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We consider a system of parallel queues where arriving service tasks are buffered, according to type. Available service

resources are dynamically configured and allocated to the queues to process the tasks. At each point in time, a scheduler

chooses a service configuration across the queues, in response to queue backlogs. Switching from one service config-

uration to another incurs a setup time, during which idling occurs and service bandwidth is lost. Such setup times are

inherent in manufacturing and computer systems. Frequent switchings can significantly compromise the service capacity

of such systems.

A Maximum Weight Matching (MWM) scheduler, which is known tomaximize throughput in the absence of setups,

can easily go unstable with setups, even under low load. To remedy this problem, we propose a new MWM-H scheduler

which utilizes a controller introducedHysteresisand achieves maximum throughput even with setups, without requiring

knowledge of arrival rates and average traffic loads.

During prolonged traffic bursts, the queues may become overloaded and the issue becomes how to reasonably distribute

the growing backlog under MWM-H. It is shown that by appropriately selecting the MWM-H parameters, one can control

the backlog amongst the individual queues in order to achieve a desired balance.
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1. Introduction

Various services conform to the following operational paradigm: arriving service requests are placed in

multiple queues and a scheduler, observing the queue backlogs, allocates service resources to the queues

for executing the tasks. However, moving resources betweenqueues requires setup times, during which pro-

cessing capacity is lost. At the same time, traffic bursts mayalso drive the queues to (temporary) overload,

which makes this loss of throughput even more critical. In this paper, we introduce a hysteresis mechanism

for judiciously reconfiguring resources across the queues to mitigate lost bandwidth during setup times and

maximize the throughput, while controlling queue overloads.

One particularly important example of such systems are modern information services that range from

e-commerce (e.g. Amazon, Expedia) and e-trading (e.g. eTrade, Fidelity) to content delivery and media
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streaming (e.g. Netflix, YouTube). They operate using data centers accessed over networks. They may scale

to tens of millions of users, who interact with Web servers , launching cascades of service (computation and

communication) tasks. At various levels of modeling abstraction, tasks are buffered in (virtual) queues of

various types awaiting service, while processing cycles and communication slots are dynamically allocated

to process the tasks in each queue. A key complicating factorin these settings is that reconfiguration of

processing communication resources requires some serviceidling time, for example, for accessing memory

to store the previous context/state and retrieve new ones, update databases, disengage resources from pre-

vious task types and move them over to new ones, etc. During such setup times service bandwidth can be

lost; therefore, resource switching and reconfiguration has to be exercised judiciously and as infrequently

as possible.

Indeed, systems with setup times are quite common in computer, manufacturing, and service systems. In

data centers, servers are often turned off or reallocated inorder to save energy consumption (Gandhi et al.

2012, Gandhi and Harchol-Balter 2013, Gandhi et al. 2013). It can take minutes to turn servers back on,

while each job often only requires a few seconds (DeCandia etal. 2007), making the decision of whether

to turn servers on or off an important one. In manufacturing environments, it can take time to warm up

machines as the product type on the line is changed. In service systems, bringing in additional staff or

alternatively trained staff to address different customerclasses can take time as the human servers may

require transportation and psychological/cognitive adjustment time. For example, in call centers, handling

in-bound versus out-bound calls requires a different skillset and mental aptitude. Similarly, a hospital

physician may take time adjusting to treating existing ED patients, after treating a multi-trauma case. In this

work, we consider how to allocate resources amongst queues in a system with such setup times.

Another complication is that prolonged bursts of service requests can temporarily overload the service

resources and drive the queues through a temporary instability phase, until there is a chance to clear the

backlogs and have overload subside. The issue then is how to distribute the resources during these (tempo-

rary) overload periods.

In this paper, we consider a system of parallel queues, wherearriving service tasks/requests are queued

up, according to type. In response to queue backlogs, a scheduler dynamically chooses an allocation of

service resources to the queues for processing their tasks.There are setup times to switch from one service

allocation/configuration to another, during which the queues idle and service bandwidth is lost. Hence,

frequent reconfigurations are inefficient. In order to mitigate the effect of the setup times, we propose a

scheduler which introduces a hysteresis into the system. During prolonged traffic bursts the scheduler tries

to balance the backlogs of the overloaded queues, by achieving a desirable, chosen ratio between the rising

backlogs. This is described in Section 2 in detail.
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1.1. Related Research

In the absence of setup times for service reconfigurations, awell investigated class of scheduling poli-

cies is Maximum Weight Matching (MWM), which has been studied by several authors, including

Tassiulas and Ephremides (1992), Stolyar (2004), Armony and Bambos (2003), Ross and Bambos (2009),

etc. and more recently, in overloaded systems, by Shah and Wischik (2011) (discussed below).

This paper focuses on systems with setup times, which are inherent in various computer and manufactur-

ing systems. In the presence of setup times, the MWM scheduler could actually drive the system unstable

even under negligible traffic loads, due to frequent servicereconfigurations inducing service idling. To rem-

edy this situation we introduce a MWM scheduler withHysteresis(MWM-H). Intuitively speaking, our

scheme, with controller introduced hysteresis, purposelydelays the switching from one service configura-

tion to another until it “makes sure” that this is clearly needed. This is explained more precisely later.

Service systems with setup times have been studied by a number of authors with emphasis on stability and

cost optimization. Bertsimas and Nino-Mora (1999a,b) studied queueing networks with multiple servers

and Poisson job flows following Markovian routes through various queues, receiving exponential service at

each one (general i.i.d service times in the case of a single server). When a server switches from serving one

queue to another, it incurs a random (general i.i.d.) changeover (setup) time, whose distribution depends on

the initial and final queues. Lan and Olsen (2006) studied a system of multiple queues and a single server,

where there is a fixed cost and a random setup time when a serverswitches from serving one queue to

another. There is also backlog cost and the overall scheduling objective is to minimize the long-run average

cost. Takagi (1997) provides a nice review of the study of setup times in the context of polling systems.

Armony and Bambos (2003) have taken an “adaptive” batching approach to maximize throughput under

setup times for the system considered here. Each batch of jobs is formed by grouping together the jobs arriv-

ing while the previous batch is processed; hence, the next batch is “adapted” to the previous one. Scheduling

job service in batches lowers the frequency of service setups and leads to maximizing throughput, even

when the average load is unknown (because of the adaptive nature of the process).

A different approach has been taken by Dai and Jennings (2004). They consider several servers, each

serving a subset of buffers. When a server completes (non-preemptive) processing of a job, the latter can

be forwarded to a buffer served by the same or another server.At each point in time, the problem is how

to allocated each server to one of the buffers it serves, given that there is a setup time to switch it from one

buffer to another. The approach proposed in Dai and Jennings(2004) is to have each server “stick” to the

buffer currently being served and do a “service run” on several jobs in that buffer, before being allowed

to switch to a different buffer and incur a setup time. How many jobs are included in each service run

depends on the average traffic load of the system. The higher the load, the longer the service runs, so that
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the lost service bandwidth due to setup times is amortized across more jobs. This adds a small “virtual

inflation” of service times, which gets smaller as the run length increases. The paper demonstrates that this

policy achieves maximum throughput of the system, the same as if there were no setup times; the latter only

induces higher backlogs, but does not compromise throughput.

There are two key differences between the policy in Dai and Jennings (2004) and ours: 1) While their

policy sticks to the same service configuration (servers assigned to buffers) for a fixed number of jobs before

considering a switch, our hysteresis-based policy examines the system state continuously and may initiate

a switch at any time. 2) to determine this fixed length of the run, their policy requires the knowledge of

traffic parameters such as the average load, while our hysteretic schemeadaptsto the system state with-

out requiring any such knowledge. Both of these qualities make our scheme robust to changes in traffic

characteristics, and requires no forecast or learning of the relevant parameters.

Hysteresis typically refers to a relationship between inputs and outputs that havememory, which manifest

itself through delayed impacts. Hysteresis has its roots inphysics, where, for example, phenomenon due

to magnetic fields introduce hysteresis. See Hassani et al. (2014) for a survey of these results. Hysteresis

has found its way into other applications, such as image processing (Medina-Carnicer et al. 2010, Xu et al.

2011) and control (Chen et al. 2008, Morse et al. 1992). Hysteresis has also been considered in queue-

ing contexts. Kelly (1986, 1991) found that the blocking probability in a loss network exhibits hysteretic

behavior. Dshalalow (1998), Dikong and Dshalalow (1999) consider a two threshold hysteretic control for

queues where the server comes and goes depending on the number in system. Lu and Serfozo (1984), Plum

(1991) demonstrate that, for an M/M/1 queue whose arrival and service rates can be changed, a control

policy with hysteresis is optimal when there are switching costs. In a multi-server setting, Ibe and Keilson

(1995), Golubchik and Lui (1997) look at how hysteresis thresholds can be used to determine the number of

servers being used. In all of these works, the hysteresis is given by fixed thresholds. In contrast, our hystere-

sis thresholds depend on the system state; in particular, the magnitude of the threshold increases with the

number of jobs in system. In fact, because we examine heavily-loaded systems, fixed hysteresis thresholds

quickly become ineffective; thus, we introduce a hysteresis function which specifies thresholds based on

the system state. To the best of our knowledge, our work is thefirst to consider the use of a state-dependent

hysteresis in control of queues.

Contrary to the aforementioned lines of research, our focushere is not simply on system stability under

MWM with setups, but also on how to distribute the growing backlog in a desirable manner when the system

is overloaded beyond stability. Given that MWMwith setupscan easily become unstable, even under low

traffic load, we first need to prove that the proposed hysteresis scheme MWM-H does maximize the system

throughput and achieves the same stability region, as with no setup times. In Section 2 below we describe the
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queueing system in detail and in Section 2.1 we define the MWM-H policy and show its essential stability

properties.

In the absence of setup times, various queueing systems in overload have also been investigated.

Egorova et al. (2007) studied bandwidth-sharing networks of work flows, utilizingα-fair schedules (instead

of MWM) introduced by Mo and Walrand (2000) to allocate service bandwidth, and have characterized

the backlog growth rates. Neely et al. (2008) consider networks of queues (in the context of communica-

tion networks), where the set of available service vectors changes over time.They consider distributed fair

schedules under both network stability and overload, leveraging flow utilities (see also references therein).

More recently, Shah and Wischik (2011) have studied the behavior of MWM in overload, considering a

fluid model for a collection of queues, where work (fluid) on one queue may be forwarded after service

to another queue (but can never come back to the original one)and there is no splitting and routing of the

work to various queues. The network is analyzed under both MWM schedules andα-fair ones in overload

and the backlog growth rates are characterized. In this paper, after showing that MWM in a system without

setups and our proposed policy (MWM-H) in the presence of setups have identical fluid limits, we leverage

the results of Shah and Wischik (2011) to establish our limiting result. Thus, all of our control results apply

to both MWM and MWM-H. Note that these results pertaining to control via the MWM matrix were not

considered in Shah and Wischik (2011). Perry and Whitt (2009, 2011) have also investigated the behavior

of queueing systems in overload , albeit in a specialized network topology (an X network).

1.2. Contributions

In summary, the contributions of this paper are as follows. First, we address the behavior of the standard

MWM scheme in the presence of setup times, which are common inmany practical systems. To remedy

the inherent instability of standard MWM with setups even under low load, we introduce a novel MWM

scheme withHysteresis(MWM-H). It is shown that MWM-Hwith setupsachieves the same stability (and

instability) region as the standard MWM withno setups. In contrast to previous literature on hysteresis in

queues, the hysteresis in our proposed MWM-H isstate-dependent, and does not use information on average

traffic load. It should be noted that most previous schemes that handle control of queues with setups heavily

rely on knowing that information.

Next, we focus on how MWM-H handles overloads, especially how to desirably distribute the backlog

according to target proportions or various cost minimization objectives. We show that by controlling the

weights of MWM-H one can achieve desirable target ratios forthe backlog growth across the queues. Addi-

tionally, controlling the MWM-H weights, one can opt to maximize revenue (when job service generates

revenue), minimize aggregate backlog, maximize aggregateservice rate, etc.
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2. The Queueing Model and the MWM-H Policy

We consider a queueing system ofQ parallel queues, indexed byq ∈ Q = {1,2, . . . ,Q}. Time is slotted

and indexed byt ∈ Z
+
0 . Jobs arrive to the system, adding service requirement1 (work to be performed) to

one or more queues. Lettj ∈ Z
+
0 be the arrival time of thejth job to the system andσj ∈ R

Q
0 its (vector)

service requirement, where(σj)q ∈ R0 is the workload added to queueq ∈ Q by that job. We assume that

0≤ (σj)q ≤ σ̄q for eachq ∈Q, whereσ̄q is an arbitrarily large fixed ceiling. At most one job arrivesin each

time-slot, adding some positive workload to at least one queue. Let

R(s, t) =
∑

j

σj1{tj∈(s,t]} (2.1)

as the (vector) workload arriving in the system between timeslot s andt, whereRq(s, t) is the workload

arriving to queueq ∈Q. We assume that the long-term average traffic load to each queueq ∈Q ,

lim
t→∞

Rq(0, t)

t
= ρq ∈ (0,∞), (2.2)

is well-defined, positive, and finite. The traffic load vectoris ρ= (ρ1, ρ2, . . . , ρq, . . . , ρQ).

In each time slot, a service vector2 S = (S1, S2, . . . , Sq, . . . , SQ) ∈ S can be used, chosen from a family

S = {S1, S2, . . . , Sn, . . . , SN} of N feasible ones. WhenS = (S1, S2, . . . , Sq, . . . , SQ) ∈ S is used in a time

slot,Sq ∈ R
+
0 amount of workload is removed from queueq ∈ Q, assuming there is enough workload in

the queue (as explained momentarily). LetS(t) denote the service vector used in time slott. We define

S(t) = 0 if noservice vector is in use in time slott.

Let Wq(t) be the workload in queueq ∈ Q at time t, hence, corresponding workload vector isW (t) =

(W1(t),W2(t), . . . ,Wq(t), . . . ,WQ(t)) ∈ R
Q
0 . When the workload vector isW (t) and the service vector

S(t) is used, the amount of work which is served and removed from queueq is simply

Dq(t) =min{Sq(t),Wq(t)} (2.3)

where the minimum accounts for the fact that work can only be serviced if it is already waiting in the

queue. Hence, ifWq(t)< Sq(t), there is some idle service provided by service vectorS(t) due to the lack

of enough workload to be processed.

LetMq(s, t) denote the amount of work that has been executed during time[s, t) at queueq ∈Q, that is,

Mq(s, t) =
t−1
∑

τ=s

Dq(τ) (2.4)

1 The terms service requirement and work, as well as workload and backlog, are used interchangeably.
2 We use the terms service vector, service configuration and service mode interchangeably.
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andM(s, t) the corresponding vector across all queues. The workload vector then evolves as

W (t) =W (0)+R(0, t)−M(0, t). (2.5)

There are service setup3 (switching) times; that is, in order to switch from service vectorSi to service

vectorSj a switching time ofT time slots is incurred, during which no service is provided to the queues. At

any timet, letU(t) denote the remaining time until the new service vector can beactivated and letV (t)∈ S
be the service vector the system is in the process of switching to. Thus, ifS(t) = V (t), then the service

vector has already been switched; ifS(t) 6= V (t), then the system is currently switching to a new service

vector. Suppose that, starting at timet, the service vector is to be changed fromSi to Sj. Then the system

evolves as follows:

S(t− 1)= Si, S(t
′) = 0 for t′ ∈ {t, t+1, t+2, ..., t+T − 1}, andS(t+T ) = Sj

V (t− 1)= Si, V (t′) = Sj for t′ ∈ {t, t+1, t+2, ..., t+T − 1, t+T}
U(t′) = t+T − t′ for t′ ∈ {t, t+1, t+2, ..., t+T − 1, t+T}

(2.6)

When a service vector switches fromSi to Sj is initiated, it has to complete before a different switch can

commence. Finally, letY (s, t) denote the cumulative time the system spends idling in[s, t− 1) because of

switching,

Y (s, t) =
t−1
∑

τ=s

1{U(τ)>0} (2.7)

that is, the amount of time during the period[s, t) such thatS = 0 due to the reconfiguring of service vectors.

2.1. The Maximum Weight Matching Policy with Hysteresis (MWM-H)

As mentioned before, it is known that - in the absence of setuptimes - the Maximum Weight Matching

(MWM) scheduler maximizes the throughput (see, e.g. Armonyand Bambos (2003)). MWM chooses a

service vector

S∗(W )∈ S∗(W ) = argmax
S′∈S

〈W,∆S′〉= argmax
S′∈S

{

Q
∑

q=1

WqδqS
′
q

}

(2.8)

when the workload isW , given any fixed positive-diagonal matrix∆= diag{δ1, δ2, ...δq, ...δQ} with δq > 0

for all q ∈ Q. Thus, when the backlog isW , the MWM scheduler chooses service vectorsS′ whose∆S′

has maximal projection onW . Note that there may be more than one such service vector, hence, the set

S∗(W ) may have more than one element; in that case, one such servicevectorS∗(W ) is chosen arbitrarily

amongst the ones available inS∗(W ).

However, it is easy to see that, in the presence of setup times, the throughput of MWM can be driven to

0 by an adequately “adversarial” arrival pattern{(tj, σj),∈ Z
+
0 }, even when the its average traffic loadρ is

very small. For example, a “bad” arrival pattern (see Example 1) could cause{W (t), t∈R
+
0 } to constantly

3 The terms setup time, setup, switching time and reconfiguration time are used interchangeably in general.
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oscillate between backlog values requiring distinct service vectors under MWM. That would simply cause

the system to “freeze” and spend all its time in setup mode, switching between these two service vectors.

Thus, even with very low arrival traffic load the backlog would explode.

Example 1Consider a system with 2 service vectors:S1 = [5,0]T , S2 = [0,5]T . The switching time required

to setup each service vectors isT = 5 time slots. Suppose the system load isρ= [2,2]T , which is certainly

within the stability region (for example, the system is stable in the absence of setup times if at each time slot

one randomly choosesS1 or S2 with equal probabilities). The initial state isX(0) = [0,0]T andS(0) = S2.

Consider a sample path where arrivals alternate between queue 1 and queue 2. In particular, the arrival

pattern is:
[

4 0 4 0 4 0 . . .
0 4 0 4 0 4 . . .

]

A quick numeric examination of this arrival pattern will demonstrate that the backlogs are growing without

bound due to the time spent in switching mode, which renders the system idle for 5 time slots at a time.

W (t) =

[

0 0 4 4 8 8 12 12 11 6 10 10 14 14 18 18 22 22 26 26 30 30 34 . . .
0 0 0 4 4 8 8 12 12 16 16 20 20 24 24 23 18 17 12 16 16 20 20 . . .

]

Given this inherent limitation of MWM, we introduce a hysteresis mechanism which appropriately sup-

presses the frequency of service switchings/setups. The resulting algorithm, MWM withhysteresis(MWM-

H), is shown to achieve maximal throughput under setup times. We start by defining aHysteresis Function

h(W ) :RQ0+→R0+ of the backlogW , with the following properties:

1. h(W ) is positive, monotonically increasing in each componentWq, q ∈Q, and

2. h(W )→∞ as‖W‖→∞ and

lim
‖W‖→∞

h(W )

‖W‖ =0, (2.9)

uniformly on compact sets (u.o.c.), where‖ · ‖ is a norm inRQ0+.

Note that the latter property basically forces the hysteresish(W ) to grow sub-linearly with respect toW . A

simple example ish(W ) =
√

∑

q∈QWq.

We can now define the schedulerMWM with Hysteresis (MWM-H) . Suppose that in time slott the

system is in operational mode (as opposed to in a setup mode) and is using the service vectorS(t). In the

next time slott+ 1, the workload becomesW (t+ 1) and the system needs to decide whether to either 1)

remain operational and keep using the same service vectorS(t+ 1) = S(t) or 2) initiate a switching to a

new service vectorS′ = S∗
(

W (t+1)
)

, in which case it will have to halt service for the nextT consecutive

time slots for setup, hence,S(τ) = 0 for τ ∈ {t+ 1, t+ 2, ..., t+ T}. Specifically, MWM-H scheduler is

defined inductively as follows.

1. When in time slott the system is in operational mode with service vectorS(t), then:
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(a) if
〈

W (t+1),∆S∗
(

W (t+1)
)〉

−
〈

W (t+1),∆S(t)
〉

≤ h
(

W (t+1)
)

, (2.10)

the service vector at time slott remains the sameS(t+1)= S(t) and no switching is initiated;

(b) else, if

h
(

W (t+1)
)

<
〈

W (t+1),∆S∗
(

W (t+1)
)〉

−
〈

W (t+1),∆S(t)
〉

, (2.11)

a switch to service vectorS∗
(

W (t+1)
)

is initiated and the system enters a setup mode for the nextT time

slots, that is,S(τ) = 0 for τ ∈ {t+1, t+2, ..., t+T}.

2. When the system enters setup mode in time slott+ 1 (as per step 1(b) above) it will halt service for

T consecutive time slots (hence,S(τ) = 0 for τ ∈ {t+1, t+2, ..., t+ T}) and will go back to operational

mode again in time slott+T +1 with service vector

S(t+T +1)= S∗
(

W (t+1)
)

(2.12)

and cycles back to step 1.

3. By convention, we can initialize the system to starting fromoperational mode withS(0) = S∗
(

W (0)
)

,

when the initial backlog isW (0).

Let us now make some observations on the MWM-H scheduler and briefly discuss the intuition behind

it. Note first that the serviceS(t) under MWM-H could be quite different than

anyS∗
(

W (t)
)

∈ S∗
(

W (t)
)

= argmax
S′∈S

〈

W (t),∆S′
〉

, (2.13)

which would have been the service vector under the original MWM (without hysteresis), as per (2.8). Next,

note that the quantity

Φ(t+1)=
〈

W (t+1),∆S∗
(

W (t+1)
)〉

−
〈

W (t+1),∆S(t)
〉

(2.14)

(used in the definition of MWM-H) is non-negative4 and measures how “suboptimal” it is to keep using

S(t) in time slott+ 1 in MWM-H compared toS∗
(

W (t+ 1)
)

that MWM would have used. If the sub-

optimality gapΦ(t+1) is less than the thresholdh
(

W (t+1)
)

, then MWM-H has no incentive to switch

to S∗
(

W (t+ 1)
)

6= S(t) and halt service forT slots during setup; therefore, it is content with using the

old suboptimalS(t). But if the sub-optimality gapΦ(t+1) exceedsh
(

W (t+1)
)

, the MWM-H decides it

is worth halting service forT time slots in order to switch to a better service vector. Thatis, as the backlog

drifts away from usingS(t) efficiently, MWM-H does not respond immediately (as original MWM would

4 Because
〈

W (t+1),∆S′
〉

is maximized forS′ = S∗
(

W (t+1)
)

over the set of all service vectorsS′ ∈ S
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Figure 1 Standard MWM service conesC1,C2,C3 and their boundaries (straight solid lines) for a simple system of 2 queues

and 3 service vectorsS1 = (4,0), S2 = (3,1), S3 = (1,2) and∆ = diag(1,1) the identity matrix. The curved

dashed lines are the hysteresis boundaries (around the corresponding cone boundaries) under MWM-H with setups,

for hysteresis functionh(W ) =
√
W1 +W2. Consistent with (2.9), the hysteresis boundaries grow sub-linearly away

from their corresponding cone boundaries as the workload increases.

have done), trying to avoid halting service forT setup slots. Instead, it sticks withS(t) and waits until

this drift goes beyond the tipping pointh
(

W (t+ 1)
)

, before it launches the switching and tradesT slots

of service inactivity for getting better service at the end.Therefore, MWM-H ishystereticin the sense

that it waits to make sure it is worth switching, before launching the process and paying the price. This

property suppresses the frequency of service switchings and gets MWM-H with setups to achieve maximal

throughput (as shown below) as the raw MWM without setups, where the latter with setups could have

collapsed to zero throughput.

An alternate geometric look at the MWM-H operation is demonstrated in Figure 1. Define in general

the MWM service coneCn as the set of backlogsW for which the MWM could use the service vector

Sn ∈ S = {S1, S2, ..., SN}, that is,

Cn=
{

W ∈R
Q
0+ : Sn ∈ S∗(W ) = argmax

S′∈S
〈W,∆S′〉

}

(2.15)

It is easy to see that these are (linear) cones, since scalingαW up or down by changing the scalarα does not

change the service vector selection under MWM. Figure 1 shows (in straight solid lines) the MWM service

conesC1, C2, C3 for a system of 2 queues and 3 service vectorsS1 = [4,0]T , S2 = [3,1]T , S3 = [1,2]T

and∆ = diag(1,1) the identity matrix. The curved dashed lines define the hysteresis boundaries under

MWM-H with setups for hysteresis functionh(W ) =
√
W1 +W2.
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Under MWM with no setups, when the backlog drifts, for example, from coneC1 into coneC2, the

service vector immediately switches fromS1 to S2. But under MWM with setups, if a “bad” pattern of

arriving work causes the backlog to oscillate between the two sides of theC1-C2 boundary, then the system

could lock in setup mode forever, transitioning back and forth betweenS1 andS2 repeatedly. That would

halt service forever and cause the queues to explode even under very low traffic load.

In contrast, consider now MWM-H with setups and suppose the workload is in coneC2 andS2 is being

used. As the workload drifts out of coneC2 and crosses into coneC1, MWM-H will keep usingS2 until the

workload drifts beyond the hysteresis boundaryh21; only when that happens (if ever) will MWM-H initiate

a switching toS1 and halt service forT slots. In general, when operating withSn and because of hysteresis,

the backlog drifting out of coneCn into coneCm mustpassthe hysteresis boundaryhnm on the other

side before triggering a switch toSm and halting service in the nextT slots for setup. Note that, consistent

with (2.9), each hysteresis boundaryhmn grow sub-linearly away from theCn- Cm cone boundary as the

workload increases.

Remark 2.1 We note that the sublinearity and unboundedness of the hysteresis function,h(W ), are essen-

tial to the behavior of MWM-H. If the hysteresis grows too quickly with the workload, the system will

never switch until the workload gets very large, at which point it is too late. Thus, even a stablizable load

will result in unbounded backlogs. On the other hand, if the hysteresis function scales too small with the

workload, the system will constantly switch, resulting in ‘freezing’, and instability.

Remark 2.2 As an alternative policy to MWM-H, one could also consider a policy where, once a service

vector is being used, the system will not switch to a different service vector for a time that is greater than or

equal to the value of a hysteresis evaluated as a function of the backlog. Once the system is ready to switch,

the next service vector is selected according to MWM. In analyzing this alternative policy, we find that its

performance is very similar to that of MWM-H, both analytically and numerically. Therefore, for the sake

of brevity, we omit the details.

2.2. Overview of Main Results

It is known (see, e.g. Armony and Bambos (2003)) that when

ρ∈P = {ρ∈R
Q
0+ : ρ≤

∑

S∈S

φsS, for someφS ≥ 0, S ∈ S with
∑

S∈S

φs =1}

the standard MWM without setups is (weakly) stable (i.e.limt→∞
W (t)

t
= 0). But, as discussed above, this

is not the case in the presence of setups.
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As shown below, given a fixed matrix∆ and loadρ, the time-scaled backlog of the system operating

under MWM-H with setups will converge to a limit vectorηρ(∆) which depends on∆ andρ, that is:

lim
t→∞

W (t)

t
= ηρ(∆). (2.16)

For all∆= diag{δ1, δ2, ..., δQ} ∈R
Q
0+, letKρ be the range of the mappingηρ(∆) : RQ0+→R

Q
0+, given fixed

ρ.

In particular, there are two cases:

1. If ρ ∈ P, thenlimt→∞
W (t)

t
= ηρ(∆) = 0 for each∆ = diag{δ1, δ2, ..., δQ} ∈ R

Q
0+. This establishes

that MWM-H with setups achieves the same stability region and maximizes throughput just as the MWM

without setups. This is in sharp contrast to MWM with setups which does not achieve maximal throughput

and could actually have zero throughput under bad arrival patterns.

2. If ρ /∈ P, then limt→∞
W (t)

t
= ηρ(∆) 6= 0 for every∆ = diag{δ1, δ2, ..., δQ} ∈ R

Q
0+. By choosing

∆∈R
Q
0+ we can appropriately positionηρ(∆)∈R

Q
0+ in its rangeKρ so as to achieve a target proportion of

overload (ηρ)q(∆)
∑

q∈Q(ηρ)q(∆)
for each queueq ∈Q that the system manager considers desirable.

Controllingηρ(∆)∈Kρ via∆∈R
Q
0+ for an overloaded MWM-H system with setups has some easy, yet

interesting, implications. Some direct examples are givenbelow:

(a) Note first thatρ−ηρ(∆) is the rate at which backlog is actually served by the overloaded system.

Hence, manipulatingηρ(∆) via∆ results in controlling the actual processing rateρ− ηρ(∆), as desired.

(b) Another optimization consideration is to minimize the quadratic cost
〈(

W (t)

t

)

,B
(

W (t)

t

)〉

as

t→∞ for the overloaded system under MWM-H with setups, whereB is a positive diagonal matrix. That

is, minimize the cost〈ηρ(∆),Bηρ(∆)〉 over∆ = diag{δ1, δ2, ..., δQ} ∈ R
Q
0+. As it turns out (see Section

4.1), choosing∆=B is optimal in this case.

(c) Alternatively, one can consider revenue maximization.If serving a unit of backlog at queue

q generates revenuemq, then total revenue generation rate is simply
∑

q∈Qmq

(

ρq − (ηρ)q(∆)
)

=

〈m,ρ− ηρ(∆)〉= 〈m,ρ〉 − 〈m,ηρ(∆)〉 . In order to maximize the revenue generation rate we just needto

minimize〈m,ηρ(∆)〉, that is, makeηρ(∆) as orthogonal tom as possible, within the bounds ofKρ.

(d) Another simple example relates to minimizing the total overload stress
∑

q∈Q θq(ηρ)q(∆) =

〈θ, ηρ(∆)〉, whereθq is the stress incurred for a unit of overload at queueq. This can easily be done by

makingηρ(∆) as orthogonal toθ as possible, within the bounds ofKρ.

(e) As a special case of the above, one may consider minimizing the aggregate backlog explosion

rate
∑

q∈Q(ηρ)q(∆) = 〈1, ηρ(∆)〉, can be done by makingηρ(∆) as orthogonal to 1 as possible, within the

bounds ofKρ.
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(f) Finally, one may wish to maintain fairness with respect to the rate of growth of the backlog for

the various queues. For example, it is natural to want to minimize the maximum backlog with respect to all

queues, which in the limit, corresponds to solving forminη∈Kρ maxq∈Q(ηρ)q.

3. Asymptotic Dynamics in Overload

We begin by building an understanding of the asymptotic dynamics of the scaled workload vectorW (t)/t,

ast→∞, given an MWM-H matrix,∆, and hysteresis function,h(·). We start with a stability result for

MWM-H and find that the stability region for MWM-H with setupsis identical to the original stability

region for MWM without setups. This justifies the need to use ahysteresis for throughput maximization

to avoid a deadlock such as in Example 1. To do this we follow a similar argument to Armony (1999) and

Shah and Wischik (2011) with important modifications that account for the setups and hysteresis. As our

focus in this work is on overloaded systems, we simply state the stability result here. We note that the proof

of this result comes as a simple corollary of Theorem 3.2.

Theorem 3.1 If ρ∈P, thenlimt→∞
Wq(t)

t
=0,∀q.

Note that the stability region is the same for the policy considered in Dai and Jennings (2004) (appropri-

ately adjusted to our setting) even in the presence of setups. The key difference is that the implementation

of their policy requires knowledge of the traffic load vectorρ, while our policy does not.

We now consider an overloaded system withρ that is outside the stability region. From

Armony and Bambos (2003), whenρ 6∈ P the workload explodes under a system with and without setup

times: that is,‖W (t)‖→∞, ast→∞. We are interested in finding out how exactly this happens. Isthere a

finite limit for limt→∞
W (t)

t
? If so, what is it and what does it depend on? This section is devoted to answer-

ing these questions. We note that in the process of establishing our results for a system in overload, we will

also derive stability conditions for the MWM-H policy when there are setup times. Our key result in this

section is that, givenS, ρ, ∆, andh(·), there is aunique limit ηρ(∆) of W (t)

t
, ast→∞, that is independent

of the hysteresis functionh. For notational compactness, we will suppress the dependence ofη onρ and∆

throughout this section.

Theorem 3.2 Fix ρ, S, ∆ andh(·). Then, there existsη ∈R
Q
+ such that

lim
t→∞

W (t)

t
= η. (3.1)

Furthermore,η is defined as the unique solution to the following convex program:

〈η,∆η〉= min
η′∈Ψ(ρ,S)

〈η′,∆η′〉 (3.2)
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where

Ψ(ρ,S) = {η′ : η′ = (ρ−ψ)+ with ψ ∈P} (3.3)

and P is the stability region given byS. Equivalently,η is the unique (fixed) point which satisfiesη =

(ρ−∑
S∈S αSS)

+ with
∑

S∈S αS = 1, αS ≥ 0 and

αS > 0 ⇒ S ∈ S∗(η). (3.4)

Corollary 3.1 The limitη of W (t)

t
ast→∞ is independent of the hysteresis functionh(·).

To prove the theorem we use fluid model arguments. In the fluid model, work is infinitely divisible and

arrives at a constant and deterministic rate. For any givenS ∈ S work is also depleted at a constant and

deterministic rate. In our proof we utilize results for the MWM policy from Armony (1999) which examines

the stability region and Shah and Wischik (2011) which characterizes the limit for the corresponding fluid

model; both of these works consider systemswithoutswitching times or hysteresis, so some key adjustments

are required. The fluid model approach (Dai (1999)) may be outlined as follows:

Step 1. Postulate the fluid model equations.

Step 2. Establish Lipschitz continuity of the fluid model solutions.

Step 3. Establish that the fluid-scaled queueing process (time is scaled byr and space by1/r) is pre-

compact asr→∞.

Step 4. Establish that every fluid limit of the fluid-scaled queueingprocess, asr→∞, satisfies the fluid

model equations.

Step 5. Establish the desired property of fluid model solutions (in our case this involves establishing that

Theorem 3.2 holds whenW (t) is replaced by the fluid content at timet).

Step 6. Use the above steps to establish that a similar properties hold for the original queueing system.

The key to our fluid proof is to establish that, under the MWM-Hpolicy, the dynamics of the fluid

model (Step 1) is identical to those of the fluid model for the MWM policy withoutswitching times and no

hysteresis, as long as the fluid state is non-zero. Once this is established, one can leverage Shah and Wischik

(2011) to characterize the limit. This is in sharp contrast to the fluid model of Dai and Jennings (2004),

where switching times appear in the fluid limit. All proofs ofintermediate results can be found in the

appendix.

Step 1. Fluid model equations

The fluid model is a formal construct, characterized by the set of solutions to the fluid model equations. In

this step we postulate these fluid model equations (see (3.5)-(3.9)). In Step 4, it is established that every

fluid limit is a solution to the fluid model equations. Throughout, an upper bar is used to denote all fluid
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related expressions. Notice that, as opposed to the queueing model, the fluid model is defined in continuous

time.

R̄(t) = ρt, t≥ 0. (3.5)

W̄ (t) = W̄ (0)+ ρt−
∑

S∈S

S · T̄ (S)(t)+ L̄(t), t≥ 0, (3.6)

L̄q(t) =− inf
0≤τ≤t

{

W̄q(0)+ ρqτ −
∑

S∈S

S · T̄ (S)(τ)
}

, t≥ 0, L̄q(0) = 0. (3.7)

∑

S∈S

T̄ (S)(t)+ Ȳ (t) = t, t≥ 0, T̄ (S)(0)= 0, S ∈ S, Ȳ (0) = 0. (3.8)

where the processes̄T (S), S ∈ S, Ȳ , andL̄ are nondecreasing.̄T (S)(t) may be thought of as the cumula-

tive time up to timet that the vectorS has been used, and̄Y (t) is the total time up to timet that the system

has been engaged in switching. We note that in the limit, the switching time practically disappears in the

overloaded regime, as will be seen in the proof of Lemma 3.1. The process̄L(t) is the minimal process

required to keep the fluid workload̄W (t) non-negative; thus, it captures the idling time. Finally, we add one

more equation that is specific to the MWM-H policy. Recall that S∗(W ) := argmaxS∈S 〈S′,∆W 〉, then we

have that for allt≥ 0 which is a regular point5, if W̄ (t) 6= 0 then

∑

S∈S∗(W̄ (t))

˙̄T (S)(t) = 1, (3.9)

Essentially, (3.9) implies that whenever the fluid workloadvector is non-zero, the fluid system will not be in

switching mode, and is processed by one of the “optimal” vectors according to the original MWM without

hysteresis. In particular, the hysteresis and the switching do not play an active role in the fluid model. In

fact, the hysteresis does not even show up in this scaling.

Steps 2. & 3. Establishing Lipschitz continuity and pre-compactness

This is analogous to Lemma B.2 and Proposition B.1, respectively, in Armony (1999) which analyzes the

MWM policy with no switching times and no hysteresis. Details are omitted. We conclude that any fluid-

scaled sequence of queueing processes converges almost surely (a.s.), u.o.c.

Step 4. Fluid limits satisfy the fluid model equations

Consider a fluid limitR̄(t) = limr→∞
R(0,rt)

r
, W̄ (t) = limr→∞

W (rt)

r
, Ȳ (t) = limr→∞

Y (0,rt)

r
, T̄ (S)(t) =

limr→∞

∫ rt
0 1{S(τ)=S}dτ

r
, andL̄(t) = limr→∞

∑
S∈S S

∫ rt
0 1{S(τ)=S}dτ−M(0,rt)

r
. To establish that this fluid limit

satisfies equations (3.5) through (3.8) is analogous to the arguments in Section B.2.1 in Armony (1999). In

particular, it follows that every such limit is Lipschitz-continuous. Establishing that every such limit satisfies

(3.9) requires more work due to the presence of hysteresis and switching times. To establish the above we

need to show that ift is a regular point and if̄W (t) 6= 0 then

5 A regular point is a point where the fluid model is differentiable. Due to the absolute continuity of fluid model realizations (Dai
(1999)) there are at most countably many non-regular points.
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1. T̄ (S) is non-increasing at this point, for allS 6∈ S∗(W̄ (t)), and

2. Ȳ is non-increasing at this point.

Propositions 3.1 and 3.2 do this.

Proposition 3.1 Let t be a regular point, and suppose thatW̄ (t) 6= 0. Then,T̄ (S′) is non-increasing at this

point, for allS′ 6∈ S∗(W̄ (t)). In particular, ˙̄T (S′)(t) = 0 for all S′ 6∈ S∗(W̄ (t)).

Proposition 3.2 Let t be a regular point, and suppose thatW̄ (t) 6= 0. Then,Ȳ (t) is non-increasing at this

point. In particular, ˙̄Y (t) = 0.

The proof of Proposition 3.2 relies on the following lemma that argues that the switching times are

negligible in the limit.

Lemma 3.1 [Asymptotic negligibility of total switching times] Let t and δ > 0 be such that

infτ∈[t−δ,t+δ] ‖W (rτ)‖→∞, asr→∞, then

lim
r→∞

Y (r(t− δ), r(t+ δ))

r
= 0.

Step 5. Limit of the scaled fluid model

Shah and Wischik (2011) established that the fluid model, operating under MWM, satisfies

limt→∞ W̄ (t)/t= η, whereη is the unique solution of the convex program (3.2). Since we have established

that the fluid model associated with the MWM-H policy is identical to the one associated with MWM (as

long asW̄ (t) 6= 0), we have thatlimt→∞
W̄ (t)

t
= η under MWM-H as well. Note that this result is true

regardless of whether the system is stable or not. Thus, MWM-H has the same stability region as MWM

without setup times. Theorem 1 in Shah and Wischik (2011) also states that for the fluid model, if̄W (0) = 0,

thenW̄ (t) = ηt, for all t≥ 0. In particular, we have that if̄W (0) = 0, then

W̄ (1) = η. (3.10)

Step 6. Limit of the scaled original queueing model

Finally, we wish to show that, for the original queueing model,

lim
t→∞

W (t)

t
= η, (3.11)

whereη is the unique solution of the convex program (3.2). But note thatW̄ (0) := limr→∞W (r ·0)/r= 0.

Therefore, by (3.10), we have thatlimt→∞W (t)/t= W̄ (1) = η.

To complete the proof of Theorem 3.2 we need to show that the limit η in (3.2) is also the unique fixed

point as defined in (3.4). The term “fixed-point” comes from the fact that in the fluid model, ifW̄ (t0)

t0
= η

then W̄ (t)

t
= η for all t≥ t0.
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Lemma 3.2 [Fixed point characterization of the limit η] The limit η of W (t)

t
as t→∞ is a fixed point.

That is,

η= lim
t→∞

W (t)

t
= (ρ−

∑

S∈S

αSS)
+ (3.12)

with
∑

S∈S αS = 1, αS ≥ 0. Moreover,

αS > 0 ⇒ S ∈ S∗(η). (3.13)

We can further utilize the characterization ofη as the solution to the convex program (3.2) and leverage

convex optimization theory to conclude that there is only one fixed point. As we will see in Section 4, this

characterization ofη will be useful in the context of controlling the backlogs.

Corollary 3.2 There exists exactly one fixed point,η:

η = [ρ−
∑

S∈S

αSS]
+

0 ≤ αS

1 =
∑

S∈S

αS

αS > 0 =⇒ 〈η,∆S〉 ≥ 〈η,∆S′〉 ,∀S′ ∈ S. (3.14)

To summarize, whenever the system is in overload the workload grows along a vector defined byη which

is the solution of the convex program in (3.2). From Lemma 3.2, and recalling the geometric interpretation

of the policy in Figure 1, we know thatη is on the intersection of some set of cones. If there exists only one

αS > 0, thenη = [ρ−S]+ and is in in the cone corresponding toS, CS . If there are multipleαS > 0, then

η = [ρ−∑
S
αSS]

+ is on the boundary of the set of conesCS with αS > 0. In Section 4, we will discuss

how we can use this observation to control the limit of the backlog process.

Note, now that we have established that the fluid limit of MWM and MWM-H ard identical, all subse-

quent results hold for both policies, as long as MWM is only used when there are no setups.

4. Control via the ∆ matrix

We have now seen how the asymptotic behavior of the workload vector,W (t), behaves given service vectors

S and MWM-H matrix∆. In particular, when the system load is outside of the stability region, the workload

will explode along a single direction. That is,W (t) ≈ ηt. During a long period of temporary stress, the

queueing system is effectivelyunstableduring this window and the valuable service resources become

strained. Under the MWM-H scheduling policy, queues with exceptionally high load will starve resources

from other, less stressed, queues. This begs the question ofhow to share resources in an optimal manner

when the system is unstable. Our goal in this section is to discuss how to manipulate the MWM-H (and
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MWM) matrix ∆ to achieve a desired limiting performance of the scaled workload vector. We start in

Section 4.1 with a quadratic cost minimization objective where∆ can be optimally selected in a simple

way. With more general objective functions, one needs to first characterize the setKρ of feasible limits

ηρ(∆) for all possible choices of the matrix∆, and then see how to manipulate∆ in order to ensure that

the most desirable limit in this set is achieved. We pursue this in Section 4.2.

4.1. Cost Minimization

Consider the following quadratic cost as a function of the workload.

C(W ) = 〈W,BW 〉 ,

whereB is a positive diagonal matrix. Consider now a policy that selects to use the service vectorS

at time t, whereS = argmaxS∈S

〈

S, ∂(C(W ))

∂(W )

〉

= argmaxS∈S 〈S,BW 〉. Whenever the system is not in

the midst of switching, this policy selects the service vector S that myopically reduces the cost function

by the maximum amount possible in the sense that it drains thelargest amount of workload out of the

system in the direction of the first derivative of the cost function. This is in fact the MWM-H policy with

an MWM-H matrix ∆ = B. When introduced in the context of backlog cost minimization, the MWM-

H policy is reminiscent of the generalizedcµ policy that has been shown to be asymptotically optimal

under various settings – without switching times (Van Mieghem (1995), Mandelbaum and Stolyar (2004),

Gurvich and Whitt (2009), Armony and Ward (2012)) for separable convex cost functions.

Attempting to minimize the backlog cost is especially challenging in over-stressed systems; when the

system is temporarily overloaded, the workload increases without bound, and so does the cost. Still, since

backlog grows linearly in time, it is meaningful to attempt to minimizeC(W (t)/t)≡C(W (t))/t2 for large

t, or, more formally, to minimize

limsup
t→∞

C

(

W (t)

t

)

= limsup
t→∞

〈W (t),BW (t)〉
t2

.

We call a policyasymptotically optimalif it obtains this minimum.

Theorem 4.1Fix ρ, S, andB. Then, the policy MWM-H with MWM matrix∆ = B (and any hysteresis

functionh) is asymptotically optimal in the sense that it minimizes

limsup
t→∞

C

(

W (t)

t

)

= limsup
t→∞

〈W (t),BW (t)〉
t2

.

The proof of Theorem 4.1 is immediate in light of Theorem 3.2,by first realizing that any sublimit of

W (t)/t must be in the setΨ(ρ,S) (3.3), and next seeing that minimizing the RHS of (3.2) is exactly like

minimizing limsupt→∞
〈W (t),BW (t)〉

t2
with B=∆.
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Remark: Skill-based routing. A special case of our queueing model is a parallel server queueing system

with multiple customer classes, and multiple servers, eachcapable of serving a subset of the customer

classes, with service rate that is both class and server dependent. Skill-based routing then refers to the

dynamic assignment of servers to customer classes. Each such assignment corresponds to a service vector

in which theqth element is the sum of the service rates of all the servers working on customers of class

q. In this setting, and without setups, the MWM has a simple analog which is implementable in settings

where preemption is not allowed. Specifically, we consider the policy that upon service completion assigns

the serverj to the customer class whose queue is non-empty and which maximizes(BiiXi)µij. This is

precisely the policy proposed in Stolyar (2004), shown there to be asymptotically optimal in conventional

heavy traffic, for a separable quadratic cost under a complete resource pooling condition. A similar analogy

to the policy MWM-H can be established for skill-based routing with setups, by introducing a hysteresis.

4.2. Characterizing the set of feasible limits,Kρ, and the desired MWM-H matrix, ∆

Beyond quadratic cost minimization, we can choose the matrix ∆ in order to appropriately position

ηρ(∆)∈Kρ so as to achieve a target limit of the scaled workload that thesystem manager considers desir-

able. The desired limit might have to do with cost/utility optimization as outlined in Section 2.2. In general,

and in contrast to the quadratic cost minimization case, both the matrix∆ and the rangeKρ depend on

the system parameters including the setS and the load vectorρ. We begin by characterizing the setKρ of

feasible limits.

Recall that, from Lemma 3.2, the limitηρ(∆) of the scaled workload,W (t)/t is a fixed point, as defined

in (3.4). In particular,η is on the intersection of the set of cones withαS > 0 in the definition ofη =

(ρ−
∑

S∈S αSS)
+. If there is more than oneαS > 0, this corresponds to a cone boundary. This boundary

depends on the∆ matrix used in the MWM-H scheduling policy.

Under certain necessary and sufficient conditions we can choose the matrix∆ so as to arbitrarily place

the cone boundary and thereby control the workload to explode along a desired vector defined byη. We

leverage this observation in the following characterization of the set of feasible limits.

Proposition 4.1 A vectorη ≥ 0 is in the setKρ if and only if the following conditions hold:

1. η = (ρ−∑
S∈S αSS)

+, αS ≥ 0,
∑

S∈S αS = 1.

2. There existsv≥ 0 such thatαS > 0 implies〈v,S〉 ≥ 〈v,S′〉 for all S′ ∈ S. Furthermore,vq =0 if and

only if ηq = 0.

Now that we have characterized the setKρ, we can determine the∆ matrix to achieve the desired limit,

η.
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Corollary 4.1 Letη ∈Kρ be the desired limit of the scaled workload vector, and letv be as in Proposition

4.1. Then the required∆ such thatη = ηρ(∆) satisfies:

∆qq =

{ vq

ηq
, vq > 0;

1, vq =0.
(4.1)

To verify that this∆ is indeed the required MWM-H matrix, one can simply check that η is indeed a

(unique) fixed point as is required by Theorem 3.2.

4.2.1. On the geometry of the setKρ. To gain intuition about the geometry ofKρ, we now present

an example withN = 2 service vectors andQ = 2 queues and specify the set of feasible limits given

ρ= [4,4]T ,S1 = [1,2]T andS2 = [3,1]T . It is easy to see thatv= [1,2]T satisfies Condition 2 in Proposition

4.1 since〈v,S1〉= 〈v,S2〉. Now, by Condition 1, anyη that satisfies

η = (ρ−αS1 − (1−α)S2)+

= α(ρ−S1)+ (1−α)(ρ−S2)

= α[1,3]T +(1−α)[3,2]T , for someα∈ [0,1] (4.2)

is a feasible limit ofW (t)/t and, hence, in the setKρ. In Figure 4.2.1(a), we can see the stability region

andρ, which is outside of this region. The setKρ of feasible limits is the same as the set of vectors between

the two vectors,η1 = (ρ− S1)+ andη2 = (ρ− S2)+ as seen in Figure 4.2.1(b). Thusη ∈ Kρ, but η̂ 6∈ Kρ.

Geometrically, in this example, the set of feasible limitsη may be obtained as the positive part ofρ minus

the set of all convex combinations ofS1 andS2.
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Figure 2 Feasible Limits for ρ: N = 2 service vectors and Q= 2 queues.

Relating the discussion back to the manipulation of the matrix ∆ in order to achieve a desired direction,

we consider a specific example of asymptotically minimizingthe aggregate scaled backlog (as discussed
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in example (e) in Section 2.2). The limit inKρ that achieves this minimum isη = [1,3]T . By (4.1), this

corresponds to selecting∆11 = v1/η1 = 1 and∆22 = v2/η2 = 2/3. In contrast, if one wishes to minimize

theL2 norm of the scaled backlog, the optimal choice isη = [1.4,2.8]T , which is achieved by selecting

∆11 =∆22 =1.

Now that we have fully characterized the regionKρ and specified how to select∆ in order to achieve

any directionη ∈ Kρ, we note that this provides a framework in which to consider optimization problems

over arbitrary cost (reward) functionsC(W ) (f(W )). As long as the minimum (maximum) is given by a

well-defined feasible direction as defined byKρ in Proposition 4.1, then by Corollary 4.1, we can determine

∆ necessary to achieve this minimum cost (maximum reward).

4.3. Robustness with Respect toρ

Thus far, we have assumed that the load vectorρ is known. Under this assumption, we are able to select the

necessary MWM-H matrix,∆, to achieve anynormalizedlimit (or direction)θ, whereθq = ηq/
∑

k
ηk for

someη ∈Kρ. Now we suppose thatρ is unknown or known with some error and examine whether we are

still able to choose∆ to achieve the desired normalized limitθ. Throughout this discussion, we will assume

thatN > 1; otherwise there is no control andη= (ρ−S)+ for all ρ, irrespective of∆.
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Figure 3 Stability and Cone regions for N =3 service vectors and Q= 2 queues.

Consider the following example withN = 3 service vectors andQ=2 queues as depicted in Figure 3. Let

S1 = [4,0]T , S2 = [3,1]T , S3 = [1,2]T . Additionally, suppose we desireW (t)/t→ η, with θ= [2/3,1/3]T .

We consider 4 different load vectors, which are outside of the stability region:

ρ(1) = [4,1]T , ρ(2) = [3,2]T , ρ(3) = [1,3]T , ρ(4) = [5, .5]T (4.3)
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When the system loadρ = ρ(3) or ρ(4), the conditions in Proposition 4.1 cannot be satisfied; indeed,

starting from those load vectors and moving in the directionof θ, does not hit the stability region at a point

that is a convex combination of the service vectors. Hence, the normalized limit,θ, is infeasible and there

does not exist a MWM-H matrix to achieve it. With some algebra, we can see that the necessary MWM-H

matrix to achieve the desired normalized limit depends onρ:

∆(ρ(1)) :=∆
(1) =

(

1 0
0 2

)

,∆(ρ(2)) =∆
(2) =

(

1 0
0 4

)

. (4.4)

From Theorem 3.2, the workload is given byη = [ρ −∑
m
αmSm]

+. Hence, to achieve the desired nor-

malized limit, the goal is to find a point on the boundary of thestability region such that subtracting that

point from the system load,ρ, results inη, which we want to be a scaled version of the desired normalized

limit θ. From Figure 3(a), we see that the pointξ(1) on the stability boundary which is given by the convex

combination ofS1 andS2 satisfies this constraint forρ(1). The∆(1) matrix places the boundary between

the relevant cones along the direction of the desired limit.For ρ(1), the relevant cones are the ones corre-

sponding toS1 andS2. This boundary vector can be moved to the directionθ by using∆(1). Similarly,∆(2)

moves the boundary vector between cones2 and3 for ρ(2). This example shows that the boundary vector of

interest and, subsequently, the necessary MWM-H matrix∆ depends onρ.

Despite the preceding example, it is possible to select∆ without preciseknowledge ofρ. This ability

depends on the number of subsets of service vectorsS of size greater than1 which satisfy:

〈v,S〉= 〈v,S′〉 ≥ 〈v,S′′〉 ,∀S,S′ ∈ S, S′′ ∈ S \S (4.5)

for somev ≥ 0, v 6= 0. Hence,v is aboundary vectoras it is a vector on the boundary between the neigh-

boring cones ofSM , when the MWM matrix is the identity matrix. We refer to this boundary as arelevant

boundary. In our example, there are 2 boundaries of interest:v12 = [1,1]T andv23 = [1,2]T (see Figure 3).

The boundary which matters depends on both the system load,ρ, and the direction of the desired normalized

limit, θ. For θ = [2/3,1/3]T , if ρ is in the lower region,R12, then the boundary vector of interest isv12,

between conesC1 andC2. If ρ ∈ R23, then the boundary vector of interest isv23, between conesC2 and

C3. If ρ ∈R1 or ρ ∈R3, the desired limit is infeasible. These regions can be determined for each subset of

service vectors by solving for the set ofρ which satisfy Condition 2 of Proposition 4.1. As long as we can

determine in whichregionρ resides, the MWM-H Matrix∆ can be specified without exact knowledge of

ρ. In particular, robustness of the choice of∆ with respect toρ holds to a certain extent.
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5. Numerical Results

In this section, we present some numerical results to demonstrate the performance of MWM-H Scheduling.

We examine how the backlogs grow and approach the established scaled-backlog limit,η. All of our results

are asymptotic results witht→∞. We can see through some numerical simulations how larget must be in

practice to approach our asymptotic results.

To start we look at a system with two (Q= 2) queues and two (N = 2) service vectors:

S1 = [4,0]T , S2 = [3,1]T

Our load vector is outside the stability region:ρ= [4,1]T 6∈ P. In each time slot, the number of jobs which

arrive to queue1 is uniformly distributed on[0,8]; for queue2 it is uniformly distributed on[0,2]. We

assume a setup time of10 time slots and a hysteresis function:h(W ) = .25
√
W1 +W2. Our goal is to

minimize the following quadratic cost functionC(W/t) = 〈W/t,BW/t〉 for

B=

(

1 0
0 2

)

.

From Theorem 4.1, we know that this implies one should use theMWM-H matrix ∆=B. One can solve the

convex program (3.2) to determine thatα1 = 1/3, α2 = 2/3 so thatη= (ρ−α1S
1−α2S

2)+ = [2/3,1/3]T .

We consider how the workload vector grows for various initial conditions:W (0) = [0,0]T ,W (0) =

[60,0]T ,W (0) = [0,20]T . In Figure 4(a), we plot the trajectories ofW (t) for the different initial condi-

tions, along with the lineW1 = 2W2. We can see that all three trajectories converge to established vec-

tor η1 = 2/3, η2 = 1/3. In Figure 4(b), we see the scaled backlogs,Wi(t)/t, and the relative backlog,

Wi(t)/
∑

j
Wj(t), converge starting from initial conditionW (0) = [0,0]. We notice that it takes along time

for Wi(t)/t to converge. This is due to the setup times and not the hysteresis. With a setup time ofT = 0

and the same matrix∆ and hysteresis functionh, the scaled backlog converges toη within 200 time slots;

with a setup time ofT = 10, it takes nearly 5,000,000 time slots. That said, we see thatthe relative backlogs

quickly achieve the desired direction.

We now consider an extension of the previous example withN =3 service vectors

S1 = [4,0]T , S2 = [3,1]T , S3 = [0,2.2]T

Again, we assume the setup time is10 time slots and a hysteresis function:h(W ) = .25
√
W1 +W2. Instead

of cost minimization, our goal is to control the backlog to grow alongη = [2/3,1/3]T . Specifically, we

want:

lim
t→∞

W (t)

t
= η=

[

2/3
1/3

]

.
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Figure 4 Dynamics for N = 2 service vectors and Q=2 queues.

As we saw in the previous example, whenρ= [4,1]T , this occurs for

∆=

(

1 0
0 2

)

.

However, we note that the inclusion of the third service vector alters the setKρ. In fact, there are now two

boundary vectors of interest when deciding the appropriate∆ matrix as specified by Proposition 4.1: the

one betweenC1 andC2 as well as the one betweenC2 andC3. The boundary which matters depends on

ρ. Specifically, consider two load vectors:ρ= [4,1]T , as before, andρ′ = [2,2]T . As is indicated by Figure

5, η= [2/3,1/3]T is indeed a feasible limit for bothρ andρ′, the vectorξ = ρ− η is a convex combination

of S1 andS2, while ξ′ = ρ′ − η is a convex combination ofS2 andS3. In particular, to achieve the limitη,

when the load vector isρ we need to manipulate∆ so as to align the boundary betweenC1 andC2 with η.

As established above, in this case,∆=

(

1 0
0 2

)

; In contrast, when the load vector isρ′ the boundary that

needs to be aligned withη is the one betweenC2 andC3. The appropriate MWM-H matrix in this case is

∆
′ =

(

1 0
0 5

)

.

We can see in Figure 6 how the asymptotic dynamics of the queues depend onρ and∆. η is shown in

red.

In the next experiment, we consider a system withQ= 3 queues andN = 3 service vectors.

S1 = [5,0,0]T , S2 = [0,5,0]T , S3 = [0,0,5]T

and MWM-H matrix:

∆=





2 0 0
0 3 0
0 0 6



 (5.1)
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Figure 6 Dynamics of 2-queue queueing system with 3 service vectors.

We consider a hysteresis function:h(W ) = 10
√
W1 +W2 +W3 and vary the setup times. The system load

oscillates between being stable and unstable. Hence, thereare temporary periods of overload. ρstable=

[1,0,1]T , ρunstable= [3,2,2]T . The system spends 200 time slots in the stable mode–ρ= ρstable–then switches

to spend 400 time slots in the unstable mode–ρ= ρunstable. Arrivals to queueq in each time slot are uniformly

distributed between[0,2ρq]. When the system is in the stable mode, MWM-H should stabilize the workload.

When it is in the unstable mode, MWM-H should converge to a single direction,η. By solving the convex

program (3.2), we find thatη= [1,2/3,1/3]T .

Figure 7(a) and 7(b) plot the scaled workload,W (t)/t, and relative workloads,Wi(t)/
∑

i
Wj(t), under
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this unstable/stable system when the setup time is5 and0 time slots, respectively. We can see that for the

first unstable period (t ∈ [0,200]), the directionη (plotted in red) is quickly achieved. That said, the setup

time makes the rate of convergence ofW (t)/t→ η much slower. During the stable period (t ∈ [200,600]),

we can see that the length of time spent stable is too short forthe system with setups to stabilize, though

it is clear the scaled workload is going to zero. Without setups, the system is stabilized, though it takes

nearly 150 time slots to do so. In the next unstable period, the scaled backlogs (Wi(t)/t) do not appear

to stabilize within the200 epoch period for the system with and without setup times. This is because we

are scaling by thetotal time, not just the time from when we enter the period of instability. Hence, it may

actually take a very long time before the scaled backlogs converge. On the other hand, the relative workload

(Wi(t)/
∑

j
Wj(t)) quickly aligns with the direction ofη. During stable periods this relative backlog is not

very informative since all the scaled backlogs will go to zero.
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Figure 7 Dynamics of 3-queue queueing system oscillating between stable and unstable modes.

5.1. Impact of the Hysteresis Function

In order to explore the impact of the hysteresis function on system performance, we are considering a family

of related functions. In particular, we consider a hysteresis function of the form:

hα(W ) =

(

∑

q

Wq

)α

for α ∈ (0,1). Our goal is to examine howα, which varies the growth rate of the hysteresis function, impacts

the system dynamics. Smallαmeans the hysteresis function will grow slowly, presumablyresulting in more

switching, while largeα will result in less switching, but also less time when the employed service vector

is aligned with the ‘optimal’ one that MWM without hysteresis would use.
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For this numeric exploration, we consider a similar setup tothe one explored in Figure 4 with

S1 = [4,0]T , S2 = [3,1]T

. Again, we assume the setup time is10 time slots and a cost function ofC(W/t) = 〈W/t,BW/t〉 with

B=

(

1 0
0 2

)

.

We consider an unstable load vector,ρunstable= [4,1]T , as well as a stable load vectorρstable= [3, .5]T .

We initialize backlog toW (0) = [0,0]T and run the simulation forT =10,000 time slots. Figure 8 depicts

the percentage of time MWM-H spends idling due the switchingtime, the percentage of time MWM-H

is using the same service vector MWM would be using in a given time slot, and the percentage of time

MWM-H is using a different service vector than MWM due to the hysteresis. Finally, we see the normalized

cost〈Wα/t,BWα/t〉/maxα 〈Wα/t,BWα/t〉, whereWα is the backlog atT = 10,000 when hysteresis

functionhα is used. As expected, the time spent idling due to switching is highest for smallα. Because the

service vectors are being changed so frequently, this results in the highest cost. Asα increases, the time

spent switching decreases, but then the time spent using an alternative service vector increases.
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Figure 8 System performance for different hysteresis functions, hα(w) =
(

∑

q
Wq

)α

.

Figure 9 considers only times when the system is actually working, i.e. not during the switching times. We

can see that asα increases, the growth rate of the hysteresis increases, meaning there are larger delays before

changing service vectors and a larger discrepancy between MWM and MWM-H. Note that the performance

of h(W ) = log
(

∑

q
Wq

)

with respect to matching MWM is practically the same as that of hα(W ) for

α= .25.
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Figure 9 System performance for different hysteresis functions, hα(w) =
(

∑

q
Wq

)α

.

From Figure 8, we can see that largerα results in lower costs. Even though largerα also increases the

mismatch with MWM (Figure 9), because the amount of idling time also decreases, the total amount of

work done increases withα, resulting in lower costs. It also appears that the differences in the performance

of MWM-H become very small forα ≥ .5. This suggests that it may be reasonable to use MWM-H with

anyα≥ .5.

6. Conclusions and Discussion

In many real world systems, traffic load is unpredictable andoften bursty in nature. In any finite window

of time, the system may enter a period of temporary instability where the rate of incoming jobs is larger

than the rate at which jobs can be serviced. Additionally, many systems require a setup time when service

configurations are changed. During this time, no jobs can be serviced, creating additional stress to an already

overloaded system.

Our focus in this work on theinstability region is different than traditional queueing. While it is certainly

desirable to operate systems within the stability region, there are many real world scenarios where this

may not be possible. Input traffic may surge due to unplanned circumstances. Service resources may be

reduced due to unavoidable accidents or catastrophes. During these periods of temporary instability it is

often necessary to allocate limited resources in a desirable manner. Once the system exits the window of

stress, it will be stabilizable and the natural goals of throughput maximization and cost minimization can

be restored.

Our second main focus in this work is considering how to servequeues under the paradigm ofswitching

times. We restrict attention to MaxWeight Matching scheduling policies because they are simple to imple-

ment and behave well during stable periods when there are no switching times. In particular, MaxWeight
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Matching policies guarantee finite backlogs when the systemload is within the stability region. To account

for the setup times, we introduce a new class of policies: MaxWeight Matching withHysteresis. We find that

for appropriately defined hysteresis functions, MWM-H 1) has the same stability region of MWM without

setup times and 2) whenever the system is overloaded, the time-scaled backlog approaches a straight line as

the time window during which the system is overloaded increases. This straight line can be characterized as

a fixed point, or equivalently, as the solution to a simple convex program. As such, it is straightforward to

identify this line, as a function of the system parameters, the load vectorρ, and the MaxWeight matrix∆.

Interestingly, this line does not depend on the hysteresis function. Moreover, we are able to adjust the∆

matrix to achieve various control objectives, such as minimizing quadratic costs.

The proposed MWM-H policy addresses an inherent problem with MWM: frequent switching. Even in

the absence of switching times, one could utilize the MWM-H control to mitigate switching, e.g. if there are

costs associated with switching service configurations. More generally, there are other policies which can be

used in the presence of switching times (e.g. Dai and Jennings (2004), Armony and Bambos (2003)). That

said, MWM is a policy which has received substantial attention in the literature and the proposed MWM-H

policy inherits many nice properties of MWM, while addressing the problems which arise with setups.

It should be noted that the complexity of the MWM-H policy proposed in this paper is at least as large

as that of the original MWM policy without Hysteresis. In particular, one must first solve the optimization

problem to identify the MWM service vector and then evaluatethe hysteresis function to determine whether

a switch should be initiated. One way to reduce the complexity of evaluating MWM is utilizingLocal MWM,

which only considers the nearest neighbor service vectors as alternatives to switch to. Ross and Bambos

(2009) demonstrates that such local optimization results in a stabilizing policy (in a setting without setups)

that mimics the standard MWM with some delay. Such local optimization could also be applied to the

MWM-H policy.

This work can be extended in various directions. First, one might consider whether introducing hysteresis

to other policies, such as Projective Cone Scheduling from Ross and Bambos (2009), would also ensure

identical stability regions in the presence of setup times.Next, it may be possible to extend this work

to networks of parallel queueing systems, by relying on results from Shah and Wischik (2011). Finally,

while we have established convergence of the backlog vectorunder very mild traffic conditions, if more

restrictive assumptions are made (such as Markovian queues) one might be able to obtain results on the rate

of convergence as well.
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Medina-Carnicer, R., F. J. Madrid-Cuevas, R. Muñoz Salinas, A. Carmona-Poyato. 2010. Solving the process of

hysteresis without determining the optimal thresholds.Pattern Recogn.43(4) 1224–1232.

Mo, J., J. Walrand. 2000. Fair end-to-end window-based congestion control.IEEE/ACM Transactions on Networking

8 556–567.

Morse, A.S., D.Q. Mayne, G.C. Goodwin. 1992. Applications of hysteresis switching in parameter adaptive control.

Automatic Control, IEEE Transactions on37(9) 1343–1354.

Neely, M.J., E. Modiano, C-P. Li. 2008. Fairness and optimalstochastic control for heterogeneous networks.

IEEE/ACM Transactions on Networking16396–409.

Perry, O., W. Whitt. 2009. Responding to unexpected overloads in large-scale service systems.Management Science

551353–1367.

Perry, O., W. Whitt. 2011. A fluid approximation for service systems responding to unexpected overloads.Operations

Research59(5)1159–1170.

Plum, H.J. 1991. Optimal monotone hysteretic markov policies in an m/m/1 queueing model with switching costs and

finite time horizon.Zeitschrift fr Operations Research35(5).

Ross, K., N. Bambos. 2009. Projective cone scheduling (PCS)algorithms for packet switches of maximal throughput.

IEEE/ACM Transactions on Networking17(3) 976–989.

Shah, D., D. Wischik. 2011. Fluid models of congestion collapse in overloaded switched networks.Queueing Syst.

Theory Appl.69121–143.

Stolyar, S. 2004. Maxweight scheduling in a generalized switch: State space collapse and workload minimization in

heavy traffic.The Annals of Applied Probability14(1) 1–53.

Takagi, H. 1997. Queueing analysis of polling models.Frontiers in Queueing: Models and Applications in Science

and Engineering (Dshalalow, Ed. )Chapter 5 119146.

Tassiulas, L., A. Ephremides. 1992. Stability properties of constrained queueing systems and scheduling policies for

maximum throughput in multihop radio networks.IEEE Transactions on Automatic Control371936–1948.



32

Van Mieghem, J. A. 1995. Dynamic scheduling with convex delay costs: The generalizedcµ rule. Ann. Appl. Probab.

5(3) 809–833.

Xu, Qian, C. Chakrabarti, L.J. Karam. 2011. A distributed canny edge detector and its implementation on fpga.

Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop (DSP/SPE), 2011 IEEE.

500–505.

Appendix
A. Proofs of results in Section 3

PROOF OFPROPOSITION 3.1: Let{rk} be a subsequence of{r} such thatW (rk·)

rk
converges a.s., u.o.c.

to W̄ (·)6. Consider a regular pointt with W̄ (t) 6= 0. For convenience of notation we removek from the

notation and assume, without loss of generality, thatlimr→∞
W (r·)

r
= W̄ (·). We wish to show that there

existsδ > 0, such that for allr large enoughS(rτ)∈ S∗(W̄ (t)) for all τ ∈ [t− δ, t+ δ].

Let δ > 0 be such thatinfτ∈[t−δ,t+δ]

∣

∣W̄ (τ)
∣

∣> 0 andS∗(W̄ (τ))⊆S∗(W̄ (t)), for all τ ∈ [t− δ, t+δ]. The

existence of suchδ follows from the continuity of the limitW̄ . We now argue that for allr large enough we

have that ifS ∈ S∗(W̄ (τ)) andS′ 6∈ S∗(W̄ (τ)) then

S′ 6∈ S∗(W (rτ)), (A1)

and

〈S,∆W (rτ)〉> 〈S′,∆W (rτ)〉+h(W (rτ)), (A2)

for all τ ∈ [t − δ, t + δ]. To establish (A1) note thatS∗(W (rτ)) = S∗
(

W (rτ)

r

)

, and the result follows

from the the fact that̄W (·) = limr→∞
W (r·)

r
, a.s., u.o.c. Similarly, (A2) follows after dividing all expres-

sions byr, taking the limit, and recalling thath is sublinear, that is,lim‖w‖→∞
h(w)

‖w‖
= 0, u.o.c., so that

limr→∞
h(W (rτ))

‖W (rτ)‖

‖W (rτ)‖

r
= 0, u.o.c. �

PROOF OFPROPOSITION3.2: Let{rk} be a subsequence of{r} such thatW (rk·)

rk
converges a.s., u.o.c.

to W̄ (·), and consider a regular pointt with W̄ (t) 6= 0. For convenience of notation we removek from

the notation and assume, without loss of generality, thatlimr→∞
W (r·)

r
= W̄ (·). Let δ > 0 be such that

infτ∈[t−δ,t+δ]

∣

∣W̄ (τ)
∣

∣> 0. We wish to show that for allr large enough the system engages in switching for

a negligible amount of time in[t− δ, t+ δ]. More precisely, we wish to show that

lim
r→∞

Y (r(t− δ), r(t+ δ))

r
= 0. (A3)

To establish (A3) we first prove Lemma 3.1. The proof of the proposition then follows from the fact that

infτ∈[t−δ,t+δ] ‖W (rτ)‖→∞, asr→∞, by the definition ofδ. �

6 Recall that the queueing model is in discrete time. With a slight abuse of notation we letW (t) := W (⌊t⌋). We use a similar
notational convention with other quantities that are associated with the queueing model.
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PROOF OFLEMMA 3.1: For every fixedr, let t− δ ≤ τr,1 < τr,2 < ... < τr,mr < t+ δ be the sequence

of points where the system initiates switching at timerτr,k, 1≤ k≤mr. Note thatτr,1 = t− δ if the system

is in the midst of switching at timer(t− δ). By definition,

Y (r(t− δ), r(t+ δ))≤ T (mr+1). (A4)

At the same time, formr > 1:

2δ≥
mr−1
∑

k=1

(τr,k+1 − τr,k).

We wish to evaluate the termτr,k+1−τr,k. LetSr,k =H(rτr,k) be the service vector which is being changed

to at timerτn,k. By definition we have that:

〈

W (rτn,k),∆Sr,k
〉

≥ h(W (rτn,k))+
〈

W (rτn,k),∆Sr,k+1
〉

〈

W (rτn,k+1),∆Sr,k+1
〉

≥ h(W (rτn,k+1))+
〈

W (rτn,k+1),∆Sr,k
〉

With a little algebra, we can see that

〈

W (rτn,k+1)−W (rτn,k),∆Sr,k+1
〉

−
〈

W (rτn,k+1)−W (rτn,k),∆Sr,k
〉

≥ h(W (rτn,k+1))+h(W (rτn,k))

(A5)

We consider the expression on the left hand side:

〈

W (rτn,k+1)−W (rτn,k),∆(Sr,k+1−Sr,k)
〉

=

〈



R(rτn,k+1, rτn,k− 1)−
rτn,k+1−1
∑

τ=rτn,k

D(τ)



 ,∆(Sr,k+1 −Sr,k)

〉

=

〈

R(rτn,k+1, rτn,k− 1)−
rτn,k+1−1
∑

τ=rτn,k

D(τ),∆[(Sr,k+1−Sr,k)+ +(Sr,k+1 −Sr,k)−]

〉

≤
〈

R(rτn,k+1, rτn,k− 1),∆(Sr,k+1−Sr,k)+
〉

−
〈rτn,k+1−1

∑

τ=rτn,k

D(τ),∆(Sr,k+1−Sr,k)−

〉

≤ rQ× (max
q
σ̄q +max

S∈S
max
q
Sq)(τn,k+1− τn,k)max

q
∆qmax

S∈S
max
q
Sq

= rK(τn,k+1 − τn,k)

WhereK =Q× (maxq σ̄q +maxS∈S maxq Sq)maxq∆qmaxS∈S maxq Sq <∞ is a well-defined positive

finite constant. Combining this with (A5), we have:

r(τn,k+1 − τn,k)≥
2

K
inf

τn,k≤τ<τn,k+1

h(W (rτ)) (A6)

Thus,

2rδ≥ (mn− 1)
2

K
inf

t−δ≤τ<t+δ
h(W (rτ)). (A7)
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Combining this result with our initial observation in (A4):

Y (r(t− δ), r(t+ δ))

2rδ
≤ T (mr+1)

(mr− 1) 2
K
inft−δ≤τ<t+δ h(W (rτ))

≤
3TK
2

inft−δ≤τ<t+δ h(W (rτ))
(A8)

for all r such thatmr > 1. By assumption, we have thatinfτ∈[t−δ,t+δ] ‖W (rτ)‖→∞ asr→∞, and hence

inft−δ≤τ<t+δ h(W (rτ))→∞ asr→∞.

Alternatively, withmr ≤ 1, there is at mostT time spent switching in the interval:

Y (r(t− δ), r(t+ δ))

2rδ
≤ T

2rδ
→0, as r→∞. (A9)

�

PROOF OFLEMMA 3.2: The proof is an immediate consequence of the fluid model equations (3.5)-

(3.9). In particular, assuming that̄W (0) = 0, we have thatW̄ (t) = ηt and every pointt is a regular point.

The proof follows by setting for allS ∈ S, αS := T̄ (S)(1) = T̄ (S)(t)/t, ∀t. �

PROOF OF COROLLARY 3.2: Now, we demonstrate that any fixed point is a solution to the convex

program (3.2). Since the solution to (3.2) is unique, the result will follow. Consider the KKT conditions for

optimality. Our goal is to show that ifη = (ρ−∑
S∈S αSS)

+, αS ≥ 0,
∑

S∈S αS = 1 is such that for allS

with αS > 0, we have thatS ∈ S∗(η), then it is a solution to the convex program (3.2). The KKT conditions

are necessary and sufficient for optimality if the objectivefunction is differentiable and Slater’s constraint

is satisfied (Boyd and Vandenberghe (2004)). Both are easilyverifiable in our case.

To examine the KKT conditions, we first rewrite the convex program in (3.2) as an equivalent convex

program:

min
ψ,α

〈ρ−ψ,∆(ρ−ψ)〉

s.t. ψ ≤
∑

S∈S

αSS

0≤ ψ≤ ρ

αS ≥ 0,∀S ∈ S
∑

S∈S

αS =1 (A10)

The KKT conditions for optimality say that all the constraints must be satisfied and:

∇〈ρ−ψ,∆(ρ−ψ)〉+∇λ′(ψ−
∑

S∈S

αSS)+∇λ′′(ψ− ρ)−∇λα+∇v(
∑

S∈S

αS − 1) = 0

λ′
q(ψq−

∑

S∈S

αSSq) = 0

λ′′
q (ψq − ρq) = 0

λSαS = 0

λ,λ′, λ′′, v ≥ 0 (A11)
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We look at the first condition:

∇ψ : 2∆(ρ−ψ) = λ′ +λ′′

∇αS
:
∑

q

λ′
qSq = v−λS

⇒ 2 〈(ρ−ψ),∆S〉= v−λS + 〈λ′′, S〉 (A12)

Now we show that for any fixed point, there existsλ,λ′, λ′′, v which satisfy the KKT condition (A11). To

do this, suppose we are given a fixed pointη= ρ−ψ= (ρ−
∑

S∈S αSS)
+ with

αS > 0 =⇒ 〈ρ−ψ,∆S〉 ≥ 〈ρ−ψ,∆S′〉 , ∀S′ ∈ S. (A13)

We will construct non-negative Lagrange multipliers to satisfy the KKT conditions.

Considerq such thatρq > ψq. In order to satisfy the third constraint in (A11),λ′′
q = 0. Now if ρq ≤ rq,

the first constraint in (A12) implies thatλ′
q + λ′′

q ≤ 0, which means thatλ′
q = λ′′

q = 0. To ensure that the

Lagrange multipliers are non-negative, we must have thatλ′′
q =0 for all q. Subsequently:

λ′ = 2∆(ρ−ψ) (A14)

Hence,λ′
q is non-zero if and only if(ρ−ψ)q > 0. Considering the second constraint in (A11), this would

also require thatψq =
∑

S∈S αSSq, which is certainly feasible.

ConsiderαS > 0. To satisfy the fourth constraint in (A11),λS = 0. Now to satisfy the third constraint in

(A12):

0≤ 2 〈ρ−ψ,∆S〉= v,∀S such thatαS > 0 (A15)

which also satisfies the non-negativity ofv. Note that becauseλ′ ≥ 0 andS ≥ 0 the above expression forv

is necessarily non-negative. ConsiderαS′ = 0 andαS > 0. By the assumption thatρ−ψ is a fixed point:

〈ρ−ψ,∆S′〉 ≤ 〈ρ−ψ,∆S〉

=⇒ v−λS′

2
≤ v

2
=⇒ λS′ ≥ 0 (A16)

Hence, we can satisfy the KKT conditions in (A11) with non-negativeλ,λ′, λ′′, v. Since any fixed point

satisfies the necessary and sufficient KKT conditions, all fixed points are solutions to the convex program.

There is only one solution and so there is only one fixed point.This concludes the proof. �
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B. Proofs of Results in Section 4

We begin with an auxiliary result, that we will utilize next.

Lemma B.1 In Q-dimensions, consider anyM service vectorsSi1 , Si2 , . . . , SiM . Suppose there exists a

diagonal positive definite matrix̂∆ and non-negativeQ-dimensional vectorv≥ 0 such thatv is aboundary

vectorof theM cones, i.e. for eachk ∈ [1,M ] and for all j:

〈

v,∆̂Sik
〉

≥
〈

v,∆̂Sj
〉

(B1)

Then, for any non-negative vectorη such thatηq = 0 if and only ifvq = 0, there exists a diagonal positive

definite matrix∆ such that for eachk ∈ [1,M ] and all j:

〈

η,∆Sik
〉

≥
〈

η,∆Sj
〉

(B2)

i.e. the boundary between theM cones can be placed arbitrarily inRQ+. This matrix is specified as:

∆qq =

{

∆̂qqvq

ηq
, vq > 0;

1, vq = 0.
(B3)

PROOF: We show this via construction. Recall that∆̂ is diagonal:
〈

v,∆̂S
〉

=
∑

q
vq∆̂qqSq. For vq > 0,

∆qq =
∆̂qqvq

ηq
≥ 0, where the positivity comes from the fact that each element is positive. Ifvq = 0, ∆qq =1

or some other arbitrary positive value.

Now, for anyij (j ∈ [1,m]) andk the following holds:

〈

v,∆̂Sij
〉

≥
〈

v,∆̂Sk
〉

⇒
∑

q

∆̂qqvq(S
ij )q ≥

∑

q

∆̂qqvq(S
k)q

⇒
∑

q

vq∆̂qq(S
ij )q−

∑

q

ηq∆qq(S
ij )q−

∑

q

ηq∆qq(S
k)q

≥
∑

q

vq∆̂qq(S
k)q−

∑

q

ηq∆qq(S
ij )q−

∑

q

ηq∆qq(S
k)q

⇒
∑

q

[(Sij )q(∆̂qqvq −∆qqηq)− (Sk)q∆qqηq)]

≥
∑

q

[(Sk)q(∆̂qqvq −∆qqηq)− (Sij)q∆qqηq)]

⇒ −
∑

q

(Sk)q∆qqηq ≥−
∑

q

(Sij )q∆qqηq ⇒
〈

η,∆Sij
〉

≥
〈

η,∆Sk
〉

(B4)

�

PROOF OF PROPOSITION4.1: Assume that Conditions 1 and 2 are satisfied. We show thisimplies there

exists a∆ such thatlimt→∞
W (t)

t
= η. We first consider Condition 2. This says thatv ≥ 0 is the boundary

of conesCS whereαS > 0 defined by∆̂ = I. By Lemma B.1, we can construct a∆ such that for all
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αS > 0:〈η,∆S〉 ≥ 〈η,∆S′〉 , ∀S′ ∈ S. Now, in conjunction with Condition 1, we have thatη ∈Ψ(ρ,S) is

a fixed point. By Theorem 3.2, we have thatlimt→∞W (t)/t= η.

Now suppose there exists a∆ such thatlimt→∞W (t)/t = η. By Theorem 3.2,η is a (the only) fixed

point and, hence, satisfies Condition 1. Now, we show that Condition 2 is satisfied by constructing the

necessaryv ≥ 0. Similar to the construction of∆ in the proof of Lemma B.1 we can determinev–the

boundary induced when̂∆= I. That isvq =∆qqηq which equals0 if and only if ηq = 0. This vq satisfies

Condition 2. �
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