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We consider a system of parallel queues where arrivingsetesks are buffered, according to type. Available service
resources are dynamically configured and allocated to thaegito process the tasks. At each point in time, a scheduler
chooses a service configuration across the queues, in Espomueue backlogs. Switching from one service config-
uration to another incurs a setup time, during which idlingws and service bandwidth is lost. Such setup times are
inherent in manufacturing and computer systems. Frequétdrgngs can significantly compromise the service capacit
of such systems.

A Maximum Weight Matching (MWM) scheduler, which is knownnmaximize throughput in the absence of setups,
can easily go unstable with setups, even under low load. Medg this problem, we propose a new MWM-H scheduler
which utilizes a controller introducedysteresisand achieves maximum throughput even with setups, withemutiring
knowledge of arrival rates and average traffic loads.

During prolonged traffic bursts, the queues may becomeasgeld and the issue becomes how to reasonably distribute
the growing backlog under MWM-H. It is shown that by apprapely selecting the MWM-H parameters, one can control
the backlog amongst the individual queues in order to aehdedesired balance.
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1. Introduction
Various services conform to the following operational migen: arriving service requests are placed in
multiple queues and a scheduler, observing the queue hpcldtiocates service resources to the queues
for executing the tasks. However, moving resources betweeunes requires setup times, during which pro-
cessing capacity is lost. At the same time, traffic bursts aisy drive the queues to (temporary) overload,
which makes this loss of throughput even more critical. Is ffaper, we introduce a hysteresis mechanism
for judiciously reconfiguring resources across the quenestigate lost bandwidth during setup times and
maximize the throughput, while controlling queue overad

One patrticularly important example of such systems are mmoiaiormation services that range from

e-commerce (e.g. Amazon, Expedia) and e-trading (e.g.deTiidelity) to content delivery and media



streaming (e.g. Netflix, YouTube). They operate using datdars accessed over networks. They may scale
to tens of millions of users, who interact with Web serveainiching cascades of service (computation and
communication) tasks. At various levels of modeling alzdiom, tasks are buffered in (virtual) queues of
various types awaiting service, while processing cyclesa@mmunication slots are dynamically allocated
to process the tasks in each queue. A key complicating facttrese settings is that reconfiguration of
processing communication resources requires some saifigptime, for example, for accessing memory

to store the previous context/state and retrieve new omeksta databases, disengage resources from pre-
vious task types and move them over to new ones, etc. Duricly Setup times service bandwidth can be
lost; therefore, resource switching and reconfigurationtbabe exercised judiciously and as infrequently
as possible.

Indeed, systems with setup times are quite common in compuoé&nufacturing, and service systems. In

data centers, servers are often turned off or reallocatedder to save energy consumption (Gandhi et al.
2012,/ Gandhi and Harchol-Balter 2013, Gandhi et al. 20X3)ah take minutes to turn servers back on,
while each job often only requires a few seconds (DeCanQ’A @007), making the decision of whether

to turn servers on or off an important one. In manufacturingrenments, it can take time to warm up

%)

machines as the product type on the line is changed. In sesyistems, bringing in additional staff or
alternatively trained staff to address different custociasses can take time as the human servers may
require transportation and psychological/cognitive atiient time. For example, in call centers, handling
in-bound versus out-bound calls requires a different déll and mental aptitude. Similarly, a hospital
physician may take time adjusting to treating existing EDguds, after treating a multi-trauma case. In this
work, we consider how to allocate resources amongst quawesyistem with such setup times.

Another complication is that prolonged bursts of serviaguests can temporarily overload the service
resources and drive the queues through a temporary ingtgitilase, until there is a chance to clear the
backlogs and have overload subside. The issue then is howsttibdte the resources during these (tempo-
rary) overload periods.

In this paper, we consider a system of parallel queues, wdrekeng service tasks/requests are queued
up, according to type. In response to queue backlogs, a sldradynamically chooses an allocation of
service resources to the queues for processing their tAkkse are setup times to switch from one service
allocation/configuration to another, during which the qeeidle and service bandwidth is lost. Hence,
frequent reconfigurations are inefficient. In order to naiteythe effect of the setup times, we propose a
scheduler which introduces a hysteresis into the systemn®prolonged traffic bursts the scheduler tries
to balance the backlogs of the overloaded queues, by angieviesirable, chosen ratio between the rising

backlogs. This is described in Sectldn 2 in detail.



1.1. Related Research

In the absence of setup times for service reconfigurationgelhinvestigated class of scheduling poli-

cies is Maximum Weight Matching (MWM), which has been stadigy several authors, including

Tassiulas and Ephremides (1992), Stolyar (2004), ArmovBambos|(2003), Ross and Bambos (2009),

etc. and more recently, in overloaded systems i(2011) (discussed below).

This paper focuses on systems with setup times, which aezénhin various computer and manufactur-
ing systems. In the presence of setup times, the MWM schedaidd actually drive the system unstable
even under negligible traffic loads, due to frequent semgcenfigurations inducing service idling. To rem-
edy this situation we introduce a MWM scheduler witlysteresigMWM-H). Intuitively speaking, our
scheme, with controller introduced hysteresis, purpodelgys the switching from one service configura-
tion to another until it “makes sure” that this is clearly ded. This is explained more precisely later.

Service systems with setup times have been studied by a mafdogthors with emphasis on stability and

cost optimization._Bertsimas and Nino-Mora (1999a,b) istdidjueueing networks with multiple servers

and Poisson job flows following Markovian routes throughmas queues, receiving exponential service at
each one (general i.i.d service times in the case of a siegles. When a server switches from serving one

gueue to another, it incurs a random (general i.i.d.) cheweygsetup) time, whose distribution depends on

the initial and final queues. Lan and Olsen (2006) studiedsteay of multiple queues and a single server,

where there is a fixed cost and a random setup time when a sawtehes from serving one queue to

another. There is also backlog cost and the overall schreglabjective is to minimize the long-run average

cost Takad;i (1997) provides a nice review of the study aigéimes in the context of polling systems.

rmony and Bambos (2003) have taken an “adaptive” batchimgaach to maximize throughput under

setup times for the system considered here. Each batchsigdtrmed by grouping together the jobs arriv-
ing while the previous batch is processed; hence, the néott s*adapted” to the previous one. Scheduling
job service in batches lowers the frequency of service setunpl leads to maximizing throughput, even

when the average load is unknown (because of the adaptiveenaftthe process).

A different approach has been takenlby Dai and Jennings [[200xy consider several servers, each
serving a subset of buffers. When a server completes (nesnmptive) processing of a job, the latter can
be forwarded to a buffer served by the same or another séweach point in time, the problem is how

to allocated each server to one of the buffers it servesngivat there is a setup time to switch it from one

buffer to another. The approach proposed in Dai and Jer 1&@) is to have each server “stick” to the

buffer currently being served and do a “service run” on savj@bs in that buffer, before being allowed
to switch to a different buffer and incur a setup time. How gn@bs are included in each service run

depends on the average traffic load of the system. The higbdoad, the longer the service runs, so that
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the lost service bandwidth due to setup times is amortizedsaamore jobs. This adds a small “virtual
inflation” of service times, which gets smaller as the rurgterincreases. The paper demonstrates that this
policy achieves maximum throughput of the system, the safafzere were no setup times; the latter only

induces higher backlogs, but does not compromise throughpu

There are two key differences between the policy i ' i (2004) and ours: 1) While their

policy sticks to the same service configuration (serveligasd to buffers) for a fixed number of jobs before
considering a switch, our hysteresis-based policy exasrime system state continuously and may initiate
a switch at any time. 2) to determine this fixed length of the, their policy requires the knowledge of
traffic parameters such as the average load, while our lefgteschemedaptsto the system state with-
out requiring any such knowledge. Both of these qualitiekeraur scheme robust to changes in traffic
characteristics, and requires no forecast or learningeofalevant parameters.

Hysteresis typically refers to a relationship between tajgind outputs that haveemorywhich manifest

itself through delayed impacts. Hysteresis has its roofshiysics, where, for example, phenomenon due

to magnetic fields introduce hysteresis. See Hassan Mlﬁ for a survey of these results. Hysteresis

has found its way into other applications, such as imagegssingl/(Medina-Carnicer et/al. 2010, Xu et al.

2011) and control (Chen etlal. 2008, Morse et al. 1992). Hgste has also been considered in queue-

ing contexts. Kelly (1986, 1991) found that the blockinglmability in a loss network exhibits hysteretic

behaviorl Dshalalow (1998), Dikong and Dshalalow (1999)sider a two threshold hysteretic control for

gueues where the server comes and goes depending on themmnsystem. Lu and Serfozb (1984), Plum

1991) demonstrate that, for an M/M/1 queue whose arrivdl arvice rates can be changed, a control

policy with hysteresis is optimal when there are switchiogts. In a multi-server setting, Ibe and Keilson

1995), Golubchik and Lui (1997) look at how hysteresisshi@ds can be used to determine the number of

servers being used. In all of these works, the hysteresigas ¢y fixed thresholds. In contrast, our hystere-
sis thresholds depend on the system state; in particuamegnitude of the threshold increases with the
number of jobs in system. In fact, because we examine hekalyed systems, fixed hysteresis thresholds
quickly become ineffective; thus, we introduce a hysterésiction which specifies thresholds based on
the system state. To the best of our knowledge, our work ifirgteo consider the use of a state-dependent
hysteresis in control of queues.

Contrary to the aforementioned lines of research, our fbeus is not simply on system stability under
MWM with setups, but also on how to distribute the growinghdag in a desirable manner when the system
is overloaded beyond stability. Given that MWIMth setupsan easily become unstable, even under low
traffic load, we first need to prove that the proposed hystesebeme MWM-H does maximize the system

throughput and achieves the same stability region, as wietup times. In Sectidn 2 below we describe the



gueueing system in detail and in Section 2.1 we define the MM/pblicy and show its essential stability
properties.

In the absence of setup times, various queueing systemserioad have also been investigated.

Egorova et al. (2007) studied bandwidth-sharing netwofkgook flows, utilizing a-fair schedules (instead

of MWM) introduced by Mo and Walrand (2000) to allocate seevbandwidth, and have characterized

the backlog growth rates. Neely ef al. (2008) consider nedsvof queues (in the context of communica-

tion networks), where the set of available service vectbeges over time.They consider distributed fair

schedules under both network stability and overload, byieg flow utilities (see also references therein).

More recently, Shah and Wischik (2011) have studied the\behaf MWM in overload, considering a

fluid model for a collection of queues, where work (fluid) oreaqueue may be forwarded after service
to another queue (but can never come back to the originalamajhere is no splitting and routing of the
work to various queues. The network is analyzed under bothMV&thedules and-fair ones in overload
and the backlog growth rates are characterized. In thisrpafter showing that MWM in a system without

setups and our proposed policy (MWM-H) in the presence afpethave identical fluid limits, we leverage

the results of Shah and Wischik (2011) to establish ourilmgitesult. Thus, all of our control results apply

to both MWM and MWM-H. Note that these results pertaining ¢mtcol via the MWM matrix were not

considered in_Shah and Wischik (2011). Perry and Whitt (2@09.1) have also investigated the behavior

of queueing systems in overload , albeit in a specializeda®ttopology (an X network).

1.2. Contributions

In summary, the contributions of this paper are as follovisstFwe address the behavior of the standard
MWM scheme in the presence of setup times, which are commamainy practical systems. To remedy
the inherent instability of standard MWM with setups evenemlow load, we introduce a novel MWM
scheme withHysteresigMWM-H). It is shown that MWM-Hwith setupsachieves the same stability (and
instability) region as the standard MWM witio setupsin contrast to previous literature on hysteresis in
qgueues, the hysteresis in our proposed MWM-ktée-dependeydind does not use information on average
traffic load. It should be noted that most previous schenssigindle control of queues with setups heavily
rely on knowing that information.

Next, we focus on how MWM-H handles overloads, especially bm desirably distribute the backlog
according to target proportions or various cost minim@atbbjectives. We show that by controlling the
weights of MWM-H one can achieve desirable target ratiosHerbacklog growth across the queues. Addi-
tionally, controlling the MWM-H weights, one can opt to masze revenue (when job service generates

revenue), minimize aggregate backlog, maximize aggregmtace rate, etc.
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2. The Queueing Model and the MWM-H Policy

We consider a queueing system@®@fparallel queues, indexed laye Q = {1,2,...,Q}. Time is slotted
and indexed by € Z; . Jobs arrive to the system, adding service requirJ;Ir(wurk to be performed) to
one or more queues. Let € ZJ be the arrival time of thg’" job to the system and; € RY its (vector)
service requirement, whefe ), € R, is the workload added to queye= Q by that job. We assume that
0<(o,), <0, foreachy € Q, whereg, is an arbitrarily large fixed ceiling. At most one job arrivesach

time-slot, adding some positive workload to at least onaiguket
R(s,t) :Zo-jl{tje(s,t]} (2.2)
j

as the (vector) workload arriving in the system between titoés andt, whereR,(s,t) is the workload

arriving to queuey € Q. We assume that the long-term average traffic load to eadeque O ,

t
lim Lq((), )

t—o0

=pq € (0,00), (2.2)

is well-defined, positive, and finite. The traffic load ved®p = (p1, p2,. .., pg-- -, PQ)-

In each time slot, a service ve(HoS’ = (51,52,...,5,,...,50) € S can be used, chosen from a family
S§={5"65%...,5",...,5"} of N feasible ones. Whefi = (5,,S5,...,5,,...,S0) € Sisusedin atime
slot, S, € R4 amount of workload is removed from quege Q, assuming there is enough workload in
the queue (as explained momentarily). Ll%¥t) denote the service vector used in time glo¥e define
S(t) =0if noservice vector is in use in time slat

Let W, (t) be the workload in queugc Q at time t, hence, corresponding workload vectoWigt) =
(Wi (t), Wa(t),...,W,(t),...,Wu(t)) € RY. When the workload vector i8/(¢) and the service vector

S(t) is used, the amount of work which is served and removed froeuegis simply
Dy (t) = min{S,(t), W,(t)} (2.3)

where the minimum accounts for the fact that work can only drwised if it is already waiting in the
queue. Hence, iV, (t) < S,(t), there is some idle service provided by service vesta) due to the lack
of enough workload to be processed.

Let M, (s,t) denote the amount of work that has been executed during[imeat queuey € Q, that is,
t—1
M,(s,t) =" Dy(7) (2.4)

! The terms service requirement and work, as well as worklogdacklog, are used interchangeably.

2We use the terms service vector, service configuration anitsemode interchangeably.



andM (s, t) the corresponding vector across all queues. The workloeidwthen evolves as
W(t)=W(0)+ R(0,t) — M(0,t). (2.5)

There are service se&pswitching) times; that is, in order to switch from serviaector S; to service
vectorS; a switching time ofl" time slots is incurred, during which no service is providethie queues. At
any timet, letU(¢) denote the remaining time until the new service vector caactieated and leV (¢) € S
be the service vector the system is in the process of swigdainThus, ifS(t) = V' (¢), then the service
vector has already been switchedgift) # V' (t), then the system is currently switching to a new service
vector. Suppose that, starting at tithe¢he service vector is to be changed fréinto S;. Then the system
evolves as follows:

S(t—1)=25,;, S(t')=0 fort/ e {t,t+1,t+2,...t+T—1}, andS(t+7T) =S5,
V(it—-1)=5;, V(t')=S5, fort’ e {t,t+1,t+2,...t+T —1,t+T} (2.6)
Ut)=t+T -t fort' e{t,t+1,t+2,..,t+T—1,t+T}

When a service vector switches fra$h to .S; is initiated, it has to complete before a different switch ca
commence. Finally, IeY (s, ¢) denote the cumulative time the system spends idling,ih— 1) because of

switching,
t—1
Y(s,t)= Z Liv(r)>0 2.7
that is, the amount of time during the perigdt) such thatS = 0 due to the reconfiguring of service vectors.

2.1. The Maximum Weight Matching Policy with Hysteresis (MWM-H)
As mentioned before, it is known that - in the absence of sétoes - the Maximum Weight Matching
(MWM) scheduler maximizes the throughput (see, e.g. Armamy Bambos| (2003)). MWM chooses a

service vector

S’eS S’eS

Q
S*(W) € 8*(W) =argmax (W, AS’) = arg max {Z WqéqS;} (2.8)

q=1
when the workload i$V, given any fixed positive-diagonal matrix = diag{d;, d, ...d, ...d¢ } with §, >0
for all ¢ € Q. Thus, when the backlog ig”, the MWM scheduler chooses service vectfsvhoseA S’
has maximal projection oi/. Note that there may be more than one such service vectareh#re set
S*(W) may have more than one element; in that case, one such seedtsS*(1V) is chosen arbitrarily
amongst the ones availabledti (V).

However, it is easy to see that, in the presence of setup titmeshroughput of MWM can be driven to
0 by an adequately “adversarial” arrival pattd(n;, o;), € Zg }, even when the its average traffic loads

very small. For example, a “bad” arrival pattern (see Exafd)lcould caus¢W (¢),t € R } to constantly

% The terms setup time, setup, switching time and reconfiguraime are used interchangeably in general.



oscillate between backlog values requiring distinct serviectors under MWM. That would simply cause
the system to “freeze” and spend all its time in setup modéckimg between these two service vectors.

Thus, even with very low arrival traffic load the backlog wabelplode.

Example 1Consider a system with 2 service vectdfs= [5,0]", S, = [0, 5]”. The switching time required

to setup each service vectorslis= 5 time slots. Suppose the system loagd is[2,2]”, which is certainly

within the stability region (for example, the system is Eaf the absence of setup times if at each time slot

one randomly choose% or S, with equal probabilities). The initial state i& (0) = [0,0]" and S(0) = S.
Consider a sample path where arrivals alternate betweemgueand queue 2. In particular, the arrival

pattern is:

040404 ...

A quick numeric examination of this arrival pattern will denstrate that the backlogs are growing without

[404040“.

bound due to the time spent in switching mode, which rentdersytstem idle for 5 time slots at a time.

1004488121211 6 1010 14 14 18 18 22 22 26 26 30 30 34 ...
1000448 8 121216 16 20 20 24 24 23 18 17 12 16 16 20 20 ...

Wi(t)
Given this inherent limitation of MWM, we introduce a hysteis mechanism which appropriately sup-
presses the frequency of service switchings/setups. Budtireg algorithm, MWM withhysteresigMWM-
H), is shown to achieve maximal throughput under setup tiMésstart by defining &lysteresis Function
h(W): R§, —R,, of the backlogV’, with the following properties:
1. h(W) is positive, monotonically increasing in each comporiéptq € Q, and

2. h(W)—o0 as||W||—oc and
h(W)

Wi W] (29
uniformly on compact sets (u.0.c.), where| is a norm inR, .
Note that the latter property basically forces the hysterg3d1’) to grow sub-linearly with respect #¢". A
simple example i& (W) = \/m

We can now define the scheduldivM with Hysteresis (MWM-H) . Suppose that in time slatthe
system is in operational mode (as opposed to in a setup made} aising the service vectéf(t). In the
next time slott + 1, the workload becoméd/ (¢ + 1) and the system needs to decide whether to either 1)
remain operational and keep using the same service v8¢tor 1) = S(t) or 2) initiate a switching to a
new service vecta$’ = S* (W(t + 1)) , in which case it will have to halt service for the n@xtonsecutive
time slots for setup, hencé(r) =0 for 7 € {t + 1,t + 2,...,t + T'}. Specifically, MWM-H scheduler is
defined inductively as follows.

1. When in time slot the system is in operational mode with service vestay, then:



(@) if
<W(t+ 1), AS*(W(t+ 1))> - <W(t+ 1), AS(t)> < h(W(H— 1)), (2.10)

the service vector at time slotemains the samé(¢ + 1) = S(¢) and no switching is initiated;
(b) else, if

h(W(t+ 1)) < <W(t+ 1), AS*(W(t+ 1))> - <W(t+ 1), AS(t)>, (2.11)

a switch to service vectds* (W(t + 1)) is initiated and the system enters a setup mode for thelhéxrte
slots, thatis,S(r)=0forr e {t+1,t+2,...,t +T}.

2. When the system enters setup mode in timetsiot (as per step 1(b) above) it will halt service for
T consecutive time slots (hendg;7) =0 for 7 € {t +1,t+2,...,t +T'}) and will go back to operational

mode again in time sldt+ 7"+ 1 with service vector
St+T+1)=8" (W(t+ 1)) (2.12)

and cycles back to step 1.
3. By convention, we can initialize the system to starting foperational mode witly (0) = S* (W(O)) :
when the initial backlog i$17(0).
Let us now make some observations on the MWM-H scheduler daflybdiscuss the intuition behind
it. Note first that the servic8(¢) under MWM-H could be quite different than
anyS* (W(t)) €S (W(t)) = axg max <W(t), AS’>, (2.13)
which would have been the service vector under the originalN(without hysteresis), as pdr (2.8). Next,

note that the quantity
D(t+1)= <W(t+ 1), AS* (W(H— 1))> - <W(t+ 1), AS(t)> (2.14)

(used in the definition of MWM-H) is non-negativand measures how “suboptimal” it is to keep using
S(t) in time slott 4 1 in MWM-H compared toS* (W(t + 1)) that MWM would have used. If the sub-
optimality gap®(t + 1) is less than the threshoh(W(t + 1)), then MWM-H has no incentive to switch
to S* (W(t + 1)) # S(t) and halt service fof" slots during setup; therefore, it is content with using the
old suboptimalS(t). But if the sub-optimality gaf® (¢ + 1) exceeds: (W(t + 1)), the MWM-H decides it

is worth halting service fof” time slots in order to switch to a better service vector. Theads the backlog

drifts away from usingS(¢) efficiently, MWM-H does not respond immediately (as oridindVVM would

4 Because<W(t +1), AS’> is maximized forS’ = S* (W(t + 1)) over the set of all service vectof§ € S
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Figure 1  Standard MWM service cones', C%, C* and their boundaries (straight solid lines) for a simpleesysof 2 queues
and 3 service vector§' = (4,0),5% = (3,1),5% = (1,2) and A = diag(1,1) the identity matrix. The curved
dashed lines are the hysteresis boundaries (around thesponding cone boundaries) under MWM-H with setups,
for hysteresis function (W) = /Wi + Wa. Consistent with[{219), the hysteresis boundaries growlisearly away
from their corresponding cone boundaries as the workloaases.

have done), trying to avoid halting service forsetup slots. Instead, it sticks withi(¢) and waits until
this drift goes beyond the tipping poiht(W(t + 1)), before it launches the switching and tradeslots

of service inactivity for getting better service at the emtierefore, MWM-H ishystereticin the sense
that it waits to make sure it is worth switching, before lating the process and paying the price. This
property suppresses the frequency of service switchinggats MWM-H with setups to achieve maximal
throughput (as shown below) as the raw MWM without setupssrertihe latter with setups could have
collapsed to zero throughput.

An alternate geometric look at the MWM-H operation is dentiated in Figurdl. Define in general

the MWM service cone”" as the set of backlogd” for which the MWM could use the service vector

SmeS=1{S",5% .., SN}, thatis,
on = {W RS, : 5" € §*(W) = argmax (W, AS) } (2.15)

Itis easy to see that these are (linear) cones, since sedlingp or down by changing the scaladoes not
change the service vector selection under MWM. Fiflire 1 sHowstraight solid lines) the MWM service
conesC*, C?, C*® for a system of 2 queues and 3 service vecrs= [4,0]", 5% = [3,1]",5% = [1,2]"
and A = diag(1,1) the identity matrix. The curved dashed lines define the Ingste boundaries under
MWM-H with setups for hysteresis functidn W) = W, + Ws.
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Under MWM with no setups, when the backlog drifts, for exagptom coneC" into coneC?, the
service vector immediately switches froffi to S2. But under MWM with setups, if a “bad” pattern of
arriving work causes the backlog to oscillate between thesides of the”!-C? boundary, then the system
could lock in setup mode forever, transitioning back anthftsetweenS* andS? repeatedly. That would
halt service forever and cause the queues to explode even very low traffic load.

In contrast, consider now MWM-H with setups and suppose thiklvad is in cone&”? and S? is being
used. As the workload drifts out of cod& and crosses into cor@', MWM-H will keep usingS? until the
workload drifts beyond the hysteresis boundaty; only when that happens (if ever) will MWM-H initiate
a switching taS* and halt service fof” slots. In general, when operating wifft and because of hysteresis,
the backlog drifting out of con€™ into coneC™ mustpassthe hysteresis boundary"™ on the other
side before triggering a switch 9 and halting service in the ne%t slots for setup. Note that, consistent
with (2.9), each hysteresis boundadry™ grow sub-linearly away from thé€™- C™ cone boundary as the

workload increases.

Remark 2.1 We note that the sublinearity and unboundedness of theregstdunctionf, (W), are essen-
tial to the behavior of MWM-H. If the hysteresis grows too ckly with the workload, the system will
never switch until the workload gets very large, at whichnpdi is too late. Thus, even a stablizable load
will result in unbounded backlogs. On the other hand, if tiistéresis function scales too small with the

workload, the system will constantly switch, resultingfieezing’, and instability.

Remark 2.2 As an alternative policy to MWM-H, one could also considermdiqy where, once a service
vector is being used, the system will not switch to a diffesmarvice vector for a time that is greater than or
equal to the value of a hysteresis evaluated as a functidredfdcklog. Once the system is ready to switch,
the next service vector is selected according to MWM. Inaziag this alternative policy, we find that its
performance is very similar to that of MWM-H, both analytigaand numerically. Therefore, for the sake

of brevity, we omit the details.

2.2. Overview of Main Results

It is known (see, e.g. Armony and Bambos (2003)) that when

peP={peRF :p< > ¢.5, forsomeps >0, € Swith Y ¢, =1}

Ses Ses

the standard MWM without setups is (weakly) stable (ie._,.. 2 = 0). But, as discussed above, this

=

is not the case in the presence of setups.
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As shown below, given a fixed matriA and loadp, the time-scaled backlog of the system operating

under MWM-H with setups will converge to a limit vectgg(A) which depends o\ andp, that is:

lim W) =n,(A). (2.16)

t—o00 t

For all A =diag{d,, ds, ..., 6o } € RS, , let K, be the range of the mapping(A) : RF, —Rg, , given fixed
p-

In particular, there are two cases:

1. If p e P, thenlim,_, WT“) =1n,(A) = 0 for eachA = diag{é,,d,, ..., 5} € R, . This establishes
that MWM-H with setups achieves the same stability regioth m@aximizes throughput just as the MWM
without setups. This is in sharp contrast to MWM with setughéoly does not achieve maximal throughput
and could actually have zero throughput under bad arrividé pes.

2. If p ¢ P, thenlim, , @ =1,(A) # 0 for every A = diag{6,, 05, ...,00} € R,. By choosing
Ac R& we can appropriately positiof),(A) € R& in its rangelC, so as to achieve a target proportion of
overload% for each queue € Q that the system manager considers desirable.

Controllingn,(A) e K, via A € Ro‘ﬁ for an overloaded MWM-H system with setups has some easy, yet
interesting, implications. Some direct examples are ghedow:

(a) Note firstthap —n,(A) is the rate at which backlog is actually served by the oveddasystem.
Hence, manipulating,(A) via A results in controlling the actual processing raten,(A), as desired.

(b) Another optimization consideration is to minimize theadratic cost<(@>,B(WT(“>> as
t—o0 for the overloaded system under MWM-H with setups, wHBris a positive diagonal matrix. That
is, minimize the costn,(A),Bn,(A)) over A = diag{d;,d, ..., 0o} € Ry,. As it turns out (see Section
[4.7), choosingA = B is optimal in this case.

(c) Alternatively, one can consider revenue maximizatibrserving a unit of backlog at queue
q generates revenue,, then total revenue generation rate is simply ., m, (pq - (np)q(A)) =
(m,p—mn,(A))=(m,p) — (m,n,(A)). In order to maximize the revenue generation rate we just teeed
minimize (m,n,(A)), that is, make),(A) as orthogonal ton as possible, within the bounds &f,.

(d) Another simple example relates to minimizing the totaértoad stress . 0,(1,),(A) =
(6,1m,(A)), whereé, is the stress incurred for a unit of overload at queu@&his can easily be done by
makingn,(A) as orthogonal té as possible, within the bounds &f,.

(e) As a special case of the above, one may consider minighthi@ aggregate backlog explosion
rated . . o(1,)q(A) = (1,7,(A)), can be done by making,(A) as orthogonal to 1 as possible, within the

bounds offC,.
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(H Finally, one may wish to maintain fairness with respecttte rate of growth of the backlog for
the various queues. For example, it is natural to want tomizé the maximum backlog with respect to all

queues, which in the limit, corresponds to solvingiigin, ¢, max,co(7,)q-

3. Asymptotic Dynamics in Overload

We begin by building an understanding of the asymptotic dyina of the scaled workload vectr (¢) /t,
ast—oo, given an MWM-H matrix,A, and hysteresis functior,(-). We start with a stability result for
MWM-H and find that the stability region for MWM-H with setups identical to the original stability

region for MWM without setups. This justifies the need to udeysateresis for throughput maximization

to avoid a deadlock such as in Examigle 1. To do this we followrdla argument to Armony (1999) and

Shah and Wischik (2011) with important modifications thataamt for the setups and hysteresis. As our

focus in this work is on overloaded systems, we simply stegestability result here. We note that the proof

of this result comes as a simple corollary of Theoken 3.2.

Theorem 3.1 If p e P, thenlim,_, . W‘;(“ =0,Vq.

Note that the stability region is the same for the policy édeied in_Dai and Jennings (2004) (appropri-

ately adjusted to our setting) even in the presence of selieskey difference is that the implementation
of their policy requires knowledge of the traffic load vectowhile our policy does not.

We now consider an overloaded system with that is outside the stability region. From

rmony and Bambos (2003), wheng P the workload explodes under a system with and without setup

times: thatis||WW (¢)|| — oo, ast — co. We are interested in finding out how exactly this happernbdse a

finite limit for lim, ,,,

? If so, what is it and what does it depend on? This sectionvstdd to answer-
ing these questions. We note that in the process of estaigishr results for a system in overload, we will
also derive stability conditions for the MWM-H policy whelere are setup times. Our key result in this
section is that, givess, p, A, andh(-), there is aunique limit n,(A) of WT(“ ast— oo, that is independent
of the hysteresis functioh. For notational compactness, we will suppress the depeedsy onp andA

throughout this section.

Theorem 3.2 Fix p, S, A andh(-). Then, there existg ¢ Rf such that

lim WT(t) =. (3.2)

Furthermorey) is defined as the unique solution to the following convex raiag

(n,An)=min (n',An’) (3.2)

n' €¥(p,S)
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where
U(p,S)={n":n"=(p—9)" withy € P} 3.3)
and P is the stability region given by. Equivalently,n is the unique (fixed) point which satisfigs=

(p—DgessS)TwithY) o sas=1,ag>0and
asg>0 = Se8*(n). (3.4)

Corollary 3.1 The limity of T( ast—oo is independent of the hysteresis functidn).

To prove the theorem we use fluid model arguments. In the flaidat) work is infinitely divisible and

arrives at a constant and deterministic rate. For any givenS work is also depleted at a constant and

deterministic rate. In our proof we utilize results for th&\W policy fromlArmony (1999) which examines

the stability region and Shah and Wischik (2011) which cbirizes the limit for the corresponding fluid

model; both of these works consider systamitioutswitching times or hysteresis, so some key adjustments
EEJ ai (1999)) may bknmat as follows:

are required. The fluid model approa

Step 1. Postulate the fluid model equations.

Step 2. Establish Lipschitz continuity of the fluid model solutions

Step 3. Establish that the fluid-scaled queueing process (timeakeddyr and space by /r) is pre-
compact ag—oo.

Step 4. Establish that every fluid limit of the fluid-scaled queueprgcess, as— oo, satisfies the fluid
model equations.

Step 5. Establish the desired property of fluid model solutions (in@ase this involves establishing that
Theoren 3.2 holds wheW () is replaced by the fluid content at time

Step 6. Use the above steps to establish that a similar propertieddtiathe original queueing system.

The key to our fluid proof is to establish that, under the MWMpblicy, the dynamics of the fluid

model (Step 1) is identical to those of the fluid model for thé&/M policy withoutswitching times and no

hysteresis, as long as the fluid state is non-zero. Oncestagtablished, one can lever schik

2011) to characterize the limit. This is in sharp contrasthe fluid model of Dai and Jennings (2004),
where switching times appear in the fluid limit. All proofs iotermediate results can be found in the
appendix.

Step 1. Fluid model equations

The fluid model is a formal construct, characterized by thetsolutions to the fluid model equations. In
this step we postulate these fluid model equations (sek-@%)). In Step 4, it is established that every

fluid limit is a solution to the fluid model equations. Throwgit, an upper bar is used to denote all fluid
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related expressions. Notice that, as opposed to the quenidel, the fluid model is defined in continuous

time.
R(t)=pt, t>0. (3.5)
W (t)=W(0)+pt— Y S-T(S)(t)+L(t), t>0, (3.6)
L,(t)=— nf W,(0) + p,7 — Z S- T(S)(T)} , t>0, L,(0)=0. (3.7)
N T(S) ) +Y(t)=t, t>0, T(S)(0)=0, S€S, Y(0)=0. (3.8)

where the processdyS), S €S, Y, andL are nondecreasing!(S)(t) may be thought of as the cumula-
tive time up to timet that the vectolS has been used, and(t) is the total time up to timeé that the system
has been engaged in switching. We note that in the limit, Wigcking time practically disappears in the
overloaded regime, as will be seen in the proof of Lemimé 3hk firocesd.(t) is the minimal process
required to keep the fluid workloddl (¢) non-negative; thus, it captures the idling time. Finallg add one
more equation that is specific to the MWM-H policy. Recallttia(WW') := arg maxq ¢ (S’, AW), then we
have that for alt > 0 which is a regular poifit if W () # 0 then

S TS =1, (3.9)

SeS* (W (1)

Essentially,[(319) implies that whenever the fluid workleadtor is non-zero, the fluid system will not be in
switching mode, and is processed by one of the “optimal”’seschccording to the original MWM without
hysteresis. In particular, the hysteresis and the switcim not play an active role in the fluid model. In
fact, the hysteresis does not even show up in this scaling.

Steps 2. & 3. Establishing Lipschitz continuity and pre-conpactness

This is analogous to Lemma B.2 and Proposition B.1, resgagtiinl/Armony (1999) which analyzes the

MWM policy with no switching times and no hysteresis. Detaile omitted. We conclude that any fluid-
scaled sequence of queueing processes converges almalgt(ats.), u.o.c.

Step 4. Fluid limits satisfy the fluid model equations

Consider a fluid lmitR(t) = lim, o, 22 W (t) = lim, 0 T2, V(1) = lim, o, Y272, T(S)(t) =
lim, .. B 1S0O=5 ang [ (1) = Jim, ,, 258 0 Lstn=s1 07 M O 14 egtaplish that this fluid limit

satisfies equationk (3.5) throud@h (3.8) is analogous tortenzents in Section B.2.1 in Armany (1999). In

particular, it follows that every such limit is Lipschitootinuous. Establishing that every such limit satisfies

(3.9) requires more work due to the presence of hysterediswaitching times. To establish the above we

need to show that if is a regular point and i/ (¢) # 0 then

® A regular point is a point where the fluid model is differebti@a Due to the absolute continuity of fluid model realizasii
d@)) there are at most countably many non-regular points
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1. T(S) is non-increasing at this point, for &#llZ S* (W (t)), and
2. Y is non-increasing at this point.
Proposition§ 3]1 arld 3.2 do this.

Proposition 3.1 Lett be a regular point, and suppose that(¢) # 0. Then,T'(S") is non-increasing at this
point, for all S' ¢ S*(W (). In particular, T(S")(t) = 0 for all S’ ¢ S*(W (¢)).

Proposition 3.2 Lett be a regular point, and suppose tHaf(t) # 0. Then,Y (¢) is non-increasing at this
point. In particular,f/(t) =0.

The proof of Propositiofh 312 relies on the following lemmaittiargues that the switching times are

negligible in the limit.

Lemma 3.1 [Asymptotic negligibility of total switching times] Let ¢t and 6 > 0 be such that
inf,ep_svo) [|W(rT)|| = 00, asr—oo, then

lim Y(r(t—9),r(t+0))

r—00 r

=0.

Step 5. Limit of the scaled fluid model
Shah and Wischik | (2011) established that the fluid model, ratjpgy under MWM, satisfies

lim,_,., W (t)/t =n, wheren is the unique solution of the convex progrdm13.2). Since aelestablished

that the fluid model associated with the MWM-H policy is ideat to the one associated with MWM (as

long asW (t) # 0), we have thatim,_, . @ = n under MWM-H as well. Note that this result is true

regardless of whether the system is stable or not. Thus, MMVNas the same stability region as MWM
without setup times. Theorem 1in Shah and Wischik (201 b stistes that for the fluid model,i¥ (0) = 0,

thenW (t) = nt, for all t > 0. In particular, we have that i (0) = 0, then

W(1)=n. (3.10)

Step 6. Limit of the scaled original queueing model
Finally, we wish to show that, for the original queueing mipde

lim WT(t) =1, (3.11)

t—o0

wherer is the unique solution of the convex progrdm[3.2). But nb& 1t/ (0) := lim,_,.. W (r-0)/r = 0.
Therefore, byl[(3.10), we have that, . W (t)/t = W (1) =n.

To complete the proof of Theoredm B.2 we need to show that thie 4i in (3.2) is also the unique fixed
point as defined i (314). The term “fixed-point” comes frora fhct that in the fluid model, if% =1

then™ 2 =, for all t > .
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Lemma 3.2 [Fixed point characterization of the limit n] The limit# of WT(” ast—oo is a fixed point.

That is,
. W(t) N
n=Jim —==(p—)_asS) (3.12)
Ses
with >, s g =1,a5 > 0. Moreover,
as>0 = SeS*(n). (3.13)

We can further utilize the characterizationmfs the solution to the convex program {3.2) and leverage
convex optimization theory to conclude that there is onlg fired point. As we will see in Sectidn 4, this

characterization of will be useful in the context of controlling the backlogs.

Corollary 3.2 There exists exactly one fixed point,

[o— Za55]+

Ses

n

0 Qg

1 = ZO&S
Ses

as>0 = (n,AS)>(n,AS’) VS’ €S. (3.14)

IA

To summarize, whenever the system is in overload the wadlkdoaws along a vector defined hywhich
is the solution of the convex program [n (8.2). From Lenim& &2l recalling the geometric interpretation
of the policy in FiguréIl, we know thatis on the intersection of some set of cones. If there exidisamre
ag >0, thenn = [p—S]™ and is in in the cone corresponding$oC. If there are multiplexs > 0, then
n=[p—> gasS]T is on the boundary of the set of con€s with ag > 0. In SectiorL 4, we will discuss
how we can use this observation to control the limit of theki@g process.

Note, now that we have established that the fluid limit of MWMIaMWM-H ard identical, all subse-

guent results hold for both policies, as long as MWM is onlgdigrhen there are no setups.

4. Control via the A matrix

We have now seen how the asymptotic behavior of the workleatbv, IV (¢), behaves given service vectors
S and MWM-H matrixA. In particular, when the system load is outside of the stglvégion, the workload
will explode along a single direction. That i/ (¢) ~ nt. During a long period of temporary stress, the
gueueing system is effectivelynstableduring this window and the valuable service resources becom
strained. Under the MWM-H scheduling policy, queues witheptionally high load will starve resources
from other, less stressed, queues. This begs the questlmmwofo share resources in an optimal manner

when the system is unstable. Our goal in this section is touds how to manipulate the MWM-H (and
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MWM) matrix A to achieve a desired limiting performance of the scaled waik vector. We start in
Section 4.1l with a quadratic cost minimization objectiveevehA can be optimally selected in a simple
way. With more general objective functions, one needs to ¢inaracterize the sét, of feasible limits
n,(A) for all possible choices of the matriX, and then see how to manipulatein order to ensure that

the most desirable limit in this set is achieved. We pursigithSectior 4.P.

4.1. Cost Minimization

Consider the following quadratic cost as a function of theklaad.
c(W)=Ww,BW),

whereB is a positive diagonal matrix. Consider now a policy thaestd to use the service vectsr
at timet, whereS = argmaxgcs <S, %> = argmaxges (S, BW). Whenever the system is not in
the midst of switching, this policy selects the service geét that myopically reduces the cost function
by the maximum amount possible in the sense that it draindatigest amount of workload out of the
system in the direction of the first derivative of the costdiion. This is in fact the MWM-H policy with
an MWM-H matrix A = B. When introduced in the context of backlog cost minimizatithe MWM-

H policy is reminiscent of the generalizeg policy that has been shown to be asymptotically optimal

under various settings — without switching tim i 1995), Mandelbaum and Stolyar (2004),
Gurvich and Whitt/(2009), Armony and WHQ (2012)) for sepdwaonvex cost functions.

Attempting to minimize the backlog cost is especially obiadling in over-stressed systems; when the
system is temporarily overloaded, the workload increas#swt bound, and so does the cost. Still, since
backlog grows linearly in time, it is meaningful to attempntinimizeC' (W (t)/t) = C(W (t))/t* for large
t, or, more formally, to minimize

WO\ _p. (W), BW(t))
<T> =limsup ————=*-.

t—o0 t2

limsupC

t—o0

We call a policyasymptotically optimaif it obtains this minimum.

Theorem 4.Fix p, S, andB. Then, the policy MWM-H with MWM matriA = B (and any hysteresis

functionh) is asymptotically optimal in the sense that it minimizes

limsupC <WT(t)> = lim sup w

2
t—o0 t—o0 t

The proof of Theorerh 411 is immediate in light of Theorem] ¥ first realizing that any sublimit of
W (t)/t must be in the se¥(p, S) (3.3), and next seeing that minimizing the RHS[0f13.2) isatiydike

minimizing limsup,_, ., LBV with B = A,
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Remark: Skill-based routing. A special case of our queueing model is a parallel serverajongisystem
with multiple customer classes, and multiple servers, eagable of serving a subset of the customer
classes, with service rate that is both class and servemdepe Skill-based routing then refers to the
dynamic assignment of servers to customer classes. Eablassgnment corresponds to a service vector
in which theq element is the sum of the service rates of all the serversingin customers of class
g. In this setting, and without setups, the MWM has a simpldanahich is implementable in settings
where preemption is not allowed. Specifically, we consibergolicy that upon service completion assigns

the server;j to the customer class whose queue is non-empty and whichmized (B, X;) ;. This is

precisely the policy proposed lin Stolyar (2004), shownetterbe asymptotically optimal in conventional

heavy traffic, for a separable quadratic cost under a compsburce pooling condition. A similar analogy

to the policy MWM-H can be established for skill-based rogtivith setups, by introducing a hysteresis.

4.2. Characterizing the set of feasible limits/C,, and the desired MWM-H matrix, A
Beyond quadratic cost minimization, we can choose the rma¥iin order to appropriately position
n,(A) € K, so as to achieve a target limit of the scaled workload thasyiséem manager considers desir-
able. The desired limit might have to do with cost/utilitytiopization as outlined in Sectidn 2.2. In general,
and in contrast to the quadratic cost minimization case) bu matrixA and the rangéC, depend on
the system parameters including the Seind the load vectos. We begin by characterizing the g€f of
feasible limits.

Recall that, from Lemmia3.2, the limit,(A) of the scaled workload}’(¢)/t is a fixed point, as defined
in 3.4). In particular,y is on the intersection of the set of cones with > 0 in the definition ofy =
(p =2 gessS)T. If there is more than ones > 0, this corresponds to a cone boundary. This boundary
depends on thA matrix used in the MWM-H scheduling policy.

Under certain necessary and sufficient conditions we cansghthe matrixA so as to arbitrarily place
the cone boundary and thereby control the workload to explidng a desired vector defined hyWe

leverage this observation in the following charactermatf the set of feasible limits.

Proposition 4.1 A vectorn > 0 is in the setC, if and only if the following conditions hold:

Ln=(p—>ges@sS) T ag>0,> ¢ . gag=1.
2. There exist® > 0 such thaivg > 0 implies(v, S) > (v, S’) for all S € S. Furthermorep, =0 if and

only if n, = 0.

Now that we have characterized the &gt we can determine thA matrix to achieve the desired limit,
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Corollary 4.1 Letn € K, be the desired limit of the scaled workload vector, and Ibe as in Proposition

4. Then the required such that) =n,(A) satisfies:

24y, > 0;
A, =4 e 41
qq {1, v, =0. (4.1)

To verify that thisA is indeed the required MWM-H matrix, one can simply checkt thas indeed a
(unique) fixed point as is required by Theorem 3.2.

4.2.1. On the geometry of the seiC,. To gain intuition about the geometry &f,, we now present
an example with\V = 2 service vectors and) = 2 queues and specify the set of feasible limits given
p=[4,4]", S =11,2]" andS? = [3,1]". Itis easy to see that= [1, 2]” satisfies Condition 2 in Proposition

4.7 since(v, S*) = (v,.5?). Now, by Condition 1, any) that satisfies

(p—aS' —(1-a)s*)*
=a(p-S")+(1—a)(p-5?
all,3]" + (1 —a)[3,2]", forsomeac|[0,1] 4.2)

=
I

is a feasible limit ofi¥(¢)/t and, hence, in the sé,. In Figure[4.Z]1(a), we can see the stability region
andp, which is outside of this region. The g€}, of feasible limits is the same as the set of vectors between
the two vectorsy' = (p — S')™ andn? = (p — S?)* as seen in Figule 4.2.1(b). Thys K, but?) & IC,.
Geometrically, in this example, the set of feasible limjtsray be obtained as the positive partpafinus

the set of all convex combinations 8f andS=2.

3
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2 2 7 0.4f n
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pl nl

(a) Stability Region (b) Feasible Limits

Figure 2 Feasible Limits for p: N =2 service vectors and @Q =2 queues.

Relating the discussion back to the manipulation of the imm&rin order to achieve a desired direction,

we consider a specific example of asymptotically minimizihg aggregate scaled backlog (as discussed
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in example (e) in Section 2.2). The limit ik, that achieves this minimum ig = [1,3]”. By (4.1), this
corresponds to selectidy,; = v, /m;, =1 and Ay, = v, /1, = 2/3. In contrast, if one wishes to minimize
the L, norm of the scaled backlog, the optimal choice)is- [1.4,2.8]", which is achieved by selecting
A =Aypn=1.

Now that we have fully characterized the regikp and specified how to seleX in order to achieve
any directionn € K,, we note that this provides a framework in which to consigeimoization problems
over arbitrary cost (reward) functiorts(W) (f(W)). As long as the minimum (maximum) is given by a
well-defined feasible direction as definedy in Propositioi 4.1, then by Corollary 4.1, we can determine

A necessary to achieve this minimum cost (maximum reward).

4.3. Robustness with Respect tp

Thus far, we have assumed that the load vegisrknown. Under this assumption, we are able to select the
necessary MWM-H matrixA, to achieve anyiormalizedimit (or direction)#, wheref, =,/ >, n; for
somen € K,. Now we suppose thatis unknown or known with some error and examine whether we are
still able to choose\ to achieve the desired normalized liritThroughout this discussion, we will assume

that N > 1; otherwise there is no control amd= (p — S)™ for all p, irrespective ofA.

5f R®

,

3 ’
c 2
// C

3 LYo /,/’/ R =

(a) Stability Region (b) Scheduling cones

Figure 3  Stability and Cone regions for N =3 service vectors and Q =2 queues.

Consider the following example witN' = 3 service vectors an@ = 2 queues as depicted in Figlie 3. Let
St =[4,0]",5%=3,1]", 5% =[1,2]". Additionally, suppose we desii& (¢)/t — n, with  =[2/3,1/3]".

We consider 4 different load vectors, which are outside efstfability region:

PN =[4,1)7, 0@ = [3,2]7, p® = [1,3]", oV = [5, .5]" (4.3)
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When the system loag = p® or p¥), the conditions in Propositidn_ 4.1 cannot be satisfied; eaigle
starting from those load vectors and moving in the directibf,, does not hit the stability region at a point
that is a convex combination of the service vectors. Hermenbrmalized limitf, is infeasible and there
does not exist a MWM-H matrix to achieve it. With some algelra can see that the necessary MWM-H

matrix to achieve the desired normalized limit dependg:on

A(pM) = AW = <(1) g) LA(PD) = AO = <(1) 2) . (4.4)

From Theoren_3]2, the workload is given hy= [p — >, «,,S,,]T. Hence, to achieve the desired nor-
malized limit, the goal is to find a point on the boundary of #tability region such that subtracting that
point from the system loagh, results iny, which we want to be a scaled version of the desired norndhlize
limit 6. From Figuré 3(@), we see that the pajht on the stability boundary which is given by the convex
combination ofS* andS? satisfies this constraint fgr*). The A(") matrix places the boundary between
the relevant cones along the direction of the desired lifut.p("), the relevant cones are the ones corre-
sponding toS' andS?. This boundary vector can be moved to the directidny usingA ™. Similarly, A(?)
moves the boundary vector between cohasd3 for p(?). This example shows that the boundary vector of
interest and, subsequently, the necessary MWM-H matrixepends omp.

Despite the preceding example, it is possible to sedeatithout preciseknowledge ofp. This ability

depends on the number of subsets of service veStarfssize greater thah which satisfy:
(v,8)=(v,8") > (v,58"),v5,58" €S, S"eS\S (4.5)

for somev > 0, v # 0. Hencep is aboundary vectoas it is a vector on the boundary between the neigh-
boring cones o8,,, when the MWM matrix is the identity matrix. We refer to thisundary as aelevant
boundary In our example, there are 2 boundaries of intere'$t= [1,1]” andv? = [1,2]” (see Figur&l3).
The boundary which matters depends on both the systemgdpadd the direction of the desired normalized
limit, 6. Ford =[2/3,1/3]%, if pis in the lower regionR'?, then the boundary vector of interestu¥,
between cone€'! andC?. If p € R?3, then the boundary vector of interesti¥, between cone§ and
C3.If pe R or p € R?, the desired limit is infeasible. These regions can be deted for each subset of
service vectors by solving for the set @fvhich satisfy Condition 2 of Propositidn 4.1. As long as wa ca
determine in whichregion p resides, the MWM-H MatrixA can be specified without exact knowledge of

p. In particular, robustness of the choicesfwith respect tq holds to a certain extent.
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5. Numerical Results

In this section, we present some numerical results to detratashe performance of MWM-H Scheduling.
We examine how the backlogs grow and approach the estatbksiaded-backlog limity. All of our results
are asymptotic results with—o0o. We can see through some numerical simulations how langest be in
practice to approach our asymptotic results.

To start we look at a system with tw@ (= 2) queues and twa{ = 2) service vectors:
Sl = [47 0]T7 52 = [37 l]T

Our load vector is outside the stability regign= [4, 1]7 ¢ P. In each time slot, the number of jobs which
arrive to queud is uniformly distributed on0, 8]; for queue2 it is uniformly distributed on[0, 2]. We
assume a setup time af time slots and a hysteresis functidn(1V) = .25,/W, + W,. Our goal is to
minimize the following quadratic cost functiaii(W/t) = (W/t, BW/t) for

- (32)

From Theorerii4]1, we know that this implies one should uskth-H matrix A = B. One can solve the
convex prograni(3]2) to determine that=1/3,a, = 2/3 so thaty = (p — a; S* — a,S*) T =[2/3,1/3]".

We consider how the workload vector grows for various ihitanditions: W (0) = [0,0]", W (0) =
[60,0]", W (0) = [0,20]*. In Figure[4(d), we plot the trajectories @f (¢) for the different initial condi-
tions, along with the lindV; = 2W,. We can see that all three trajectories converge to estaiolisec-
tor n, = 2/3,m, = 1/3. In Figure[4(D), we see the scaled backlog§(t)/¢, and the relative backlog,
Wi(t)/ >, W;(t), converge starting from initial conditidi’ (0) = [0, 0]. We notice that it takeslangtime
for W;(t)/t to converge. This is due to the setup times and not the hyi$el/ith a setup time df' =0
and the same matriA and hysteresis functioh, the scaled backlog convergestavithin 200 time slots;
with a setup time of” = 10, it takes nearly 5,000,000 time slots. That said, we sedlieatlative backlogs
quickly achieve the desired direction.

We now consider an extension of the previous example Witk 3 service vectors
St=14,0",8*=[3,1]",5°=[0,2.2]"

Again, we assume the setup time istime slots and a hysteresis functigr{}V') = .25,/W,; + W,. Instead
of cost minimization, our goal is to control the backlog tegralongn = [2/3,1/3]”. Specifically, we

want:

t—00 t

i 0 [ 212
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Figure 4 Dynamics for N =2 service vectors and Q =2 queues.

As we saw in the previous example, whes: [4, 1], this occurs for

a-(22)

However, we note that the inclusion of the third service oeatters the seX’,. In fact, there are now two
boundary vectors of interest when deciding the appropdat@atrix as specified by Propositibn 4.1: the
one betweerC! andC? as well as the one betweéi¥ andC?. The boundary which matters depends on
p. Specifically, consider two load vectos= [4,1]”, as before, and’ = [2,2]”. As is indicated by Figure
B,n=1[2/3,1/3]" is indeed a feasible limit for bothandy’, the vecto = p — 7 is a convex combination
of ST andS?, while ¢’ = p’ — i is a convex combination d§? andS?. In particular, to achieve the limi,

when the load vector is we need to manipulatA so as to align the boundary betwe@handC? with 7.
10
02
needs to be aligned with is the one betwee@? andC*®. The appropriate MWM-H matrix in this case is

, (10
x=(10).

We can see in Figuifd 6 how the asymptotic dynamics of the quéeigend op and A. 7 is shown in

As established above, in this cage,= ; In contrast, when the load vectorsthe boundary that

red.

In the next experiment, we consider a system Wjtk- 3 queues andV = 3 service vectors.
St=1[5,0,0]",5%=10,5,0]",5° =10,0,5]"

and MWM-H matrix:
200

030 (5.1)
006

A
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Figure 6 Dynamics of 2-queue queueing system with 3 service vectors.

We consider a hysteresis function(1V ) = 10/W, + W, + W5 and vary the setup times. The system load
oscillates between being stable and unstable. Hence, #rettemporary periods of overloags®@'e =
[1,0,1]7, punstable— (3 2 217, The system spends 200 time slots in the stable medess@'-then switches
to spend 400 time slots in the unstable mgde—p ™S Arrivals to queuey in each time slot are uniformly
distributed betweeft, 2p,]. When the system is in the stable mode, MWM-H should stabilie workload.
When it is in the unstable mode, MWM-H should converge to glsidirection,n. By solving the convex
program[(3.2), we find that=[1,2/3,1/3]".

Figure[7(d) anfl 7(p) plot the scaled worklo&H(¢) /¢, and relative workloadsy;(¢)/ > . W;(t), under
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this unstable/stable system when the setup tinfeasd0 time slots, respectively. We can see that for the
first unstable periodt (€ [0,200]), the direction (plotted in red) is quickly achieved. That said, the setup
time makes the rate of convergencd®{t)/t — n much slower. During the stable periadg [200, 600]),

we can see that the length of time spent stable is too shothéosystem with setups to stabilize, though
it is clear the scaled workload is going to zero. Without psfuhe system is stabilized, though it takes
nearly 150 time slots to do so. In the next unstable perioal staled backlogdX;(¢)/t) do not appear

to stabilize within the200 epoch period for the system with and without setup timess Thbecause we
are scaling by théotal time, not just the time from when we enter the period of inditgbHence, it may
actually take a very long time before the scaled backlogsexge. On the other hand, the relative workload

(Wi(t)/ >, W;(t)) quickly aligns with the direction of. During stable periods this relative backlog is not
very informative since all the scaled backlogs will go toazer
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(a) 5 slot setup timel" =5 (b) No setup timeT' =0

Figure 7 Dynamics of 3-queue queueing system oscillating between stable and unstable modes.

5.1. Impact of the Hysteresis Function

In order to explore the impact of the hysteresis functionystesm performance, we are considering a family

of related functions. In particular, we consider a hystiersction of the form:

he (W) = (Z Wq>

for « € (0,1). Our goal is to examine how, which varies the growth rate of the hysteresis functiompants
the system dynamics. Smallmeans the hysteresis function will grow slowly, presumaégulting in more
switching, while largex will result in less switching, but also less time when the Eyed service vector

is aligned with the ‘optimal’ one that MWM without hysteresiould use.
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For this numeric exploration, we consider a similar setugnéoone explored in Figuté 4 with
St=1[4,01",8*=[3,1)"

. Again, we assume the setup timelistime slots and a cost function 6f(W/t) = (W/t, BW/t) with

B = (é g) .
We consider an unstable load veci@hswane= [4, 1]7, as well as a stable load veci@fape= [3,.5]" .

We initialize backlog td¥ (0) = [0, 0] and run the simulation fdf = 10, 000 time slots. FigurEl8 depicts
the percentage of time MWM-H spends idling due the switchingg, the percentage of time MWM-H
is using the same service vector MWM would be using in a givere tslot, and the percentage of time
MWM-H is using a different service vector than MWM due to thesteresis. Finally, we see the normalized
cost(W</t, BW*/t) / max, (W</t, BW*/t), wherelW* is the backlog af’ = 10,000 when hysteresis
functionh® is used. As expected, the time spent idling due to switclsrigghest for smalv. Because the
service vectors are being changed so frequently, thisteesuthe highest cost. As increases, the time

spent switching decreases, but then the time spent usineanadive service vector increases.

R ——% Idle Time N ——% Idle Time
0.9 Sy -o- Zf Mat:/]hv\')AI\XVM H 0.9F S -o- Zf Mat:/]hv\')AI\XVM H
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0.8l \\ —#+ Normalized Cost}| 0.8l \ —#+ Normalized Cost}|
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. L \
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o o
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(a) Unstablep (b) Stablep

Figure 8  System performance for different hysteresis functions, h*(w) = (Zq Wq)a.

Figurd9 considers only times when the system is actuallkingri.e. not during the switching times. We
can see that asincreases, the growth rate of the hysteresis increasesjnggaere are larger delays before
changing service vectors and a larger discrepancy betw&ghind MWM-H. Note that the performance
of h(W) = log (Zq Wq) with respect to matching MWM is practically the same as tHabk®(1V) for
a=.25.
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Figure 9  System performance for different hysteresis functions, h*(w) = (Zq Wq)a.

From Figurd_ 8, we can see that largeresults in lower costs. Even though largealso increases the
mismatch with MWM (Figurd B), because the amount of idlingdialso decreases, the total amount of
work done increases with, resulting in lower costs. It also appears that the diffeesrin the performance
of MWM-H become very small forr > .5. This suggests that it may be reasonable to use MWM-H with

anya > .5.

6. Conclusions and Discussion

In many real world systems, traffic load is unpredictable aftein bursty in nature. In any finite window
of time, the system may enter a period of temporary instgbithere the rate of incoming jobs is larger
than the rate at which jobs can be serviced. Additionallynyreystems require a setup time when service
configurations are changed. During this time, no jobs cambaced, creating additional stress to an already
overloaded system.

Our focus in this work on thistability region is different than traditional queueing. While it &xt@inly
desirable to operate systems within the stability regibere are many real world scenarios where this
may not be possible. Input traffic may surge due to unplaniredrastances. Service resources may be
reduced due to unavoidable accidents or catastrophesadtivése periods of temporary instability it is
often necessary to allocate limited resources in a desinadinner. Once the system exits the window of
stress, it will be stabilizable and the natural goals of tigfgput maximization and cost minimization can
be restored.

Our second main focus in this work is considering how to sgueues under the paradigmsafitching
times We restrict attention to MaxWeight Matching schedulindjgges because they are simple to imple-

ment and behave well during stable periods when there aravitching times. In particular, MaxWeight
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Matching policies guarantee finite backlogs when the sysbeuchis within the stability region. To account
for the setup times, we introduce a new class of policies:\Meight Matching withHysteresisWe find that
for appropriately defined hysteresis functions, MWM-H 1% ltike same stability region of MWM without
setup times and 2) whenever the system is overloaded, tkestimed backlog approaches a straight line as
the time window during which the system is overloaded ingesaThis straight line can be characterized as
a fixed point, or equivalently, as the solution to a simplevesrprogram. As such, it is straightforward to
identify this line, as a function of the system parametédis ldad vectop, and the MaxWeight matrix\.
Interestingly, this line does not depend on the hysteresistion. Moreover, we are able to adjust the
matrix to achieve various control objectives, such as miiriimg quadratic costs.

The proposed MWM-H policy addresses an inherent problern M#M: frequent switching. Even in
the absence of switching times, one could utilize the MWMehteol to mitigate switching, e.qg. if there are

costs associated with switching service configurationgeMgenerally, there are other policies which can be

used in the presence of switching times (e.g. Dai and Jena 4)|_ Armony and Bambaos (2003)). That

said, MWM is a policy which has received substantial attanin the literature and the proposed MWM-H
policy inherits many nice properties of MWM, while addregsthe problems which arise with setups.

It should be noted that the complexity of the MWM-H policy posed in this paper is at least as large
as that of the original MWM policy without Hysteresis. In paular, one must first solve the optimization
problem to identify the MWM service vector and then evalubgshysteresis function to determine whether

a switch should be initiated. One way to reduce the complexievaluating MWM is utilizingLocal MWM

which only considers the nearest neighbor service vec®edtarnatives to switch t0. Ross and Bambos

2009) demonstrates that such local optimization resulgsstabilizing policy (in a setting without setups)
that mimics the standard MWM with some delay. Such localrojtation could also be applied to the
MWM-H policy.

This work can be extended in various directions. First, oighirconsider whether introducing hysteresis

to other policies, such as Projective Cone Scheduling framesRind Bambos (2009), would also ensure

identical stability regions in the presence of setup tiniésxt, it may be possible to extend this work

to networks of parallel queueing systems, by relying on ltedtom [Shah and Wischik (2011). Finally,
while we have established convergence of the backlog veetder very mild traffic conditions, if more
restrictive assumptions are made (such as Markovian quenesnight be able to obtain results on the rate

of convergence as well.
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Appendix
A. Proofs of results in Sectiol B

PROOF OFPROPOSITIONI3: Let{r,} be a subsequence ¢f} such that%:') converges a.s., U.0.C.
to W (- ). Consider a regular poirttwith W (¢) # 0. For convenience of notation we remokdrom the
notation and assume, without loss of generality, thaf._, . @ = W (-). We wish to show that there
existsd > 0, such that for alt- large enougts(r7) € S*(W (t)) for all 7 € [t — §,t + 4].

Letd > 0 be such thainf ;s s | W ()| > 0 andS* (W (7)) € S*(W(t)), forall 7 € [t — 6,t + ). The
existence of such follows from the continuity of the limit’. We now argue that for all large enough we
have that ifS € S*(W (7)) andS’ ¢ S*(W (7)) then

S¢S (W (rr)), (A1)

and
(S, AW (r7)) > (S", AW (r7)) + h(W (r7)), (A2)

for all 7 € [t — 8,t + 0]. To establish[{All) note tha§* (W (r7)) = S* (@) and the result follows

from the the fact thatV(-) = lim,_, Wi’”'), a.s., u.o.c. Similarly[{A?2) follows after dividing all pres-

sions byr, taking the limit, and recalling that is sublinear, that islim, . 2% = 0, u.o.c., so that

h
llwll

h(W(rr)) [W(rT)|l
W ()l T

PrROOF OFPrROPOSITION3.Z: Let{r,} be a subsequence §f} such that%kk') converges a.s., U.o.c.

lim, _, =0, u.o.c. |

to W (-), and consider a regular pointwith 1 (¢) # 0. For convenience of notation we remokerom

the notation and assume, without loss of generality, that_, . Wi” =W(-). Let § > 0 be such that

infcr—s140) ‘W(T)‘ > 0. We wish to show that for akt large enough the system engages in switching for

a negligible amount of time ift — 4, ¢ + 6]. More precisely, we wish to show that

Lo Y(r(t=0),r(t+9)

r—00 T

= 0. (A3)

To establish[(AB) we first prove Lemrha B.1. The proof of theppition then follows from the fact that

infcpi—s 101 [|W(rT)|| = 00, asr—oo, by the definition ob. [ |

®Recall that the queueing model is in discrete time. With ghtlabuse of notation we 18V (t) :== W (|t]). We use a similar
notational convention with other quantities that are assed with the queueing model.
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PROOF OFLEMMA [3T: For every fixed:, lett — 6 <7,, < 7.2 < ... < T, < t+ 0 be the sequence
of points where the system initiates switching at time,, 1 <k <m,.. Note thatr, ; =t — ¢ if the system

is in the midst of switching at time(¢ — §). By definition,

Y(r(t—296),r(t+0)) <T(m,+1). (A4)
At the same time, form, > 1:
me—1
20 Z Z (Tr,k-l-l - Tr,k)-
k=1

We wish to evaluate the term ;. ., — 7,.,.. LetS™* = H(r7,.;) be the service vector which is being changed

to at timerr, ;. By definition we have that:

<W(T’Tn7k), AST”“> > h(W(rt,.)) + <W(T’Tn7k), AST”“+1>
<W(7“Tn7k+1), AST’H1> > h(W (rmaps1)) + <W(T‘Tn7k+1), AST’k>

With a little algebra, we can see that

<W(7“Tn7k+1) —W(rtne), AST’H1> - <W(7“Tn7k+1) —W(rtnk), AST’k> >h(W(rtp k1)) +h(W (r7,.r))
(A5)

We consider the expression on the left hand side:

<W(T’Tn7k+1) — W(T’ka), A(ST’kJrl — Sr’k)>

rTn’kJrlfl
= < R(r7y gy1, T — 1) — Z D(7) | ,A(S"F+? —Sr’k)>

T=TTp k

rTnykJrlfl

= <R(r7’mk+1,r7'n7k —-1)— Z D(7), A[(S™FT — SRy 4 (grktT Sr’k)_]>

T=TTp k

TTn,k+1_1
g<R(7~Tn,k+1,wn_,k—1),A(sr=k+l—sr=k)+>—< 3 D(T),A(ST”““—S”“)>

T=TTp k

< rQ x (max o, + maxmax S, ) (7, k41 — Tnx) Max A, max max S,
q Ses ¢ ’ ’ q Ses ¢

= TK(Tn,kJrl - Tn,k)

WhereK = () x (max, 7, + maxges max, S,) max, A, maxses max, S, < oo is a well-defined positive
finite constant. Combining this with_(A5), we have:
2 .
T(Toks1 = Tok) = It rn,kggfm,kﬂ h(W(rr)) (A6)
Thus,
26> (my — 1) inf  h(W(rr)). (A7)

K t—6<r<t+6
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Combining this result with our initial observation [D_(A4):

V(=) rlt+)) _ T(m, +1) S .
2rd - (m,— 1)% inf, s<rcirs h(W(rr)) =~ infy_s<rcips h(W(rr))

for all » such thatn, > 1. By assumption, we have thatf . c;,_s . ||W (r7)|| =00 asr—oo, and hence
inf, s<,<ir6 h(W (rr))—o00 asr—oo.

Alternatively, withm, < 1, there is at mosI’ time spent switching in the interval:

Y(r(t—9),r(t+9)) T
< — .
55 < 2T6—>0, as r— oo (A9)

|
PrRoOOF OFLEMMA [3.2: The proof is an immediate consequence of the fluid mogiehttons [(3.5)-
(3:9). In particular, assuming th&it (0) = 0, we have thatV (¢) = nt and every point is a regular point.
The proof follows by setting for alf € S, ag :=T(S)(1) =T(S)(t)/t, Vt. [
PROOF OF COROLLARY [3.2: Now, we demonstrate that any fixed point is a solutiorht® donvex
program[(3.R). Since the solution {0 (8.2) is unique, theltesill follow. Consider the KKT conditions for
optimality. Our goal is to show thatif = (p — > g sS) ", ag >0, > g s as = 1 is such that for alls
with ag > 0, we have that € S*(n), then it is a solution to the convex progrdm {3.2). The KKTditions

are necessary and sufficient for optimality if the objecfivection is differentiable and Slater’s constraint

is satisfied (Boyd and Vandenberghe (2004)). Both are eeaiifiable in our case.

To examine the KKT conditions, we first rewrite the convexgsem in [3.2) as an equivalent convex

program:

min (p—1b, A(p—1))
st <Y asS

Ses
0<¢<p

D as=1 (A10)
The KKT conditions for optimality say that all the constigimust be satisfied and:

Vip—0,Alp—¥)) + VN =Y asS)+ VN (¢ —p) = Via+ Vo) as—1) =0

Ses Ses
X, (= Y asS,) = 0
N[y —p,) =0

)\Sas =0

LN,V 0 >0 (All)
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We look at the first condition:

Vi 2A(p—9) =X+ X\
Vas: D NSy=v— s
q
= 2((p—¢),AS) =v—As+(\",5) (A12)

Now we show that for any fixed point, there exiats\’, ", v which satisfy the KKT conditior [(All1). To

do this, suppose we are given a fixed pojat p — ¢ = (p — > .5 @sS)™" with
as>0 = (p—19,AS)>(p—1,AS"), VS €S. (A13)

We will construct non-negative Lagrange multipliers tdsfgitthe KKT conditions.
Considerg such thatp, > 1,. In order to satisfy the third constraint in (A11); = 0. Now if p, < r,,
the first constraint in[(AT2) implies that, + X’ < 0, which means thak/ = X\ = 0. To ensure that the

Lagrange multipliers are non-negative, we must haveXfiat 0 for all . Subsequently:
N =2A(p—1)) (A14)

Hence,\ is non-zero if and only if p — 1)), > 0. Considering the second constraint[in (A11), this would
also require that), = > .5 «sS,, which is certainly feasible.
Consideras > 0. To satisfy the fourth constraint il .(AlL1)s = 0. Now to satisfy the third constraint in
(A12):
0<2(p—1,AS)=wv,¥S such thatxg >0 (A15)

which also satisfies the non-negativity:ofNote that becaus¥ > 0 and.S > 0 the above expression for

is necessarily non-negative. Consider = 0 andas > 0. By the assumption that— ¢ is a fixed point:

V—Agr U
< 2
2 T2

Hence, we can satisfy the KKT conditions [n (A11) with norgative A\, \', \”, v. Since any fixed point
satisfies the necessary and sufficient KKT conditions, adidigoints are solutions to the convex program.

There is only one solution and so there is only one fixed pdinis concludes the proof. |
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B. Proofs of Results in Sectiohl4

We begin with an auxiliary result, that we will utilize next.

Lemma B.1 In Q-dimensions, consider any/ service vectorss’, Sz, ..., S'™ . Suppose there exists a
diagonal positive definite matriA and non-negativé)-dimensional vectos > 0 such thaw is aboundary

vectorof the M cones, i.e. for each € [1, M] and for all ;:
<v AS%> <v AS7> (B1)

Then, for any non-negative vectgisuch that;, = 0 if and only ifv, = 0, there exists a diagonal positive

definite matrixA such that for eaclt € [1, M] and all ;:
(n,AS™) > (n,AS7) (B2)

i.e. the boundary between tlié cones can be placed arbitrarily ﬂﬂf. This matrix is specified as:

Agqv
q9*q 0-
A, = g V=Y B3
qaq {17‘1 v, =0. (B3)

PROOF. We show this via construction. Recall thAt is diagonal'<v AS> =3, gy Sy FOrv, >0,
Ay = Aj;;”q > 0, where the positivity comes from the fact that each elengepositive. Ifv, =0, A, =1
or some other arbitrary positive value.

Now, for anyi; (j € [1,m]) andk the following holds:

<v ASis > <U ASk> = ZAquq( S') >ZAqu (S,
q
jzquqq(Sl] an aa( an 0a(5")q
q
= qu A aa an aa j)q _anAqq(Sk)q
q

= Z Sl A qqnq) (Sk)quqnq)]
2 Z[(Sk)q(Aquq - Aqqnq) - (Sij)quqnq)]
== Z(Sk)q qq"lq = — Z Agqllg = <777 ASij> = <777 ASk> (B4)

|
PrRoOF oF PRoPOSITIONZ.T: Assume that Conditions 1 and 2 are satisfied. We shountpiges there
exists aA such thafim,_, . WT(“ = 7. We first consider Condition 2. This says that 0 is the boundary

of conesC® whereag > 0 defined byA = I. By Lemma[B.1, we can constructA such that for all
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ag > 0:(n,AS) > (n,AS"), ¥S"€S. Now, in conjunction with Condition 1, we have that ¥(p,S) is
a fixed point. By Theoremn 3.2, we have thiab; .. W (t)/t =n.

Now suppose there existsA such thatim, .., W(t)/t = n. By Theoreni.3Ry is a (the only) fixed
point and, hence, satisfies Condition 1. Now, we show thatd@ion 2 is satisfied by constructing the
necessary > 0. Similar to the construction oA in the proof of Lemma& Bl1 we can determinethe
boundary induced wheA = I. That isv, = A7, which equald) if and only if 7, = 0. This v, satisfies
Condition 2. [
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