mahajan [30], and Hopp and Xu [17] are a few
examples. A common thread to this work, however, is their consideration of static models. In reality, demand
shocks and demand seasonality make the optimal product-line design problem an inherently dynamic one. For
instance, consider the following example that illustrates the potential importance of accounting for seasonality
in demand.
Example 5.1. A firm may offer at most one of two products (“outdated” or “new”) for sale at any epoch

(over two successive sales epochs) to two distinct consumer segments—“bargain hunters” and “early adopters.”
Bargain hunters will purchase only the outdated product for one dollar in the first period with probability 1 and
will make no purchase in period 2. “Early adopters” will purchase only the new product with probability 1 in
either epoch for 1+ � dollars. Assume we begin with an equal number of consumers in both segments. It is clear
that a product-line selection strategy that accounts for seasonality (by delaying the introduction of the new product
to the second period) will earn about twice the revenues earned by a myopic strategy over two sales epochs.
How does one interpret the above example and to what extent must one account for seasonality and demand

shocks in designing product lines? Motivated by this question, we consider the following dynamic product-line
design problem: a firm is capable of offering products from some set 	 and must at any point in time offer a
subset of products A⊂	 with �A� ≤ k. The firm’s products are purchased by I consumer segments and we let
xt� i denote the size of the ith segment in the tth sales epoch. Assuming that the product line offered at time t
is A, any segment i consumer present in the market at that time t will purchase a product in A with known
probability Pt� i�A�. Such a sale garners the seller revenue pi and the consumer is lost to the system so that
the size of the ith segment after sales in that epoch become xt� i −XA

t� i, where XA
t� i is a Binomial �xt� i� Pt� i�A��

random variable. We assume that the firm has modeled the dynamics of the Pt processes and wishes to maximize
expected revenues over T sales epochs.
It is worthwhile discussing some of the salient features of our model.
(i) We model the fact that a customer from a given segment may satisfy his requirement by the purchase

of one of several product types (a purchasing customer may substitute between products in A), and that the
probability of a particular segment purchasing a product is influenced by the entire array of product types offered
(Pt� i is a function of A). Such a model permits customer self-selection but under the restriction that all substitutes
(all products in 	) are offered at the same price to every segment; this is precisely the type of model considered
by van Ryzin and Mahajan [30]. Alternatively, one may view the model as assuming that the seller has a means
of directly segmenting customers (as in Frank et al. [13]) and allowing for segment-specific prices, i.e., prices
pi that depend on the segment i.

(ii) We allow for general models of demand seasonality. In particular, we make no assumptions on the
dynamics of the Pt processes. Further, we explicitly model the impact of current sales on future demands
(“market saturation”). In particular, the number of sales in a given epoch are influenced by the sizes of the
various customer segments, xt� i, in that epoch; sales in a given period cause a reduction in these sizes thereby
lowering potential sales to those segments in subsequent periods.
(iii) We assume that the product-line designer has available an estimate of market size within each consumer

segment; i.e., he can estimate xt� i over time. Such an assumption is potentially valid in several industries; see
Yunes et al. [31] for a practical discussion of this issue.
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(iv) Prices for each consumer segment are fixed. That is, a sale to a segment i customer must be at a price pi

that is independent of the product variant purchased. In reality, fixed prices may arise, for example, due to the
need to align with prices offered by competitors.

(v) Finally, we assume no limitations to inventories of a given product so that all realized demand in a period
can be met. This is a simplification relative to models such as those considered by van Ryzin and Mahajan [30].
Nonetheless, for high-margin products where the cost of a lost sale is far higher than that of an unsold unit of
inventory, this is likely to be a relatively mild simplification.
It is simple to cast the above model as a linear decaying stochastic depletion problem. In particular we

associate with each customer segment i an item type m. Our set of activities � = �A� A ∈ 	� �A� ≤ k�, and
depletion probabilities for item type m are specified according to Pt�m�A� = Pt� im

�A�. We define our reward
function g according to g�xt� xt+1� t�=

∑
m wm�t�xt�m − xt+1�m�, where we assume wm�t = pim

. This is a linear
decaying stochastic depletion problem, so that Lemmas 4.3 and 4.4 with Theorem 3.1 immediately tell us that
a myopic policy generates expected revenues within a factor of 1/2 of the optimal policy.
From a managerial perspective, this suggests a robust recipe for dealing with demand shocks and seasonality:

at every opportunity for product line update, one simply solves a static product-line design problem with suitably
revised estimates of the relevant customer demand model and market sizes. That is, optimization that entirely
ignores contingencies for future demand shocks or seasonality but accounts for the current demand environment
is already likely to be quite good and, in particular, will provide expected revenues at least within 50% of an
optimal scheme in the context of the dynamic product-line design model considered here.

6. Applications: Stochastic variants of submodular maximization problems over matroids. In this sec-
tion, we turn our attention to the use of the stochastic depletion framework as a useful stochastic analogue
to submodular maximization problems over simple matroids such as the cardinality matroid and the partition
matroid. A number of hard deterministic optimization problems can frequently be reduced to problems of this
nature and in doing so, finding good approximation algorithms for these problems is reduced to the task of find-
ing a good oracle for the myopic subproblem (for a number of recently considered problems of this type, see, for
instance, Goundan and Schulz [15]). Our hope is to produce good approximation algorithms for useful stochastic
variants of such problems. As an illustration, we will later consider an important stochastic generalization of the
AdWords Assignment problem considered by Fleischer et al. [12] and Goundan and Schulz [15].
Given a set E, let �= 2E . A cardinality matroid is a subset of � of the type 
= �F ⊂E� �F � ≤ k�, where k

is an integer. A partition matroid is a subset of � of the type 
= �F ⊂E� �F ∩Ei� ≤ ki ∀ i�, where we assume

E = d⋃
n
i=0Ei and that integers ki for i= 0�1� � � � � n are given.

Consider optimization problems of the form

max
A∈


f �A�� (4)

where f � 2E →�+ is a nondecreasing, submodular function. A number of interesting combinatorial optimization
problems are reduced to such maximization problems, where 
 is a cardinality or partition matroid. We begin
with establishing how such deterministic optimization problems are captured within the stochastic depletion
framework.

 is a cardinality matroid: We reduce (4) to a submodular stochastic depletion instance assuming 
 is a

cardinality matroid: We are given M = �E� item types and assume that we begin with a single item of each type;
i.e., x̄m = x0�m = 1. Let �= �1�2� � � � � �E��, where Pt�m�j�= 1 if m= j and 0 otherwise. That is, we define an
item type for each element of E and in every time-step we are allowed to deplete at most one item. We select as
our reward function g�xt� xt+1� t�= f �x̄−xt+1�− f �x̄−xt� and set T = k. Observe that the value of an optimal
solution to this problem is precisely J ∗�x̄�0�. With Lemmas 4.1 and 4.2, Theorem 3.1 then immediately yields:

Corollary 6.1. The myopic heuristic is a 2-approximation algorithm for maximizing a nondecreasing sub-
modular function f over a cardinality matroid.

We remark that this is a weaker result than the well-known optimal approximation ratio of e/�e− 1� due to
Nemhauser et al. [23]. The analysis of Theorem 3.1 applies to a far broader class of problems, and in light of
Example 4.1, we cannot expect a tighter guarantee for the greedy heuristic via that general line of analysis.

 is a partition matroid: We reduce (4) to a submodular stochastic depletion instance assuming 
 is a

partition matroid: We are given M = �E� item types and set �= �1�2� � � � � �E��. We index the elements of E by
m which identifies a particular element of E with a particular item type and assume that the first �E0� elements
correspond to the elements of E0, the next �E1� elements to the elements of �E1�, and so forth. We set the
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time horizon T = ∑
i ki and define n + 1 partitions of this horizon according to Tj = �

∑j−1
l=0 kl�

∑j
l=0 kl − 1�.

We assume Pt�m�j� = 1 iff m = j and t ∈ �Tj � m ∈ Tj�. We select as our reward function g�xt� xt+1� t� =
f �x̄− xt+1�− f �x̄− xt�. In words, we define an item type for each element of E and identify each subset Ei

with a partition of time. At any point in time t ∈ Ti, we are allowed to deplete at most one available item from
the partition Ei. Observe that the value of an optimal solution to this problem is precisely J ∗�x̄�0�. The myopic
heuristic for this stochastic depletion problem corresponds precisely to the “local greedy” heuristic introduced
by Fisher et al. [11], and we re-capture their result, namely:

Corollary 6.2. The local greedy heuristic is a 2-approximation for maximizing a nondecreasing submod-
ular function f over a partition matroid.

Both classes of problems alluded to above have natural stochastic generalizations. As a simple example, one
may consider a stochastic generalization to the problem of submodular maximization over a cardinality matroid
which we refer to as the “stochastic selection problem.” As opposed to selecting at most k elements from E, one
is allowed k attempts at selecting elements of E. If at the tth selection attempt one attempts to select element
e ∈E, the attempt is successful with probability Pe

t , where �Pe
t � is an arbitrary �0�1�-valued sequence specified

for every e ∈ E. We would like to find an adaptive item selection policy that maximizes the expected value of
the set of successfully selected items. It is easy to see that the stochastic selection problem includes as special
cases appropriate stochastic generalizations of problems such as the maximum coverage problem. The problem
of adaptively selecting items to maximize the expected value of the set of successfully selected items is seen
to be a submodular stochastic depletion problem using precisely the reduction for the cardinality matroid above
and one immediately has the following result.

Lemma 6.1. The myopic heuristic is a 2-approximation for the stochastic selection problem.

As an aside, we note that if, in addition, one assumes that Pe
t = C, a constant for all t and e, it is simple to

demonstrate that the myopic heuristic is, in fact, an e/�e− 1�-approximation. This may be demonstrated as a
corollary to the original result of Nemhauser et al. [23]: one simply considers coupling the optimal and myopic
schemes so that on each sample path, both schemes have an identical number of successful placements.
We now consider in some detail a practically relevant stochastic generalization of the AdWords Assignment

problem (Fleischer et al. [12]). The deterministic problem may be reduced to the maximization of a submodular
function over a partition matroid (see Goundan and Schulz [15]). We reduce our stochastic generalization to a
submodular stochastic depletion problem.

6.1. Cost-per-click AdWords Assignment. Consider the following optimization problem faced by firms
that serve ads on the internet. We are given a set of N advertisers (indexed by i) and K keywords (indexed
by k). The ith advertiser has a budget Bi �≥0� and submits to the firm a valuation vi�k for every keyword k. In
every one of T periods, a keyword from the set of K keywords arrives according to some exogenous stochastic
process. We assume that at most C advertisers’ ads can be assigned to the arriving keyword. We denote by kt

the index of the keyword arriving at time t. Should an advertiser i be assigned to an arriving keyword, kt , at
time t, and if, in addition, his ad is clicked on, he pays the firm the minimum of vi�kt

and his remaining budget
at time t; this payment is subtracted from his available budget. If the ad is not clicked on, then no payments
are made. We assume that should advertiser i be assigned to keyword kt at time t, his ad is clicked on with
probability P

i�kt
t . Letting Vt� i denote the random payment thus made by an advertiser in the tth period, we

are interested in devising an adaptive ad-to-keyword assignment scheme that maximizes E�
∑N

i=1�Bi ∧
∑

t Vt� i��,
that is, the expected revenues earned by the firm.
The above problem was considered in a deterministic offline setting by Fleischer et al. [12] where it was

assumed that P i�k
t = 1 for all t� i� k and, in addition, the sequence �kt� of arriving keywords was specified a priori;

the variant we consider here is an important generalization of that model since in practice advertisers make
payments only if their displayed ads are clicked on, which happens with some positive, but small, probability.
In addition, our formulation also allows us to capture exogenous advertiser arrivals and departures from the
system—in particular, we simply assume P i�k

t = 0 for all times t prior to a customer’s arrival to the system and
following his departure from the system.
This problem is easily cast as a submodular stochastic depletion problem: In particular, we define an item

type m for every advertiser-keyword-time triple �im� km� tm�, and assume a single item of each type, i.e., x0�m =
x̄m = 1, for all m. The set of feasible activities, �, is the set of all subsets of item types such that each subset
has cardinality at most C and contains at most one type specific to a given user i. The probability that an item
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of type m is depleted at time t assuming one selects activity A is given by

Pt�m�A�= 1��im� km� tm�∈A� t=tm� kt=km�P
im�km
t �

Finally, the reward function, g�xt� xt+1� t�=w�x̄−xt+1�−w�x̄−xt�, where w� �M →�+ is defined according to

w�x�=∑
i

(
Bi ∧

∑
m� im=i

vim�km
xm

)

and thus satisfies Assumption 4.1. We finally note that the myopic subproblem is trivial; it corresponds to
choosing the C highest expected revenue advertisers so that our heuristic is essentially the computationally
simplest heuristic one may consider for this problem with complexity that grows linearly in the number of
keywords and ads served over the horizon. With Lemmas 4.2 and 4.1, Theorem 3.1 yields:

Corollary 6.3. The myopic heuristic is a 2-approximation to the cost-per-click AdWords Assignment.

In our formulation, a feasible ads-to-keyword assignment was subject to a simple cardinality constraint: an
arriving keyword could have at most C ads assigned to it. We could instead consider using other, more complex
constraints: in particular, in the formulation of Fleischer et al. [12], every ad is associated with a rectangle of a
specific height and width, and every arriving keyword is associated with an available rectangular display area; a
feasible assignment of ads-to-keywords is determined by a feasible packing of ad rectangles within the display
rectangle. Using the max-weight rectangle packing �2+ ��-approximation algorithm of Jansen and Zhang [19]
for the myopic subproblem yields via Theorem 3.2, a �3+ ��-approximation guarantee for the myopic heuristic
which matches the best-known approximation guarantee available for the original deterministic problem (see
Goundan and Schulz [15]). In the deterministic case, our heuristic coincides precisely with that of Goundan and
Schulz [15]; the stochastic generalization entails essentially no increase in computational complexity.

7. Concluding remarks. We have in the present work introduced a general class of dynamic stochastic
optimization problems—stochastic depletion problems. We believe this to be an interesting class of problems:
in spite of being fairly general, stochastic depletion problems frequently admit a simple, myopic control policy
which is at most a factor of 1/2 to optimal. This paper presents general conditions under which a myopic control
policy is a constant factor approximation algorithm for a stochastic depletion problem and goes on to verify
these properties for broad families of stochastic depletion problems. This, in turn, yields myopic approximation
algorithms for a number of interesting dynamic optimization applications.
There are several areas that deserve continued study. From an algorithmic perspective, one may consider k-step

lookahead policies as a generalization of the myopic (1-step lookahead) policies analyzed here. Such policies
select, at every point in time, an action that is optimal for a problem with a horizon precisely k time-steps
ahead. It would be interesting to understand whether, or under what conditions, such policies may be expected
to dominate the myopic policy.
In addition to the applications in §5 and §6, it would be interesting to explore other dynamic stochastic

optimization problems that may be studied either within our framework or perhaps slight modifications to it. For
instance, the generalized assignment problem (Shmoys and Tardos [26]) is known to reduce to the maximization
of a submodular function over a partition matroid. An interesting stochastic generalization of this problem that
would allow for a number of interesting applications would involve making the successful placement of an
item in a bin stochastic. Unfortunately, this particular stochastic generalization does not reduce to a stochastic
depletion problem but is nonetheless very similar to one.
Another broad issue is identifying other families of stochastic depletion problems that satisfy the VFM and IR

properties, or in another direction, identifying conditions under which we may not expect one of those properties
to be satisfied. Yet another issue is the optimality of our approximation schemes: for deterministic variants of
several of the application problems considered in this work such as the submodular maximization problems over
matroids, there exist (typically, fairly complex) offline algorithms that admit an approximation ratio of e/�e− 1�
(see Calinescu et al. [5]). This guarantee is known to be optimal. That is, no efficient approximation algorithm
with a superior guarantee exists, unless P =NP. It would be interesting to understand whether an approximation
ratio of 2 is optimal in some sense for either of the families of problems for which we have established that
guarantee in this paper. In any case, given that the best approximation guarantee we may expect is a factor of
e/�e− 1�, it is remarkable that a simple myopic scheme comes so close to achieving that guarantee and that
this guarantee may be established in the generality of the stochastic depletion framework.



Chan and Farias: Effective Myopic Policies for a Class of Dynamic Optimization Problems
348 Mathematics of Operations Research 34(2), pp. 333–350, © 2009 INFORMS

Acknowledgments. The authors are grateful to Retsef Levi for valuable discussions, particularly in relation
to §6. Section 5.1 was motivated in part by discussions the second author had with Ben Van Roy several years
ago. The second author thanks Andreas Schulz for pointing out his interesting work on submodular maximization.
Finally, the authors thank two anonymous referees for useful comments that improved the exposition of this
work. The first author was supported by a STMicroelectronics Stanford Graduate Fellowship. This research was
supported in part by the Solomon Buchsbaum Research Fund.

Appendix. Miscellaneous technical proofs.
Proof of Lemma 4.3. Consider using an optimal policy starting at state s̄. Let us partition the initial set of

jobs into a set of “fictitious” and “real” jobs; we assume that we begin with 'm fictitious jobs of type m and
x�s̄�m − 'm real jobs of type m. This partitioning serves purely as a labeling of jobs and does not impact the
system in any fashion. In particular, if at some point in time t, we have x

f
t�m and xr

t�m fictitious and real jobs of
type m respectively, then using activity set A results in the completion of Xf

t�m and Xr
t�m fictitious and real jobs

respectively, where X
f
t�m is a Bernoulli �xf

t�m�Pt�m�A�� random variable and Xr
t�m is a Bernoulli �xr

t�m�Pt�m�A��

random variable (so that Xf
t�m +Xr

t�m

d=Xt�m). The revenues earned are
∑

m X
f
t�mwt�m and

∑
m Xr

t�mwt�m and we
are left with x

f
t�m −X

f
t�m and xr

t�m −Xr
t�m fictitious and real jobs respectively.

Denote by J f �∗�s̄� the expected reward-to-go under an optimal policy starting at state s̄ earned from the
completion of fictitious jobs. Likewise, we define J r�∗�s̄� as the expected reward-to-go under an optimal policy
starting at state s̄ earned from the completion of real jobs. Now, by construction, J f �∗�s̄�+ J r�∗�s̄� = J ∗�s̄�.
Since at best our scheduling policy can exhaust all fictitious jobs and since wt�m is nonincreasing in t for all m,
J f �∗�s̄� ≤ ∑

m 'mwt�s̄��m. Now, J r�∗�s̄� may be viewed as the reward-to-go under some admissible policy �

starting at state S̃'�s̄�. Noting that x�S̃'�s̄��m is precisely the initial number of “real” jobs of type m, we then
have: J r�∗�s̄�= J ��S̃'�s̄��≤ J ∗�S̃'�s̄��. Consequently, we have

J ∗�s̄�= J f �∗�s̄�+ J r�∗�s̄�≤∑
m

'mwt�s̄��m + J ∗�S̃'�s̄���

which is the result. �

Proof of Lemma 5.1. Note that since the processes Pu
t are deterministic here, we may without loss restrict

attention to policies that are functions of only time t and �x1� x2� � � � � xU �. Here xu�s�i is equal to 1 if in state s
user u has not yet received page i. Let wu

i = rm for item m= �i� u� "m�dm�. Recall by assumption that all packets
are known a priori and share a common deadline of T so that "m = 0 and dm = T for all m. We define the set of
myopic packets as 	∗

0 = argmaxi

∑
u Cuw

u
i x

u�s0�i. Let us assume for the sake of contradiction that in state s0 no
optimal policy transmits a packet in 	∗

0 . Let �
∗ be an optimal policy; �∗�s0� �	∗

0 . Without loss of generality,
we can assume that t�s0� = 0. In particular, if t�s0� �= 0, we may consider a problem with time indexed by
t′ = t− t�s0� and horizon T ′ = T − t�s0�.
Define a policy �� according to:

���s�=�g�s� ∀ s s.t. t�s�= 0�

���s�=�∗�f �s�� ∀ s s.t. t�s� > 0�

where f � � →� is defined according to x�f �s���g�s0�
= x�s0��g�s0�

, x�f �s��i = x�s�i ∀ i �=�g�s0�, and t�f �s��=
t�s�− 1.
Letting S∗

t denote the random state at time t under �∗, let " =min�t < T � �∗�S∗
t � ∈	∗

0 � (set " to � if the set
is empty). Since Pu

t =Cu for all t, we may, for an arbitrary alternative policy �, couple the sample paths under �
and �∗ such that Y �

i�k = Y �∗
i� k for all k� i, where Y �

i�k and Y �∗
i� k denote, respectively, the random vector of successful

transmissions of packet i at the kth transmission of that packet under policy � and �∗, respectively. Consider
using policy �� for t ≤ " and policy �∗ thereafter. We call this policy � ′. � ′ may be constructed as an admissible
randomized policy. Letting S ′

t denote the random state in time slot t under � ′, we have under this coupling that
S ′
t = S∗

t for all t ≥ " + 1. For t < " + 1, x�S ′
t+1�k = x�S∗

t �k for all k �= �g�s0�. x�S
′
t��g�s0�

= x�s0��g�s0�
− Y � ′

�g�s0��1

for 0< t < " + 1, while x�S∗
t ��g�s0�

= x�s0��g�s0�
for 0< t < " .

Denote by R� ′
t and R�∗

t the random rewards earned in the tth time-step under the � ′ and �∗ policies respec-
tively, so that J ∗�s0�=E�

∑
t R

�∗
t � and J � ′

�s0�=E�
∑

t R
� ′
t �. Now observe that by our construction, the following

facts are true.
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(i) E�R� ′
0 �≥ E�R�∗

"∧T−1�. Recall that since there are no arrivals in this system, x�S∗
"∧T−1�i ≤ x�s0�i for all i.

We have:

E�R�∗
"∧T−1� ≤ E

[
max

i
E�R�S∗

"∧T−1� i� � S∗
"∧T−1�

]

= E

[
max

i

∑
u

Cuw
u
i x

u�S∗
"∧T−1�i

]

≤ E

[
max

i

∑
u

Cuw
u
i x

u�s0�i

]

= max
i

∑
u

Cuw
u
i x

u�s0�i

= max
i

E�R�s0� i��

= E�R� ′
0 ��

where the first equality follows from the fact that " ∧ T − 1 is a stopping time w.r.t. =�S∗
0 � � � � � S

∗
t �.

(ii) R� ′
t =R�∗

t−1 for 0< t ≤ " by the definition of � ′ which uses policy �� for 0< t ≤ " and by our coupling.
(iii) R� ′

t = R�∗
t for t > " because by our coupling and the definition of � ′, S� ′

"+1 = S�∗
"+1. Then, for t > " , � ′

and �∗ coincide.
We thus have:

T−1∑
t=0

R� ′
t = R� ′

0 +
T−1∑
t=1

�1t≤"R
�∗
t−1 + 1t>"R

�∗
t �

= R� ′
0 +

T−1∑
t=1

�1t≤" �R
�∗
t−1 −R�∗

t �+R�∗
t �

= R� ′
0 − 1T−1<"R

�∗
T−1 − 1T−1≥"R

�∗
" +

T−1∑
t=0

R�∗
t

= R� ′
0 −R�∗

T−1∧" +
T−1∑
t=0

R�∗
t �

where the first equality follows from points ii and iii. Taking expectations yields

J � ′
�s0�=E

[T−1∑
t=0

R� ′
t

]
= E�R� ′

0 �−E�R�∗
T−1∧" �+E

[T−1∑
t=0

R�∗
t

]

≥ E

[T−1∑
t=0

R�∗
t

]

= J ∗�s0��

where the inequality follows from point i. Thus, � ′ is an optimal policy as well. This contradicts our assumption
that no optimal policy transmits a packet in 	∗

0 in state s0. We may thus assume without loss that for all states
s0 ∈� an optimal policy transmits a packet in 	∗

0 . This suffices for the proof. �
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