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Healthcare is a limited resource environment where scarce capacity is often reserved for the most severe

patients. However, there has been a growing interest in the use of preventive care to provide treatment to

patients early on, before they deteriorate. On one hand, providing care for patients when they are less critical

could mean that fewer resources are needed to return them to a healthy, stable state. On the other hand,

utilizing limited capacity for patients who may never need care in the future takes the capacity away from

other more critical patients who need it now. To understand this tension, we propose a multi-server queueing

model with two patient classes: moderate and urgent. A moderate patient who does not receive treatment

may recover and leave or may deteriorate and become an urgent patient. In this setting, we characterize how

moderate and urgent patients should be prioritized for care when proactive care for moderate patients is an

option. We identify a parameter, the modified cµ/θ-index, which plays an important role in determining the

optimal scheduling policy. This index lends itself to an intuitive interpretation of how to balance holding

costs, service time, abandonment, and degradation of patient class.

Key words : Proactive Care, Mutli-class Queue, Optimal Control, Equilibrium, Transient Performance

Analysis

1. Introduction

In recent years, with the advancement of predictive analytics and data availability, considerable

efforts have been made to develop and utilize predictive tools in healthcare. For example, predictive

models have been created to evaluate the risk of ICU admission (Churpek et al. 2014), hospital

acquired infection (Chang et al. 2011), Cardiovascular events (Rumsfeld et al. 2016), and various

other adversarial patient deterioration. From the operations perspective, this brings the opportu-

nity of developing approaches to provide effective proactive care and, potentially, improve system

performance (Hu et al. 2018). In particular, there are well-documented evidence that delayed treat-

ment can lead to worse medical outcomes such as longer length of stay or higher mortality rate

(Chan et al. 2008, Chalfin et al. 2007, Chan et al. 2016). Proactive care, with the help of the pre-

dictive models, can help reduce treatment delays and improve patient outcomes. That said, recent

systematic reviews of early-warning-based alarms in the medical literature have demonstrated that

they only marginally improve outcomes while substantially increasing the workload for physicians

and nurses (Alam et al. 2014). The key reason for this is that existing predictive models are often

not very accurate in identifying patients who will actually deteriorate (Yoon et al. 2016).
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Isolating the potential impact of proactive care is not straightforward. On one hand, providing

care for patients when they are less critical could mean that fewer resources are needed to return

them to a healthy, stable state. This has the potential benefit of reducing the overall workload of

the system. On the other hand, utilizing limited capacity for patients who are less critical may

take capacity away from other more critical patients whose care needs are more urgent. Moreover,

some of these less critical patients may become stable without ever needing the critical care. Thus,

providing proactive care to them may end up generating more workload for the system. In this

paper, to develop a better understanding of the key tradeoffs in proactive care, we propose a

multi-class queueing system that explicitly models patients’ deterioration and recovering behavior,

and study the optimal scheduling policy for proactive care based on the model. Our analysis also

provides insights on how the accuracy of the predictive information affects the prioritization of

proactive care services.

While proactive service has long been considered in manufacturing settings where preventative

maintenance effectively reduces the demand for future repair services (McCall 1965, Pierskalla and

Voelker 1976), in healthcare operations management, there are very few works on proactive care

(see Section 1.1 for a detailed review of some related work). Our modeling approach aims to provide

a systematic way to capture the key tradeoffs in the limited resource environment: the potential

benefit of curing patients with less resources versus the potential cost of delaying treatment for the

more critical patients and generating more overall workload to the system.

We conduct analysis on both the long-run average performance and the transient performance,

with the focus on developing structural insights on the optimal scheduling policy. The long-run

average performance analysis provides guidance on scheduling proactive care when the system is

in its normal state of operation. We also highlight the value of transient performance analysis

and transient optimal control. This is because healthcare systems often operate in a highly non-

stationary environment. A surge in demand due to random shocks such as disease outbreaks or

mass casualty events can bring the system far from its normal state of operation. It is thus impor-

tant to understand what is the most cost effective way to bring the system back to the normal

workload. Our analysis provides insights into the merits of proactive care. Importantly, we are able

to characterize settings where proactive care can be beneficial and others where it is better to focus

all resources on the sickest patients. Our main contributions can be summarized as follows.

Queueing model with patient deterioration. We propose a Markovian multi-server queue

with two patient classes: urgent and moderate. The key feature we incorporate is that a moderate

patient who does not receive timely treatment may recover and leave or may deteriorate and
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become an urgent class patient. If we assume there is a classifier (e.g. an early warning system)

that classifies potentially risky patients into the moderate class, then the proportion of moderate

patients who will actually deteriorate into the urgent class measures the true positive rate of

the classifier. Our analysis, which builds on a deterministic fluid approximation of this queueing

model, provides insights on how different model parameters affect the optimal scheduling policy

for proactive care.

Equilibrium analysis. To minimize the long-run average cost for the fluid model, we show that

the decision to prioritize the urgent class versus the moderate class is governed by what we refer

to as the modified cµ/θ-rule. In particular, the modified cµ/θ-rule accounts for the deterioration

dynamics in addition to the holding cost, service rate and abandonment rate. The exact expression

of the modified cµ/θ-index lends itself to a very intuitive interpretation of which parameters – pre or

post degradation – impact the costs. We also establish the long-run regularity under strict priority

rules by characterizing the corresponding equilibrium system behavior. Interestingly, when strict

priority is given to the urgent class, we identify cases where a bi-stability can arise. Bi-stability

refers to the phenomenon where the system can converge to one of two equilibria, depending on

its initial condition. Although one of the equilibria leads to good system performance, the other

can result in very high costs.

Transient optimal control. To minimize the cumulative transient cost (until reaching the equi-

librium point) for the fluid model, we show that the optimal policy may switch priority depending

on the interplay between two indexes: the cµ-index and the modified cµ/θ-index. In particular, it is

optimal to schedule according to the modified cµ/θ-rule when the system state is far away from the

equilibrium, and follow the cµ-rule when the state gets close to the equilibrium. Furthermore, if the

same class is prioritized by both the cµ-rule and the modified cµ/θ-rule, then it is optimal to assign

strict priority to this class throughout the transient time horizon. On the other hand, if one class is

prioritized near the equilibrium and the other is prioritized far away from the equilibrium, then the

optimal scheduling policy switches priority at most once along the trajectory. After characterizing

the structure of the optimal scheduling policy, calculating the optimal policy curve where priority

switches can be done efficiently. We then conduct numerical sensitivity analysis on the policy curve

and quantify the effect of the ‘prediction accuracy’ on the optimal scheduling policy.

Our transient analysis also provides a paradigm for solving transient control problems in queues.

In particular, the analysis can be summarized by three steps: i) Approximate the transient dynam-

ics using a proper fluid model; ii) Derive the structure of the optimal scheduling policy for the

fluid model. As the fluid model is a deterministic dynamical system, this step is done utilizing
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Pontryagin’s Mminimum Principle and special techniques to deal with state constraints; iii) Based

on the structure of the optimal policy, solve a simpler version of the optimal control problem, i.e.

solve for the optimal policy curve.

The rest of the paper is organized as follows. We conclude this section with a brief review of

related literature (Section 1.1). The model and detailed problem formulation are introduced in

Section 2. We derive the optimal scheduling policy to minimize the long-run average cost in Section

3, and the optimal scheduling policy to minimize the cumulative transient cost until reaching the

equilibrium point in Section 4. Some generalizations to multi-class systems (more than two classes)

are discussed in Section 5. Lastly, we provide some concluding remarks in Section 6.

1.1. Related Literature

Our work is mainly related to three streams of literature. From the problem context, our problem

is related to proactive care for healthcare operations management, and scheduling in multi-class

queues, especially queues with dynamic class types. From the methodology perspective, our work

is related to transient queueing control. In what follows, we briefly review related works in these

areas.

Proactive Service. Most existing literature on proactive care focuses on the optimal screening

strategy. For example, Özekici and Pliska (1991) study the optimal scheduling of inspection in the

context of screening for cancerous tumors. They take false positives into account but not the limited

resource environment, i.e. they do not consider the externality each patient places on other patients.

Örmeci et al. (2015) study the optimal scheduling of screening where the screening service shares

resources with the more urgent diagnostic service. They model the benefit of screening through

its effect on improving the ‘environment’. Sun et al. (2017) study whether to perform triage under

austere conditions, where triage occupies scarce resources but can provide more information on how

to prioritize patients. Hu et al. (2018) take an empirical approach to examine the cost and benefit

of proactively transferring ‘risky’ patients to the ICU. There are also works modeling proactive care

as providers having advance information about customers’ future service needs but do not model

patient deterioration as we do. Examples include Xu and Chan (2016), Yom-Tov et al. (2018),

Delana et al. (2019) and Cheng et al. (2019). Our work complements this literature by providing

a general modeling framework that takes several key aspects of proactive care into account. These

aspects include a limited resource environment, patient deterioration, patient recovery, different

service needs and costs of waiting for different classes of patients. We also derive structural insights

on the optimal scheduling policy for proactive care.
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Optimal scheduling of multi-class queues. Our modeling approach falls into the category of multi-

class queues. There is a growing literature on optimal scheduling of multi-class queues; see, for

example, Mandelbaum and Stolyar (2004), Harrison and Zeevi (2004), Stolyar et al. (2004), and

Puha and Ward (2019) for a recent review of works on scheduling multi-class queues with impatient

customers. Due to the linear structure in system dynamics, in some cases, a simple index-based

policy can be shown to be optimal. For example, the cµ-rule is shown to be optimal for single server

queue without abandonment (Cox and Smith 1991). The cµ/θ-rule is shown to be asymptotically

optimal for multi-class queues with exponential patience time distribution in the many-server

overloaded regime (Atar et al. 2011). We also note that due to the prohibitively large state-space

and policy-space for these problems, approximation techniques are often employed to solve the

corresponding Markov decision process and develop structural insights on the optimal policy, (e.g.,

Van Mieghem (1995), Tezcan and Dai (2010), Gurvich and Whitt (2010)).

The most relevant multi-class queueing models to ours are queues with dynamic class types.

Sharing similar motivation to our work, Akan et al. (2012) models the wait list for donated organs

as a multi-class overloaded queue. Disease evolution is captured by allowing patients to switch

between different classes representing different health levels. Xie et al. (2017) conduct performance

analysis for systems where delayed customers may renege the current queue and transfer to a

higher-priority class. Cao and Xie (2016) derive the optimal scheduling policy for a single-server

two-class model with holding and transferring costs. A modified cµ-rule is shown to be optimal

under some parameter regime. Down and Lewis (2010) study an N -model in which customers from

the class with flexible servers (‘low-priority’) can be upgraded to the one with dedicated servers

(‘high-priority’). The cµ-rule is proved to be optimal for scheduling flexible workers under certain

conditions. Most of these works rely on exact or numerical analysis of the corresponding Markov

decision process, where the analysis can become prohibitively challenging when more complexities

are added to the model. In this paper, we adopt a fluid approximation approach, which borrows

insights from the conventional heavy-traffic asymptotic analysis under the fluid scaling (Whitt

2002).

Transient Queueing Control. Analyzing transient queueing dynamics is often very challenging,

not to mention optimizing over different control policies. Only a limited set of numerical and

approximation techniques have been developed for the performance analysis of transient queues.

These include inverting Laplace transforms (Abate and Whitt 1988, 2006), heavy-traffic asymp-

totics (Honnappa et al. 2015), etc. Our study uses the fluid approximation and employs tools from

the optimal control theory for dynamical systems (Hartl et al. 1995) to derive the optimal transient
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scheduling policy. The most relevant works to ours are Larrañaga et al. (2013) and Larrañaga

(2015), where they consider a multi-class single-server queue with abandonment but no degrada-

tion. Aiming to minimize the cumulative transient holding cost for the fluid approximation, the

authors show that the optimal policy may switch priority depending on the interplay between the

cµ-index and the cµ/θ-index. We note that adding the degradation component is a highly non-

trivial extension due to the more complicated boundary behavior (when the state constraints are

binding). Moreover, the optimal trajectories in our case cannot be characterized in closed form. We

highlight that the analysis laid out in Section 4 substantially extends the framework for transient

optimal control with state constraints; this approach may shed insights for other queueing control

problems.

2. The Model

To explore the potential benefits of proactive care, we propose a Markovian two-class multi-server

queueing system as depicted in Figure 1. Patients (customers/jobs) are defined by their need for

service. We refer to Class 1 as the urgent class: those who need service with certainty. Focusing

resource allocation to just these patients is a common approach in the health services literature.

In this work, we also consider a moderate class (Class 2): those who currently do not need service,

but are at risk of becoming urgent and in need of service. These Class 2 patients may deteriorate to

Class 1 or they may ‘self cure’ and leave the system. Proactive Care (preventive care), i.e. providing

service to Class 2 patients, can prevent Class 2 patients from becoming Class 1 patients.

In our motivating healthcare context, Class 1 patients may correspond to patients who are

physiologically unstable and in need of care in an Intensive Care Unit (ICU), while Class 2 patients

may correspond to those on the general medical ward who are at risk of deteriorating. Those who

are on the general medical ward, but are known to have no risk of needing ICU care, are outside

of our modeling framework. Many patients on the general medical ward will never need ICU care,

while others may decompensate and be transferred up to the ICU. With improving accuracy of

early warning systems, proactive ICU admission before a patient is truly critical is becoming a

reality (see, e.g., Hu et al. (2018)). What remains is to understand when and how such care should

be utilized.

We consider a system with s identical servers (e.g. beds, doctors, and/or nurses), i.e. they

offer the same quality of service. Class i patients, i = 1,2, arrive to the system according to a

time-homogeneous Poisson process with rate λi. Class 1 patients have independent and identically

distributed service requirements following an exponential distribution with mean 1/µ1. If a Class
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1 patient waits too long in the (infinite-buffer) queue, it will ‘abandon’. Its patience time is expo-

nentially distributed with mean 1/θ1. For Class 1 patients, one can interpret this abandonment

as an undesirable event that could correspond to the patients being placed in an off-service unit,

being transferred to another hospital, or even dying.

Class 2 patients can either be proactively served (i.e. before transitioning to Class 1), ‘abandon’

the system, or deteriorate into Class 1. Should the system administrator choose to provide proactive

care to a Class 2 patient, its service time is exponentially distributed with mean 1/µ2. Alternatively,

if the Class 2 patient is still in the queue after an exponentially distributed patience time with

mean 1/θ2, it will ‘abandon’. For these moderate patients, the abandonment can be a good thing

where the patient is no longer at risk for deterioration, i.e. the patient self-cures. Finally, a Class

2 patient will deteriorate into the urgent type (Class 1) according to an exponentially distributed

clock with rate γ while waiting in queue.

Figure 1 Two-class queue
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We make a few assumptions on the model parameters to capture the healthcare setting we are

interested in analyzing. To reflect the fact that Class 1 patients are more severe, we assume that

Class 1 patients have a longer average service requirement than Class 2 patients, i.e., µ1 <µ2.

We next provide a useful interpretation for φ := γ/(θ2 + γ). Note that if no proactive care is

provided to Class 2 patients, γ/(θ2 +γ) of them will deteriorate into the urgent class. Suppose Class

2 patients are identified via a classifier that determines patients who are ‘at risk’ of deteriorating

(e.g. Escobar et al. (2012)), then γ/(θ2 + γ) can be interpreted as the true positive rate of this

classifier. That is, it measures the accuracy of the classifier. If we know with certainty that Class

2 patients will eventually deteriorate into Class 1 patients, then θ2→ 0 and γ/(θ2 + γ)→ 1.

To understand the key tradeoff we are trying to capture with this model, we start by discussing

the extreme case where θ1 = 0. In this case, if no service is provided to Class 2 patients, each Class
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2 patient generates an average workload of γ/(µ1(θ2 +γ)) to the system. This is because γ/(θ2 +γ)

of the Class 2 patients will deteriorate into Class 1 and all Class 1 patients must be served. On the

other hand, if we can provide proactive care to all Class 2 patients, then each Class 2 patient will

generate an average workload of 1/µ2. The magnitude of γ/(θ2 + γ) impacts whether it may be

more or less beneficial, from a workload perspective, to provide preventive care to Class 2 patients.

Of course, the actual problem we are facing is more complicated than minimizing the system

workload. In particular, the different waiting, abandonment and/or deterioration costs incurred by

the two classes can also have a substantial impact on the optimal scheduling policy.

Let Xi(t) denote the number of Class i patients in the system at time t, t ≥ 0. We denote by

Zi(t) the number of servers assigned to Class i patients, and by Qi(t) the queue length of Class

i at time t. Clearly, Z1(t) + Z2(t) ≤ s and Xi(t) − Zi(t) = Qi(t) ≥ 0 for i = 1,2. We also write

X(t) = (X1(t),X2(t)), Z(t) = (Z1(t),Z2(t)), and Q(t) = (Q1(t),Q(t)). Note that the state of the

system at time t can be described by (X(t),Q(t)). A scheduling policy Π is defined as a rule for

allocating servers to customers, i.e. Zi’s are the control variables. We consider Markovian policies

under which the server allocations are made based on the current state of (X,Q) only. In particular,

the policy is non-anticipating. Under this class of scheduling policies, {(X(t),Q(t)) : t≥ 0} forms a

Markov process.

As the processes {(X(t),Q(t)) : t≥ 0} actually depends on the scheduling policy Π, we can more

explicitly mark the dependence by writing the stochastic process as {(XΠ(t),QΠ(t)) : t≥ 0}. We

also denote RΠ
i (t) as the cumulative number of the patients that have abandoned Class i queue by

time t, and ΓΠ(t) as the cumulative number of Class 2 patients that have degraded into Class 1 by

time t. For what follows, we shall drop the superscript Π when it can be understood by context.

We incur costs for all patients who wait, urgent patients who abandon, and/or moderate patients

who deteriorate. In particular, we denote hi as the holding cost per unit time for Class i patients

waiting in queue. In addition, each abandonment of Class 1 patient is associated with a fixed cost

r1, and each transition of Class 2 patient into Class 1 has a fixed cost ν. Our goal is to minimize

the aggregated cost incurred, for example,

E
[∫ T

0

h1Q1(t) +h2Q2(t)dt+ r1R1(T ) + νΓ(T )

]
(1)

Note that under the Markovian modeling assumption, we have

E [R1(T )] = θiE
[∫ T

0

Q1(t)dt

]
and E [Γ(T )] = γE

[∫ T

0

Q2(s)ds

]
.
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Thus, (1) can be equivalently written as

E
[∫ T

0

c1Q1(t) + c2Q2(t)dt

]
, where c1 = h1 + r1θ1 and c2 = h2 + νγ.

This implies that we can incorporate the abandonment cost and the deterioration cost into the

holding cost. In what follows, we shall use c1 and c2 to denote the ‘generalized’ holding cost.

In this paper, we focus on two cost measures. One is the long-run average cost; the other is the

accumulated transient cost. The two cost formulations have different focuses and are both very

relevant in practice. The long-run average cost formulation mainly concerns minimizing the cost

when the system is in its ‘normal’ state of operation. When random shocks (e.g. a disease outbreak

or a mass casualty event) bring the system far from its ‘normal’ state of operation, the transient

cost formulation focuses on minimizing the cost incurred to bring the system back to normal. More

precisely, the long-run average cost minimization problem is

min
Π

limsup
T→∞

1

T
E
[∫ T

0

(
c1Q

Π
1 (t) + c2Q

Π
2 (t)

)
dt

]
. (S1)

For the accumulated transient cost minimization problem, we define

T (ε) := inf {t≥ 0 :Q1(t) +Q2(t)≤ ε} ,

for some fixed ε. That is, T (ε) is the time until the total queue length is sufficiently small. We assume

that we have ample capacity s such that E [T (ε)] <∞ for any fixed initial state (X(0),Q(0)) =

(x0, q0). Then the transient optimization problem can be written as

min
Π

E

[∫ T (ε)

0

(
c1Q

Π
1 (t) + c2Q

Π
2 (t)

)
dt

]
. (S2)

These cost minimization problems are Markov decision processes (MDP). Due to the large

(infinite) state-space and policy-space, they are prohibitively hard to solve from a computational

standpoint. Even if we solve it numerically, limited insights about the optimal policy can be gained.

Various approximation techniques have been developed in the literature to solve large-scale MDPs.

With the goal of gaining structural insights on the optimal scheduling policy, we employ a fluid

approximation approach; similar method has been used in, for example, Perry and Whitt (2009).

2.1. The Fluid Model

To construct the fluid model, we replace the stochastic arrival, service, abandonment and deteriora-

tion processes by their corresponding deterministic flow rates. We use the lowercase q to denote the
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fluid queue length process, and a fluid scheduling policy π specifies the service capacity allocation

process (z1, z2). Under π, the fluid dynamics takes the form:

dq1(t) = λ1− z1(t)µ1− θ1q1(t) + γq2(t)

dq2(t) = λ2− z2(t)µ2− θ2q2(t)− γq2(t).
(2)

Let F denote the set of fluid admissible scheduling policies. We say that a policy belongs to F if

the server allocation only depends on the current state of the system (Markovian), and it satisfies

the following constraints:

zi(t)≥ 0, i= 1,2, t≥ 0

z1(t) + z2(t)≤ s, t≥ 0

dqi(t)≥ 0 whenever qi(t) = 0, i= 1,2, t≥ 0.

(3)

The first and second constraints in (3) require that a non-negative amount of service capacity is

assigned to each class, and the total amount of allocated resource does not exceed service capacity.

The third constraint guarantees that the resulting queue length process qi is non-negative for all

t≥ 0. Note that the queue length process {q(t) : t≥ 0} actually depends on the scheduling policy π.

We can more explicitly mark the dependence by writing it as {qπ(t) : t≥ 0}. To keep the notation

concise, we shall drop the superscript when it can be understood from context.

We comment that the fluid dynamics capture the mean dynamics of the stochastic system well,

as we will demonstrate in Sections 3.3 and 4.4. In addition, this type of fluid model often arises

in the literature as the functional law of large numbers limit for a sequence of properly scaled

stochastic systems under the conventional heavy traffic limit (Iglehart and Whitt 1970, Reed and

Ward 2008). In this limiting regime, we scale up the arrival rate and the service rate while we scale

down the space (Alternatively, we can scale up time while we scale down the abandonment rate

and the space). The number of servers is held fixed∗. The conventional heavy traffic scaling works

well when approximating systems with a relative small number of servers, and is thus very relevant

for healthcare applications. Note that in many healthcare systems, e.g. ICUs and EDs, the number

of servers is typically not very large, e.g. 5− 20.

2.2. Problem Formulation

In this section, we introduce the fluid counterparts of the stochastic cost minimization problems.

Fluid long-run average cost optimization problem:

min
π∈F

limsup
T→∞

1

T

∫ T

0

(c1q
π
1 (t) + c2q

π
2 (t))dt (F1)

∗ In particular, we do not scale up the number of servers as in the many-server heavy traffic regime.
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For the transient optimization problem, let τ := inf{t≥ 0 : q1(t) + q2(t) = 0}, which is the first

time when both fluid queues reduce to 0. We assume that there is ample capacity s such that for

any q(0) = q0, τ <∞ (The precise condition will be specified in Section 4).

Fluid transient optimization problem:

min
π∈F

∫ τ

0

(c1q
π
1 (t) + c2q

π
2 (t))dt, (F2)

Our analysis relies on understanding the long-run regularity of the fluid model. We thus provide

the following definitions.

Definition 1 (Equilibrium) Consider the autonomous dynamical system dq(t) = f(q(t)) with

q(0) = q0. Suppose f has an equilibrium point qe, i.e. f(qe) = 0. Let || · || be the Euclidean norm in

R2. Then

(1) qe is locally asymptotically stable if there exists δ > 0, such that if ||q(0)− qe||< δ, then

limt→∞ ||q(t)− qe||= 0.

(2) qe is globally asymptotically stable if for any initial condition q(0), limt→∞ ||q(t)−qe||= 0.

We shall start by solving the long-run average cost minimization problem (F2) in Section 3. The

analysis also provides valuable insights on the long-run regularity of the fluid dynamical systems.

We then solve the transient cost minimization problem (F2) in Section 4.

3. Optimal Long-Run Scheduling Policy

In this section, we solve the fluid long-run average cost minimization problem. To ensure system

stability for any arrival and service rates, we impose the following assumptions on the abandonment

and deterioration rates.

Assumption 1 θ1 > 0 and θ2 + γ > 0.

The cost-minimization problem can be explicitly written as

min
z1,z2

limsup
T→∞

1

T

∫ T

0

(c1q1(t) + c2q2(t))dt

s.t. dq1(t) = λ1−µ1z1(t)− θ1q1(t) + γq2(t)

dq2(t) = λ2−µ2z2(t)− (θ2 + γ)q2(t)

z1(t) + z2(t)≤ s, t≥ 0

z1(t), z2(t), q1(t), q2(t)≥ 0, t≥ 0.

This is an infinite dimensional linear program (LP). We first make a few observations that allow

us to reformulate the problem as a finite dimensional LP. These observations will be made rigorous
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in Theorem 1. If the fluid dynamical system converges to an equilibrium point as t→∞, then

minimizing the long-run average cost can be reformulated as finding the optimal equilibrium point.

In particular, we have the following alternative problem formulation.

min
ze1,z

e
2

c1q
e
1 + c2q

e
2

s.t. λ1 + γqe2 = µ1z
e
1 + θ1q

e
1

λ2 = µ2z
e
2 + (θ2 + γ)qe2

ze1 + z2
2 ≤ s

ze1, z
e
2, q

e
1, q

e
2 ≥ 0.

(4)

Note that the first two constraints in (4) characterize the equilibrium points: rate-in equals rate-out.

By a rearrangement of (4), we have an equivalent optimization problem:

max
ze1,z

e
2

c1

θ1

µ1z
e
1 +

(
c2

θ2 + γ
µ2 +

γ
(θ2+γ)

c1

θ1

µ2

)
ze2

s.t. ze1 + ze2 ≤ s

λ1−µ1z
e
1 +

γ

θ2 + γ
(λ2−µ2z

e
2)≥ 0

λ2−µ2z
e
2 ≥ 0

ze1, z
e
2 ≥ 0.

(5)

It is straightforward to see that the optimal solution to (5) is to assign the maximum feasible value

to the zei with a larger weight in the objective function. Motivated by this observation, we define

the modified cµ/θ-index as follows: The modified cµ/θ index for Class 1 is c1µ1/θ1, and the

modified cµ/θ index for Class 2 is

c2

θ2 + γ
µ2 +

γ
(θ2+γ)

c1

θ1

µ2. (6)

In interpreting the index (6), we note that the first term corresponds to the standard cµ/θ from

the literature (Atar et al. 2010), since θ2 + γ is the rate at which Class 2 jobs leave the queue

via abandonment or deterioration. The cµ/θ index has the nice interpretation which captures the

cost rate, c, the service rate, µ, and the abandonment rate θ. Interestingly, the second term can

be similarly viewed when considering the Class 2 patients who may deteriorate. In expectation,

these patients induce a cost rate of γc1/(θ2 + γ), since the probability of deteriorating to Class 1

is γ/(θ2 + γ). They abandon at rate θ1, but can be ‘served’ while as Class 2 at rate µ2.

Formally, we have the following theorem characterizing the optimal scheduling policy.
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Theorem 1 Under Assumption 1, giving strict priority to the class with a higher modified cµ/θ-

index minimizes the long-run average cost (F1). That is, if

c2

θ2 + γ
µ2 +

γ
(θ2+γ)

c1

θ1

µ2 ≤
c1

θ1

µ1,

then it is optimal to give strict priority to Class 1. Otherwise, it is optimal to give strict priority

to Class 2.

To prove Theorem 1, we need to first check if the fluid dynamical system converges to the

desired equilibrium point under the strict priority rule implied by the modified cµ/θ-index. These

convergence analyses are interesting in their own right, as they reveal important characteristics of

the system dynamics. In Section 3.1, we study the fluid dynamics under strict priority to Class

1, and in Section 3.2, we study the fluid dynamics under strict priority to Class 2. The goal is to

establish the long-run regularity of the fluid model.

3.1. Strict Priority to Class 1 Patients

Under strict priority rule to Class 1 patients, when q1(t) > 0, we will assign all the capacity to

Class 1. When q1(t) = 0, we will assign to Class 1 the minimum amount of capacity to maintain

its queue at zero if there is enough capacity; otherwise, we will assign all the capacity to Class 1.

In particular, the system dynamics are characterized as follows:

(i) If q1(t)> 0,

dq1(t) = λ1−µ1s− θ1q1(t) + γq2(t), dq2(t) = λ2− θ2q2(t)− γq2(t); (7)

(ii) If q1(t) = 0, q2(t)> 0,

dq1(t) = λ1−µ1

(
λ1 + γq2(t)

µ1

∧ s
)

+ γq2(t),

dq2(t) = λ2−µ2

(
s− λ1 + γq2(t)

µ1

)+

− θ2q2(t)− γq2(t);

(8)

(iii) If q1(t) = 0, q2(t) = 0,

dq1(t) = λ1−µ1

(
λ1

µ1

∧ s
)
, dq2(t) = λ2−µ2

((
s− λ1

µ1

)+

∧ λ2

µ2

)
. (9)

Figure 2 provides two examples of vector fields for the fluid model with different parameters.

We observe that the fluid model enjoys a certain long-run regularity in the sense that the fluid

trajectory will converge to an asymptotically stable equilibrium point represented by a black dot.

This is well-expected, as we have positive abandonment rates. However, as can be seen in Figure

2(b), there can be more than one equilibrium point. In this case, which point the fluid trajectory

converges to depends on its initial condition. Using a Lyapunov argument, Theorem 2 characterizes

the long-run regularity of the fluid dynamical system under strict priority to Class 1.
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Figure 2 Globally asymptotically stable equilibrium (a) V.S. locally asymptotically stable equilibrium (b)

((a):λ1 = 10, λ2 = 20, µ1 = 1.5, µ2 = 3, γ = 0.25, θ1 = 0.1, θ2 = 0.4

(b):λ1 = 10, λ2 = 20, µ1 = 1, µ2 = 3, γ = 0.25, θ1 = 0.1, θ2 = 0.4)
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(a) Case I: s= 10
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(b) Case II: s= 17

Theorem 2 Under Assumption 1, for the dynamical system (7) - (9),

Case I. When µ1 >
γ

θ2+γ
µ2,

Ia If λ1
µ1

+ λ2
µ2
≤ s, the system has a globally asymptotically stable equilibrium at

qe1 = 0, qe2 = 0.

Ib If λ1
µ1

+ γ
θ2+γ

λ2
µ1
≤ s < λ1

µ1
+ λ2

µ2
, the system has a globally asymptotically stable equilibrium at

qe1 = 0, qe2 =
µ1µ2

(
λ1
µ1

+ λ2
µ2
− s
)

(θ2 + γ)µ1− γµ2

> 0.

Ic If s < λ1
µ1

+ γ
θ2+γ

λ2
µ1

. the system has a globally asymptotically stable equilibrium at

qe1 =
λ1 + γ

θ2+γ
λ2− sµ1

θ1

> 0, qe2 =
λ2

θ2 + γ
> 0.

Case II. When µ1 <
γ

θ2+γ
µ2,

IIa If λ1
µ1

+ γ
θ2+γ

λ2
µ1
< s, the system has a globally asymptotically stable equilibrium at

qe1 = 0, qe2 = 0.

IIb If λ1
µ1

+ λ2
µ2
< s≤ λ1

µ1
+ γ

θ2+γ
λ2
µ1

, the system has two locally asymptotically stable equilibria

qe11 = 0, qe21 = 0; and qe12 =
λ1 + γ

θ2+γ
λ2− sµ1

θ1

≥ 0, qe22 =
λ2

θ2 + γ
> 0.

IIc If s= λ1
µ1

+ λ2
µ2

, the system has an equilibrium at (qe11, q
e
21) = (0,0) and a locally asymptotically

stable equilibrium at

qe12 =
λ1 + γ

θ2+γ
λ2− sµ1

θ1

> 0, qe22 =
λ2

θ2 + γ
.
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IId If s < λ1
µ1

+ λ2
µ2

, the system has a globally asymptotically stable equilibrium at

qe1 =
λ1 + γ

θ2+γ
λ2− sµ1

θ1

> 0, qe2 =
λ2

θ2 + γ
.

Remark 1 We note that when µ1 = γµ2/(θ2 + γ), the system can have uncountably many equilib-

rium points. In particular, for s= λ/µ1 +λ2/µ2, any (qe1, q
e
2) satisfying qe1 = 0 and (λ1 +γqe2)/µ1 < s

is an equilibrium point. We do not consider this parameter regime, i.e. µ1 = γµ2/(θ2 + γ), in this

paper.

We make a few observations from Theorem 2. First note that when µ1 <
γ

θ2+γ
µ2 (Case II), the

modified cµ/θ-index of Class 2 is larger than that of Class 1, irrespective of c2. From the workload

perspective, Case II indicates that it is more efficient to serve the Class 2 patients before they

deteriorate, i.e.
1

µ2

<
γ

γ+ θ

1

µ1

.

In this case, if we prioritize Class 1 patients, the system can have two equilibrium points when the

service capacity is in the critical region λ1
µ1

+ λ2
µ2
< s≤ λ1

µ1
+ γ

θ2+γ
λ2
µ1

(Case IIb). This phenomenon is

referred to as bi-stability. The bi-stability arises because if we delay treatment for Class 2 patients,

they will end up generating more workload on average when they deteriorate into Class 1 patients.

In Case IIb, even though we have enough capacity to serve both classes when the care is provided

in a timely manner, i.e. λ1/µ1 +λ2/µ2 < s, we do not have enough capacity to serve all the patients

when treatments for Class 2 are delayed, i.e.

s≤ λ1

µ1

+
γ

θ2 + γ

λ2

µ1

.

In the fluid system, when bi-stability arises, the system can converge to either one of the equilib-

rium points depending its initial value. This implies that for the corresponding stochastic system,

the queue length process will fluctuate around one equilibrium point for a while before transitioning

to the region around the other equilibrium point. In particular, Figure 3(a) shows a typical sample

path of the stochastic queue length process, i.e. we plot Q2(t) for t ∈ [0,1000]. When we plot the

histogram of the stochastic queue length process (Figure 3(b)), we observe that it follows bi-modal

distribution where the two peaks are around the two fluid equilibria.

We also note that in Case IIb, one of the equilibrium points leads to zero holding cost while the

other equilibrium point has positive queue length for at least one class. Ideally, we want to avoid the

‘bad’ equilibrium point. However, when strict priority is given to Class 1, we have no control over

which equilibrium point the stochastic system will fluctuate around. To avoid the bad equilibrium

point, we either have to switch priority to Class 2 or impose some alternative intervention, such as

admission control, when the system is moving towards the bad equilibrium point.
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Figure 3 Bi-stability in the stochastic system

(s= 17, λ1 = 10, λ2 = 20, µ1 = 1, µ2 = 3, γ = 0.25, θ1 = 0.1, θ2 = 0.4, x1(0) = 6, x2(0) = 6)
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3.2. Strict Priority to Class 2 Patients

Under strict priority rule to Class 2 patients, when q2(t)> 0, we will assign all capacity to Class 2.

When q2(t) = 0, we will assign to Class 2 the minimum amount of capacity to maintain its queue at

zero if there is enough capacity; otherwise, we will assign all the capacity to Class 2. In particular,

the system dynamics are characterized as follows:

(i) If q2(t)> 0,

dq1(t) = λ1− θ1q1(t) + γq2(t), dq2(t) = λ2−µ2s− θ2q2(t)− γq2(t); (10)

(ii) If q2(t) = 0, q1(t)> 0,

dq1(t) = λ1−µ1

(
s− λ2

µ2

)+

− θ1q1(t), dq2(t) = λ2−µ2

(
λ2

µ2

∧ s
)

; (11)

(iii) If q1(t) = 0, q2(t) = 0,

dq1(t) = λ1−µ1

((
s− λ2

µ2

)+

∧ λ1

µ1

)
, dq2(t) = λ2−µ2

(
λ2

µ2

∧ s
)
. (12)

Following a similar Lyapunov argument as in Theorem 2, we can establish the following long-run

regularity result for the fluid model under strict priority to Class 2.

Theorem 3 Under Assumption 1, for the dynamical system (10) - (12),

Case A. If λ1
µ1

+ λ2
µ2
≤ s, the system has a globally asymptotically stable equilibrium at

qe1 = 0, qe2 = 0.

Case B. If λ2
µ2
≤ s < λ1

µ1
+ λ2

µ2
, the system has a globally asymptotically stable equilibrium at

qe1 =
µ1

θ1

(
λ1

µ1

+
λ2

µ2

− s
)
> 0, qe2 = 0.
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Case C. If s < λ2
µ2

, the system has a globally asymptotically stable equilibrium at

qe1 =
λ1 + γ

θ2+γ
(λ2− sµ2)

θ1

> 0, qe2 =
λ2− sµ2

θ2 + γ
> 0.

Note that under strict priority to Class 2, there is always a globally asymptotic stable equilibrium;

there is never a bi-stability, even in the case where λ1
µ1

+ λ2
µ2
< s ≤ λ1

µ1
+ γ

θ2+γ
λ2
µ1

. This is because

giving strict priority to Class 2 will maximize the number of Class 2 patients that can be served

‘efficiently’ at rate µ2, rather than serving them after they deteriorate to Class 1. In contrast, when

giving strict priority to Class 1, the ability to serve Class 2 patients at the efficient rate depends

on when all Class 1 jobs are completed and this can further be determined by how many patients

are in the system at time 0. Thus, the initial state of the system has a large impact on which

equilibrium the system will converge to when giving strict priority to Class 1, but not when giving

strict priority to Class 2.

We next compare the equilibrium points in Theorem 3 to those in Theorem 2. Denote P1 as

strict priority to Class 1, and P2 as strict priority to Class 2. We also define the nominal load, LN ,

and the deterioration-based load, LD, as:

LN :=
λ1

µ1

+
λ2

µ2

and LD :=
λ1

µ1

+
λ2γ

µ1(θ2 + γ)
.

When there are abundant resources, we can achieve zero queues in equilibrium. Specifically,

when µ1 > γµ2/(θ2 + γ), if LN < s, P1 and P2 both have zero queues in equilibrium. When µ1 <

γµ2/(θ2 +γ), if LD < s, P1 and P2 both have zero queues in equilibrium. In these parameter regions,

P1 and P2 are both optimal. A parameter region of particular interests is when µ1 < γµ2/(θ2 + γ)

and LN < s<LD. In this case, P2 leads to zero queues in equilibrium while P1 leads to bi-stability.

This implies that we would prefer P2 in this parameter region.

When capacity is scarce, the two priority rules can lead to very different equilibrium queues. P1

always leads to a larger Class 2 queue than P2. However, P1 may not always lead to a smaller Class

1 queue. In particular, when s < LD and µ1 < γµ2/(θ2 + γ), P2 will lead to both a smaller Class 1

queue and a smaller Class 2 queue than P1 in equilibrium.

3.3. Numerical experiments

In this section, we conduct some numerical experiments to compare the two priority rules. This

serves as a sanity check for Theorem 1. More importantly, we also compare the long-run average

fluid cost to the long-run average cost of the corresponding stochastic system.

We start with the case where µ1 > γµ2/(θ2 + γ). Figure 4 plots the long-run average costs for

different values of s. The fluid costs are plotted in dashed lines while the costs for the stochastic
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system are plotted in solid lines. As the long-run average costs for the stochastic systems are

estimated using simulation, we also provide the corresponding 95% confidence interval for our

estimates. Figure 4(a) illustrates the scenario where the modified cµ/θ-index suggests prioritizing

Class 1 patients, while Figure 4(b) has the modified cµ/θ-index suggesting prioritizing Class 2

patients. We first note that the long-run average fluid cost approximates the long-run average cost

of the stochastic system reasonably well. Second, we observe that following the modified cµ/θ-rule

– prioritizing the class with a larger modified cµ/θ-index – indeed leads to a lower cost. Thus,

while the cost of fluid system may deviate from that of the stochastic systems, the resulting policy

recommendations are consistent. Lastly, we observe that when s is large enough, P1 and P2 lead

to very similar costs, i.e. almost 0 costs.

We also consider the case where µ1 <γµ2/(θ2 +γ). In this case, the modified cµ/θ-index suggests

prioritizing Class 2 patients. Figure 5 plots the long-run average costs for different values of s. We

observe that, as expected, P2 leads to a lower cost for both the fluid system and the corresponding

stochastic system. We also observe that for some values of s, P1 leads to two different long-run

average fluid costs, which correspond to the two different equilibria in Theorem 2 Case IIb. In this

case, the long-run average cost of the corresponding stochastic system is approximately a weighted

average of the two fluid equilibrium costs.

Figure 4 Optimal scheduling policy in Case I with µ1 >
γ

γ+θ2
µ2

((a): λ1 = 10, λ2 = 20, µ1 = 2.5, µ2 = 3, γ = 0.25, θ1 = 0.15, θ2 = 0.4, c1 = 4, c2 = 1

(b): λ1 = 10, λ2 = 20, µ1 = 1.2, µ2 = 3, γ = 0.25, θ1 = 0.5, θ2 = 0.4, c1 = 4, c2 = 2)
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4. Optimal Transient Scheduling Policy

Healthcare systems often operate in highly non-stationary environments. Random shocks like dis-

ease outbreaks or mass casualty events can push the system far from its ‘normal’, i.e. equilibrium,
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Figure 5 Optimal scheduling policy in Case II with µ1 <
γ

γ+θ2
µ2

(λ1 = 10, λ2 = 20, µ1 = 1, µ2 = 3, γ = 0.25, θ1 = 0.3, θ2 = 0.4, c1 = 3.5, c2 = 3)
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behavior. When such a congestion event happens, the key question we wish to address is how to

bring the system back to its normal state of operation in the most cost-effective way. In this section,

we study the transient optimal control problem (F2) to address this problem. In particular, we

derive the optimal scheduling policy to help the system recover from demand shocks.

To develop insights into how to manage our system after a large shock, we study the transient

analysis of the system where we assume q(0) = q0 > 0, but we have abundant capacity to bring the

fluid queues to zero in a finite amount of time under some admissible control. In particular, we

make the following assumption on the capacity s:

Assumption 2 s > λ1/µ1 +λ2/µ2.

Recall that τ = inf{t≥ 0 : q1(t) + q2(t) = 0} is the first time both of the fluid queues are emptied.

Based on the analysis in Section 2.1, Assumption 2 implies that there exists a scheduling policy π,

under which, for any q(0) = q0 > 0, τ <∞.

We next introduce a few more notations to simplify the presentation of the problem. From the

fluid dynamics (2), we define f(q, z) = (f1(q, z), f2(q, z)) where f1(q, z) = λ1− z1µ1− θ1q1 +γq2 and

f2(q, z) = λ2 − z2µ2 − θ2q2 − γq2. From the constraints on the admissible controls (3), we define

g(q) = (g1(q), g2(q)), where gi(q) =−qi, for i= 1,2, and h(z) = (h1(z), h2(z), h3(z)), where h1(z) =

−z1, h2(z) = −z2 and h3(z) = z1 + z2 − s. We also define F (q) = c1q1 + c2q2. Then the transient

optimal control problem can be explicitly written as:

min
z

∫ τ

0

F (q(t))dt,

s.t. dq(t) = f (q(t), z(t)) ,

g(q(t))≤ 0,

h(z(t))≤ 0.

(F2′)
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In the optimal control theory literature, optimization problems of the form (F2′) are referred

to as optimal control problems with state constraints. Despite a rich body of literature in optimal

control, control problems with state constraints are, in general, very difficult to solve as they

impose boundaries on the state space of the dynamical system (Trélat 2012). While some results

can be derived in special cases with certain structural properties, there is no systematic way to

deal with these problems; we refer to the survey paper Hartl et al. (1995) for an overview. The

challenge brought by state constraints are further outlined in Section 4.1 in the specific setting of

our problem.

We combine several techniques from optimal control theory to derive the optimal transient

control. Our solution strategy is to first derive the structure of the optimal scheduling policy for our

model with degradation. In particular, as we shall explain in Theorem 4, the optimal scheduling

policy switches priority at most once and can be characterized by two simple index rules. Then

solving for the optimal scheduling problem reduces to finding the policy curve that governs where

in space the switch in priority rule happens. We provide a closed form characterization of the

policy curve in Proposition 4 in the case where the switch is from strict priority to Class 1 to strict

priority to Class 2. For the case where the switch is from strict priority to Class 2 to strict priority

to Class 1, we provide a numerical construction of the policy curve. We comment that due to the

complexity introduced by patient degradation, we are not able to characterize the policy curve in

closed form in the later case. We shall provide more discussions about this in Section 4.3.3.

The next theorem characterizes the structure of the transient optimal scheduling policy. Before

we present the actual theorem, we first introduce two index rules. We define the cµ-rule as a policy

that prioritizes the class with a higher ciµi value, i.e. the cµ-index. Similarly, the modified cµ/θ-rule

is a policy that prioritizes the class with a higher modified cµ/θ-index, as defined in Theorem 1.

Note that the policy is to be specified for each time point t∈ [0, τ ] or each state q ∈R2
+. In particular,

for Markovian controls, a scheduling policy can be viewed as a mapping from the ‘current’ state of

the system q(t) = (q1(t), q2(t)) to the allocation of the service capacity z(t) = (z1(t), z2(t)).

Theorem 4 Under Assumptions 1 and 2, for the transient optimal control problem (F2′):

I. If the cµ-rule and the modified cµ/θ-rule both prioritize class i, i= 1,2, then the strict priority

rule to class i is optimal for any t∈ [0, τ ].

II. If the cµ-rule prioritizes class i but the modified cµ/θ-rule prioritizes class j, for i 6= j, i, j =

1,2, then there exist positive real numbers ε and M such that it is optimal to prioritize class i

when q1(t) + q2(t)< ε and prioritize class j when q1(t) + q2(t)>M . Furthermore, the optimal

scheduling policy switches priority at most once over the transient time horizon [0, τ ].
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Based on Theorem 4, if the cµ-rule and the modified cµ/θ-rule agree with each other, it is optimal

to give strict priority to the class with a higher cµ-index (and correspondingly higher modified

cµ/θ-index) for any q ∈R2
+. If the two index rules do not agree, we will follow the cµ-rule when we

are close enough to the equilibrium point, (0,0); when we are far from the equilibrium point, we

should follow the modified cµ/θ-rule. Moreover, in this case, we switch priority at most once; the

time the switch occurs depends on the value of q0. This indicates that there exists a policy curve

{q : u(q) = 0}, where we switch from the modified cµ/θ-rule to the cµ-rule.

The remaining task is to characterize the policy curve. In Figure 6, we provide numerical exam-

ples of the optimal trajectory of the queue length process. Figure 6(a) shows the case where the

modified cµ/θ-rule prioritizes Class 1 while the cµ-rule prioritizes Class 2. We plot four optimal

fluid trajectories starting from different initial conditions. We also plot the corresponding policy

curve (dashed line), which we construct by interpolating the switching points into a line. Figure

6(b) shows that case where the modified cµ/θ-rule prioritizes Class 2 while the cµ-rule prioritizes

Class 1. Similar to Figure 6(a), we plot four optimal fluid trajectories starting from different initial

conditions and the corresponding policy curve. We will provide more discussions about the policy

curve in Sections 4.3.3 and 4.4.1.

Figure 6 Optimal transient queue length trajectory

((a): λ1 = 10, λ2 = 20, µ1 = 1.5, µ2 = 3, γ = 0.2, θ1 = 0.1, θ2 = 0.4, s= 17, c1 = 5, c2 = 3

(b): λ1 = 10, λ2 = 20, µ1 = 1, µ2 = 2.5, γ = 0.4, θ1 = 0.1, θ2 = 0.2, s= 26, c1 = 5, c2 = 1)

P1

P2

(a) The cµ-rule: P2, the modified cµ/θ-rule: P1

P2

P1

(b) The cµ-rule: P1, the modified cµ/θ-rule: P2

Remark 2 Even though Theorem 4 is stated under Assumption 1, following the same line of

analysis, we can show that if θ1 = θ2 = γ = 0, we can recover the well-known optimality of the cµ-

rule throughout the transient time horizon (see Corollary 1 in Appendix C). If γ = 0 but θ1, θ2 > 0,

then we should follow the cµ-rule when we are close to the origin and the ordinary cµ/θ-rule
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when we are far from the origin (see Corollary 2 in Appendix C). A result similar to Corollary

2, i.e. for a two-class queue with abandonment but no deterioration, is established in Larrañaga

(2015). Nevertheless, the approach utilized in Larrañaga (2015) for the special case is not directly

generalizable to our setting with degradation.

We next provide the general strategy of proving Theorem 4. It includes three main parts. We first

provide some formal definitions to describe the boundary behavior and rule out some ‘irregular’

boundary behaviors such as chattering in Section 4.1. We then establish the optimal scheduling

policy when q1 + q2 < ε for ε sufficiently small in Section 4.2. This is done by solving the optimal

control problem directly. Lastly, we establish the optimal scheduling policy for the rest of the state

space in Section 4.3. This is done by utilizing Pontryagin’s Minimum Principle.

4.1. Boundary Behavior

The main challenge in dealing with an optimal control problem of the form (F2′) is to characterize

the system behavior on the boundary where the state constraints hold tight. In our case, the state

constraint g(q(t)) = −q(t) ≤ 0 requires the queue length process q(t) to stay non-negative for all

t∈ [0, τ ].

To characterize the boundary behavior, we would ideally like to identify when the trajectory

enters the boundary and when it exits the boundary. In particular, we would like to characterize the

time points tk’s when gi(q(tk)) = 0 for some i= 1,2, but for any δ > 0, there exists t∈ (tk−δ, tk+δ)

such that gi(q(t)) > 0. An important class of points of this type is known as the junction time

(Hartl et al. 1995). We next provide some formal definitions to characterize the junction times. An

interval I := [t1, t2]⊆ [0, τ ] (or [t1, t2), (t1, t2], (t1, t2)) is called an interior arc if g(q(t))< 0 holds

for all t ∈ I. Correspondingly, an interval I := [t1, t2]⊆ [0, τ ] (or [t1, t2), (t1, t2], (t1, t2)) is called a

boundary arc if gi(q(t)) = 0, for some i= 1,2, holds for all t∈ I. A time instant t1 is called an entry

time if an interior interval ends at and a boundary interval starts at t1. A time instant t2 is called

an exit time if a boundary interval ends and an interior interval starts at t2. Furthermore, if the

trajectory of qi(t), i= 1,2, only ‘touches’ the boundary at time t3, i.e., qi(t3) = 0, but there exists

δ > 0 such that qi(t)> 0 for any t∈ (t3−δ, t3 +δ) and t 6= t3, then t3 is called a contact point. Entry,

exit, and contact times taken together are called junction times. Figure 7(a) provides a pictorial

illustration of different types of junction times for q1(t). In particular, t1, t2, and t3 in Figure 7(a)

are an entry, exit, and contact point respectively. In addition, the interval [t1, t2] is a boundary arc,

and the interval [0, t1) is an interior arc.

Not all boundary trajectories can be characterized by the junction times. A class of boundary

behaviors that is often hard to deal with is known as chattering, which happens when the trajectory
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qi(t) oscillates between zero and positive values infinitely fast. Specifically, a time instant t4 is said

to be a chattering point of the state trajectory qi, if qi(t4) = 0, and for any δ > 0 there exists s′

and s′′ ∈ (t4 − δ, t4 + δ) such that qi(s
′) > 0 and qi(s

′′) = 0. In addition, an interval is said to be

a chattering interval if any sub-interval of it contains at least one chattering point. Figure 7(b)

provides an example where the state trajectory has a chattering point t4, and Figure 7(c) provides

an example of a chattering interval.

Figure 7 Different types of junction times and chattering behavior
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Chattering behavior can arise in many different optimal control problems. One classical example

is Fuller’s problem (Fuller 1963). Noticeably, for non-constrained linear control problems with

compact polyhedral control space, it has been shown that there always exists an optimal solution

that switches finitely many times among the vertices of the control polyhedron; see, for example,

Chapter 2.8 in Schättler and Ledzewicz (2012). However, the pathological situation of chattering

has not been ruled out for linear systems with state constraints, which is the case of our problem

(F2′). We overcome the difficulty here by showing that for (F2′), it is without loss of optimality to

consider trajectories without chattering points or chattering intervals.

Lemma 1 For the transient optimal control problem (F2′), it is without loss of optimality to

consider state trajectories without chattering behavior.

4.2. The cµ-Rule Near the Origin

When the state is close enough to the origin (0,0), which is also an equilibrium point for the fluid

system under Assumption 2 and an appropriate control, we establish that the cµ-rule is optimal.

Proposition 1 Under Assumptions 1 and 2, for the transient optimal control problem (F2′), if

q1(t), q2(t)∈ [0, ε), with ε > 0 sufficiently small, the cµ-rule is optimal on the transient time interval

[t, τ ].
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The result in Proposition 1 is derived based on the observation that when the queue length is

sufficiently small, the dominant effect for the system dynamic comes from service completions which

has an order ε effect. The effect of abandonment and degradation is only second-order, namely,

order ε2. This can be seen clearly when we directly solve the ODE to specify the trajectories under

different scheduling rules. Focusing on service completion only, ciµi is the rate at which we can

reduce the holding cost per unit time and per unit capacity allocated to serving Class i jobs, i= 1,2.

Intuitively, in order to reduce holding cost as fast as possible, the class with a larger cµ-index

should be prioritized.

4.3. The Optimal Policy for the Rest of the State Space

When the states are far away from the origin, we have to take abandonment and degradation

into account, and these substantially complicate the analysis. To develop structural insights in

this region, we utilize a necessary characterization for the optimal solution to the control problem,

which is known as Pontryagin’s Minimum Principle (Hartl et al. 1995).

To understand the underlying mechanism, we first note that if we view the optimal control

problem (F2′) as an infinite dimensional linear program, then we can write down its dual problem

and study the optimal primal-dual structure. There are two classes of ‘dual variables’. One is

referred to as the adjoint vectors (also known as the co-state vectors), which are the ‘dual variables’

for the fluid dynamics, i.e. dq(t) = f(q(t), z(t)). The other is called the Lagrangian multipliers, which

are the ‘dual variables’ for the state constraints, i.e. g(q(t))≤ 0, and the pure-control constraints

i.e. h(z(t))≤ 0. More precisely, let p∈R2 denote the adjoint vector, and η ∈R2 and ξ ∈R3 denote

the Lagrangian multipliers for the state and control constraints, respectively. The Hamiltonian

H :R2×R2×R2→R of the system can be defined as:

H(q(t), z(t), p(t)) := p(t)Tf (q(t), z(t)) +F (q(t))

= p1(t)dq1(t) + p2(t)dq2(t) + c1q1(t) + c2q2(t)

= p1(t) (λ1−µ1z1(t)− θ1q1(t) + γq2(t)) + p2(t) (λ2−µ2z2(t)− (θ2 + γ)q2(t))

+ c1q1(t) + c2q2(t).

The augmented Hamiltonian L :R2×R2×R2×R2×R3→R is defined as

L(q(t), z(t), p(t), η(t), ξ(t)) :=H(q(t), z(t), p(t)) + η(t)T g(q(t)) + ξ(t)Th(z(t))

= p1(t) (λ1−µ1z1(t)− θ1q1(t) + γq2(t))

+ p2(t) (λ2−µ2z2(t)− (θ2 + γ)q2(t)) + c1q1(t) + c2q2(t)− η1(t)q1(t)

− η2(t)q2(t) + ξ1(t)(z1(t) + z2(t))− ξ2(t)z1(t)− ξ3(t)z2(t).
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Pontryagin’s Minimum Principle states a number of necessary conditions which the optimal solution

to the optimal control problem (F2′) satisfies. The actual Theorem can be found in Appendix B.3.

Here we provide a brief overview of the conditions.

1) Ordinary Differential Equation condition (ODE) specifies the dynamics of the ‘optimal primal

trajectory’ q∗(t), i.e.,

q∗(0) = q0, dq∗(t) = f (q∗(t), z∗(t)) . (ODE)

2) Adjoint Vector condition (ADJ) specifies the dynamics of the ‘optimal dual trajectory’ p∗(t).

In particular, we have

dp∗1(t) = θ1p
∗
1(t)− c1 + η∗1(t), dp∗2(t) =−γp∗1(t) + (θ2 + γ)p∗2(t)− c2 + η∗2(t). (ADJ)

In general, we cannot fully characterize p∗(t) due the fact that p∗i (0) and η∗i (t) are ‘unspecified’,

i.e. we cannot fully specify their values or dynamics based on the necessary conditions.

3) Minimization condition (M) characterizes the optimal control z∗(t) as a minimizer of the

Hamiltonian, i.e.

H(q∗(t), z∗(t), p∗(t)) = min
z
{H(q∗(t), z(t), p∗(t))}. (M)

As H(q∗(t), z(t), p∗(t)) is linear in z(t), it is easy to see from (M) that the optimal control strictly

prioritizes one class at any given time. In particular, as z∗1(t) + z∗2(t) = s for t∈ [0, τ ∗], we can write

z∗1(t) = s− z∗2(t). Then, we define

ψ(t) :=
∂H(q∗(t), s− z2(t), z2(t), p∗(t))

∂z2

= µ1p
∗
1(t)−µ2p

∗
2(t). (13)

ψ(t) is referred to as the switching curve, because the sign of ψ(t) determines which class we should

give priority to. Note that to minimize H, when ψ(t)> 0, priority should be given to Class 1 at

time t, i.e.,

z∗1(t) =

{
s if q∗1(t)> 0

min
{
s,

λ1+γq∗2(t)

µ1

}
if q∗1(t) = 0,

and z∗2(t) = s− z∗1(t). (14)

When ψ(t)< 0, priority should be given to Class 2, i.e.

z∗1(t) = s− z∗2(t), and z∗2(t) =

{
s if q∗2(t)> 0

min
{
s, λ2

µ2

}
if q∗2(t) = 0.

(15)

However, when ψ(t) = 0, the optimal control is undetermined. We also note that ψ(t) can be fully

characterized by p∗i (t)’s. Thus, analyzing the structure of the optimal dual trajectory p∗(t) can

reveal important information about the optimal scheduling policy z∗(t).

4) For optimal control problems with state constraints, if F,f, g,h do not depend on t explicitly,

Hamiltonian condition (H) requires that H(q∗(t), z∗(t), p∗(t)) is a constant for all t∈ [0, τ ∗]. Further,
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if the problem has a fixed termination state but free termination time, as in our case, then the

constant is equal to zero (Cristiani and Martinon 2010). In particular, we have

H(q∗(t), z∗(t), p∗(t)) = 0. (H)

5) Transversality condition (T) requires that

−µ1p
∗
1(t) + ξ∗1(t)− ξ∗2(t) = 0, −µ2p

∗
2(t) + ξ∗1(t)− ξ∗3(t) = 0. (T)

6) Complementarity condition (C) requires that

C1) η∗1(t) = 0 if q∗1(t)> 0; η∗1(t)≥ 0 if q∗1(t) = 0.

C2) η∗2(t) = 0 if q∗2(t)> 0; η∗2(t)≥ 0 if q∗2(t) = 0.

C3) ξ∗1(t) = 0 if z∗1(t) + z∗2(t)< s; ξ∗1(t)≥ 0 if z∗1(t) + z∗2(t) = s.

C4) ξ∗2(t) = 0 if z∗1(t)> 0; ξ∗2(t)≥ 0 if z∗1(t) = 0.

C5) ξ∗3(t) = 0 if z∗2(t)> 0; ξ∗3(t)≥ 0 if z∗2(t) = 0.

7) Jump condition (J) characterizes the potential discontinuity of the adjoint vector p∗(t) and

the Hamiltonian H(q∗(t), z∗(t), p∗(t)) at junction times or in the boundary arcs. Specifically, For

any time β in a boundary arc or a junction time, the adjoint vector p∗(t) and the Hamiltonian

H(q∗(t), z∗(t), p∗(t)) may have a discontinuity, but they must satisfy the following jump conditions:

(J1) : p∗(β−) = p∗(β+) +ω∗1(β)∇qg1(q∗(β)) +ω∗2(β)∇qg2(q∗(β))

(J2) :H(q∗(β−), z(β−), p∗(β−)) =H(q∗(β+), z(β+), p∗(β+))−ω∗1(β)∇tg1(q∗(β))

−ω∗2(β)∇tg2(q∗(β))

(J3) : ω∗(β)≥ 0, ω∗(β)T g (q∗(β)) = 0,

(J)

where ∇xg denote the derivative of g with respect to x.

From the discussion of the necessary conditions, we highlight that if we can characterize the

switching curve ψ(t), then we will be able to unfold the corresponding optimal policies. However,

this is a highly nontrivial task, as we are not able to fully characterize p∗(t).

4.3.1. The Modified cµ/θ-Rule Far from the Origin We now derive several key properties

of the switching curve ψ(t) from Pontryagin’s Minimum Principle. These properties together allow

us to establish the optimal scheduling policy when the states are large (far from the origin).

The first property characterize the switching curve on the boundary arc.

Lemma 2 Let [t1, t2] be a boundary arc along the optimal state trajectory with entry point t1 and

exit point t2. For any t∈ (t1, t2), the switching curve ψ(t) = 0.
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The second property establish the continuity of the switching curve.

Lemma 3 The switching curve ψ(t) is continuous over [0, τ ∗].

Assume there exists an optimal control to problem (F2′) under which the state trajectory only

has a finite number of junction points. Let N denote the total number of entry and contact points

in the optimal state trajectory q∗1(t) and q∗2(t). These N entry or contact points are ordered and

denoted by τj, j = 1, ...,N . In particular, τ1 is the first time when one of the queues gets emptied

from the initial queue length q0. τN is the last time before τ ∗ when one of the queues gets emptied.

Naturally, the queue that gets emptied at time τN is maintained at zero until the other queue

reaches zero at time τ ∗. From Lemmas 2 and 3, we know that ψ(τj) = 0 for entry/exit point τj. To

this end, we examine the switching curve backward in time from each entry point and derive the

following characterization of the switching curve.

Lemma 4 For any entry and contact point τj, j = 1, ...,N , there exists an interval (0, αj),0<αj <

τj, such that for t∈ (0, αj), the backward switching curve ψ(τj − t) takes the form

ψ(τj − t) =A1(τj)e
−θ1t +A2(τj)e

−(θ2+γ)t +
c1

θ1

µ1−

(
c2

θ2 + γ
µ2 +

γ
(θ2+γ)

c1

θ1

µ2

)
,

where A1(τj),A2(τj) are constants that depend on the values of τj and p∗(τj).

Following Lemma 4, we define the pseudo switching curve backward from τj as

Dτj (t) :=A1(τj)e
−θ1t +A2(τj)e

−(θ2+γ)t +
c1

θ1

µ1−

(
c2

θ2 + γ
µ2 +

γ
(θ2+γ)

c1

θ1

µ2

)
, j = 1, ...,N. (16)

In particular, the pseudo switching curve removes the constraint that t∈ (0, αj) from Lemma 4 and

it agrees with the switching curve ψ(τj− t) as long as the multipliers η∗1(τj− t) and η∗2(τj− t) stay at

zero. However, if one of the multipliers becomes strictly positive at some time s, i.e., η∗i (τj− s)> 0

for some i= 1,2, the switching curve ψ(τj − t) may deviate from the pseudo switching curve for

t≥ s.

The significance of Lemma 4 is that even though the constants A1(τj) and A2(τj) are unspecified,

there are only a very few possibilities for the shape of Dτj (t), and thus for the part of ψ(τj− t) that

coincides with Dτj (t). Now, consider the first (forward in time) entry point τ1. By the definition of

τ1, both classes have strictly positive queues before τ1, so the multipliers η∗1(τ1− t) and η∗2(τ1− t)

are zero for all t ∈ (0, τ1]. In this case, the backward switching curve ψ(τ1 − t) and the pseudo

switching curve Dτ1(t) coincide over the interval t ∈ (0, τ1]. Note that for t > τ1, the queue length
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trajectory is beyond its initialization, and thus ψ(τ1 − t) is not defined. On the other hand, the

pseudo switching curve Dτ1(t), as a function of t, is well-defined for all t≥ 0. Sending t to infinity

in the pseudo switching curve Dτ1(t), we get

lim
t→∞

Dτ1(t) =
c1

θ1

µ1−

(
c2

θ2 + γ
µ2 +

γ
(θ2+γ)

c1

θ1

µ2

)
. (17)

The sign of the right-hand-side of (17) is governed by the modified cµ/θ-index, which is positive

if the modified cµ/θ-index for Class 1 is larger. It is important to correctly interpret the limit in

(17) for the backward switching curve ψ(τ1 − t) . Because ψ(τ1 − t) only couples with Dτ1(t) on

(0, τ1] and is not defined for t > τ1, one may hypothesize that if the initial queue lengths, q0, are

large enough, then τ1, the amount of time needed to empty one of the queues, is also large, and we

might be able to send t large enough that the sign of ψ(τ1 − t) will be governed by the modified

cµ/θ-index. However, we also need to note that the constants A1(τ1) and A2(τ1) depend on q0

through τ1 and p∗(τ1). We thus need to rigorously establish that A1(τ1) and A2(τ1) are properly

bounded. Putting all these analysis together, we are able to establish the following result.

Proposition 2 Under Assumptions 1 and 2, for the transient optimal control problem (F2′), there

exists a positive real number M such that when q1(t)+q2(t)>M , the modified cµ/θ-rule is optimal

at t.

4.3.2. Number of Priority Switches Propositions 1 and 2 imply that the cµ-rule is optimal

when the states are close enough to the origin, and the modified cµ/θ-rule is optimal when the

states are far away from the origin. We now specify what happens in between these two extreme

regions. By analyzing possible shapes of the switching curve characterized in Lemma 4, we are able

to establish the following proposition.

Proposition 3 Under Assumptions 1 and 2, for the transient optimal control problem (F2′), if the

cµ-rule and the modified cµ/θ-rule prioritize the same class, the optimal transient scheduling policy

does not switch priority. If the two index rule prioritize different classes, the optimal transient

scheduling policy switches priority at most once over the transient time horizon [0, τ ∗].

Figure 8 illustrates the interaction between the switching curve and the transient system dynam-

ics. In particular, we plot the switching curve ψ(t) and the corresponding optimal state trajectory

q∗(t) for t ∈ [0, τ ∗] backward in time. In this example, over the initial time interval [0, τ1), ψ(t) is

negative, so strict priority is given to Class 2 (the modified cµ/θ-rule). Class 2 queue empties at

time τ1 and is given priority to be maintained at zero over the interval [τ1, β). Immediately after
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β, the switching curve becomes strictly positive and priority is switched to Class 1 (the cµ-rule).

Note that Class 1 queue decreases and the Class 2 queue increases from over [β, τ2). Priority is

kept at Class 1 on [β, τ ∗].

Figure 8 Example backward switching curve and state trajectory
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4.3.3. The Policy Curve From Theorem 4, the optimal scheduling rule switches priority at

most once. This implies there exists a policy curve P that divides the state space and governs where

the priority switches. Note, this curve is distinct from, but intimately related to, the switching

curve, ψ(t). Suppose the cµ-rule prioritizes Class 2 and the modified cµ/θ-rule prioritizes Class 1.

By utilizing Hamiltonian condition (H), we are able to characterize the policy curve for switching

from P1 to P2 explicitly. Namely, if the states are initialized ‘above’ P, then the server prioritizes

Class 1 until q(t)∈P at some t. From time t onwards, the server prioritizes Class 2 until the system

is emptied at τ .

Proposition 4 Under Assumptions 1 and 2, for the transient optimal control problem (F2′), if

c1µ1 < c2µ2 but c1
θ1
µ1 >

(
c2

θ2+γ
µ2 +

γ
(θ2+γ)

c1

θ1
µ2

)
, the policy curve P for switching from P1 to P2 is

given by

P :=

{
(a1,a2)∈R2

+ :
1

µ2

(
c1(λ1µ1 + (λ1− sµ1)µ2)

θ1

+
B1(a2)B2(a1,a2)

B3(a1,a2)

)
= 0

}
, (18)



30

where

B1(a2) := (c1(−a2(θ2 + γ) +λ2)µ1 + c2a2θ1µ2 + c1(a2γ+λ1− sµ1)µ2)

B2(a1,a2) :=

(
−µ2(a2γθ1 + a1θ1(γ− θ1 + θ2)− γλ1 + θ1λ1− θ2λ1− γλ2 + sγµ2)

+(λ2− sµ2)((γ− θ1 + θ2)µ1− γµ2)

(
1 +

a2(θ2 + γ)

−λ2 + sµ2

) θ1
θ2+γ


B3(a1,a2) := (γ− θ1 + θ2) (θ1(a2(θ2 + γ)−λ2)µ1 + θ1(−a2γ+ a1θ1−λ1 + sµ1)µ2) .

If c1µ1 > c2µ2 but c1
θ1
µ1 <

(
c2

θ2+γ
µ2 +

γ
(θ2+γ)

c1

θ1
µ2

)
, the policy curve for switching from P2 to P1

cannot be characterized in closed form. This is due the degradation dynamics. In particular, we

lack information of the Lagrange multiplier η∗1(t) on the boundary arc when q∗1(t) = 0. Due to

the degradation, η∗1(t) not only affects p∗1(t) but also p∗2(t) through p∗1(t), see (ADJ). As such, the

condition that H(q∗(t), z∗(t), p∗(t)) = 0 is not enough to pin down the value of policy curve. Note

that this is not the case in Proposition 4, because on the boundary arc when q∗2(t) = 0, η∗1(t) affects

p∗2(t) only. See Appendix B.7 for a more detailed discussion.

To characterize the policy curve for switching from P2 to P1, we propose the following numerical

scheme:

Step 1. Construct n optimal trajectories q∗(t) starting from different initial conditions that are

far from the origin. This can be done by solving a discretized version of (F2′). We can also fix

the time horizon to be a large enough constant value, T . This leads to a finite-dimensional linear

program. Record the n corresponding switching points.

Step 2. Fit the best curve that goes through the n switching points.

In Section 4.4.1, we conduct extensive numerical experiments on P for switching from P2 to P1.

The curve appears to be close to linear. Thus, we suggest setting n to be around 5, setting the

discretization step size to be around 0.1µ1, and fitting the best line to the n switching points.

4.4. Numerical Experiments

In this section, we conduct numerical experiments for the optimal transient scheduling problem.

We first provide further analysis on the policy curve in Section 4.4.1. The goal is to study how the

policy curve changes with model parameters. We also compare the transient fluid trajectory to the

corresponding stochastic process in Section 4.4.2.

4.4.1. Sensitivity Analysis on the Policy Curve. To complement the result in Proposition

4, we restrict to the case where the cµ-rule prioritizes the urgent class (Class 1) and the modified

cµ/θ-rule prioritizes the moderate class (Class 2). This is also the more interesting case in practice,
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as the more urgent class is likely to have priority under ‘normal’ operations, i.e. near the equilibrium.

Specifically, is it reasonable to assume that in practice, the urgent class has a much higher holding

cost, thus c1µ1 is likely to be larger than c2µ2. Proactive care is attractive if it has the potential of

reducing the overall workload, i.e. µ1 <
γ
θ+γ

µ2. In this case, c1
θ1
µ1 <

(
c2

θ2+γ
µ2 +

γ
(θ2+γ)

c1

θ1
µ2

)
.

We first conduct sensitivity analysis on the value φ := γ/(θ2 + γ). As discussed in Section 2, θ2

can be interpreted as the self-curing rate, and φ can be interpreted as the true positive rate of some

classifier, e.g. an early warning system, for proactive care. In what follows, we vary the value of φ

from 0.6 to 0.4 in increments of size −0.05. Since γ and θ2 both affect the value of φ, we first keep γ

fixed and vary the value of θ2 (Figure 9). Then, we keep θ2 fixed and vary the value of γ (Figure 10).

Figures 9 and 10 illustrate how the policy curve changes as φ decreases. The policy curve (plotted

in dashed line) is interpolated from the switching epochs of the optimal trajectories. Plotting the

policy curves together, Figures 9(c) and 10(c) demonstrate that the policy curve contracts inwards

as φ increases. As the prediction power of the classifier improves, the region in which the optimal

scheduling policy prioritizes moderate patients increases. When the classifier is perfect, i.e. φ= 1

(achieved with θ2 = 0 in Figure 9(c)), the size of the region where it is optimal to prioritize Class

1 is minimized. The fact that the area of this minimal region is non-trivial suggests that the ‘ε-

neighborhood’ around the origin where the cµ-rule is optimal can be substantial. On the other

hand, as the prediction power of the classifier declines, i.e. φ decreases, a phase transition in terms

of the prioritization occurs. In particular, there exists a threshold φ0 such that when φ≥ φ0, we

will give priority to Class 2 when we are far from the origin and give priority to Class 1 when

we get close enough to the origin. Once φ < φ0, the policy curve ‘vanishes’; namely, we should

give strict priority to Class 1 for all states. In the cases in Figures 9 and 10, the values of φ0 are

approximately 0.33 and 0.35 respectively. We note that given the complex expression of the policy

curve in Proposition 4 when switching in the opposite direction (from P1 to P2), it is expected that

the policy curve will vary under different parameters, even if they have the same φ value – i.e.,

Figure 9 versus Figure 10.

Similar to the above sensitivity analysis on the policy curve with respect to φ via θ2 or γ, we also

conduct numerical experiments for different values of s and θ1. Our results indicate that the policy

curve expands outwards as s increases, and contracts inwards as θ1 decreases. Detailed figures for

the sensitivity analysis for s and θ1 are provided in Appendix D.

4.4.2. Stochastic Queue Length Process We have demonstrated in Section 3.3 that the

fluid model and the stochastic system are close to each other in a long-run average sense. Indeed,

the proximity between the fluid and the stochastic queue length process also holds in the transient
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Figure 9 Sensitivity analysis of the policy curve with respect to γ/(θ2 + γ) with γ fixed

(λ1 = 10, λ2 = 20, µ1 = 1, µ2 = 2.5, θ1 = 0.1, s= 26, c1 = 5, c2 = 1)

P2

P1

(a) φ= 0.6, γ = 0.1, θ2 = 0.07

P2

P1

(b) φ= 0.4, γ = 0.1, θ2 = 0.15

as 𝜙 decreases

(c) Decreasing φ = 1, 0.6, 0.55, 0.5,

0.45, 0.4

Figure 10 Sensitivity analysis of the policy curve with respect to γ/(θ2 + γ) with θ2 fixed

(λ1 = 10, λ2 = 20, µ1 = 1, µ2 = 2.5, θ1 = 0.1, s= 26, c1 = 5, c2 = 1)

P2

P1

(a) φ= 0.6, γ = 0.38, θ2 = 0.25

P2

P1

(b) φ= 0.4, γ = 0.17, θ2 = 0.25

as 𝜙 decreases

(c) Decreasing φ= 0.6, 0.55, 0.5, 0.45,

0.4

regime. As mentioned in Section 2.1, the fluid model can arise as a functional law of large numbers

limit for a sequence of properly scaled stochastic systems in the conventional heavy traffic regime.

In what follows, we elaborate on the scaling and conduct numerical comparisons between the fluid

trajectory and scaled stochastic sample path.

Consider a sequence of stochastic systems indexed by n. For Class i in the nth system, i= 1,2,

n∈N+, the arrival and service rates satisfy λni := λin, µ
n
i := µin. Moreover, we scale down space by

considering the fluid-scaled queue length process Q̄n
i (·) :=Qn

i (·)/n for the n-th stochastic system.

Given the initial fluid queue length q0, the nth stochastic system has initial queue length Qn(0) :=

dq0ne.

In each stochastic system, priority is assigned with non-preemptive service. In the case where

the cµ rule prioritizes Class 2 and the modified cµ/θ-rule prioritizes Class 1, the policy curve

for the n-th stochastic system is modified from the optimal fluid policy curve P characterized in

Proposition 4. For the other case where the cµ rule prioritizes Class 1 and the modified cµ/θ-rule

prioritizes Class 2, we impose an approximating linear policy curve P which is the best linear fit
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to the optimal switching epochs found numerically. In either case, for the nth stochastic system, a

switch in priority will happen at time t if Q̄n(t)∈Pn, where

Pn :=
{

(Q̄n
1 , Q̄

n
2 ) : Q̄n

1 ∈ [q1− 1/n, q1 + 1/n] , Q̄n
2 ∈ [q2− 1/n, q2 + 1/n] , (q1, q2)∈P

}
.

Figure 11 compares the fluid trajectory with a simulated sample path for the stochastic system

for different values of n. We observe from the plots that for a relatively small scaling parameter, e.g.

n= 10, the stochastic sample path is already well approximated by the fluid model. Furthermore,

if we plot the trajectory of the average queue length over multiple sample paths of the stochastic

system, the behavior of the ‘average trajectory’ mimics the fluid model even more closely.

Figure 11 Comparison of the transient fluid trajectory and the stochastic sample path

((a)(b): λ1 = 10, λ2 = 20, µ1 = 1.5, γ = 0.2, θ1 = 0.1, θ2 = 0.4, s= 17, c1 = 5, c2 = 3

(c)(d): λ1 = 10, λ2 = 20, µ1 = 1, µ2 = 2.5, γ = 0.4, θ1 = 0.1, θ2 = 0.2, s= 26, c1 = 5, c2 = 1)
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(a) P1 (µ2 = 2)
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(b) P1 to P2 (µ2 = 3)
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(c) P2 (µ2 = 6)
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5. Generalization to Multi-Class System

Thus far, our analysis has focused on a two-class system. We now provide a heuristic extension

of the optimal scheduling policy to minimize the long-run average cost and the transient cost for

multi-class multi-server queueing networks with K patient classes as depicted in Figure 12 . The

patient classes are associated with different urgency levels, with Class 1 being the most urgent

and Class K the least. Class i, i = 1, ...,K, is associated with its arrival rate λi, service rate µi,

abandonment rate θi and cost rate ci. To capture patient deterioration, delayed Class-i patients,

i= 2, ...,K, degrade into class i− 1 at rate γi.

Figure 12 Multi-class queueing network
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5.1. Long-Run Average Analysis

Following similar lines of analysis as in Section 3, we first optimize over the set of equilibrium

points. In particular, we have the following linear program:

min
{zei , i=1,...,K}

K∑
i=1

ciq
e
i

s.t. λi−µizei − qei (γi + θi) + γi+1q
e
i+1 = 0, i= 1, ...,K

K∑
i=1

zei ≤ s

zei , q
e
i ≥ 0, i= 1, ...,K

(19)

where γ1, γK+1 ≡ 0.
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Rearranging the terms in (19), it is straightforward to see that the optimal solution to (19) is a

generalization of the modified cµ/θ-rule. Namely, the solution assigns the maximum value to the

zei with a larger modified cµ/θ index denoted by ri, where

ri := µi

i∑
j=1

cj
γj + θj

i∏
k=j+1

γk
γk + θk

,

with
∏i

k=i+1
γk

γk+θk
≡ 1. Note that for the most urgent class (Class 1), the index r1 is equal to

c1µ1/θ1, which coincides with the regular cµ/θ-index. For the other relatively moderate classes

(Class i= 2, ...,K), ri > ciµi/θi because it accounts for the degradation from the current class to

more urgent/severe classes.

To establish the optimality of the modified cµ/θ-rule for the long-run average cost, we also need

to verify that the optimal equilibrium point can be achieved under the modified cµ/θ-rule. This

requires extending the Lyapunov analysis to establish the asymptotic stability of the equilibrium

points under the corresponding priority rules. We note that this task will become very tedious,

especially for a large number of patient classes, K.

5.2. Transient Analysis

Similar to the long-run equilibrium analysis, the transient analysis for the two-queue system can

also be partially generalized to multi-class systems.

First, based on the insights from the two-class case, when the states are arbitrarily close to

the origin, the effect of degradation and abandonment on the system dynamics is only second-

order. Using a Taylor expansion argument, we can show that there exists ε > 0 small enough, such

that the cµ-rule is optimal in the ε-neighborhood around the origin – i.e., when qi(t) ∈ [0, ε) for

i= 1,2, . . . ,K.

Second, by analyzing Pontryagin’s Minimum Principle for the multi-class case, we see that at any

time t, the optimal policy prioritizes the class with the largest p∗i (t)µi value, where p∗i is the optimal

adjoint vector. Let τ1 be the first time after initialization when one of the queues gets emptied.

Using a similar backward construction as in Lemma 4, we can characterize p∗i (τ1 − t) and show

that limt→∞ p
∗
i (τ1 − t)µi = ri, where ri is the modified cµ/θ-index for Class i. This suggests that

the modified cµ/θ-rule might be optimal when the states are far enough from the origin. However,

we emphasize that this is only a heuristic argument due to similar complications encountered in

Section 4.3.1. Namely, since the time argument t in the backward adjoint vector p∗(τ1− t) cannot

exceed τ1, rigorously establishing such a result requires a highly non-trivial derivation.

Lastly, the optimal scheduling policy for regions between the ε-neighborhood of the origin and

the far from the origin region remain unclear. Though Pontryagin’s Minimum Principle suggests
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that the optimal control assigns strict priority to one class at any given time, it is not necessarily

true that it switches priority at most once along the trajectory, as in the case of a two-class system.

We perform extensive numerical experiments for a three-class model by solving the corresponding

LP using discretization. The LP approximation confirms that the optimal solution follows the

modified cµ/θ-rule when the state q is sufficiently far from the origin, and the cµ-rule near the

origin. In many problem instances, the optimal scheduling policy also switches priority rule at most

once. However, there are also cases where the optimal scheduling policy switches priority more

than once, and it follows neither the generalized modified cµ/θ-rule nor the cµ-rule during part of

the transient horizon.

We find that applying a one-switch policy, where we switch priority at most once, and follow the

the modified cµ/θ when the system state is far from the equilibrium and the cµ-rule when the state

is close to the equilibrium, turns out to have reasonably good performance. Figure 13 demonstrates

two problem instances where the modified cµ/θ-rule and the cµ-rule prioritize in the order of

Classes 3,2,1 and Classes 1,2,3 respectively. In both instances, the optimal LP solution may, under

certain initial conditions, prioritize Class 2 over part of the transient horizon. Nevertheless, the

optimality gap of the one-switch policy is fairly small, while applying the modified cµ/θ-rule or

the cµ-rule throughout can sometimes lead to very large optimality gaps. In general, we expect the

one-switch policy is a reasonable heuristic policy when the modified cµ/θ-index and the cµ-index

are relatively aligned.

Figure 13 Optimality gap of different policies (percentage gap to the optimal LP approximation)

((1): λ1 = 10, λ2 = 20, λ3 = 30, µ1 = 1, µ2 = 3, µ3 = 6, θ1 = 0.1, θ2 = 0, θ3 = 0.2, γ2 = 0.3, γ3 = 0.3, s =

50, c1 = 50, c2 = 3, c3 = 1,modified cµ/θ-index = {250,780,948}, cµ-index = {50,9,6}

(2): λ1 = 10, λ2 = 20, λ3 = 30, µ1 = 5, µ2 = 5.1, µ3 = 8, θ1 = 0.2, θ2 = 0.1, θ3 = 0.2, γ2 = 0.1, γ3 = 0.2, s =

30, c1 = 15, c2 = 10, c3 = 6,modified cµ/θ-index = {375,446,470}, cµ-index = {75,51,48})

Initialization Optimal obj. (LP)Optimal policy (LP)One-switch modified 𝑐𝜇/𝜃 𝑐𝜇
5 21.5231162 123 21.5231162 46 21.5231162
10 88.5373434 123 88.5373434 179 88.5373434
50 2968.96099 213-123 3106 3856 3106

100 11501.251 213-123 12787 13312 24929
250 56087.8379 213-123 59704 60229 124541
500 163249.252 231-123 168173 168698 291285

1000 426956.003 321-213-123 430175 430700 625058

Initialization Optimal obj. (LP)Optimal policy (LP)One-switch modified 𝑐𝜇/𝜃 𝑐𝜇
5 8.69089517 123 8.69089517 11 8.69089517
10 34.3209322 123 34.3209322 44 34.3209322
50 801.686315 123 801.686315 980 801.686315

100 2974.47226 123 2974.47226 3505 2974.47226
250 15295.1856 123 15295.1856 16860 15295.1856
500 47284.7529 213-123 47293 49453 47293

1000 129172.97 321-213-123 129203 131253 130347

Initialization One-switch Modified 𝑐𝜇/𝜃 𝑐𝜇 One-switch Modified 𝑐𝜇/𝜃 𝑐𝜇
5 0.00% 113.59% 0.00% 0.00% 27.87% 0.00%
10 0.00% 101.63% 0.00% 0.00% 27.37% 0.00%
50 4.61% 29.87% 4.61% 0.00% 22.20% 0.00%

100 11.18% 15.74% 116.75% 0.00% 17.84% 0.00%
250 6.45% 7.38% 122.05% 0.00% 10.23% 0.00%
500 3.02% 3.34% 78.43% 0.02% 4.59% 0.02%

1000 0.75% 0.88% 46.40% 0.02% 1.61% 0.91%

Instance 2

Instance 2 Sub-optimality gap of different policies

Instance 1 Sub-optimality gap of different policies

Instance 1
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6. Discussion and Conclusion

In this work, we have proposed a novel multi-class queueing model to capture patient deterioration

and explore the potential benefits of proactive care. We identify an important metric, the modified

cµ/θ-index, which plays a critical role in specifying the optimal policy. Moreover, we find that the

modified cµ/θ-index lends itself to a very intuitive interpretation. In particular, as in the case of

the standard cµ/θ-index, it balances the relative importance of holding costs, service times, and

abandonment rates. However, the standard index is augmented by an important additional term

that accounts for patient degradation. Importantly, this additional term is characterized by the

efficiency of the predictive model as measured the probability of deterioration, γ/(θ2 + γ), as well

as the efficiency of preventative care as measured by the service rate of moderate patients, µ2.

Our analysis of the transient control problems also provides important insights into the manage-

ment of such systems. Specifically, when the system is near the equilibrium, cost minimization is

driven by service completions. Hence, following the cµ-rule is optimal. However, when the system is

initialized with a very large backlog, it is essential to account for the abandonment and degradation

dynamics, as captured by the modified cµ/θ-rule.

Our model and analysis is intended to provide insights into how preventative care should be

utilized. In order to facilitate analysis to derive these insights, we proposed a parsimonious model

of patient deterioration and preventative care. While this work is motivated by an important

practical application, it is also general enough to provide insights into other service systems where

customer degradation and proactive service exist. If one wants to develop prescriptive insights, e.g.

to specify for a hospital exactly when to utilized preventative care, a high fidelity simulation model

which incorporates features such as time-varying arrival rates, congestion dependent service-times,

etc. could be valuable. While we take a common approach in the literature of defining holding

and abandonment costs for different patient types (e.g. (Akan et al. 2012, Sun et al. 2017)), an

important empirical question is estimating these – and other system parameters – from real data.

Our paradigm for solving the transient control problem may provide insights to the management

of other queueing systems. Utilizing Pontryagin’s Minimum Principle, we are able to fully char-

acterize the structure of the optimal scheduling policy for the two-class system as well as gaining

insights when there are more than two classes. However, using this approach to fully characterize

the policy curves when there are more than two classes appears to be intractable.
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Appendix A: Proofs in Section 3

A.1. Proof of Theorem 1

Proof: Consider the equivalent LP formulation (5) of the long-run average optimization problem (F1). For

any given set of parameters, we first solve the LP (5) to obtain an optimal solution (ze∗1 , z
e∗
2 ) which represents

the optimal long-run average service capacity allocated to Class 1 and 2. The LP can be solved in closed

form to specify the optimal solution (ze∗1 , z
e∗
2 ) by noting that the optimal solution must be on one of the

vertices of the feasible region. We then show that (ze∗1 , z
e∗
2 ) and the corresponding (qe∗1 , q

e∗
2 ) is the globally

asymptotically stable equilibrium under the modified cµ/θ-rule, which corresponds to P1 or P2 depending

on which class has a higher modified cµ/θ-index. This step is based on the stability analysis for P1 and P2,

which are given in Theorems 2 and 3. Following similar parameter regimes examined in the stability analysis,

we divide the analysis here into different cases. For each case, the three tables below list the optimal LP

solution (ze∗1 , z
e∗
2 ) and the corresponding static control under which (ze∗1 , z

e∗
2 ) is a globally asymptotically

stable equilibrium for allocation.

Case 1. µ1 >
γ

θ2+γ
µ2, and λ2

µ2
≤ λ1

µ1
+ γ

θ2+γ
λ2

µ1
.

Modified cµ/θ-rule prioritizes Class 1 Modified cµ/θ-rule prioritizes Class 2
(ze∗1 , z

e∗
2 ) Control (ze∗1 , z

e∗
2 ) Control

λ1

µ1
+ λ2

µ2
≤ s

(
λ1

µ1
, λ2

µ2

)
P1, P2

(
λ1

µ1
, λ2

µ2

)
P1, P2

λ1

µ1
+ γ

θ2+γ
λ2

µ1
≤ s < λ1

µ1
+ λ2

µ2

(
λ1θ2+γ(λ1+λ2−sµ2)

(θ2+γ)µ1−γµ2
,

s− λ1θ2+γ(λ1+λ2−sµ2)

(θ2+γ)µ1−γµ2

) P1

(
s− λ2

µ2
, λ2

µ2

)
P2

λ2

µ2
≤ s < λ1

µ1
+ γ

θ2+γ
λ2

µ1
(s,0) P1

(
s− λ2

µ2
, λ2

µ2

)
P2

s < λ2

µ2
(s,0) P1 (0, s) P2

Case 2. µ1 >
γ

θ2+γ
µ2, and λ2

µ2
> λ1

µ1
+ γ

θ2+γ
λ2

µ1
.

Modified cµ/θ-rule prioritizes Class 1 Modified cµ/θ-rule prioritizes Class 2
(ze∗1 , z

e∗
2 ) Control (ze∗1 , z

e∗
2 ) Control

λ1

µ1
+ λ2

µ2
≤ s

(
λ1

µ1
, λ2

µ2

)
P1, P2

(
λ1

µ1
, λ2

µ2

)
P1, P2

λ2

µ2
≤ s < λ1

µ1
+ λ2

µ2

(
λ1θ2+γ(λ1+λ2−sµ2)

(θ2+γ)µ1−γµ2
,

s− λ1θ2+γ(λ1+λ2−sµ2)

(θ2+γ)µ1−γµ2

) P1

(
s− λ2

µ2
, λ2

µ2

)
P2

λ1

µ1
+ γ

θ2+γ
λ2

µ1
≤ s < λ2

µ2

(
λ1θ2+γ(λ1+λ2−sµ2)

(θ2+γ)µ1−γµ2
,

s− λ1θ2+γ(λ1+λ2−sµ2)

(θ2+γ)µ1−γµ2

) P1 (0, s) P2

s < λ1

µ1
+ γ

θ2+γ
λ2

µ1
(s,0) P1 (0, s) P2

Case 3. µ1 <
γ

θ2+γ
µ2. In this case, the modified cµ/θ-rule prioritizes Class 2.
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(ze∗1 , z
e∗
2 ) Control

λ1

µ1
+ γ

θ2+γ
λ2

µ1
< s

(
λ1

µ1
, λ2

µ2

)
P1, P2

λ1

µ1
+ λ2

µ2
≤ s≤ λ1

µ1
+ γ

θ2+γ
λ2

µ1

(
λ1

µ1
, λ2

µ2

)
P2

λ2

µ2
≤ s < λ1

µ1
+ λ2

µ2

(
s− λ2

µ2
, λ2

µ2

)
P2

s < λ2

µ2
(0, s) P2

Q.E.D.

A.2. Proof of Theorem 2

The stability analysis for P1 in Theorem 2 divides the parameter regime into six cases. In each case, we

construct a Lyapunov function to establish the asymptotic stability. As the proof for each case follows exactly

the same line of analysis, we only present the proof for Case Ia which has a globally asymptotically stable

equilibrium and Case IIb which has two locally asymptotically stable equilibria. The Lyapunov function we

utilize to prove each case differs; they are summarized in the table below.

Lyapunov function Lyapunov function
Case Ia (see proof) 1

µ1
|q1− qe1|+ 1

µ2
|q2− qe2| Case IIa |q1− qe1|+ γ

θ2+γ
|q2− qe2|

Case Ib 1
µ1
|q1− qe1|+ 1

µ2
|q2− qe2| Case IIb (see proof)

Local equilibrium (0,0):
1
µ1
|q1− qe1|+ 1

µ2
|q2− qe2|

Local equilibrium
(
λ1+

γ
θ2+γ

λ2−sµ1

θ1
, λ2

θ2+γ

)
:

|q1− qe1|+ |q2− qe2|
Case Ic |q1− qe1|+ |q2− qe2| Case IIc and IId |q1− qe1|+ |q2− qe2|

Proof: Let V denote the Lyapunov function we constructed. To prove the asymptotic stability of an

equilibrium point qe, we need to verify that 1) V (qe) = 0 and V (q)→∞ as ||q|| →∞; 2) ∇qV (q)T f(q)< 0

for q 6= qe. In the case of local stability, the second condition is checked locally with q restricted to be in

some neighborhood of qe, i.e. 0< ||q− qe||< δ for some δ > 0. As 1) is straightforward from our definition of

the Lyapunov function, we focus on verifying 2) only.

Case I. γ

θ2+γ
µ2 <µ1, i.e., γ

µ1
− θ2+γ

µ2
< 0.

Ia. If λ1

µ1
+ λ2

µ2
≤ s, consider Lyapunov function of the form

V (q) =
1

µ1

|q1− qe1|+
1

µ2

|q2− qe2|,

where (qe1, q
e
2) is the corresponding equilibrium point (0,0).

(i) If q1(t)> 0,

dq1(t) = λ1−µ1s− θ1q1(t) + γq2(t)

dq2(t) = λ2− θ2q2(t)− γq2(t).

∇qV (q)T f(q) =
1

µ1

(λ1−µ1s− θ1q1(t) + γq2(t)) +
1

µ2

(λ2− θ2q2(t)− γq2(t))

=
λ1

µ1

+
λ2

µ2

− s− θ1
µ1

q1(t) +

(
γ

µ1

− θ2 + γ

µ2

)
q2(t)

< 0,

where the last inequality follows from the facts that λ1/µ1 + λ2/µ2 ≤ s, q1(t)> 0, γ/µ1 − (θ2 + γ)/µ2 < 0,

and q2(t)≥ 0.
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(ii) If q1(t) = 0, q2(t)> 0,

(iia) if λ1+γq2(t)

µ1
≥ s,

dq1(t) = λ1−µ1s+ γq2(t)

dq2(t) = λ2− θ2q2(t)− γq2(t).

∇qV (q)T f(q) =
1

µ1

(λ1−µ1s+ γq2(t)) +
1

µ2

(λ2− θ2q2(t)− γq2(t))

=
λ1

µ1

+
λ2

µ2

− s+

(
γ

µ1

− θ2 + γ

µ2

)
q2(t)

< 0,

where the last inequality follows from the following facts: λ1/µ1 + λ2/µ2 ≤ s, γ/µ1 − (θ2 + γ)/µ2 < 0, and

q2(t)> 0.

(iib) If λ1+γq2(t)

µ1
< s,

dq1(t) = λ1−µ1

(
λ1 + γq2(t)

µ1

)
+ γq2(t) = 0

dq2(t) = λ2−µ2

(
s− λ1 + γq2(t)

µ1

)
− θ2q2(t)− γq2(t).

∇qV (q)T f(q) =
1

µ2

(
λ2−µ2

(
s− λ1 + γq2(t)

µ1

)
− θ2q2(t)− γq2(t)

)
=
λ1

µ1

+
λ2

µ2

− s+

(
γ

µ1

− θ2 + γ

µ2

)
q2(t)

< 0,

where the last inequality follows from the following facts: λ1/µ1 + λ2/µ2 ≤ s, γ/µ1 − (θ2 + γ)/µ2 < 0, and

q2(t)> 0. Hence, in Case Ia, the system has a globally asymptotic equilibrium at (0,0).

Case II. γ

θ2+γ
µ2 >µ1, i.e., γ

µ1
− θ2+γ

µ2
> 0.

IIb. If λ1

µ1
+ λ2

µ2
< s≤ λ1

µ1
+ γ

θ2+γ
λ2

µ1
, to check for local stability, it is sufficient to find a Lyapunov function

V that satisfies ∇qV (q)T f(q)< 0 in an open neighborhood of the equilibrium point. We construct different

Lyapunov functions for different equilibrium points.

(A) Local stability of (qe1, q
e
2) = (0,0): Consider Lyapunov function of the form

V (q) =
1

µ1

|q1− qe1|+
1

µ2

|q2− qe1|.

Let 0< ε< (sµ1−λ1)/γ be such that

λ1

µ1

+
λ2

µ2

− s+

(
γ

µ1

− θ2 + γ

µ2

)
ε < 0.

We know such ε exists because λ1/µ1 + λ2/µ2 − s < 0 and γ/µ1 − (θ2 + γ)/µ2 > 0. Consider states (q1, q2)

with q2 < ε.

(i) If q1(t)> 0,

dq1(t) = λ1−µ1s− θ1q1(t) + γq2(t)

dq2(t) = λ2− θ2q2(t)− γq2(t)
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∇qV (q)T f(q) =
1

µ1

(λ1−µ1s− θ1q1(t) + γq2(t)) +
1

µ2

(λ2− θ2q2(t)− γq2(t))

=
λ1

µ1

+
λ2

µ2

− s+

(
γ

µ1

− θ2 + γ

µ2

)
q2(t)− θ1

µ1

q1(t)

<
λ1

µ1

+
λ2

µ2

− s+

(
γ

µ1

− θ2 + γ

µ2

)
ε− θ1

µ1

q1(t)

< 0.

(ii) If q1(t) = 0, q2(t)> 0,

dq1(t) = λ1−µ1

(
λ1 + γq2(t)

µ1

)
+ γq2(t) = 0

dq2(t) = λ2−µ2

(
s− λ1 + γq2(t)

µ1

)
− θ2q2(t)− γq2(t)

∇qV (q)T f(q) =
1

µ2

(
λ2−µ2

(
s− λ1 + γq2(t)

µ1

)
− θ2q2(t)− γq2(t)

)
=
λ1

µ1

+
λ2

µ2

− s+

(
γ

µ1

− θ2 + γ

µ2

)
q2(t)

<
λ1

µ1

+
λ2

µ2

− s+

(
γ

µ1

− θ2 + γ

µ2

)
ε

< 0.

(B) Local stability of (qe1, q
e
2) =

(
λ1+

γ
θ2+γ

λ2−sµ1

θ1
, λ2

θ2+γ

)
: Consider Lyapunov function of the form

V (q) = |q1− qe1|+ |q2− qe2|.

Consider states q such that q1 > 0 and q2 > 0. In this case, the dynamics of q1 and q2 follow

dq1(t) = λ1−µ1s− θ1q1(t) + γq2(t)

dq2(t) = λ2− θ2q2(t)− γq2(t).

(i) If q1(t)≥ qe1, q2(t)≥ qe2, and (q1(t), q2(t)) 6= (qe1, q
e
2),

∇qV (q)T f(q) = λ1−µ1s− θ1q1(t) + γq2(t) +λ2− θ2q2(t)− γq2(t)

= λ1−µ1s− θ1q1(t) +λ2− θ2q2(t)

<λ1−µ1s− θ1qe1 +λ2− θ2qe2

= 0.

(ii) If q1(t)≥ qe1, q2(t)< qe2,

∇qV (q)T f(q) = λ1−µ1s− θ1q1(t) + γq2(t)−λ2 + θ2q2(t) + γq2(t)

= λ1−µ1s− θ1q1(t)−λ2 + (2γ+ θ2)q2(t)

<λ1−µ1s− θ1qe1−λ2 + (2γ+ θ2)qe2

= 0.

(iii) If q1(t)< qe1, q2(t)≥ qe2,

∇qV (q)T f(q) =−λ1 +µ1s+ θ1q1(t)− γq2(t) +λ2− θ2q2(t)− γq2(t)

=−λ1 +µ1s+ θ1q1(t) +λ2− (2γ+ θ2)q2(t)

<−λ1 +µ1s+ θ1q
e
1 +λ2− (2γ+ θ2)qe2

= 0.
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(iv) If q1(t)< qe1, q2(t)< qe2,

∇qV (q)T f(q) =−λ1 +µ1s+ θ1q1(t)− γq2(t)−λ2 + θ2q2(t) + γq2(t)

=−λ1 +µ1s+ θ1q1(t)−λ2 + θ2q2(t)

<−λ1 +µ1s+ θ1q
e
1−λ2 + θ2q

e
2

= 0.

Hence, in Case IIb, the system has two locally asymptotic equilibria at (0,0) and
(
λ1+

γ
θ2+γ

λ2−sµ1

θ1
, λ2

θ2+γ

)
.

Q.E.D.

A.3. Proof of Theorem 3

The stability analysis for P2 in Theorem 3 divides the parameter regime into three cases. Similar to the proof

of Theorem 2 in Appendix A.2, Lyapunov functions are constructed to prove the result. Since the dynamic

of q2 evolves independently of q1 under P2, the analysis can be done by first proving that q2 possesses a

globally asymptotically stable equilibrium qe2, and then constructing another Lyapunov function to prove the

global asymptotic stability of (qe1, q
e
2) for the joint process (q1, q2) when q2(0) is restricted to a neighborhood

around qe2. As the proof for each case follows similar lines of analysis, we present the details for Case A only.

The Lyapunov function we constructed for each case is listed in the table below.

Lyapunov function for q2 Lyapunov function for (q1, q2) with q2 close to qe2
Case A (see proof) |q2− qe2| 1

µ1
|q1− qe1|+ 1

µ2+ε
|q2− qe2|, ε≥ 0

Case B |q2− qe2| 1
µ1
|q1− qe1|+ 1

µ2
|q2− qe2|

Case C |q2− qe2| |q1− qe1|+ |q2− qe2|

Proof: Let V denote the selected Lyapunov function. We shall verify that ∇qV (q)T f(q)< 0 for q 6= qe.

Case A. λ1

µ1
+ λ2

µ2
≤ s. First, independently of q1, the dynamics of q2 are characterized by

dq2(t) =

{
λ2−µ2s− θ2q2(t)− γq2(t) if q2(t)> 0

λ2−µ2s if q2(t) = 0.

Indeed, q2 has a globally asymptotically stable equilibrium at 0. To see this, consider Lyapunov function for

q2 of the form

V (q2) = |q2− 0|.

If q2(t)> 0, we have

dq2(t) = λ2− sµ2− (θ2 + γ)q2(t)

∇qV (q2)T f(q2) = µ2

(
λ2

µ2

− s− γ+ θ2
µ2

q2(t)

)
< 0,

where the inequality follows from the fact that λ2/µ2 <λ1/µ1 +λ2/µ2 ≤ s. Hence, q2 has a globally asymp-

totically stable equilibrium at 0.

Next, we show that (q1, q2) jointly has a globally asymptotically stable equilibrium at (0,0).

(i) If λ1/µ1 +λ2/µ2 < s or γ/µ1− (θ2 + γ)/µ2 < 0, consider a Lyapunov function of the form

V (q) =
1

µ1

|q1− 0|+ 1

µ2

|q2− 0|.
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Let δ > 0 be such that (
γ

µ1

− θ2 + γ

µ2

)
δ+

λ1

µ1

+
λ2

µ2

− s < 0.

This is true for all δ > 0 if γ/µ1 < (θ2 + γ)/µ2. If γ/µ1 > (θ2 + γ)/µ2 and λ1/µ1 + λ2/µ2 < s, δ will need to

be made sufficiently small. We have already shown that for any q2(0) and δ > 0, there exists tδ such that for

all t > tδ, q2(t)< δ. We will focus on such t.

(ia) If q2(t)> 0,

dq1(t) = λ1− θ1q1(t) + γq2(t)

dq2(t) = λ2−µ2s− θ2q2(t)− γq2(t)

∇qV (q)T f(q) =
1

µ1

(λ1− θ1q1(t) + γq2(t)) +
1

µ2

(λ2−µ2s− θ2q2(t)− γq2(t))

=

(
γ

µ1

− θ2 + γ

µ2

)
q2(t)− θ1

µ1

q1(t) +
λ1

µ1

+
λ2

µ2

− s

<

(
γ

µ1

− θ2 + γ

µ2

)
δ− θ1

µ1

q1(t) +
λ1

µ1

+
λ2

µ2

− s

< 0.

(ib) If q2(t) = 0, q1(t)> 0,

dq1(t) = λ1−µ1(s−λ2/µ2)− θ1q1(t) + γq2(t)

dq2(t) = λ2−µ2(λ2/µ2) = 0

∇qV (q)T f(q) =
1

µ1

(
λ1−µ1

(
s− λ2

µ2

)
− θ1q1(t)

)
=− θ1

µ1

q1(t) +
λ1

µ1

+
λ2

µ2

− s

< 0.

(ii) If λ1/µ1 +λ2/µ2 = s and γ/µ1− (θ2 + γ)/µ2 > 0, consider a Lyapunov function of the form

V (q) =
1

µ1

|q1− 0|+ 1

µ2 + ε
|q2− 0|,

where ε > 0 is chosen such that λ1/µ1 +λ2/(µ2 + ε)− s < 0. Now, let δ > 0 be sufficiently small such that(
γ

µ1

− θ2 + γ

µ2 + ε

)
δ+

λ1

µ1

+
λ2

µ2 + ε
− s < 0.

Similar to Case (i), we will focus on t such that q2(t)< δ.

(iia) If q2(t)> 0,

dq1(t) = λ1− θ1q1(t) + γq2(t)

dq2(t) = λ2−µ2s− θ2q2(t)− γq2(t)

∇qV (q)T f(q) =
1

µ1

(λ1− θ1q1(t) + γq2(t)) +
1

µ2 + ε
(λ2−µ2s− θ2q2(t)− γq2(t))

=

(
γ

µ1

− θ2 + γ

µ2 + ε

)
q2(t)− θ1

µ1

q1(t) +
λ1

µ1

+
λ2

µ2 + ε
− s

<

(
γ

µ1

− θ2 + γ

µ2 + ε

)
δ− θ1

µ1

q1(t) +
λ1

µ1

+
λ2

µ2 + ε
− s

< 0.
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(iib) If q2(t) = 0, q1(t)> 0,

dq1(t) = λ1−µ1(s−λ2/µ2)− θ1q1(t) + γq2(t)

dq2(t) = λ2−µ2(λ2/µ2) = 0

∇qV (q)T f(q) =
1

µ1

(
λ1−µ1

(
s− λ2

µ2

)
− θ1q1(t)

)
=− θ1

µ1

q1(t) +
λ1

µ1

+
λ2

µ2

− s

< 0.

Hence, in Case A, the system has a globally asymptotic equilibrium at (0,0). Q.E.D.

Appendix B: Proofs in Section 4

The proofs in this section are organized as follows. We start by showing that it is without loss of optimality

to rule out chattering behavior (Lemma 1). We then establish the optimal scheduling policy when we are

close to the equilibrium (Proposition 1). Both proofs are based on solving the state trajectory q directly.

Second, we use Pontryagin’s Minimum Principle and Proposition 1 to prove Proposition 3, which are then

used to prove Proposition 2. Lastly, we characterize the policy curve from P1 to P2 (Proposition 4) using

Pontryagin’s Minimum Principle and Theorem 4.

B.1. Proof of Lemma 1

Proof: We prove the lemma by showing that the cost difference between a chattering trajectory and a

properly constructed trajectory without chattering is negligible.

Consider an interval I1 := [0, ε] where queue 1 is initiated at zero and receives no service capacity for an

ε > 0 amount of time. During this interval, a queue accumulates in queue 1. Following I1, I2 = (ε, ε+ ε′] is an

interval of length ε′ > 0, over which queue 1 receives full service capacity s and is eventually emptied at the

end of I2. Suppose q2 is initiated at level q2(0) = q20, q20 ∈ R+. We compute the state trajectory and cost

over I1 and I2, i.e. [0, ε+ ε′].

Over the first interval I1, the state trajectories evolve as

q1(t) = (q20γ+λ1) t+ o(ε), t∈ [0, ε]

q2(t) = q20 + (−q20γ− q20θ2 +λ2− sµ2) t+ o(ε), t∈ [0, ε] .

Note that it is possible to ignore the boundary condition that q2(t)≥ 0 for sufficiently small ε. At time ε,

the end of time interval I1, the length of q1 and q2 are

q1(ε) = (q20γ+λ1) ε+ o(ε)

q2(ε) = q20 + (−q20γ− q20θ2 +λ2− sµ2) ε+ o(ε).

Using (q1(ε), q2(ε)) as the initial condition at the beginning of the interval I2, we can characterize the

trajectory of q1 and q2 over I2 as

q1(t) = (q20γε+ ελ1) +
(
q20γ− q20γ2ε− q20γεθ1− q20γεθ2 +λ1− εθ1λ1 + γελ2

−sµ1− sγεµ2) (t− ε) + o(ε), t∈ [ε, ε+ ε′]

q2(t) = q20 (−1 + (t− ε)(θ2 + γ)) (−1 + ε(θ2 + γ)) + (t− (t− ε)ε(θ2 + γ))λ2

+ sε (−1 + (t− ε)(θ2 + γ))µ2 + o(ε), t∈ [ε, ε+ ε′] .
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In addition, the value of ε′, the time it takes to empty queue 1 from initial level q1(ε), is

ε′ =
ε (q20γ+λ1)

−q20γ−λ1 + sµ1

+ o(ε).

The total holding cost over the two intervals I1 and I2, where q1 follows the triangular-type trajectory, is

given by

C = c1

∫ ε+ε′

0

q1(t)dt+ c2

∫ ε+ε′

0

q2(t)dt

In contrast, we now consider an interval with the same length, ε + ε′, and the same initial condition

(q̃1(0), q̃2(0)) = (0, q20). Now, instead of having q1 increase from zero and then decrease to zero, we assign

strict priority to Class 1 and maintain q̃1 at zero. The rest of the service capacity is allocated to Class 2.

Similarly, we characterize the corresponding state trajectory over this interval of length ε+ ε′ as

q̃1(t) = 0, t∈ [0, ε+ ε′]

q̃2(t) = q20 + (−q20γµ1− q20θ2µ1 +λ2µ1 + q20γµ2 +λ1µ2− sµ1µ2) t/µ1 + o(ε), t∈ [0, ε+ ε′] ,

and the total holding cost as

C̃ = c1

∫ ε+ε′

0

q̃1(t)dt+ c2

∫ ε+ε′

0

q̃2(t)dt.

Comparing C and C̃, we get

C − C̃ =− ε2

2(q20γ+λ1− sµ1)2
(q20γ+λ1)

(
− c2ε(θ2 + γ)(q20γ+λ1)(q20(θ2 + γ)−λ2)

− c2s ((1 + ε(θ2 + γ))(q20γ+λ1)− sµ1)µ2 + c1
(
q220γ

2ε(γ+ θ1 + θ2) + sµ1(λ1− sµ1)

+ ελ1(θ1λ1− γλ2 + sγµ2) + q20γ (ε(2θ1 + θ2)λ1 + sµ1 + γε(λ1−λ2 + sµ2))
))

= o(ε).

(20)

In addition, at the end of time ε+ ε′, we have q1(ε+ ε′) = q̃1(ε+ ε′) = 0, and

q2(ε+ ε′)− q̃2(ε+ ε′) =−ε
2(θ2 + γ)(q20γ+λ1)(q20(θ2 + γ)−λ2 + sµ2)

q20γ+λ1− sµ1

= o(ε). (21)

Importantly, (20) implies that the cost under the policy that have q1 first increase and then decrease and the

cost under strict priority rule to Class 1 which maintains q1 at zero differ by a magnitude of o(ε). The same

applies to the queue lengths at time ε+ ε′ under the two policies by (21). Now for any interval of length L,

suppose we divide it into L/(ε+ ε′) small triangles (first increase and then decrease trajectories). Each has

a cost difference o(ε) from the cost under strict priority to Class 1. Then the overall cost difference between

the two policies (chattering and non-chattering) is o(ε)L/(ε+ ε′), which goes to zero as ε diminishes. Note

that any chattering interval consists of infinitely many such triangular trajectories with infinitesimally small

intervals over which q1 first increases above and then decreases to zero. This implies that any admissible

control policy π that yields a chattering interval where q1 fluctuates infinitesimally around zero can be

replaced by a cost-wise equivalent control π̃ that maintains q1 at zero over the same interval and agrees with

π elsewhere. The same approach applies to any chattering interval of q2 around zero – i.e., we can show that

there exists a cost-wise equivalent control under which q2 does not chatter (stays at zero). Q.E.D.
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B.2. Proof of Proposition 1

Proof: Let (q1(0), q2(0)) = (ε, ε). Since the optimal control gives strict priority to one class at any given

time, for ε > 0 sufficiently small, it is sufficient to compare the two strict priority rules; see Larrañaga (2015)

for a similar observation. Under each priority rule, we characterize the fluid trajectory and calculate the cost.

By comparing the costs under the strict priority rules, we note that when the system is initiated arbitrarily

close to the origin, the optimal policy is to follow the cµ-rule.

We first consider strict priority to Class 1. The time horizon is divided into two intervals with length

t1 and t2 respectively. Class 1 first receives full service capacity and gets emptied at the end of the first

interval. Over the second interval, Class 1 is maintained at zero queue and Class 2 is eventually emptied.

The fluid trajectory over the first interval is characterized by

q1(t) = ε+ (γε− εθ1 +λ1− sµ1) t+ o(ε), t∈ [0, t1]

q2(t) = ε+ (−γε− εθ2 +λ2) t+ o(ε), t∈ [0, t1] ,

and the value of t1 is

t1 =
ε

sµ1−λ1

+ o(ε).

Taking the value of (q1(t1), q2(t1)) as the initial condition, the fluid trajectory over the second interval is

q1(t) = 0, t∈ [0, t2]

q2(t) =
ε (λ1−λ2− sµ1) ((−1 + t(θ2 + γ))µ1− tγµ2)− t (λ1− sµ1) (λ2µ1 + (λ1− sµ1)µ2)

µ1(−λ1 + sµ1)
+ o(ε), t∈ [0, t2] ,

and the value of t2 is

t2 =
εµ1(−λ1 +λ2 + sµ1)

(λ1− sµ1)(λ2µ1 + (λ1− sµ1)µ2)
+ o(ε).

The cumulative holding cost under P1 over [0, t1 + t2] is given by

CP1 = c1

∫ t1

0

[ε+ (γε− εθ1 +λ1− sµ1) t]dt+ c1

∫ t1

0

[ε+ (−γε− εθ2 +λ2) t]dt

+ c2

∫ t2

0

[
ε (λ1−λ2− sµ1) ((−1 + t(θ2 + γ))µ1− tγµ2)− t (λ1− sµ1) (λ2µ1 + (λ1− sµ1)µ2)

µ1(−λ1 + sµ1)

]
dt

+ o(ε2)

=−ε
2 (c1λ2µ1− c2λ2µ2 + c1(λ1− sµ1)µ2 + c2λ1(µ1 + 2µ2)− c2sµ1(µ1 + 2µ2))

2(λ1− sµ1)(λ2µ1 + (λ1− sµ1)µ2)
+ o(ε2).

Next, we consider strict priority rule to Class 2. Similar to the case under P1, the time horizon is

divided into two intervals with length t1 and t2 respectively. Class 2 first receives full service capacity and

gets emptied over the first interval. Then, Class 2 is maintained at zero queue and Class 1 is eventually

emptied over the second interval. The fluid trajectory over the first interval evolves as

q1(t) = ε+ (γε− εθ1 +λ1) t+ o(ε), t∈ [0, t1]

q2(t) = ε+ (−γε− εθ2 +λ2− sµ2) t+ o(ε), t∈ [0, t1] ,

and t1 has value

t1 =
ε

sµ2−λ2

+ o(ε).
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Using the value of (q1(t1), q2(t1)) as the initial condition, the fluid trajectory over the second interval is

q1(t) =
εµ2(λ1−λ2 + sµ2)− t (λ2

2µ1 +λ2(−εθ1 +λ1− 2sµ1)µ2 +µ2(s(−λ1 + sµ1)µ2 + εθ1(λ1 + sµ2)))

µ2(−λ2 + sµ2)

+ o(ε), t∈ [0, t2]

q2(t) = 0, t∈ [0, t2] ,

and the value of t2 is

t2 =
εµ2(λ1−λ2 + sµ2)

(λ2− sµ2)(λ2µ1 + (λ1− sµ1)µ2)
+ o(ε).

The cumulative holding cost under P2 over [0, t1 + t2] is given by

CP2 = c1

∫ t1

0

[ε+ (γε− εθ1 +λ1) t]dt+ c2

∫ t1

0

[ε+ (−γε− εθ2 +λ2− sµ2) t]dt

+ c1

∫ t2

0

[
εµ2(λ1−λ2 + sµ2)− t (λ2

2µ1 +λ2(−εθ1 +λ1− 2sµ1)µ2 +µ2(s(−λ1 + sµ1)µ2 + εθ1(λ1 + sµ2)))

µ2(−λ2 + sµ2)

]
dt

+ o(ε2)

=
ε2 (−c2(λ2µ1 + (λ1− sµ1)µ2) + c1(λ1µ1 + (2µ1 +µ2)(−λ2 + sµ2)))

2(λ2− sµ2)(λ2µ1 + (λ1− sµ1)µ2)
+ o(ε2).

Comparing the total costs under P1 and P2, we get

CP1 −CP2 =
ε2(c1µ1− c2µ2) (λ2

1−λ1(2λ2 + s(µ1− 2µ2)) + (λ2 + 2sµ1)(λ2− sµ2))

2(λ1− sµ1)(−λ2 + sµ2)(λ2µ1 + (λ1− sµ1)µ2)
+ o(ε2)

=
ε2(c1µ1− c2µ2) (λ1(λ1− sµ1) + (λ2− sµ2)(λ2 + 2sµ1− 2λ1))

2(sµ1−λ1)(sµ2−λ2)(sµ1µ2−λ1µ2−λ2µ1)
+ o(ε2),

(22)

Note that as s > λ1/µ1 + λ2/µ2, in (22), the denominator 2(sµ1 − λ1)(sµ2 − λ2)(sµ1µ2 − λ1µ2 − λ2µ1) >

0, and in the numerator, (λ1(λ1− sµ1) + (λ2− sµ2)(λ2 + 2sµ1− 2λ1)) < 0. Thus, for ε sufficiently small,

CP1 − CP2 < 0 if and only if c1µ1 > c2µ2, and vice versa. This indicates that if the system is initiated

sufficiently close to the origin, then the cµ-rule is optimal. Q.E.D.

B.3. Pontryagin’s Minimum Principle

Before we prove Propositions 2 and 3, we provide more details about Pontryagin’s Minimum Principle.

Consider the transient optimization problem (F2′) (also presented below).

min
z

∫ τ

0

F (q(t))dt

s.t. dq(t) = f (q(t), z(t))

g(q(t))≤ 0

h(z(t))≤ 0.

(F2′ revisited)

The pure state constraint g(q(t))≤ 0 is, in general, very hard to deal with as it does not explicitly involve

the control z(t) and can only be regulated indirectly via the ordinary differential equation dq(t). To quantify

how ‘implicitly’ g(q(t)) depends on z(t), define gji , j = 1,2, ..., `, i= 1,2, recursively as

g0i (q(t), z(t)) := g(q(t))

g1i (q(t), z(t)) :=∇qg0i (q(t), z(t))T f (q(t), z(t))

...

g`i (q(t), z(t)) :=∇qg`−1i (q(t), z(t))T f (q(t), z(t)) .
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If ∇zgji (q(t), z(t)) = 0 for 0≤ j ≤ `− 1, and ∇zg`i (q(t), z(t)) 6= 0, then the state constraint gi(q(t)) is said to

be of order `. It is easy to see that for (F2′), each pure state constraint is of order 1.

We next introduce a full rank assumption, often referred to as constraint qualification, on g(q(t)) and

h(z(t)). In particular, for g(q(t)) of order 1, the constraint qualification requires that the matrices[
∂g1(q(t))

∂z

]
and

[
∂h(z(t))

∂z
diag (h(z(t)))

]
have full rank for all t≥ 0. In the context of (F2′), we have

rank
[
∂g1(q(t))

∂z

]
= rank

[
µ1 0
0 µ2

]
= 2,

and

rank
[
∂h(z(t))

∂z
diag (h(z(t)))

]
= rank

 1 1 z1(t) + z2(t)− s 0 0
−1 0 0 −z1(t) 0
0 −1 0 0 −z2(t)

= 3,

as at least one of z1(t) and z2(t) is strictly positive at all times. Hence, (F2′) satisfies the constraint qualifi-

cation.

Under the constraint qualification, Pontryagin’s Minimum Principle contains a list of necessary conditions

satisfied by any optimal solution to the control problem. The next theorem summarizes some of the necessary

conditions we utilize in our development. We refer to the survey paper Hartl et al. (1995) for a comprehensive

summary of developments regarding Pontryagin’s Minimum Principle for optimal control problems with state

constraints.

Theorem 5 (Pontryagin’s Minimum Principle (Hartl et al. (1995), Sethi and Thompson (2000)))

Assume that the constraint qualification holds. Let z∗ be an optimal solution to (F2′), q∗ be the corresponding

state trajectory, and τ∗ be the optimal hitting time. Then, there exists a non-zero piecewise absolutely

continuous adjoint vector p∗ : [0, τ∗] → R2 with piecewise continuous derivatives, piecewise absolutely

continuous Lagrangian multipliers η∗ : [0, τ∗]→R2, ξ∗ : [0, τ∗]→R3, and a vector ω∗(βj)∈R2 for each point

βj of discontinuity of p∗ such that for almost every t∈ [0, τ∗],

1. Ordinary Differential Equation condition:

q∗(0) = q0, dq∗(t) = f (q∗(t), z∗(t)) (ODE)

2. Adjoint Vector condition:

dp∗(t) =−∇qL(q∗(t), z∗(t), p∗(t), η∗(t), ξ∗(t)) (ADJ)

3. Minimization condition:

H(q∗(t), z∗(t), p∗(t)) = min
z
{H(q∗(t), z(t), p∗(t))} (M)

4. Hamiltonian condition:

H(q∗(t), z∗(t), p∗(t)) = 0 (H)

5. Transversality condition:

∇zL(q∗(t), z∗(t), p∗(t), η∗(t), ξ∗(t)) = 0, (T)
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6. Complementary condition:

η∗(t)≥ 0, η∗(t)T g(q∗(t)) = 0

ξ∗(t)≥ 0, ξ∗(t)Th(z∗(t)) = 0,
(C)

7. Jump condition: For any time in a boundary arc or a junction time, β, the adjoint vector p∗ and the

Hamiltonian H may have a discontinuity, but they must satisfy the following jump conditions:

(J1) : p∗(β−) = p∗(β+) +ω∗1(β)∇qg1(q∗(β)) +ω∗2(β)∇qg2(q∗(β))

(J2) :H(q∗(β−), z(β−), p∗(β−)) =H(q∗(β+), z(β+), p∗(β+))−ω∗1(β)∇tg1(q∗(β))−ω∗2(β)∇tg2(q∗(β))

(J3) : ω∗(β)≥ 0, ω∗(β)T g (q∗(β)) = 0.
(J)

Next, we provide more explanations about the conditions in Pontryagin’s Minimum Principle listed in

Theorem 5 to complement the discussion in Section 4.3.

1. First, solving the ordinary differential equations in (ADJ) for the dynamic of the adjoint vectors, we

get

p∗1(t) =K1e
tθ1 + etθ1

∫ t

0

e−sθ1 (−c1 + η∗1(s))ds

p∗2(t) =K2e
t(θ2+γ) +

K1γ

γ− θ1 + θ2

(
etθ1 − et(θ2+γ)

)
+

γ

γ− θ1 + θ2
etθ1

∫ t

0

e−sθ1 (−c1 + η∗1(s))ds

− γ

γ− θ1 + θ2
et(θ2+γ)

∫ t

0

es(−γ−θ2) (−c1 + η∗1(s))ds+ et(θ2+γ)
∫ t

0

es(−γ−θ2) (−c2 + η∗2(s))ds,

(23)

where K1 and K2 are constants that depends on p∗(0), which we, in general, cannot fully specify based

on the necessary conditions.

The adjoint vector is connected to the value function in optimal control theory. In particular, the value

function Ξ :R2
+→R+ associated with (F2′) is defined by

Ξ(a1, a2) = inf

{∫ τ

0

F (q(t))dt
∣∣ q1(0) = a1, q2(0) = a2, q is a feasible trajectory in (F2′)

}
.

There exists an adjoint vector p∗(t) such that p∗(t) =∇qΞ(q∗(t)) under the condition that ∇qΞ(q) is

well defined (Frankowska 2010). As the cost structure is linear and increasing in q∗(t), it follows that

p∗(t)≥ 0 for all t≥ 0.

2. Minimization condition (M) and the optimal assignment of service capacity in equations (14) - (15)

reveal important properties of the optimal control structure. First, observe in (14) - (15) that on the

interior arc when both states are strictly positive and the switching curve is non-zero, the optimal

control is ‘bang-bang’. Namely, it must be the case that one of the two classes is assigned full service

capacity s. On the other hand, on the boundary arc when one of the states is at zero, the optimal

control is of an ‘interior’ type. Namely, both z∗1(t) and z∗2(t) stay strictly in the interior of the control

region, i.e., z∗1(t), z∗2(t)∈ (0, s).

3. Consider time β, where β < τ∗, as a time on a boundary arc or a junction time. If the adjoint vector

p∗ has a discontinuity at time β, then Jump condition (J) requires that[
p∗1(β−)
p∗2(β−)

]
=

[
p∗1(β+)
p∗2(β+)

]
+w∗1(β)

[
−1
0

]
+w∗2(β)

[
0
−1

]
=

[
p∗1(β+)−w∗1(β)
p∗2(β+)−w∗2(β)

]
,
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and that

w∗i (β)≥ 0, w∗i (β)gi(q
∗(β)) = 0, i= 1,2.

Note that if q∗1(β) = 0, then q∗2(β) > 0 and thus w∗2(β) = 0. The same holds true for q∗2, namely, if

q∗2(β) = 0, then q∗1(β)> 0 and thus w∗1(β) = 0. Hence, only the adjoint vector associated with the queue

that is at zero can have a jump, while the other adjoint vector remains continuous at time β.

In addition, since the pure state constraint g(q(t)) is time invariant, we have gt(q
∗(β)) = 0. According

to Jump condition (J), the Hamiltonian H(q∗(t), z∗(t), p∗(t)) is continuous over boundary arcs and at

junction times.

4. Pontryagin’s Minimum Principle only requires the necessary conditions to be satisfied ‘almost every-

where’. In particular, q∗(t) and p∗(t) can have discontinuities at countably many points. For most

problems studied in the literature, jumps only happen at junction times (Hartl et al. 1995). That said,

in general, we cannot rule out the possibility of jumps on the boundary or interior arcs. In our anal-

ysis, we shall first assume that p∗(t) is continuous on interior arcs. We then show that the continuity

assumption indeed holds by verifying a sufficient version of Pontryagin’s Minimum Principle for the

optimal control problem (F2′).

We next introduce the sufficient version of Pontryagin’s Minimum Principle. Since the terminal state in

problem (F2′) is zero and F (0) = 0, (F2′) can be equivalently formulated as an optimal control problem

without a terminal state constraint but rather over an infinite time horizon. The following sufficient conditions

are adapted from Theorem 8.2 and Theorem 8.4 in (Hartl et al. 1995) for the equivalent version of (F2′)

over an infinite time horizon.

Theorem 6 (Arrow-type sufficient condition) Let (q∗, z∗) be a feasible pair for an equivalent version

of problem (F2′) with infinite time horizon. Assume that there exists a piecewise continuously differentiable

function p∗(t) : [0,∞)→ R2 and piecewise continuous functions η∗ : [0,∞)→ R2 and ξ∗ : [0,∞)→ R3, such

that conditions (ODE), (ADJ), (M), (T), (C) hold. Assume further that at all points β of discontinuity of

p∗, there exists an ω∗(β) ∈ R2 such that (J1) and (J3) in (J) hold. In addition, assume that the following

limiting condition holds:

lim
t→∞

p∗(t)T (q(t)− q∗(t))≥ 0 for every other feasible state trajectory q.

If the minimized Hamiltonian H(q∗(t), z∗(t), p∗(t)) = minz{H(q∗(t), z(t), p∗(t))} is convex in q∗(t) for all

(p∗(t), t), the pure state constraint g(q(t)) is quasiconvex in q(t), and the control constraint h(z(t)) is quasi-

convex in z(t), then (q∗, z∗) is an optimal pair.

We first note that the solution we derive in this paper indeed satisfies the sufficient conditions in Theorem

6 and is thus optimal. More specifically, first, we design the control by ensuring that conditions (ODE),

(ADJ), (M), (T), and (C) are satisfied almost everywhere. In particular, in our proposed solution, the state

trajectory q∗(t) satisfies (ODE) at all the continuity points of the control z∗(t). The adjoint vector p∗(t)

follows the ordinary differential equations in (ADJ) everywhere on the interior arcs. (M), (T), and (C)



54

hold everywhere over the transient time horizon. Second, Jump condition (J) is guaranteed everywhere over

boundary arcs and at junction times. Since p∗(t) is continuous over interior arcs, conditions (J1) and (J3)

in (J) indeed hold for all discontinuity points of p∗(t). Third, for any feasible state trajectory q(t) other

than q∗(t), limt→∞ p
∗(t)(q(t) − q∗(t)) ≥ 0 holds because p∗(t), q(t) ≥ 0 for all t ≥ 0, and limt→∞ q

∗(t) = 0.

Lastly, following (14)-(15), the control z∗(t) is linear in q∗(t) for all t≥ 0. Hence, the minimized Hamiltonian

H(q∗(t), z∗(t), p∗(t)) is linear in q∗(t) for all (p∗(t), t). The convexity conditions on g(q(t)) and h(z(t)) are

also satisfied as g(q(t)) and h(z(t)) are linear in q(t) and z(t) respectively.

We are now ready to prove the results in Section 4.3 using Pontryagin’s Minimum Principle.

B.4. Proof of the auxiliary lemmas

B.4.1. Proof of Lemma 2 Proof: The proof of Lemma 2 uses Transversality condition (T) and

Complementarity condition (C) . Consider a boundary arc [t1, t2] and a time epoch t∈ (t1, t2). First, by (14)

- (15), the control over the boundary arc is of an ‘interior’ type, and the amount of service capacity assigned

to both classes (z∗1(t), z∗2(t)) is strictly positive. By Complementarity condition (C), the multipliers satisfy

ξ∗2(t) = 0 and ξ∗3(t) = 0. Then, by Transversality condition (T), we have µ1p
∗
1(t) = µ2p

∗
2(t) = ξ∗1(t). Hence, the

switching curve satisfies ψ(t) = µ1p
∗
1(t)−µ2p

∗
2(t) = 0 for t∈ (t1, t2). Q.E.D.

B.5. Proof of Lemma 3

Proof: Recall that the switching curve is characterized by ψ(t) = µ1p
∗
1(t)−µ2p

∗
2(t). Since ψ(t) = 0 on the

boundary arcs and by our construction, p∗(t) does not jump on the interior arcs, the switching curve ψ(t)

is continuous at all time t ∈ [0, τ∗] if p∗(t) is continuous at the junction times. In the rest of the proof, we

establish the continuity of p∗(t) at the junction times.

Following Proposition 4.2 in Hartl et al. (1995) and Proposition 3.63 in Grass et al. (2008), for the optimal

control problem (F2′) which has pure state constraints of order 1, the adjoint vector p∗(t) is continuous at

a junction time β, i.e., ω∗(β) = 0, if the entry or exit is nontangential, i.e., dq∗i (β−) < 0 or dq∗i (β+) > 0,

respectively. Namely, the nontangential condition requires that if β is an entry or contact point for q∗i ,

then dq∗i (β−) < 0. If β is an exit or contact point for q∗i , then dq∗i (β+) > 0. In what follows, we use this

nontangential condition and/or Jump condition (J) to establish continuity of p∗(t) at junction times.

Case I: Junction times for Class 2. First, let β be an entry or contact point for q∗2. In order to drive q∗2

to zero at β, full service capacity must be assigned to q∗2 right before β, i.e., z∗2(β−) = s. It follows that

dq∗2(β−) = λ2−µ2z
∗
2(β−)− θ2q∗2(β−)− γq∗2(β−) = λ2−µ2s < 0.

Second, let β be an exit or contact point for q∗2. Since there is always sufficient capacity in the system to

maintain q∗2 at zero, it must be the case that priority is switched from Class 2 to Class 1 at time β. This

implies z∗2(β+) = 0 and

dq∗2(β+) = λ2−µ2z
∗
2(β+)− (θ2 + γ)q∗2(β+) = λ2 > 0.

Since all the entry and exit trajectories are nontangential, the adjoint vectors p∗(t) are continuous at the

junction times associated with Class 2.
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Case II: Junction times for Class 1. The proof for the continuity of p∗(t) at the junction times associated

with Class 1 gets more complicated due to degradation. The discussion is divided into three cases based on

the relative level of service capacity s.

1. max{λ1

µ1
+ γ

θ2+γ
λ2

µ1
, λ1

µ1
+ λ2

µ2
}< s.

(i) Let β be an entry or contact point for q∗1.

In order to drive q∗1 to zero, full service capacity must be assigned to q∗1 right before β, i.e., z∗1(β−) = s.

Hence,

dq∗1(β−) = λ1−µ1z
∗
1(β−)− θ1q∗1(β−) + γq∗2(β−) = λ1−µ1s+ γq∗2(β−).

In addition, there exists some neighborhood [β− δ,β), 0< δ < β, where dq∗1(t)< 0 for all t∈ [β− δ,β).

This implies that

q∗2(t)< (sµ1−λ1)/γ for all t∈ [β− δ,β).

We next show that dq∗1(β−)< 0. Suppose by contradiction dq∗1(β−) = 0, then it must be the case that

q∗2(β) = (sµ1−λ1)/γ. On the other hand,

dq∗2(t) = λ2−µ2z
∗
2(t)− (θ2 + γ)q∗2(t)≤ λ2− (θ2 + γ)q∗2(t),

which is strictly negative if

q∗2(t)>λ2/(θ2 + γ).

Under Assumption 2, i.e. s >max{λ1/µ1 +λ2/µ2, λ1/µ1 +λ2γ/((γ+ θ2)µ1)}, it holds that

q∗2(β) = (sµ1−λ1)/γ > λ2/(θ2 + γ).

Therefore, there exists some δ′ > 0, such that dq∗2(t)< 0 and q∗2(t)> q∗2(β) for t ∈ (β− δ′, β). It follows

that dq∗1(t) > 0 for t ∈ (β − δ′, β), which contradicts that dq∗1(t) < 0 for all t ∈ [β − δ,β). Therefore,

dq∗1(β−)< 0 at entry or contact point β.

(ii) Let β be an exit or contact point for q∗1. Similar arguments as in Case II.1.(i) apply and we can show

that dq∗1(β+)> 0.

Since all the entry and exit trajectories are nontangential, the adjoint vectors p∗(t) are continuous at the

junction times associated with Class 1.

2. λ1

µ1
+ λ2

µ2
< s= λ1

µ1
+ γ

θ2+γ
λ2

µ1
.

(i) Let β be an entry point for q∗1(t).

First, if dq∗1(β−) < 0, then it follows from the nontangential condition that there is no jump in the

adjoint vector p∗(t) at time β.

Second, suppose for the sake of contradiction that dq∗1(β−) = 0. It then follows that

q∗2(β) = (sµ1−λ1)/γ = λ2/(θ2 + γ).

Note that the point (0, λ2/(θ2 + γ)) is a locally asymptotically stable equilibrium point for the joint

queue length process under priority to Class 1, while (0,0) is the equilibrium under priority to Class

2. Hence, priority must be switched from Class 1 to Class 2 at time β; otherwise, keeping priority to
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Class 1 generates extra cost but does not change the queue lengths. Hence, β cannot be an entry point

for q∗1(t), a contradiction.

Therefore, dq∗1(β−)< 0 at entry point β for q∗1.

(ii) Let β be an exit point for q∗1.

First, if dq∗1(β+) > 0, then it follows from the nontangential condition that there is no jump in the

adjoint vector p∗(t) at time β.

Second, suppose for the sake of contradiction that dq∗1(β+) = 0. Then, it is

q∗2(β) = (sµ1−λ1)/γ = λ2/(θ2 + γ).

Again, since the point (0, λ2/(θ2 + γ)) is a locally asymptotically stable equilibrium point for the joint

queue length process, priority must be switched from Class 1 to Class 2 at time β. (Following the same

reasoning as in Case II.2.(i), keeping priority to Class 1 generates extra cost but does not change the

queue lengths.) Hence, dz∗1(β+) = 0 and

dq∗1(β+) = λ1−µ1z
∗
1(β+) + γq∗2(β+)> 0,

a contradiction.

Therefore, dq∗1(β+)> 0 at exit point β for q∗1.

(iii) Let β be a contact point for q∗1.

First, if dq∗1(β−) < 0 and dq∗1(β+) > 0, then p∗(t) does not have any jump at time β due to the

nontangential condition.

Second, if dq∗1(β−) = 0, then following the same arguments as in Case II.2.(i) and Case II.2.(ii), it

holds that q∗2(β) = λ2/(θ2 + γ) and priority is switched from Class 1 to Class 2 at time β. In this

case, Jump condition (J) requires the adjoint vector p∗(t) to have no jump at time β. To see this,

suppose for the sake of contradiction that p∗(t) jumps at β. Then, Jump condition (J) characterizes

that p∗1(β+) = p∗1(β−) + w∗1(β), for some w∗1(β) > 0. Recall that the switching curve is defined as

ψ(t) = µ1p
∗
1(t)−µ2p

∗
2(t). Since Class 1 is prioritized right before β, it holds that ψ(β−)≥ 0. If p∗1(t) has

a jump with strictly positive size w∗1(β) at time β, then ψ(β+)> 0. However, this implies that priority

cannot be switched to Class 2 at time β, which is a contradiction.

Third, the case where dq∗1(β+) = 0 is ruled out by exactly the same arguments in Case II.2.(ii).

In almost all (but one) cases, since all the entry and exit trajectories are nontangential, the adjoint vectors

p∗(t) are continuous at the junction times associated with Class 1. In the case where β is a contact point

at which priority is switched from Class 1 to Class 2, we have established the continuity of p∗(t) at β using

Jump condition (J).

3. λ1

µ1
+ λ2

µ2
< s< λ1

µ1
+ γ

θ2+γ
λ2

µ1
.

(i) Let β be an entry point for q∗1.

First, if dq∗1(β−)< 0, then p∗1(t) does not jump at β due to the nontangential condition.



57

Second, suppose for the sake of contradiction that dq∗1(β−) = 0. Then, q∗2(β) = (sµ1−λ1)/γ < λ2/(θ2 +

γ). Recall that the dynamic of q∗2 follows dq∗2(t) = λ2−µ2z
∗
2(t)−(θ2 +γ)q∗2(t). Because priority is kept at

Class 1 over the boundary arc following β, there exists some δ > 0 such that dq∗2(t)> 0 for t∈ [β,β+δ).

This implies that dq∗1(t)> 0 for t∈ (β,β+ δ), contradicting the fact that β is an entry point for q∗1(t).

Therefore, dq∗1(β−)< 0 at entry point β for q∗1.

(ii) Let β be an exit point for q∗1.

First, if dq∗1(β+)> 0, then p∗1(t) does not jump at β due to the nontangential condition.

Second, suppose for the sake of contradiction that dq∗1(β+) = 0. Then, priority must be kept at Class 1

at time β and over some interval [β,β+δ1), δ1 > 0; otherwise, dq∗1(β+)> 0. In addition, we have, q∗2(β) =

(sµ1 − λ1)/γ < λ2/(θ2 + γ). It then follows from the dynamic of q∗2 that there further exists some δ2,

0< δ2 < δ1, such that z∗1(t) = s, dq∗1(t)> 0 and dq∗2(t)> 0 for t∈ [β,β+δ2). Since p∗1(t)≥ 0, p∗2(t)≥ 0 and

q∗2(t)> 0 for t∈ [β,β+δ2), we have H(q∗(t), z∗(t), p∗(t)) = p∗1(t)dq∗1(t)+p∗2(t)dq∗2(t)+c1q
∗
1(t)+c2q

∗
2(t)>

0 for t∈ [β,β+ δ2). However, Hamiltonian condition (H) requires that H(q∗(t), z∗(t), p∗(t)) = 0 almost

everywhere, which gives a contradiction.

Therefore, dq∗1(β+)> 0 at exit point β for q∗1.

(iii) Let β be a contact point for q∗1.

First, if dq∗1(β−)< 0 and dq∗1(β+)> 0, then p∗(t) does not jump at β due to the nontangential condition.

Second, note that if priority is switched from Class 1 to Class 2 at time β, then Jump condition (J)

requires that p∗(t) does not jump at β due to the same reasoning as in Case II.2.(iii). Now, suppose for

the sake of contradiction that dq∗1(β−) = 0 and priority is kept at Class 1 over some interval [β,β+ δ1),

δ1 > 0. Then, following the same arguments as in Case II.3.(ii), there exists some δ2, 0< δ2 < δ1, such

that z∗1(t) = s, dq∗1(t)> 0 and dq∗2(t)> 0 for t ∈ [β,β + δ2), which violates Hamiltonian condition (H),

which gives a contradiction.

Third, the case where dq∗1(β+) = 0 is ruled out by the same arguments as in Case II.3.(ii).

In almost all (but one) cases, since all the entry and exit trajectories are nontangential, the adjoint vectors

p∗(t) are continuous at the junction times associated with Class 1. In the case where β is a contact point

at which priority is switched from Class 1 to Class 2, we have established the continuity of p∗(t) at β using

Jump condition (J).

Taking Cases I and II together, we have shown that the adjoint vectors p∗(t) are continuous at all the

junction times. This further implies that the switching curve ψ(t) is continuous at all t∈ [0, τ∗]. Q.E.D.

B.5.1. Proof of Lemma 4 Proof: By Lemma 1, we restrict to trajectories without chattering behav-

ior. For any entry or contact point τj , there exists a nontrivial interval (0, αj) such that for t ∈ (0, αj),

q∗1(τj − t) and q∗2(τj − t) are both strictly positive. Since the multiplier η∗ is equal to zero over any interior

arc, from (ADJ) we have, for t∈ (0, αj),

p∗1(τj − t) =
c1
θ1

+ eθ1(−t+τj)K1

p∗2(τj − t) =
c2

θ2 + γ
+

c1γ

θ1(θ2 + γ)
+
eθ1(−t+τj)γK1 + e(θ2+γ)(−t+τj)(−γK1 + (γ− θ1 + θ2)K2)

γ− θj + θ2
,
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where K1 and K2 are constant of integration that depend on p∗(τj) and τj .

The backward switching curve from time τj over the interval (0, αj) is given by

ψ(τj − t) = µ1p
∗
1(τj − t)−µ2p

∗
2(τj − t)

= µ1

(
c1
θ1

+ eθ1(−t+τj)K1

)
−µ2

(
c2

θ2 + γ
+

c1γ

θ1(θ2 + γ)
+
eθ1(−t+τj)γK1 + e(θ2+γ)(−t+τj)(−γK1 + (γ− θ1 + θ2)K2)

γ− θ1 + θ2

)
=K1µ1e

θ1(−t+τj)− γ

γ− θ1 + θ2
µ2K1e

θ1(−t+τj)− µ2

γ− θ1 + θ2
(−γK1 + (γ− θ1 + θ2)K2)e(θ2+γ)(−t+τj)

+
c1
θ1
µ1−

(
c2

θ2 + γ
µ2 +

γ

(θ2+γ)
c1

θ1
µ2

)

=

(
µ1−

γ

γ− θ1 + θ2
µ2

)
K1e

θ1τje−θ1t− µ2

γ− θ1 + θ2
(−γK1 + (γ− θ1 + θ2)K2)e(θ2+γ)τje−(θ2+γ)t

+
c1
θ1
µ1−

(
c2

θ2 + γ
µ2 +

γ

(θ2+γ)
c1

θ1
µ2

)
.

Define

A1(τj) :=

(
µ1−

γ

γ− θ1 + θ2
µ2

)
K1e

θ1τj

A2(τj) :=− µ2

γ− θ1 + θ2
(−γK1 + (γ− θ1 + θ2)K2)e(θ2+γ)τj .

We have, for t∈ (0, αj),

ψ(τj − t) =A1(τj)e
−θ1t +A2(τj)e

−(θ2+γ)t +
c1
θ1
µ1−

(
c2

θ2 + γ
µ2 +

γ

(θ2+γ)
c1

θ1
µ2

)
.

Q.E.D.

B.5.2. Proof of Proposition 3 Proof: The proof utilizes Proposition 1 and the possible shapes of

the switching curve, ψ(τN − t), characterized in Lemma 4. It is divided into two cases, depending on the

relationship between the cµ-index and the modified cµ/θ-index.

Case I. First, we consider the parameter regime where the cµ-rule and the modified cµ/θ-rule prioritize the

same class, namely,

(c1µ1− c2µ2)

(
c1
θ1
µ1−

(
c2

θ2 + γ
µ2 +

γ

(θ2+γ)
c1

θ1
µ2

))
> 0.

For the moment, suppose Class 1 has a higher cµ-index and modified cµ/θ-index.

By Proposition 1, when the state is in an ε-neighborhood of the origin, it is optimal to assign strict priority

to Class 1. Recall that τN is the last entry or contact point (forward in time) when one of the states hits

zero. It follows that τN must be the last epoch forward in time when q∗1 hits zero, and q∗1 is then maintained

at zero after τN , i.e., q∗1(t) = 0 for t ∈ [τN , τ). By Lemma 4, the switching curve right before τN satisfies for

some αN < τN ,

ψ(τN − t) =A1(τN)e−θ1t +A2(τN)e−(θ2+γ)t +
c1
θ1
µ1−

(
c2

θ2 + γ
µ2 +

γ

(θ2+γ)
c1

θ1
µ2

)
, t∈ (0, τN −αN),

where A1(τN) and A2(τN) are constants in R. Furthermore, DτN (t), the pseudo switching curve backward

from τN , satisfies

lim
t→∞

DτN (t) =
c1
θ1
µ1−

(
c2

θ2 + γ
µ2 +

γ

(θ2+γ)
c1

θ1
µ2

)
> 0.
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The structure of DτN (t) regulates that it can have at most two zeros. With limt→∞D
τN (t) > 0, the two

possible function shapes DτN (t) can take are demonstrated in Figure 14, with one root in Figure 14(a) and

two roots in Figure 14(b). Figure 14 is comprehensive in the sense that any such DτN (t) function shares the

same behavior in crossing zero and in the limiting regime as t→∞. In particular, if DτN (t) has one zero

as in Figure 14(a), then it must be that DτN (t) is increasing at the zero point and eventually converges to

limt→∞D
τN (t). (For the instance plotted in Figure 14, limt→∞D

τN (t) = 2.5.) Once DτN (t) crosses zero, it

will never decrease to zero again. Likewise, if DτN (t) has two zeros as in Figure 14(b), then it must be that

DτN (t) has negative slope at the first zero, has positive slope at the second zero, and eventually converges

to 2.5. Once DτN (t) crosses the second zero point, it will never decrease to zero again. We comment that if

the values of A1(τN) are A2(τN) are known, then there is no ambiguity in the trajectory of DτN (t), and thus

no notion of ‘possible’ function shapes. Nevertheless, due to the degrees of freedom inherent to Pontryagin’s

Minimum Principle, it is hard to characterize these coefficients exactly. Therefore, the idea is to infer the

structure of the optimal control from the interaction of the coefficients without explicitly characterizing their

values.

Figure 14 Possible trajectory of Dτ1(t) with c1µ1 > c2µ2, modified c1µ1/θ1 >modified c2µ2/θ2
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We first note that the interval [τN , τ ] is a boundary arc over which q∗1 is maintained at zero. It follows that

ψ(t) = 0 for t∈ (τN , τ) (Lemma 2), and ψ(t) is continuous in time so that ψ(τN) = 0 (Lemma 3). Furthermore,

since the optimal control is ‘bang-bang’ right before τN , in order to drive q∗1 to zero at time τN , strict priority

must be given to Class 1 in some non-trivial neighborhood before τN . Namely, there exists ετN > 0 such that

ψ(t)> 0 for t∈ (τN − ετN , τN). For DτN (t), this implies that DτN (0) = 0 and DτN (t)> 0 for t∈ (0, ετN ). Thus

for the possible structures in Figure 14, if DτN (t) has one zero (Figure 14(a)), then DτN (0) is at this unique

zero point. If DτN (t) has two zeros (Figure 14(b)), then Dτ1(0) is at the second zero. This implies that as

long as the dynamic of the switching curve ψ(τN − t) follows that of DτN (t), ψ(τN − t)> 0. It is important to

note that the trajectory of ψ(τN − t) agrees with DτN (t) for t in some non-degenerative interval (0, τN −αN).

Next, taking the derivative of DτN (t) with respect to t, it is easy to see that dDτN (t) can have at most

one root. Since DτN (0) = 0 and DτN (t)> 0 for t ∈ (0, ετN ), it holds that for any interval [0, `), ` > 0, either

DτN (t) is strictly increasing over [0, `) or DτN (`) > limt→∞D
τN (t)− δ for some δ > 0 arbitrarily small. In

either case, DτN (`) > δ′ for some δ′ > 0. If η∗1(τN − t) = 0 and η∗2(τN − t) = 0 for t ∈ [0, `), then the same
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holds true for the backward switching curve ψ(τ1 − t) over the interval t ∈ [0, `). To this end, it is only

possible for ψ(τN − t) to deviate from the dynamic of DτN (t) if η∗2(τN −β) becomes strictly positive at some

time 0< β ≤ t. (Naturally, β ≥ αN .) Note that η∗1(τN − t) = 0 and η∗2(τN − t) = 0 for all t ∈ [0, β). Now, as

DτN (β) > δ′ for some δ′ > 0 and η∗2(τN − β) > 0, it follows that ψ(τN − β) ≥ δ′ > 0. However, η∗2(τN − β)

becomes positive only if q∗2(τN − β) = 0, which implies that strict priority is given to Class 2 right before

time (τN −β), i.e., ψ((τN −β)−)≤ 0. However, due to the continuity of the switching curve, this contradicts

the fact that ψ(τN − β)≥ δ′ > 0. Therefore, for all t ∈ [0, τN ], ψ(τN − t) follows the dynamic of DτN (t) and

remains strictly positive. We then conclude that strict priority to Class 1 is optimal throughout the transient

time horizon.

The proof for the case where Class 2 has a higher cµ-index and higher modified cµ/θ-index follows similarly.

In this case, strict priority to Class 2 is optimal throughout the transient time horizon.

Case II. We consider the case where the cµ-rule and the modified cµ/θ-rule prioritize different classes,

namely,

(c1µ1− c2µ2)

(
c1
θ1
µ1−

(
c2

θ2 + γ
µ2 +

γ

(θ2+γ)
c1

θ1
µ2

))
< 0.

For the moment, suppose Class 1 has a higher cµ-index and Class 2 has a higher modified cµ/θ-index.

Following similar lines of arguments as in Case I, the backward switching curve ψ (τN − t) follows the dynamic

of DτN (t) for some non-trivial time interval t ∈ (0, αN). Again, the structure of DτN (t) guarantees that it

can have at most two zeros. With Class 2 having a higher modified cµ/θ-index, the two possible shapes for

DτN (t) are demonstrated in Figure 15, with Figure 15(a) crossing zero once and Figure 15(b) crossing zero

twice. In particular, if DτN (t) has one zero as in Figure 15(a), then it must be that DτN (t) is decreasing at the

zero point and eventually converges to limt→∞D
τN (t)< 0. Once DτN (t) crosses zero, it will never increase

to zero again. Likewise, if DτN (t) has two zeros as in Figure 15(b), then it must be that DτN (t) has positive

slope at the first zero, has negative slope at the second zero, and eventually converges to limt→∞D
τN (t)< 0.

Once DτN (t) crosses the second zero point, it will never increase to zero again.

Figure 15 Possible trajectory of Dτ1(t) with c1µ1 > c2µ2, modified c1µ1/θ1 <modified c2µ2/θ2
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By Proposition 1, for c1µ1 > c2µ2, it is optimal to give strict priority to Class 1 when the system state is

close enough to the origin. Therefore, τN is the last time before τ when q∗1 hits zero. In order to empty q∗1,
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strict priority must be given to Class 1 for some non-trivial time interval right before τN . This implies that

there exits ετN > 0 such that DτN (0) = 0 and DτN (t)> 0 for t∈ (0, ετN ). In this case, we can rule out Figure

15(a). DτN (0) must be at the first zero in Figure 15(b). Now, let time β > 0 denote the second zero in Figure

15(b), i.e., DτN (β) = 0. Then, one of the following three scenarios holds.

Scenario 1. τN ≤ β. The backward switching curve ψ(τN − t) agrees with DτN (t) for all t∈ [0, τN ]. Because

ψ(τN − t)> 0 for all t∈ [0, τN), strict priority is given to Class 1 throughout the transient time horizon.

Scenario 2. τN > β. The backward switching curve ψ(τN − t) follows DτN (t) for t ∈ [0, β). Both q∗1(τN − t)
and q∗2(τN − t) stay strictly positive over t∈ (0, β). At time t= β, priority is switched from Class 1 to Class

2 (backward in time). In this case, either both queues are strictly positive at t= β as in Figure 16(a), or β is

a contact point as in Figure 16(b). In either case, the multipliers η∗1(τN − t) and η∗2(τN − t) stay at zero (or

become positive only at one point). Then the backward switching curve ψ(τN − t) further follows DτN (t) for

some non-trivial interval, (β,β + δ) for some δ > 0. Following similar arguments as in Case I, once crossing

zero at t= β, the backward switching curve ψ(τN− t) remains strictly negative afterwards as shown in Figure

16(c). In this case, the optimal control (forward in time) switches priority once from Class 2 to Class 1.

Figure 16 Backward state trajectory and switching curve in Scenario 2
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Scenario 3. τN >β. The backward switching curve ψ(τN − t) follows DτN (t) for all t∈ [0, β). Both q∗1(τN − t)
and q∗2(τN − t) stay strictly positive over t∈ (0, β). Different from the above case, β is an exit point (forward

in time) for the trajectory of q∗2; see Figure 17(a). Correspondingly, the entry point is τN−1. At time τN−1,

the switching curve ψ (τN−1) = 0. Now, we repeat the structural derivation for the backward switching curve

starting from τN−1, namely, for the function ψ(τN−1 − t). In order to drive q∗2 to zero at time τN−1, strict

priority must be assigned to q∗2 for some amount of time right before τN−1. As such, there exits ετN−1
> 0

such that DτN−1(0) = 0 and DτN−1(t) < 0 for t ∈ (0, ετN−1
). Again, following similar arguments as in Case

I, we can show that once crossing zero at τN−1, the switching curve ψ(τN−1 − t) remains strictly negative

afterwards. In this case, the optimal control (forward in time) switches priority once from Class 2 to Class

1. The structure of the backward switching curve in this case is illustrated in Figure 17(b).

In all the three scenarios above, the optimal control either assigns strict priority to Class 1 throughout, or

switches from priority once from Class 2 to Class 1.

When Class 2 has a higher cµ-index and Class 1 has a higher modified cµ/θ-index, the proof holds in

a similar fashion. In this case, the optimal control either invariantly assigns strict priority to Class 2, or

switches once from prioritizing Class 1 to Class 2. Q.E.D.
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Figure 17 Backward state trajectory and switching curve in Scenario 3
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B.6. Proof of Proposition 2

Proof: First, as shown in Proposition 3, the if the cµ-rule and the modified cµ/θ-rule prioritize the same

class, then the modified cµ/θ-rule (the cµ-rule) is optimal throughout the transient time horizon and the

claim follows. Now, we consider the case where the cµ-rule and the modified cµ/θ-rule prioritize different

classes, namely,

(c1µ1− c2µ2)

(
c1
θ1
µ1−

(
c2

θ2 + γ
µ2 +

γ

(θ2+γ)
c1

θ1
µ2

))
< 0.

By Propositions 1 and 3, when the cµ-rule and the modified cµ/θ-rule prioritize different classes, the optimal

control follows the cµ-rule near the origin and switches priority at most once along the trajectory. However,

it remains to be shown whether or not the optimal control will ever switch priority. Namely, it remains

unknown whether there exists a set of initial conditions from which the optimal trajectories switch priority

from one class to the other. In this proof, we establish the existence of such initial values and provide a

partial characterization of the states at which the system will follow the modified cµ/θ-rule. The proof is

divided into two cases.

Case I. First, consider the case where the cµ-rule prioritizes Class 2 and the modified cµ/θ-rule prioritizes

Class 1. Suppose by contradiction that the optimal control follows the cµ-rule throughout. Then, the optimal

trajectory must be such that q∗2 is first driven to zero with full service capacity and maintained at zero

afterwards. After q∗2 hits zero, q∗1 starts receiving positive service capacity and will be driven to zero at time

τ . We next show that for systems initialized large enough, the cost of such trajectory can be decreased by

imposing a change in the priority rule over a small time interval, thus a contradiction.

Consider two systems with the same, large initial workload q10 + q20 >M . The first system follows strict

priority rule to Class 2; the second system gives strict priority to Class 2 until Class 2 hits zero, at τ1,

switches priority to Class 1 for ` amount of time, and then switches back to prioritizing Class 2 until the

end of the transient time horizon τ . Because the two systems have identical trajectories up to τ1 – i.e., the

time epoch when q2 hits zero, from τ1 on, it is equivalent to consider the two systems initialized with q10

large and q20 = 0.
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For the first system, priority is assigned to Class 2 throughout. Solving the trajectories directly, we get

the following formula for the state trajectory q∗(t), the hitting time τ , and the cumulative holding cost C:

q∗1(t) =
e−tθ1 ((−1 + etθ1)λ2µ1 + q10θ1µ2 + (−1 + etθ1) (λ1− sµ1)µ2)

θ1µ2

, t∈ [0, τ ]

q∗2(t) = 0, t∈ [0, τ ]

τ =
1

θ1
log

(
λ2µ1− q10θ1µ2 +λ1µ2− sµ1µ2

λ2µ1 +λ1µ2− sµ1µ2

)
C∗ =

∫ τ

0

(c1q
∗
1(t) + c2q

∗
2(t))dt.

For the second system, priority is assigned to Class 1 for ` amount of time and then given to Class 2.

We next calculate the cost over three intervals, [0, `], [`, τN ], and [τN , τ ] separately.

For the first interval where we assign s servers to Class 1 and 0 server to Class 2, we have

q
(1)
1 (t) =− 1

θ1(θ2 + γ)(γ− θ1 + θ2)
e−t(θ2+γ)

(
−γθ1λ2− et(θ2+γ)(γ− θ1 + θ2)(γλ1 + θ2λ1 + γλ2− s(θ2 + γ)µ1)

−et(γ−θ1+θ2)(θ2 + γ)(q10θ1(γ− θ1 + θ2) + (θ1− θ2)(λ1− sµ1)− γ(λ1 +λ2− sµ1))
)
, t∈ [0, T (1)]

q
(1)
2 (t) =−

(
−1 + et(−γ−θ2)λ2

)
θ2 + γ

, t∈ [0, T (1)]

T (1) = `

C(1) =

∫ T (1)

0

(
c1q

(1)
1 (t) + c2q

(1)
2 (t)

)
dt.

For the second interval where we assign 0 server to Class 1 and s servers to Class 2 to drive Class 2 to zero,

we have

q
(2)
1 (t) =− 1

θ1 (θ2 + γ) (γ− θ1 + θ2)
e−`(θ2+γ)−t(γ+θ1+θ2)

(
− etθ1γθ1λ2− et(θ2+γ)+`(γ−θ1+θ2)(θ2 + γ)

(q10θ1(γ− θ1 + θ2) + (θ1− θ2)(λ1− sµ1)− γ(λ1 +λ2− sµ1)) + etθ1+`(θ2+γ)sγθ1µ2

+ e(`+t)(θ2+γ)s(θ2 + γ) ((γ− θ1 + θ2)µ1− γµ2)− e`(θ2+γ)+t(γ+θ1+θ2)(γ− θ1 + θ2)

(θ2λ1 + γ(λ1 +λ2− sµ2))

)
, t∈ [0, T (2)]

q
(2)
2 (t) =

1

θ2 + γ

(
λ2− e−(`+t)(θ2+γ)λ2 +

(
−1 + e−t(θ2+γ)

)
sµ2

)
, t∈ [0, T (2)]

T (2) =
1

θ2 + γ
log

(
−e−`(θ2+γ)λ2 + sµ2

−λ2 + sµ2

)
=: τN − `

C(2) =

∫ T (2)

0

(
c1q

(2)
1 (t) + c2q

(2)
2 (t)

)
dt.
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For the third interval where we maintain Class 2 at zero while driving Class 1 to zero, we have

q
(3)
1 (t) =

1

θ1(−γ+ θ1− θ2)
e−(`+t)θ1

((
q10θ1(−γ+ θ1− θ2)− (θ1− θ2)

(
λ1 + (−1 + e`θ1)sµ1

)
+ γ

(
λ1 +λ2− sµ1 + e`θ1s(µ1−µ2)

))(e−`(θ2+γ)λ2− sµ2

λ2− sµ2

)− θ1
θ2+γ

− 1

µ2

e`θ1
(
(λ2− sµ2)(−(γ− θ1 + θ2)µ1 + γµ2) + etθ1(γ− θ1 + θ2)(λ2µ1 + (λ1− sµ1)µ2)

))
,

t∈ [0, T (3)]

q
(3)
2 (t) = 0, t∈ [0, T (3)]

T (3) =−`+
1

θ1
log

(
1

(γ− θ1 + θ2)(λ2µ1 + (λ1− sµ1)µ2)

((
q10θ1(−γ+ θ1− θ2)− (θ1− θ2)

(
λ1 +

(
−1 + e`θ1

)
sµ1

)
+ γ

(
λ1 +λ2− sµ1 + e`θ1s(µ1−µ2)

))
µ2

(
e−`(θ2+γ)λ2− sµ2

λ2− sµ2

)− θ1
θ2+γ

+ e`θ1(−λ2 + sµ2)(−(γ− θ1 + θ2)µ1 + γµ2)

))
=: τ − τN

C(3) =

∫ T (3)

0

(
c1q

(3)
1 (t) + c2q

(3)
2 (t)

)
dt.

Comparing the costs associated with System 1 and System 2, we have for ` small,

C∗−
(
C(1) +C(2) +C(3)

)
=

`2sλ2

2(λ2− sµ2)

(
c2µ2 +

c1(−λ2µ
2
1 +µ2 (µ1(q10(θ2 + γ)−λ1 + sµ1)− q10γµ2))

λ2µ1 + (−q10θ1 +λ1− sµ1)µ2

)
+ o(`2),

and as q10→∞,

C∗−
(
C(1) +C(2) +C(3)

)
→ `2sλ2 (−c1(θ2 + γ)µ1 + c1γµ2 + c2θ1µ2)

2θ1(λ2− sµ2)
+ o(`2),

which is positive if and only if Class 1 has a higher modified cµ/θ-index. This implies that the cost difference

C∗−
(
C(1) +C(2) +C(3)

)
> 0 for sufficiently small ` and large q10, and that we can find a policy that achieves

a smaller cost than strict priority to Class 2, a contradiction. Therefore, if the states are initialized with

q1(0) + q2(0)>M for some M sufficiently large, the optimal control must switch from prioritizing Class 1 to

prioritizing Class 2 at some time epoch w ∈ (0, τ). Moreover, it follows that the modified cµ/θ-rule is optimal

at time t if q1(t) + q2(t)>M .

Case II. We next consider the case where the cµ-rule prioritizes Class 1 and the modified cµ/θ-rule prioritizes

Class 2. Note that the proof technique used for the previous case no longer applies. This is because under

the strict priority rule to Class 1, the content of q2 cannot be arbitrarily large when q1 gets emptied due

to degradation. In particular, let τ1 denote the time when q1 first gets emptied. Then it holds that for any

ε > 0,

q2(τ1)< (sµ1−λ1)/γ+ ε.

In this case, our proof makes use of the backward switching curve and the fact that q2(τ1) is properly

bounded.
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We first note that by the definition of τ1, both queues are strictly positive for t < τ1. Thus, the multiplies

η∗1(t) = η∗2(t) = 0 for t < τ1. By Lemma 4, the backward switching curve before τ1 is characterized as follows

ψ(τ1− t) =A1(τ1)e−θ1t +A1(τ1)e−(θ2+γ)t +
c1
θ1
µ1−

(
c2

θ2 + γ
µ2 +

γ

(θ2+γ)
c1

θ1
µ2

)
, (24)

where A1(τ1),A2(τ1) are constants in R. Furthermore, since q∗1(τ1) = 0 and q∗2(τ1) is bounded for any ini-

tialization, using the fact that p∗(t) = ∇qΞ(q∗(t)), it holds that p∗1(τ1) and p∗2(τ1) are bounded for any

initialization.

Lastly from the form of A1(τ1) and A2(τ1) in the proof of Lemma 4 (Appendix B.5.1), it can be shown

that A1(τ1) and A2(τ1) are bounded if p∗1(τ1) and p∗2(τ1) are bounded.

Now, if the system is initialized with a large queue, τ1, the time to empty queue 1 for the first time forward

in time, is large. As t approaches τ1 in (24), the sign of the backward switching curve will eventually be

governed by the difference between the modified cµ/θ-indices associated with Class 1 and 2 respectively.

In other words, if the states are initialized with q1(0) + q2(0)>M for some M sufficiently large, then the

optimal control switches priority at some time epoch s ∈ (0, τ∗) from Class 2 to Class 1. Similarly to the

previous case, it follows that the modified cµ/θ-rule is optimal at time t if q1(t) + q2(t)>M . Q.E.D.

B.7. Proof of Proposition 4

Proof: Theorem 4 indicates that a one-time switch in priority from Class 1 to Class 2 takes place if

c1µ1 < c2µ2 and c1
θ1
µ1 >

(
c2

θ2+γ
µ2 +

γ
(θ2+γ)

c1

θ1
µ2

)
. To derive the policy curve at which (state) the switching

takes place, we apply Hamiltonian condition (H). In particular, let (a1, a2) be a state where priority is just

switched from Class 1 to Class 2, i.e., (a1, a2) is on the policy curve, where a1 ≥ 0 and a2 > 0. We denote the

time of the switching by t1. We also denote t2 > t1 as the time Class 2 gets emptied and t3 = τ∗ > t2 as the

time Class 1 gets emptied. Since there is no other switch in priority (Proposition 3) after t1, starting from

time t1, the dynamic of the adjoint vector for p∗(t) is specified by (ADJ) as

p∗1(t) =
c1
θ1

+ eθ1tK1 for t∈ [t1, t3],

p∗2(t) =
c2

θ2 + γ
+

c1γ

θ1(θ2 + γ)
+
eθ1tγK1 + e(θ2+γ)t(−γK1 + (γ− θ1 + θ2)K2)

γ− θj + θ2
for t∈ [t1, t2],

(25)

where K1 and K2 are constants that depend on the value of p∗(t1) and t1. The rest of the analysis is

divided into three intervals. For each one of the three intervals, we characterize the state trajectory q∗(t)

and the adjoint vector p∗(t). Then, plugging the values of q∗(t) and p∗(t) into the Hamiltonian and utilizing

Hamiltonian condition (H) that H(q∗(t), z∗(t), p∗(t)) = 0, we are able to characterize the integration constants

K1,K2 in (25) as well as the policy curve. These steps will become self-explanatory as the proof proceeds.

Case 1: q∗1 is strictly positive or has just reached zero at time t1. In this case, full service capacity s is

assigned to Class 1 at time t1−.

Interval 1: At time t1−, we assign s servers to Class 1 and 0 servers to Class 2.

q
∗(1)
1 (t1−) = a1

q
∗(1)
2 (t1−) = a2

H(1)(q∗(t1−), z∗(t1−), p∗(t1−)) = c1a1 + c2a2 + (a2γ− a1θ1 +λ1− sµ1)

(
c1
θ1

+K1

)
+ (−a2(θ2 + γ) +λ2)

(
c1γ+ c2θ1
γθ1 + θ1θ2

+K2

)
.
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Interval 2: Over [t1, t2), we assign 0 servers to Class 1 and s server to Class 2, and Class 2 gets emptied at

time t2.

q
∗(2)
1 (t) =− 1

θ1(θ2 + γ)(γ− θ1 + θ2)
e−t(γ+θ1+θ2)

(
etθ1γθ1(a2(θ2 + γ)−λ2 + sµ2)

− et(θ2+γ)(θ2 + γ)(a2γθ1 + a1θ1(γ− θ1 + θ2)− γλ1 + θ1λ1− θ2λ1− γλ2 + sγµ2)

− et(γ+θ1+θ2)(γ− θ1 + θ2)(θ2λ1 + γ(λ1 +λ2− sµ2))

)
, t∈ [0, t2− t1)

q
∗(2)
2 (t) =

1

θ2 + γ
e−t(θ2+γ)

(
a2(θ2 + γ) + (−1 + et(θ2+γ))(λ2− sµ2)

)
, t∈ [0, t2− t1)

t2− t1 =
1

θ2 + γ
log

(
−a2γ− a2θ2 +λ2− sµ2

λ2− sµ2

)
H(2)(q∗(t), z∗(t), p∗(t)) =

1

θ1(θ2 + γ)

(
c1θ2λ1 + c2θ1(λ2− sµ2) + c1γ(λ1 +λ2− sµ2)

− θ1(θ2 + γ) (a1θ1K1−λ1K1 + a2θ2K2−λ2K2 + sµ2K2 + a2γ(−K1 +K2))

)
.

Solving H(1)(q∗(t1), z∗(t1), p∗(t1)) = 0 and H(2)(q∗(t), z∗(t), p∗(t)) = 0 for K1 and K2, we get

K1 =
c1(−a2(θ2 + γ) +λ2)µ1 + c2a2θ1µ2 + c1(a2γ+λ1− sµ1)µ2

θ1(a2(θ2 + γ)−λ2)µ1 + θ1(−a2γ+ a1θ1−λ1 + sµ1)µ2

K2 =− c1γ+ c2θ1
γθ1 + θ1θ2

+
(c1a1 + c2a2)µ1

a2(θ2 + γ)µ1−λ2µ1− a2γµ2 + (a1θ1−λ1 + sµ1)µ2

.

(26)

Interval 3: Over [t2, t3], we assign enough servers to maintain Class 2 at zero and the rest service capacity

to Class 1. Class 1 gets emptied at time t3.

q
∗(3)
1 (t) =

e−tθ1

θ1(−γ+ θ1− θ2)

(
− (a2γθ1 + a1θ1(γ− θ1 + θ2)− γλ1 + θ1λ1− θ2λ1− γλ2 + sγµ2)(

1 +
a2(θ2 + γ)

−λ2 + sµ2

)− θ1
θ2+γ

− 1

µ2

(
(λ2− sµ2)(−(γ− θ1 + θ2)µ1 + γµ2)

+ etθ1(γ− θ1 + θ2)(λ2µ1 + (λ1− sµ1)µ2)
))
, t∈ [0, t3− t2]

q
∗(3)
2 (t) = 0, t∈ [0, t3− t2]

t3− t2 =
1

θ1
log

(
1

(γ− θ1 + θ2)(λ2µ1 + (λ1− sµ1)µ2)

(
(λ2− sµ2)((γ− θ1 + θ2)µ1− γµ2)

−µ2 (a2γθ1 + a1θ1(γ− θ1 + θ2)− γλ1 + θ1λ1− θ2λ1− γλ2 + sγµ2)(
1 +

a2(θ2 + γ)

−λ2 + sµ2

)− θ1
θ2+γ

))
.

Note that [t2, t3) is a boundary arc for q∗2 and an interior arc for q∗1. As dq
∗(3)
2 (t) = 0, we have

H(3)(q∗(t), z∗(t), p∗(t)) = p∗1(t)dq
∗(3)
1 (t) + p∗2(t)dq

∗(3)
2 (t) + c1q

∗(3)
1 (t) + c2q

∗(3)
2 (t) = p∗1(t)dq

∗(3)
1 (t) + c1q

∗(3)
1 (t).

Since the dynamic of p∗1(t) does not change over interior arcs, p∗1(t) still follows (25) over the interval [t2, t3).

Then, plugging the expression of q
∗(3)
1 (t) into H(3)(q∗(t), z∗(t), p∗(t)), we get

H(3)(q∗(t), z∗(t), p∗(t)) =
K1

µ2(γ− θ1 + θ2)

(
−µ2

(
a2γθ1 + a1θ1(γ− θ1 + θ2)− γλ1 + θ1λ1− θ2λ1− γλ2 + sγµ2

)
+ (λ2− sµ2)((γ− θ1 + θ2)µ1− γµ2)

(
1 +

a2(θ2 + γ)

−λ2 + sµ2

) θ1
θ2+γ

)
+
c1(λ2µ1 + (λ1− sµ1)µ2)

θ1µ2

.
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Plugging the value of K1 in (26) into the equality H(3)(q∗(t), z∗(t), p∗(t)) = 0 establishes the relationship

(a1, a2) must satisfy and retrieves the policy curve in Proposition 4.

Case 2: q∗1 is equal to zero at time t1 and has been maintained at zero over interval [t1− ε, t1] for some ε > 0.

In this case, the right amount of service capacity is assigned to Class 1 at time t1− to maintain q∗1 at zero.

Interval 1: At time t1−, we assign (λ1 + γq∗2(t1−))/µ1 servers to Class 1 and the rest servers to Class 2.

q
∗(1)
1 (t1−) = 0

q
∗(1)
2 (t1−) = a2

H(1)(q∗(t1−), z∗(t1−), p∗(t1−)) = c2a2 +

(
−a2(γ+ θ2) +λ2− sµ2 +

(a2γ+λ1)µ2

µ1

)(
c1γ+ c2θ1
γθ1 + θ1θ2

+K2

)
Interval 2: Over [t1, t2), we assign 0 servers to Class 1 and s server to Class 2, and Class 2 gets emptied at

time t2.

q
∗(2)
1 (t) =− 1

θ1(θ2 + γ)(γ− θ1 + θ2)
e−t(γ+θ1+θ2)

(
etθ1γθ1(a2(θ2 + γ)−λ2 + sµ2)

− et(θ2+γ)(θ2 + γ)(a2γθ1− γλ1 + θ1λ1− θ2λ1− γλ2 + sγµ2)

− et(γ+θ1+θ2)(γ− θ1 + θ2)(θ2λ1 + γ(λ1 +λ2− sµ2))

)
, t∈ [0, t2− t1)

q
∗(2)
2 (t) =

1

θ2 + γ
e−t(θ2+γ)

(
a2(θ2 + γ) + (−1 + et(θ2+γ))(λ2− sµ2)

)
, t∈ [0, t2− t1)

t2− t1 =
1

θ2 + γ
log

(
−a2γ− a2θ2 +λ2− sµ2

λ2− sµ2

)
H(2)(q∗(t), z∗(t), p∗(t)) =

1

θ1(θ2 + γ)

(
c1θ2λ1 + c2θ1(λ2− sµ2) + c1γ(λ1 +λ2− sµ2)

− θ1(θ2 + γ) (−λ1K1 + a2θ2K2−λ2K2 + sµ2K2 + a2γ(−K1 +K2))

)
.

Solving H(1)(q∗(t1), z∗(t1), p∗(t1)) = 0 and H(2)(q∗(t), z∗(t), p∗(t)) = 0 for K1 and K2, we get

K1 =
c1(−a2(θ2 + γ) +λ2)µ1 + c2a2θ1µ2 + c1(a2γ+λ1− sµ1)µ2

θ1(a2(θ2 + γ)−λ2)µ1 + θ1(−a2γ−λ1 + sµ1)µ2

K2 =− c1γ+ c2θ1
γθ1 + θ1θ2

+
c2a2µ1

a2(θ2 + γ)µ1−λ2µ1− a2γµ2 + (−λ1 + sµ1)µ2

.

(27)

Interval 3: Over [t2, t3], we assign enough servers to maintain Class 2 at zero and the rest service capacity

to Class 1. Class 1 gets emptied at time t3.

q
∗(3)
1 (t) =

e−tθ1

θ1(−γ+ θ1− θ2)

(
− (a2γθ1− γλ1 + θ1λ1− θ2λ1− γλ2 + sγµ2)(

1 +
a2(θ2 + γ)

−λ2 + sµ2

)− θ1
θ2+γ

− 1

µ2

(
(λ2− sµ2)(−(γ− θ1 + θ2)µ1 + γµ2)

+ etθ1(γ− θ1 + θ2)(λ2µ1 + (λ1− sµ1)µ2)
))
, t∈ [0, t3− t2]

q
∗(3)
2 (t) = 0, t∈ [0, t3− t2]

t3− t2 =
1

θ1
log

(
1

(γ− θ1 + θ2)(λ2µ1 + (λ1− sµ1)µ2)

(
(λ2− sµ2)((γ− θ1 + θ2)µ1− γµ2)

−µ2 (a2γθ1− γλ1 + θ1λ1− θ2λ1− γλ2 + sγµ2)

(
1 +

a2(θ2 + γ)

−λ2 + sµ2

)− θ1
θ2+γ

))
.
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Note that [t2, t3) is a boundary arc for q∗2 and an interior arc for q∗1. As dq
∗(3)
2 (t) = 0, we have

H(3)(q∗(t), z∗(t), p∗(t)) = p∗1(t)dq
∗(3)
1 (t) + p∗2(t)dq

∗(3)
2 (t) + c1q

∗(3)
1 (t) + c2q

∗(3)
2 (t) = p∗1(t)dq

∗(3)
1 (t) + c1q

∗(3)
1 (t).

Since the dynamic of p∗1(t) does not change over interior arcs, p∗1(t) still follows (25) over the interval [t2, t3).

Then, plugging the expression of q
∗(3)
1 (t) into H(3)(q∗(t), z∗(t), p∗(t)), we get

H(3)(q∗(t), z∗(t), p∗(t)) =
K1

µ2(γ− θ1 + θ2)

(
−µ2

(
a2γθ1− γλ1 + θ1λ1− θ2λ1− γλ2 + sγµ2

)
+ (λ2− sµ2)((γ− θ1 + θ2)µ1− γµ2)

(
1 +

a2(θ2 + γ)

−λ2 + sµ2

) θ1
θ2+γ

)
+
c1(λ2µ1 + (λ1− sµ1)µ2)

θ1µ2

.

Plugging the value of K1 in (27) into the equality H(3)(q∗(t), z∗(t), p∗(t)) = 0 establishes the relationship

a2 must satisfy in order for priority to be switched from P1 to P2 given that q∗2 is at level a2 and q∗1 has been

maintained at zero for some amount of time. It is easy to see that setting H(3)(q∗(t), z∗(t), p∗(t)) = 0 in Case

2 retrieves the point (0, a2) on the switching curve established in Case 1.

It is important to note that the switching point (0, a2) analyzed in Case 2 assumes that q∗1 has been

maintained at zero before priority is switched. On the other hand, the switching point (0, a2) on the policy

curve derived in Case 1 assumes that q∗1 just hits zero when priority is switched from P1 to P2. It is well

expected that the switching points in the two cases coincide with each other. Our proof rigorously verified

this. Q.E.D.

Appendix C: Special Cases without Abandonment or Degradation

As mentioned in Remark 2, the same line of analysis allows us to establish optimality results in analogue to

Theorem 4 when some or all of the abandonment and degradation rates are zero. In particular, if θ1 = θ2 =

γ = 0, then the cµ-rule is optimal; if γ = 0 but θ1, θ2 > 0, the cµ-rule is optimal close to the origin and the

standard cµ/θ-rule is optimal when the states are far from the origin.

Corollary 1 If γ = θ1 = θ2 = 0 and s > λ1/µ1 +λ2/λ2, the cµ-rule is optimal for the transient fluid optimal

control problem (F2′).

Corollary 2 Suppose γ = 0, θ1, θ2 > 0, and s > λ1/µ1 + λ2/λ2. For the transient fluid optimal control

problem (F2′):

I. If the cµ-rule and the standard cµ/θ-rule both prioritize class i, i= 1,2, then the strict priority rule to

class i is optimal for any t∈ [0, τ ].

II. If the cµ-rule prioritizes class i but the standard cµ/θ-rule prioritizes class j, for i 6= j, i, j = 1,2, then

there exist positive real numbers ε and M such that it is optimal to prioritize class i when q1 + q2 < ε

and prioritize class j when q1 + q2 >M . Furthermore, the optimal scheduling policy switches priority

at most once over the transient time horizon [0, τ ].
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Since the proof using Pontryagin’s Minimum Principle for the case with θ1 = θ2 = γ = 0 is very concise

and nicely illustrates the main idea of our proof strategy, we present the proof of Corollary 1 here.

Proof: [Proof of Corollary 1] Suppose without loss of generality that c1µ1 > c2µ2. The queue length

process evolves as

dq1(t) = λ1−µ1z1(t) and dq2(t) = λ2−µ2z2(t).

The Hamiltonian is

H(q(t), z(t), p(t)) = p1(t)dq1(t) + p2(t)dq2(t) + c1q1(t) + c2q2(t)

= p1(t) (λ1−µ1z1(t)) + p2(t) (λ2−µ2z2(t)) + c1q1(t) + c2q2(t).

The augmented Halmiltonian takes the form

L(q(t), z(t), p(t), η(t), ξ(t)) =H(x, s, p) + η(t)T g(q(t)) + ξ(t)Th(z(t))

= p1(t) (λ1−µ1z1(t)) + p2(t) (λ2−µ2z2(t)) + c1q1(t) + c2q2(t)

+ η1(t)(−q1(t)) + η2(t)(−q2(t)) + ξ1(t)(z1(t) + z2(t))

+ ξ2(t)(−z1(t)) + ξ3(t)(−z2(t)).

Since dp∗(t) =−∇qL(q∗(t), z∗(t), p∗(t), η∗(t), ξ∗(t)), we have

dp∗1(t) =−c1 + η∗1(t) and dp∗2(t) =−c2 + η∗2(t). (28)

Hence,

p∗1(t) =−c1t+

∫ t

0

η∗1(s)ds+K1 and p∗2(t) =−c2t+

∫ t

0

η∗2(s)ds+K2,

where K1 and K2 are constants that depend on p∗(0).

The switching curve is

ψ(t) = µ1p
∗
1(t)−µ2p

∗
2(t).

Proposition 1 still holds in this case. Hence, when the queue length process is arbitrarily close to the origin,

the cµ-rule is optimal and Class 1 should be given strict priority. Let τN be the last time epoch (forward in

time) q∗1(t) hits zero, i.e.,

τN = sup{t : q∗1(t) = 0, q∗1(t− ε)> 0 for any ε > 0} .

Following the same lines arguments as in Lemmas 2 and 3, we have the switching curve ψ(t) = 0 for t≥ τN .

We next characterize the optimal control before τN . To this end, observe that by construction, both queues

are strictly positive before τN . Therefore, there exists a non-trivial period [0, β], β < τN , such that for t∈ [0, β],

the backward switching curve is characterized by

ψ(τN − t) =ψ(τN) + (c1µ1− c2µ2)t+

(
µ2

∫ τN

τN−t
η∗2(s)ds−µ1

∫ τN

τN−t
η∗1(s)ds

)
= (c1µ1− c2µ2)t. (29)

Since c1µ1 > c2µ2, the significance of (29) is that strict priority must be assigned to Class 1 during this

period. Moreover, as no queue has the possibility to hit zero over this period, the characterization of the

switching curve (29) indeed holds for all t∈ [0, τN ]. Namely, strict priority to Class 1 is optimal throughout

[0, τ∗]. Q.E.D.
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C.1. Full Characterization of the Dual Vectors When γ = θ1 = θ2 = 0

When establishing the optimal scheduling policy, we use Pontryagin’s Minimum Principle to derive structural

properties of the dual vectors (p∗(t), η∗(t), ξ∗(t)) without characterizing their expressions explicitly. The

latter step can be prohibitively hard for systems with convoluted dynamics, as is the case for our model

with both abandonment and degradation. On the other hand, for simplified systems without abandonment

or degradation, we can provide a full characterization of the dual vectors. We next illustrate the derivation.

By Corollary 1, the cµ-rule is optimal at all time for systems without abandonment and without degra-

dation. Suppose without loss of generality that the cµ-rule prioritizes Class 1, i.e., c1µ1 > c2µ2. In this case,

the value function associated with state (a1, a2) is equal to the cost of emptying the system under P1 when

the system is initialized at (a1, a2). We can then calculate the value function by solving the state trajectory

and the cost directly. Specifically, the value function takes the form

Ξ(a1, a2) =
1

2(λ1− sµ1)

(
− c1a21 +

c2 (a22µ1(−λ1 + sµ1) + a21λ2µ2− 2a1a2(λ1− sµ1)µ2)

λ2µ1 + (λ1− sµ1)µ2

)
.

For a fixed initial condition, q0, let q∗(t) denote the (optimal) state trajectory under P1, which can be

solved directly. Along the optimal state trajectory, τ1 is the time epoch when q∗1 first gets emptied. q∗1 is then

maintained at zero after time τ1, until q∗2 reaches zero at time τ∗.

Using the fact that there exists an adjoint vector p∗(t) =∇qΞ(q∗1(t), q∗2(t)), we have

p∗1(t) =
1

λ1− sµ1

(
−c1q∗1(t) +

c2(−q∗2(t)λ1 + q∗1(t)λ2 + sq∗2(t)µ1)µ2

λ2µ1 + (λ1− sµ1)µ2

)
, t∈ [0, τ∗]

p∗2(t) =
c2(q∗2(t)µ1 + q∗1(t)µ2)

−λ2µ1−λ1µ2 + sµ1µ2

, t∈ [0, τ∗].

(30)

The switching curve is then given by

ψ(t) = µ1p
∗
1(t)−µ2p

∗
2(t), t∈ [0, τ∗],

where p∗(t) is calculated explicitly in (30).

In addition, it follows from (28) that at all regular points of p∗i (t) where p∗i (t) is differentiable with respect

to t, η∗i (t) = dp∗i (t) + ci, i= 1,2. In this case,

η∗1 =

{
0, t∈ [0, τ1]

c1− c2µ2/µ1, t∈ [τ1, τ
∗]

η∗2 = 0, t∈ [0, τ∗].

Lastly, we can infer from Transversality condition (T) and Complementarity condition (C) that

ξ∗1(t) = µ1p
∗
1(t), t∈ [0, τ∗]

ξ∗2(t) = 0, t∈ [0, τ∗]

ξ∗3(t) =

{
µ1p

∗
1(t)−µ2p

∗
2(t), t∈ [0, τ1]

0, t∈ [τ1, τ
∗].

We comment that similar analysis to delineate the dual vectors is not replicable for the general system

with both abandonment and degradation. Consider the scenario where the cµ-rule prioritizes Class 2 and the

modified cµ/θ-rule prioritizes Class 1. With the policy curve explicitly characterized in Proposition 4, one
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can potentially calculate the value function (by calculating the optimal state trajectory starting from any

state) and derive the dual vectors as above. However, due to the intertwined system dynamics introduced

by degradation, we have not found a way to fully characterize the optimal state trajectory analytically,

particularly in the segment where strict priority is given to Class 1. In the other scenario where the cµ-rule

prioritizes Class 1 and the modified cµ/θ-rule prioritizes Class 2, the analysis is hindered by not being able

to characterize the policy curve as well as the optimal state trajectory.

Appendix D: Supplementary Sensitivity Analysis

In this section, we provide some additional numerical experiments on the policy curve from P2 to P1 when

we vary the number of servers s (Figure 18) or the abandonment rate of Class 1 θ1 (Figure 19). The policy

curves (plotted in dashed line) is interpolated from the switching epochs of the optimal trajectories. We

observe that the region where we prioritize Class 1 increases as s increases (Figure 18 (c)), and decreases as

θ1 decreases (Figure 19 (c)).

Figure 18 Sensitivity analysis of the policy curve with respect to s

(λ1 = 10, λ2 = 20, µ1 = 1, µ2 = 2.5, θ1 = 0.1, θ2 = 0.2, γ = 0.4, c1 = 5, c2 = 1)

P2

P1

(a) s= 25

P2

P1

(b) s= 29

as 𝑠 increases

(c) Increasing s= 25, 26, 27, 28, 29

Figure 19 Sensitivity analysis of the policy curve with respect to θ1

(λ1 = 10, λ2 = 20, µ1 = 1, µ2 = 2.5, θ2 = 0.45, γ = 0.4, s= 26, c1 = 5, c2 = 1)

P2

P1

(a) θ1 = 0.18

P2

P1

(b) θ1 = 0.02

as 𝜃1 decreases

(c) Decreasing θ1 = 0.18, 0.14, 0.1,

0.06, 0.02
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