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Queueing models that are used to capture various service settings typically assume that customers require

a single unit of resource (server) to be processed. However, there are many service settings where such

an assumption may fail to capture the heterogeneity in resource requirements of different customers. We

propose a multi-server queueing model with multiple customer classes in which customers from different

classes may require different amounts of resources to be served. We study the optimal scheduling policy for

such systems. To balance holding costs, service rates, resource requirement, and priority-induced idleness,

we develop an index-based policy which we refer to as the idle-avoid cµ/m rule. For a two-class two-server

model, where policy-induced idleness can have a big impact on system performance, we characterize cases

where the idle-avoid cµ/m rule is optimal. In other cases, we establish a uniform performance bound on the

amount of sub-optimality incurred by the idle-avoid cµ/m rule. For general multi-class multi-server queues,

we establish the asymptotic optimality of the idle-avoid cµ/m rule in the many-server regime. For long-

time horizons, we show that the idle-avoid cµ/m is throughput optimal. Our theoretical results, along with

numerical experiments, provide support for the good and robust performance of the proposed policy.

Key words : Queue scheduling, different resource requirements, coupling, competitive analysis, asymptotic

optimality

1. Introduction

Queueing models are widely used to model service systems. These models typically assume

that customers all require a standard unit amount of the service resource (e.g., one server).

However, there are many applications where customers of different types could have very

different resource requirements. Motivated by such service systems, we propose a class of

multi-server queueing models with multiple classes of customers where different classes of

customers require different units of resources to be served. We study the optimal scheduling

policy for such systems. Our analysis provides insights on how to balance holding cost,

service rate, resource requirement, and idleness in such systems.

In service systems, customers from different classes may have very different service

requirements. These differences may include the duration of the job, the server skill-set

needed, and/or the amount of resources required. (We use the terms customers and jobs
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interchangeably.) This is especially prominent in healthcare settings. For example, in the

Intensive Care Unit (ICU), patients are often classified into different acuity levels, each

requiring a different level of medical attention/supervision (e.g. Tarnow-Mordi et al. 2000,

Masterson and Baudouin 2015). High acuity patients on ventilators may require checks

every 15–30 minutes. Thus, there is usually a dedicated nurse taking care of only one such

patient, during his/her shift. On the other hand, one nurse can often manage the workload

required to take care of two patients at lower acuity levels. Due to its high operating costs,

ICUs are often operating near or at full capacity. In this regard, ICU nurses are a very

critical resource, which determines how many patients can be admitted and what level of

care can be provided (Brilli et al. 2001). Although there are empirical studies showing that

the workload of ICU nurses depends on the acuity level of the patients (e.g. Kim et al.

2017, O’Brien-Pallas et al. 1997, Mueller et al. 2010), to the best of our knowledge, incor-

porating different resource requirements based on patients’ acuity has not been explicitly

modeled and studied. Moreover, empirical evidence has shown that ICU workload affects

the quality of care (Carayon and Gurses 2008) and work stress experienced by nurses

(Fachruddin et al. 2019). Thus, carefully understanding the implications of different service

requirements on admission decisions is important for both patients’ safety and employee

satisfaction.

Other healthcare examples include emergency services where differences in the severity

of the case put different requirements on the number of medical staff (Green 1980, Sherali

et al. 1991, Altay 2012); operating rooms where different types of operations have differ-

ent staffing requirements; and inpatient ward units where different levels of care require

different patient-to-nurse ratios (e.g. Chan et al. 2018). Different resource requirements

also arise in various other service systems. For example, in customer contact centers where

agents can communicate with customers via instant messaging or phone call, an agent can

simultaneously handle multiple customers via messaging but only one customer via phone

(Luo and Zhang 2013). Other examples include restaurants and retailing (Green 1980).

When modeling service systems as multi-class queues, the optimal scheduling policy for

systems where each job requires a single server has been studied extensively in literature;

see Section 1.1 for a review of related literature. The key insights derived by this body

of work is the need to carefully balance the holding cost and the service rate. Our work

captures an additional feature in multi-class queueing systems: different classes of jobs
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have different resource requirements. Our analysis suggests that in addition to the holding

cost and the service rate, we also have to take into account the resource requirements and

the priority-induced idleness. How to balance these factors can be highly non-trivial. We

use a combination of exact and asymptotic analyses to derive useful structural insights of

the optimal scheduling policies.

Our main contributions can be summarized as follows:

� Modeling. We study a multi-server queuing model with multiple customer classes,

where different classes require different numbers of servers to be served. This model is

relevant for several service operations applications, and is especially important for the ICU

setting. We allow very general demand patterns, including arbitrary time-varying arrival

rates.

� Idle-avoid cµ/m rule. To minimize the holding cost, the general intuition is to

prioritize jobs with a larger cµ/m index, where c is the holding cost, µ is the service rate,

i.e., 1/µ is the average service time, and m is the number of servers required. The cµ/m

index can be interpreted as the cost reduction rate. Thus, maximizing it is equivalent

to maximizing the instantaneous rate of reducing holding costs. However, in some cases,

prioritizing jobs with a higher cµ/m index might induce idleness in the system, i.e., some

servers are left idle while there are still jobs waiting in the queue. This is because the

number of idle servers may not be enough to serve any of the jobs waiting in the queue. To

balance the priority-induced idleness and the instantaneous cost reduction rate, we propose

a modification to the classical cµ rule, which we refer to as the idle-avoid cµ/m rule. This

policy can be formulated as the solution to an integer program with a penalty for idleness.

We analyze this policy to provide its performance guarantee and asymptotic optimality in

some settings.

— Performance Guarantee. In the case of a two-server two-class model, where priority-

induced idleness can leave half of the capacity idle, we are able to characterize cases where

the idle-avoid cµ/m rule is optimal. In general, the optimal policy can depend on the

(possibly time-varying) arrival rates and the remaining time horizon. For cases where the

idle-avoid cµ/m rule is not optimal, we establish that it has a competitive ratio bound of

2.

In particular, the competitive ratio analysis indicates that the performance of the idle-

avoid cµ/m rule is no worse than 2 times that of the optimal policy. Note that this

performance guarantee holds for arbitrary arrival rates, initial condition, and time horizon.
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— Asymptotic Optimality. For general multi-class systems, we conduct two asymptotic

modes of analysis to derive analytical insights. One is the many-server asymptotic regime,

where we consider systems with increasing scales, i.e., more servers and higher arrival

rates. We show that the idle-avoid cµ/m rule is asymptotically optimal in this regime.

This indicates that the idle-avoid cµ/m rule performs well in large systems. Even for small

systems, numerical experiments demonstrate the robustness and good performance of the

idle-avoid cµ/m rule. We also study a long-run asymptotic regime, where we study the

system performance as time goes to infinity under certain regularity conditions on the

arrival rates. We show that the idle-avoid cµ/m rule is throughput optimal. Meanwhile,

numerical experiments demonstrate that policies that do not carefully avoid idleness, e.g.,

the cµ/m rule, can lead to system instability.

The rest of the paper is organized as follows. We conclude this section with a brief review

of the related literature. In Section 2, we introduce our model and the scheduling problem.

In Section 3, we focus on a two-class two-server queue in order to understand how to

balance the priority-induced idleness and the cµ/m index. In Section 4, we introduce the

class of idle-aware cµ/m rules, where the idle-avoid cµ/m rule is a special case, for multi-

server queues with multiple classes of customers and general resource requirements. Some

asymptotic properties of the idle-avoid cµ/m rule are established in Sections 5 and 6. We

present additional numerical experiments in Section 7. Lastly, we provide some concluding

remarks in Section 8.

1.1. Literature Review

This paper is related to three main lines of literature. First, it is closely related to works

that apply stochastic modeling to study service systems, especially healthcare systems.

Second, it is related to the extensive body of works on scheduling queues with multiple

classes of customers. Third, it is related to managing idleness in queues. We shall provide

a brief review of the related literature along these lines.

Motivated by several service operations applications, Green (1980, 1981) is among the

first to study queueing systems where different customers may require different numbers of

servers. They consider a queueing system where each customer requires a random number

of servers and propose a policy that prioritizes jobs with fewer server requirements. As we

will see in this paper, when dealing with multiple classes of customers, a good scheduling
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policy needs to carefully balance multiple factors. In addition to the resource requirement,

we also need to consider the holding cost, the service rate, and the priority-induced idle-

ness. Reiman (1991) studies the blocking probability of a multi-server loss queue where

different classes of customers have different resource requirements. They assume customers

are admitted into the system as long as there are enough servers available. In this work,

we try to optimize the admission decision in a queue with infinite waiting room.

More generally, queueing models have been successfully applied to various healthcare

applications to derive good operational policies (e.g., Yankovic and Green 2011, Armony

et al. 2015). The key insight is that pertinent features of the application need to be incor-

porated in the model to understand the key trade-offs. Several papers study prioritiza-

tion policies in various healthcare applications. For example, Mills et al. (2013) and Sun

et al. (2018) focus on patient triage and prioritization under extreme resource restrictions.

Saghafian et al. (2014) study complexity-augmented triage where they advocate adding a

complexity-based factor to the conventional urgency-based classification in the Emergency

Department (ED). Huang et al. (2015) study the optimal scheduling policy in the ED

with two classes of patients: newly admitted patients and returning patients. Baron et al.

(2014, 2017) study scheduling policies with strategic idleness in service networks, which

are mainly motivated by healthcare systems where patients have to go through several

diagnostic and treatment stations. Our work compliments this line of works by studying

patient prioritization in the presence of a new feature that is very relevant to the ICU and

various other service systems: different resource requirements.

How to schedule multiple classes of jobs in stochastic processing networks has been a

very active area of research. For a multi-class single server queue, when the holding cost is

linear, Cox and Smith (1961) is among the first to prove the optimality of a simple index-

based policy, known as the cµ rule. There are various generalizations of the rule, but the

optimality is mostly obtained in an asymptotic sense. For example, Van Mieghem (1995)

consider general convex holding cost; Mandelbaum and Stolyar (2004) further incorporate

multiple classes of servers. The key idea is to maximize the instantaneous cost reduction

rate. This often leads to simple index-based policies. In contrast to the single server setting,

when the network structure and resource requirements become more complicated, the

management of idleness can become an important and highly non-trivial task. The first-

order goal then becomes achieving system stability (Gans and van Ryzin 1997). A class of
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policies known as max-weight or max-pressure policy has been established to be throughput

optimal (Armony and Bambos 2003, Dai and Lin 2005). Stolyar (2004) considers the case

of strongly convex holding costs and shows the max-weight policy with properly chosen

parameters asymptotically minimizes the holding cost in the conventional heavy-traffic

regime.

Motivated in large part by service and healthcare applications, we focus on transient

cost minimization problems over an arbitrary but finite time-horizon, with arbitrary initial

queue lengths and arrival patterns (e.g., time-varying arrival rates). For a two-class two-

server system, we establish a uniform performance bound for an index-based policy – the

idle-avoid cµ/m-rule.

For small systems, policy-induced idleness play an important role on system perfor-

mance. Thus, there is a more delicate trade-off between the myopic instantaneous cost

reduction rate and the forward looking idleness. In terms of the analysis, one cannot rely

on asymptotic arguments as much of the prior work does, we instead use constructive

coupling arguments.

For more general systems, we leverage the many-server asymptotic framework to derive

structural insights. When dealing with many-server systems, characterizing the optimal

scheduling policy (either exactly or asymptotically) can become a lot more challenging.

Harrison and Zeevi (2004) and Atar et al. (2004) study this for multi-class many-sever

queues with customer abandonment in the critically loaded regime. Atar et al. (2010) derive

the asymptotic optimality of a simple index-based policy, known as cµ/θ rule, for many-

server queues with abandonment in the overloaded regime. Kim et al. (2018) consider more

general customer patience-time distributions beyond exponential. We refer the readers

to Puha and Ward (2019) for a tutorial on scheduling policies of overloaded multi-class

many-server queues with impatient customers.

Lastly, we expand a bit more on the importance of managing idleness in queues. It

has long been noticed that strict priority rules can induce idleness that leads to sub-

optimal performance (e.g., instability) in stochastic processing networks (Harrison 1998).

The priority-induced idleness is especially prominent when having complicated resource

requirements; see, for example, Rybko and Stolyar (1992), Bramson (1994). Recently, Gur-

vich and Van Mieghem (2017) study a network with collaboration across different types of

resources and multi-tasking within those resources. There, a mismatch between the priority
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level and the collaboration level can lead to inevitable capacity loss. While the dynamics

and constraints in our model are different from these works, we also find that idleness can

have a big impact on system performance.

2. The Model

We consider a discrete-time queueing model with N servers, I classes of customers, and

an infinite buffer (queue). Time is indexed by t, t∈N. Each Class i is characterized by the

tuple (λi, µi, ci,mi). For a planning horizon of length T , λi = (λi(t), . . . , λi(T − 1)), where

λi(t) denotes the arrival probability of a Class i customer in time slot t.

Let Ai(t) denote the number of Class i arrivals in period t. Then, Ai(t)∼Bernoulli(λi(t)),

independent of all other events. In each time slot, a Class i customer in service will depart

with probability µi ∈ [0,1], independent of all other events. Let Di(t) denote the number

of Class i departures in period t. Then, if there are vi Class i customers in service in time

slot t, Di(t)∼Binomial(vi, µi). ci ∈R+ is the per period holding cost of a Class i customer

(including during her service time). What differentiates our model from traditional queue-

ing models is that each Class i customer requires mi servers. In particular, if there are

vi Class i customers in service, then the total number of servers allocated to Class i is

zi = mivi. Without loss of generality, we assume that the classes are ordered such that

m1 ≥m2 ≥ · · · ≥mI . Note that mi’s can be any positive real numbers. In practice, mi’s are

in general rational numbers defined by some staff-to-customer ratio (e.g., nurse-to-patient

ratio). For example mi = 1/3 means that a Class i customer requires 1/3 of a server. With

a change of units, we can also define 1/3 of a server as a unit of service capacity, in which

case, mi = 1. In our numerical demonstrations, we set mi’s to be integer numbers.

We focus on a discrete-time model as it facilitates our analysis of the optimal scheduling

policies. Additionally, it is sufficient to capture the dynamics of a lot of healthcare systems,

which is our primary motivation. For instance, admission and discharge decisions in the

ICU are rarely made on a continuous basis, restricting to 15 or 30 minute intervals can

reasonably capture the time scale of these decisions.

Customers within each class are served on a first-come-first-served basis. LetXi(t) denote

the number of Class i customers in the system at time t and X(t) = (X1(t), . . . ,XI(t)). The

scheduling policy π(t) = (π1(t), . . . , πI(t)) specifies how many customers from each class
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to admit in period t. We assume π(t) is non-anticipatory. We also assume a preemptive

service discipline, which imposes only the following restrictions on π(t):

I∑
i=1

miπi(t)≤N,πi(t)∈N0 and 0≤ πi(t)≤Xi(t),

where N0 denotes the set of non-negative integers.

In Section 7.1, we numerically explore the impact of non-preemption.

Given these assumptions, the system under policy π evolves as:

Xπ
i (t+ 1) =Xπ

i (t) +Ai(t)−Dπ
i (t). (1)

In what follows, we will suppress the dependence of X and D on the scheduling policy

π when it is understood from context. Note that our formulation implies that service

assignments, π(t), happen at the beginning of each period while arrivals and departures,

Ai(t)’s and Di(t)’s, happen at the end of each period.

Figure 1 illustrates two possible scenarios for a system with two classes of customers and

N servers. Each Class 1 customer requires two servers and each Class 2 customer requires

one server (i.e., I = 2, m1 = 2, and m2 = 1).

In both scenarios illustrated in Figure 1, there are four Class 1 customers and N−1 Class

2 customers. In the left plot, the last two servers serve one Class 1 customer, while each

of the first N − 2 servers serves one Class 2 customer. This leaves three Class 1 customers

and one Class 2 customer waiting in the queue. On the right plot, the first N − 1 servers

serve Class 2 customers. The last server is idle since there are no more Class 2 customers

in the system and one server is not enough to serve a Class 1 customer. In this case, a

server is idling even though there are still customers waiting in the queue.

Our objective is to find a scheduling policy that minimizes the total expected holding

cost over a finite time horizon T :

min
π

T−1∑
t=1

I∑
i=1

E[ciX
π
i (t)] +

I∑
i=1

E[Fi(X
π
i (T ))],

Such that for all t= 1, . . . , T , and i= 1, . . . , I:

I∑
i=1

miπi(t)≤N ;

0≤ πi(t)≤Xπ
i (t), πi(t)∈N0.

(2)
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Figure 1 Model illustration for two classes of customers.
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where π = (π(0), π(1), . . . , π(T − 1)) and Fi(X
π
i (T )) is the terminal cost. We assume the

terminal cost is proportional to the holding cost, i.e.,

Fi(x) = ξcix, for some ξ ∈R+
0 , (3)

where R+
0 denotes the set of non-negative real numbers. Denote V ∗0 (x) as the optimal value

function starting from state x at time 0 and π∗ as the optimal scheduling policy.

The scheduling problem (2) is a finite-horizon Markov decision process (MDP). As the

state space is countable and the action space at each state is compact, it is without loss

of optimality to consider deterministic Markovian policies only (Puterman 2005). In par-

ticular, at each t= 0, . . . , T − 1, π(t) can be view as a mapping from the state of Markov

chain, X(t), to the allocation of the servers. Note that the preemption assumption implies

that, under an optimal policy, there will not be deliberate idleness, i.e., we would not leave

mi, i= 1, . . . , I, (or more) servers idle while there are still Class i customers waiting. This

does not mean there is no idleness though. As discussed earlier, there may be jobs waiting

but not enough servers available for them to enter service.

We are interested in the transient scheduling problem, i.e., over a finite time-horizon with

arbitrary time-varying arrival rates, in part because in healthcare applications, which is

our main motivating application, time-variability in demand or random shocks like disease

outbreaks or mass casualty events can lead to a demand surge and high congestion in the

system. It is of interest to understand how to derive good policies in these settings.

In our subsequent analysis, an important index we will keep referring to is the cµ/m

index. The cµ/m index for Class i is ciµi/mi, i = 1,2, . . . , I. On average, one unit of
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service capacity allocated to Class i can serve µi/mi jobs over one unit of time. This

reduces the holding cost by ciµi/mi. Thus, the cµ/m index measures the instantaneous cost

reduction rate for each class. Throughout the paper, we make the technical assumption that

(ciµi/mi)’s are all distinct. That is, ciµi/mi 6= cjµj/mj for i 6= j. If some of these indices

are equal, it is possible that there are multiple optimal scheduling policies. Non-uniqueness

of the optimal policy could complicate our analysis.

3. A Two-Class Two-Server Queue

To understand the delicate balance between priority-induced idleness and instantaneous

cost reduction rate, we begin by focusing on a two-class two-server model, i.e., I = 2 and

N = 2. We assume that each Class 1 customer requires two servers and each Class 2

customer requires one server, i.e., m1 = 2 and m2 = 1. We also assume that waiting for

Class 1 customers is more costly: c1 ≥ c2. When considering a healthcare system, one can

think of Class 1 customers (patients) as being ‘sicker’ than Class 2 customers (patients),

thereby requiring more resources (nurses) and suffering more from waiting. In our ICU

example, one unit of capacity can be viewed as 1/2 of a nurse. Thus, m= (2,1) means that

a Class 1 patient requires a full nurse while a Class 2 patient requires only half a nurse

time.

From the holding cost perspective, we note that if we are to maximize the instantaneous

cost reduction rate, each server dedicated to serve Class 1 customers can reduce the holding

cost at rate c1µ1/m1 = c1µ1/2; each server dedicated to serve Class 2 customers can reduce

the holding cost at rate c2µ2/m2 = c2µ2. This suggests a simple strict priority rule based

on the cµ/m index.

From the perspective of the processing capacity, we note that if we give strict priority to

Class 2, then when X2(t) = 1 and X1(t)≥ 1, we can only admit one Class 2 customer into

service. In this case, one server is idling while there are still Class 1 customers waiting in

the queue. This can lead to substantial capacity loss if we encounter many such instances.

One simple modification to avoid idleness here is to give priority to Class 1 when there is

only one Class 2 customer in the system.

The above discussion motivates us to look into the following three scheduling policies:

at each time epoch t, i) P1: strict priority to Class 1, ii) P2: strict priority to Class 2, and

iii) P I
2 : a modification of P2 that gives priority to Class 2 when X2(t)≥ 2, but prioritizes
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Class 1 when X2(t) = 1 to avoid idleness, i.e., P I
2 would prefer one Class 1 customer over

one Class 2 customer.

We note that both P1 and P I
2 avoid idleness, i.e., they are ‘idle-avoid’ policies, while P2

is not. We also denote by Pi and PI
2 (in bold letters) the policies that follow Pi and P I

2 ,

respectively, throughout the time horizon, i.e., π(t) = Pi(P
I
2 ) for all t = 0, . . . , T − 1. We

next study the performance of these three policies.

The analysis in this section is based on backwards induction. To facilitate the presenta-

tion, we introduce some additional notation. For t= 0, . . . , T − 2, let

V π
t (x) =

T−1∑
s=t+1

I∑
i=1

E[ciX
π
i (s)] +

I∑
i=1

E[Fi(X
π
i (T ))]

denote the expected cost-to-go function in period t with X(t) = x under policy π.

We define V π
T−1(x) =

∑I
i=1 E[Fi(Xi(T ))|X(T − 1) = x]. Let St(x,π) =

(St,1(x,π), ..., St,I(x,π)) denote the one step transition from state x under policy π at

time t. In particular, St,i(x,π)
d
= xi+Bernoulli(λi(t))−Binomial(πi(t), µi). We also define

Ct(x,π) =
∑I

i=1 ciSt,i(x,π). Then, for t= 0, . . . , T − 2, we have

V π
t (x) = E[Ct(x,π) +V π

t+1(St(x,π))].

3.1. Optimal Scheduling Policy

We now characterize the optimal scheduling policy for the two-class two-server system:

Theorem 1. For the cost minimization problem (2) with any T > 0,

Case 1. When c2µ2 < c1µ1/2, Policy P1 is optimal.

Case 2.: When c2µ2 > c1µ1/2

Case 2a. When c1µ1/2< c1µ1 < c2µ2 and λ2(t) = 0, ∀t, Policy P2 is optimal.

Case 2b. When c1µ1/2< c2µ2 < c1µ1, Policy PI
2 is optimal.

Proof. The proof of Theorem 1 is based on backwards induction and a constructive

coupling argument. As the coupling arguments are similar for different cases, we only

provide the analysis for Case 1 (c2µ2<c1µ1/2) here, and leave the other cases to Appendix

A. We denote the policy stated in Theorem 1 by π̂. In this case, π̂ = P1. Recall that π∗

denotes the optimal policy. We shall prove that π∗ = π̂.
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Base Case: t= T − 1. We can directly derive the cost-to-go at t= T − 1 given any server

allocation, π. By definition, we have:

V π
T−1(x) = E

[
I∑
i=1

Fi(Xi(T ))
∣∣∣X(T − 1) = x

]
= ξc1 (x1 +λ1(T − 1)−µ1π1(T − 1)) + ξc2 (x2 +λ2(T − 1)−µ2π2(T − 1))

(4)

Due to the linearity of (4) in π(T − 1), when c1µ1>2c2µ2, it is optimal set π1(T − 1) =

x1 ∧ 1, π2(T − 1) = x2 ∧ (2− 2π1(T − 1)). Thus, π∗1(T − 1) = P1.

Inductive step. Let 1≤ t≤ T − 1. The inductive hypothesis is that π∗(k) = π̂(k) for all

k≥ t. We will show this implies π∗(t− 1) = π̂(t− 1). The proof is by contradiction.

Suppose by contradiction, at time t− 1, it is optimal to follow some other policy; i.e.,

π∗(t− 1) 6= π̂(t− 1).

We consider two coupled systems, s∗ and s′, that start in the same state x at t− 1, i.e.,

X(t− 1) = x. System s∗ uses policy π∗ while s′ uses a suboptimal policy π′ that will be

specified later. The coupling is induced by assuming that the two systems see exactly the

same customers (the same arrival times and service time requirements path by path). We

next conduct the analysis for different values of the initial state x.

� x1 = 0 or x2 = 0: π∗ and π̂, must coincide in this case at time t− 1.

� x1 ≥ 1 and x2 ≥ 2: Because π∗(t − 1) 6= π̂(t − 1), π∗ should admit two Class 2

customers at t− 1, while π̂ would admit one Class 1 customer. We construct π′ such that

it admits a Class 1 customer at t− 1, and preempts this customer, if necessary, at time

t to admit two Class 2 customers. From t+ 1 onward, π′ will follow π∗. Considering the

potential outcomes across the two systems at t− 1, there are six scenarios:

1. Only one Class 2 customer completes service.

2. Both Class 2 customers complete service, but the one Class 1 customer does not

complete.

3. Only the Class 1 customer completes service.

4. One Class 2 customer and the Class 1 customer complete service.

5. Both Class 2 customers and the Class 1 customer complete service.

6. No customer completes service.

In the s∗ system, π∗(t) will always admit the Class 1 customer, due to our inductive

hypothesis. Thus, under the coupling construction, in all 6 scenarios, the two systems, s∗
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Figure 2 Coupling illustration for Case 1, Scenario 1-4.
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and s′, are fully synchronized at t+1. In particular, both systems have the same customers

with the same remaining service times presented (see Figure 2 for a pictorial illustration).

Since the two systems follow the same policy from time t+ 1 onward, they will keep fully

synchronized.

Then, the cost difference between s∗ and s′, V π∗
t−1(x)− V π′

t−1(x), is the difference in the

holding costs incurred at t. (We summarize the cost difference (∆C) and the corresponding

probability (Pr) for each scenario in Table 1.) Then, we have

V π∗

t−1(x)−V π′

t−1(x) =−2c2µ2

2∏
i=1

(1−µi)− 2c2(1−µ1)µ
2
2 + c1µ1(1−µ2)

2

+ 2(c1− c2)µ1µ2(1−µ2) + (c1− 2c2)µ1µ
2
2 = c1µ1− 2c2µ2 > 0,

where the last inequality follows from the condition of Case 1. This contradicts the assump-

tion that π∗ is the optimal policy.

Table 1 The cost difference and the corresponding probability for each scenario when x1 ≥ 1 and x2 ≥ 2.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

∆C −c2 −2c2 c1 c1− c2 c1− 2c2 0

Pr 2µ2

∏2
i=1(1−µi) (1−µ1)µ2

2 µ1(1−µ2)2 2µ1µ2(1−µ2) µ1µ
2
2 (1−µ1)(1−µ2)2

� x1 ≥ 1 and x2 = 1: To prove that admitting a Class 1 customer is preferable over

admitting only one Class 2 customer, we follow the same coupling technique as in the

previous case. In particular, assume by contradiction that π∗ admit the Class 2 customer
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at time t−1. We construct π′ such that it admits a Class 1 customer at time t−1, admits

the Class 2 customer at time t, and follows policy π∗ from time t+ 1 onwards. In this case,

there are four possible scenarios for the first time epoch (t− 1):

1. Only the Class 2 customer completes service.

2. Only the Class 1 customer completes service.

3. The Class 2 customer and the Class 1 customer both complete service.

4. Neither customer completes service.

Similar to before, even if there is a Class 2 arrival in t− 1, in the s∗ system π∗(t) admits

the Class 1 customer. Then, under the coupling construction, the two systems are fully

synchronized at time t+ 1. Thus, the cost difference is the difference in the holding costs

incurred at t, which is summarized in Table 2. Then, we have

V π∗

t−1(x)−V π′

t−1(x) =−c2(1−µ1)µ2 + c1µ1(1−µ2) + (c1− c2)µ1µ2 = c1µ1− c2µ2 > 0,

where the last inequality follows from the condition of Case 1. This contradicts the assump-

tion that π∗ is the optimal policy.

Table 2 The cost difference and the corresponding probability for each scenario when x1 ≥ 1 and x2 = 1.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

∆C −c2 c1 c1− c2 0

Pr (1−µ1)µ2 µ1(1−µ2) µ1µ2 (1−µ1)(1−µ2)

We have shown that for all possible values of state x at time t− 1, it is optimal to follow

π̂. �

We next discuss the implications of Theorem 1 on how to balance idleness and instanta-

neous cost reduction. As P1 does not induce any idleness, when c1µ1/m1 > c2µ2/m2 (Case

1), we give strict priority to Class 1. When c1µ1/m1 < c2µ2/m2, we distinguish between

two further cases. When c1µ1 > c2µ2 (Case 2b), from the cost perspective, admitting one

Class 1 customer is preferable to admitting only one Class 2 customer. (Note that we can

only admit an integer number of customers). Thus, PI
2 is optimal in both a processing

rate sense and a cost reduction sense. When c1µ1 < c2µ2, things become more complicated.

From the cost reduction perspective, even admitting only one Class 2 customer is prefer-

able to admitting one Class 1 customer. However, admitting only one Class 2 customer
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would leave one server idle in the system. In this case, we are able to show that if λ2(t) = 0,

P2 is optimal. When λ2(t) > 0, it is not clear whether P2 is still optimal. For example,

we may want to hold a single Class 2 customer in anticipation of an additional Class 2

arrival in the next period. This could help increase the processing capacity of the system

and result in an overall lower cost. Whether this may be helpful will depend on a number

of factors, including the length of the time horizon and the arrival probabilities in future

time slots.

Figure 3 provides two numerical examples to illustrate the results of Theorem 1. The

plots show the ratio between V π
0 (2,3) and V ∗0 (2,3) for π=P1, P2, and PI

2, and for different

values of µ2. The optimal value function is calculated by solving the MDP directly and the

value function for each of the three polices is estimated by simulation. We observe that in

Case 2a, the optimal policy is P2 when λ2(t) = 0 (left plot); however when λ2(t)> 0 (right

plot), it is not. In fact, when λ2(t)> 0, the performance of PI
2 appears to be near optimal

even when c2µ2 > c1µ1. Still, PI
2 is not exactly optimal; the optimal policy in this case is

time-dependent, switching between P I
2 and P2. Moreover, when λ2(t) = 0 and c2µ2 > c1µ1,

we observe that even though PI
2 leads to a higher cost than P2, the cost difference is fairly

small. This motivates us to look more closely into PI
2 in the next subsection.

Figure 3 Cost ratio of each policy to the optimal policy for different values of µ2. T = 50, I = 2, m = (2,1),

µ1 = 0.35, c= (1,0.5), ξ = 5, N = 2, X(0) = (N,N). In the left plot λ(t) = (0.33,0), for t= 1, . . . , T − 1;

In the right plot λ(t) = (0.2,0.3), for t= 1, . . . , T − 1.
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3.2. A Uniform Performance Bound when c1µ1< c2µ2 and λ2(t)≥ 0

In this section, we analyze the performance of PI
2 when c2µ2 > c1µ1 (Case 2a) but with

λ2(t)≥ 0. The following theorem establishes an upper bound on the competitive ratio for

PI
2, i.e., the ratio between the cost under PI

2 and the cost under the optimal policy.

Theorem 2. When c1 ≥ c2, c1µ1 < c2µ2, for any state x, t∈ {0,1, . . . , T − 1},

V
PI

2
t (x)

V π∗
t (x)

≤ 2.

The proof of Theorem 2 can be found in Appendix B.2. The significance of the result

in Theorem 2 is that we allow for arbitrary values for the time horizon, initial state, and

arrival probabilities. It can be observed from solving the MDP that when λ2(t) 6= 0, the

optimal policy can be highly sensitive to the value of λ2(t)’s. Moreover, even for time-

homogeneous λ2(t)’s, the optimal policy can be time-dependent. On the other hand, PI
2

does not depend on t or λ(t). In addition, while the optimal policy or other benchmark

policies (e.g., max-weight) may require full queue length information, PI
2 requires very

minimal system state information, i.e., whether there are two or more Class 2 customers

waiting. In healthcare applications, it can sometimes be hard to get accurate system state

information. For instance, the patients waiting for ICU admission may be waiting in differ-

ent wards or in other hospitals, so while it may be straightforward to know whether there

are patients waiting, it may be difficult to precisely quantify the exact number of patients

of each type. These desirable properties suggest that PI
2 is robust and easy to implement

in practice.

We conclude this section with two remarks.

Remark 1. The bound for the competitive ratio in Theorem 2 is tight, in the sense that

we can find problem instances where this ratio is exactly 2. For example, at T − 1, if

x1(T − 1)≥ 1, x2(T − 1) = 1, and ξ > 0,

V
PI

2
T−1(x)

V P2
T−1(x)

=
c1(x1−µ1 +λ1(T − 1)) + c2(1 +λ2(T − 1))

c1(x1 +λ1(T − 1)) + c2(1−µ2 +λ2(T − 1))
. (5)

The ratio in (5) can be made arbitrarily close to 2, if µ2 = 1, c1 = c2, λ1(T −1) = λ2(T −1) =

0, and µ1→ 0.

On the other hand, as we will demonstrate in subsequent numerical experiments, in most

problem instances, the competitive ratio is much smaller than 2.



17

Remark 2. The model and ensuing analysis considered in this section applies directly

to other two-class systems with m1/m2 = 2 and N = m1. This can be achieved with a

simple change of variables where everything is re-scaled by m2: X̂i =Xi/m2, i= 1,2, and

N̂ =N/m2.

4. Idle-Aware cµ/m Rule

From our analysis in Section 3, we note that to design a good scheduling policy for queues

with different resource requirements, we need to carefully balance the cµ/m index (the

‘myopic’ instantaneous cost reduction rate) and the priority-induced idleness. For general

multi-class queues with different resource requirements, we propose a class of policies: the

idle-aware cµ/m rule, defined as the optimal solution of an integer program (6), which

maps the state of the system to an allocation of the servers to each class.

Let x= (x1, . . . , xI) denote the state of the system and z = (z1, . . . , zI) denote the number

of servers allocated to each class at a time epoch t. The integer program (IP) is defined as

max R(z) :=
I∑
i=1

ciµi
mi

zi + Γ
I∑
i=1

zi

s.t.
I∑
i=1

zi ≤N

0≤ zi ≤ ximi, i= 1, . . . , I

zi/mi ∈N0, i= 1, . . . , I,

(6)

where Γ≥ 0 is a tuning parameter that penalize the priority-induced idleness.

As special cases of (6), note that when Γ = 0, we prioritize according to the cµ/m-index

only. We refer to this special case as the cµ/m rule, which resembles the classical cµ

rule. When Γ is large enough, i.e., Γ>N
∑I

i=1 ciµi/mi, our first-order goal is to maximize

the server utilization
∑I

i=1 zi, which is equivalent to minimizing idleness, i.e., N −
∑I

i=1 zi.

Then, among all policies that avoid idleness, we choose the one that maximizes the cµ/m

index. We refer to this special case as the idle-avoid cµ/m rule.

For the two-class two-server model studied in Section 3, the cµ/m rule takes the form

of the policies characterized in Theorem 1. We observe from the right plot in Figure 3

that the cµ/m rule can be highly sub-optimal when c1µ1 < c2µ2 and λ2(t) 6= 0. The idle-

avoid cµ/m rule takes the following form: when c1µ1/m1 > c2µ2/m2, we apply P1; when

c1µ1/m1 < c2µ2/m2, we apply P I
2 . Combining the results in Theorems 1 and 2, we note that
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regardless of the arrival rates, the initial condition, and the time horizon, when c1µ1/2>

c2µ2 or c1µ1/2 < c2µ2 < c1µ1, the idle-avoid cµ/m rule is optimal; when c1µ1 < c2µ2, the

idle-avoid cµ/m rule has a competitive ratio of at most 2. Thus, the idle-avoid cµ/m rule

achieves good and robust performance. The analysis of this special instance of our model

provides a theoretical basis for the importance of considering idleness – especially in small

systems.

For more general systems, with different values of Γ∈
(

0,N
∑I

i=1 ciµi/mi

)
, we may incur

different levels of idleness. To see this, consider a two-class three-server model with m1 = 3

and m2 = 1. Figure 4 presents four possible scheduling policies for this model under three

different scenarios of system state. Policy Pi gives strict priority to Class i, i= 1,2. Policy

P I1
2 tends to prioritize Class 2, but prefers admitting one Class 1 customer to admitting

only one Class 2 customer. Policy P I2
2 tends to prioritize Class 2, but prefers admitting one

Class 1 customer to admitting two or less Class 2 customers. Note that P2, P
I1
2 , and P I2

2

incur different levels of idleness. When solving the IP (6), if c1µ1/m1 > c2µ2/m2, P1 is the

optimal solution for any Γ≥ 0. However, when c1µ1 < c2µ2, the optimal solution depends

on the value Γ. In particular, for small values of Γ, e.g., Γ = 0, P2 is the optimal solution.

For moderate values of Γ, P I1
2 is the optimal solution. For large values of Γ, P I2

2 is the

optimal solution.

Figure 4 Possible policies for a three-server system having two classes of customers in which m1 = 3 and m2 = 1.
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The idle-aware cµ/m rule with parameter Γ provides a lot of flexibility to determine the

precise balance between the ‘myopic’ instantaneous cost-reduction rate and the ‘forward-

looking’ priority-induced idleness. However, the optimal value of Γ can be quite different
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for different systems. The general intuition is that when the system is very lightly loaded,

we can put more weight on the cµ/m index (via a smaller Γ), while when the system is

critically loaded, we should put more weight on avoiding idleness (via a larger Γ).

For systems with constant arrival rates, we define the nominal traffic intensity of the

system as

ρ=
I∑
i=1

λimi

µiN
. (7)

Since we study finite horizon scheduling problems, we allow ρ≥ 1. Figure 5 plots the ratio

between the cost under the idle-aware cµ/m rule with different values of Γ to the optimal

cost for different traffic intensity levels. We study a two-class model with m = (3,1). In

addition to N = 3 (left plot), we also test a larger system with N = 6 (right plot). To scale

up the arrival rate properly with N , we assume Ai(t) ∼ Binomial(η,λi(t)), where η = 1

when N = 3 and η = 2 when N = 6. We set the holding costs and the service rates such

that c2µ2 > c1µ1. Three different values of Γ (idle awareness levels) are considered: Γ = 0

results in P2, Γ = 0.25 (denoted as Γ> 0) results in P I1
2 , and Γ = 100 (denoted as Γ� 0)

results in P I2
2 . We observe that when the traffic intensity is low, P2 achieves the lowest

cost among the three idle-aware cµ/m policies. For moderate values of traffic intensity, PI1
2

performs the best, while for high values of traffic intensity, PI2
2 performs the best. More

importantly, we note that when ρ is large (i.e., > 0.55 in the left plot and > 0.6 in the

right plot), P2 and PI1
2 can lead to highly sub-optimal performance. On the other hand,

PI2
2 achieves competitive performance across all values of traffic intensities.

For general multi-class multi-server systems, characterizing the optimal scheduling policy

is quite challenging. First, the coupling technique we utilized in Section 3 quickly becomes

prohibitively tedious with too many scenarios to consider. Due to similar reasons, the

exact optimality of the cµ rule is also restricted to the single server setting (Buyukkoc

et al. 1985). Second, solving the MDP (2) exactly suffers from the curse of dimensionality

(Papadimitriou and Tsitsiklis 1999).

When restricting to the class of idle-aware cµ/m rules, we observe from extensive numer-

ical experiments that the optimal value of Γ can be highly sensitive to system parameters

and using a small Γ can sometimes lead to substantial sub-optimality. On the other hand,

the idle-avoid cµ/m rule in general leads to robust and near-optimal performance. Thus,

we suggest using the idle-avoid cµ/m rule, i.e., setting Γ>N
∑I

i=1 ciµi/mi, in practice.
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Figure 5 Cost ratio of each policy to the optimal one for different traffic intensities where N = 3η, η= 1,2. Here,

T = 50, m= (3,1), the arrivals Ai(t)∼Binomial(η,λi), where λ= k(1/24,1/12) and k varies between

1 and 10.8, µ= (0.5,1), c= (1,0.8), ξ = 5, X(0) = (N/3,N − 1). In Area A, P2 is the optimal optimal

idle-aware cµ/m policy; in Area B, PI1
2 is the optimal idle-aware cµ/m policy, and in Area C, PI2

2 is

the optimal idle-aware cµ/m policy.
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In what follows, we take two asymptotic approaches to derive some theoretical insights

into the performance of idle-avoid cµ/m rule. One approach focuses on the original finite-

horizon planning problem with arbitrary arrival rates, but studies very large systems (Sec-

tion 5). In particular, we take a many-server asymptotic mode of analysis where we scale

up the arrival rates and the number of servers, while keeping the service requirements

fixed. Note that when mi’s are fixed, scaling up the number of servers will lead to almost

negligible policy-induced idleness. Take the two-class system with m= (2,1) as an example.

When N = 2, strict priority to Class 2 can lead to 1/2 of the capacity to be ‘wasted’. When

N = 100, strict priority to Class 2 can only cause 1/100 of the capacity to be ‘wasted’. Thus,

our first result is a somewhat ‘negative’ result, showing that the class idle-aware cµ/m

rules with any Γ≥ 0 is asymptotically optimal in the many-server regime. This indicates

that in large systems, when m1�N , the policy-induced idleness plays a less important

role. It also indicates that the idle-avoid cµ/m rule has near-optimal performance in these

systems.

The second approach takes the large-time horizon limit, i.e., T →∞ (Section 6). We

impose extra regularity conditions on the arrival probabilities and look at the stability of

the system. We show that the idle-avoid cµ/m policy is throughput optimal, while the

cµ/m rule and other idle-aware cµ/m rules can lead to instability. This result further
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justifies our suggestion of employing the idle-avoid cµ/m rule in practice, because the other

idle-aware cµ/m rules can lead to arbitrarily bad performances when planning over a long

time horizon.

We conclude this section with another numerical illustration for the performance of the

idle-avoid cµ/m rule. In Figure 6, we plot the cost ratio between the idle-avoid cµ/m rule

and the optimal policy for systems of different sizes. As N increases, we scale up the arrival

rates proportionally using an appropriate Binomial distribution. We consider both time-

homogeneous (top plots) and time-varying (bottom plots) arrivals. In the the left plots,

m= (2,1) (PI
2 is the idle-avoid cµ/m rule), and in the right plots, m= (3,1) (PI2

2 is the

idle-avoid cµ/m rule). We randomly sample the arrival probability from U [0,1]. In the

upper-panel plots, the arrival probabilities are drawn at time 0 and kept as constants for

all t≥ 0. In the lower-panel plots, the arrival probabilities are updated (drawn randomly

from U [0,1]) every 10 time slots. We report the maximal and average cost ratios among 50

randomly drawn problem instances. We observe in the left plots that when m= (2,1) and

N = 2, the maximal ratio can go up to 2 as suggested by Theorem 2. However, the average

ratio is much smaller, i.e., slightly larger than 1.2. Moreover, the ratios are decreasing in

N . We also observe in the right plots that, when m= (3,1) and N = 3, the maximal ratio

can go above 2, but the average ratio is still around 1.2. In addition, as the system size

increases, both the maximal and average cost ratios are getting closer and closer to 1.

5. Asymptotic Optimality of Idle-Aware cµ/m Rule

In this section, we study the asymptotic performance of idle-aware cµ/m policies in a

many-server asymptotic regime. This provides important insights into the performance of

the scheduling policies in large systems with many servers and max1≤i≤Imi�N .

We still focus on transient performance, i.e., over a finite time horizon and with arbitrary

time-varying arrival rates.

Consider a sequence of systems indexed by η. We scale up both the number of servers

and the arrival rates with η while keeping the service rates and the resource requirements

fixed. In particular, for the η-th system, there are N η = Nη servers and the number of

Class i arrivals in the t-th epoch Aη
i (t)∼ Binomial(η,λi(t)). We use the superscript η to

denote processes related to the η-th system. For example, Xη
i (t) is the number of Class i

customers in the η-th system at time t , Dη
i (t) is the number of Class i departures in time
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Figure 6 Optimization gap – idle avoid cµ/m rule vs. optimal policy for for different values of N : average and

worst case scenario. Here, T = 50, I = 2, Ai(t)∼Binomial(η,λi(t)), η = 1, . . . ,10, c= (1,1), and ξ = 5.

On the left, N = 2η, m= (2,1), µ= (0.01,1), X(0) = (bN/2c,N − 1); on the right, N = 3η, m= (3,1),

µ= (0.09,1), X(0) = (bN/3c,N − 2). λ1(t), λ2(t)∼U [0,1]. In the top plots, the arrival probabilities are

sampled at time zero and kept as constants throughout the horizon. In the bottom plots the arrival

probabilities vary every 10 time slots by drawing new samples from U [0,1].
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epoch t. Note that under policy πη, Dη
i (t)∼Binomial(πηi (t), µi). We also write Rη as the

corresponding policy IP for the η-th system. For a fixed Γ ≥ 0, we denote the sequence

of idle-aware cµ/m rules as (πIP(Γ),η)η≥0. For a general Markovian scheduling policy πη,

it can be written as a mapping from the state of the system, xη, to an allocation of

the servers, zη = (zη1 , . . . , z
η
I ). We denote ψη := (ψη1 , . . . ,ψ

η
I ) as the corresponding mapping.

In particular, ψη : NI
0 → Z, where Z = inf{z ∈ NI

0 :
∑I

i=1 zi ≤ N}, and when Xη(t) = xη,

πηi (t) =ψηi (x
η; t)/mi for i= 1 . . . , I.
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We further define the fluid-scaled processes

X̄η =Xη/η, Āη =Aη/η D̄η =Dη/η.

Let ψ̄η(xη/η; t) =ψη(xη; t)/η. We next define the convergence of a sequence of policies.

Definition 1. We define ψ̄η → ψ̄, if for any sequence of (x̄η)η≥1, x̄
η ∈ (0,1/η,2/η, . . . )I ,

satisfying x̄η→ x as η→∞, we have ψ̄η(x̄η)→ ψ̄(x) as η→∞.

We use the fluid scaling for our analysis because the corresponding fluid limit is determin-

istic and provides a good approximation for the first-order mean dynamics of the system,

especially for transient control problems where the demand fluctuations are O(η).

Lemma 1. For a sequence of scheduling policies ψη, if X̄η(0)⇒ x̄(0) ∈RI
0 and ψ̄η→ ψ̄ as

η→∞, then for any T ≥ 1,

X̄η⇒ x̄ uniformly on [0, T ] as η→∞,

where x̄= (x̄1, . . . , x̄I) is a discrete dynamical system satisfying

x̄i(t+ 1) = x̄i(t) +λi(t)−µiψ̄i(x̄(t))/mi, for i= 1, . . . , I.

We define the fluid analogue to the MDP (2) as

min
π̄

V̄ π̄
0 (x) :=

T−1∑
t=1

I∑
i=1

cix̄i(t) +
I∑
i=1

Fi(x̄i(T )),

Such that for all t= 1, . . . , T , and i= 1, . . . , I:

x̄i(t) = x̄i(t− 1) +λi(t− 1)−µiπ̄i(t− 1) with x̄i(0) = xi;

I∑
i=1

miπ̄i(t)≤N ;

0≤ π̄i(t)≤ x̄i(t).

(8)

Let V̄ ∗0 (x) denote the optimal cost of (8).

For every time epoch t, we also define the fluid relaxation of the IP (6) as

max R̄(z) :=

I∑
i=1

ciµi
mi

zi + Γ
I∑
i=1

zi

s.t.
I∑
i=1

zi ≤N

0≤ zi ≤ ximi, i= 1, . . . , I.

(9)
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Note that (9) is a linear program (LP) relaxation of (6), i.e., without the integer constraints.

It is also straightforward to see that, for any Γ ≥ 0, the optimal solution to (9) is to

prioritize according to the cµ/m index. In particular, let z̄∗ denote the optimal solution

to (9). We also denote [i] as the i-th class in the decreasing order of the cµ/m-index, i.e.,

c[i]µ[i]/m[i] > c[i+1]µ[i+1]/m[i+1]. Then

z̄∗[j] =

(
N −

j−1∑
i=1

z̄∗[i]

)+

∧x[j]m[j], j = 1, . . . , I. (10)

With a little abuse of terminology, we refer to the policy characterized by (9) as the fluid

cµ/m rule.

Lemma 2. For the fluid cost minimization problem (8), it is optimal to follow the fluid

cµ/m rule.

Theorem 3. For any sequence of policies, πη, if xη/η→ x as η→∞, then

lim inf
η→∞

1

η
V πη ,η

0 (xη)≥ V̄ ∗0 (x). (11)

For any fixed Γ ≥ 0, if xη/η→ x as η→∞, then the sequence of idle-aware cµ/m rule

satisfies

lim
η→∞

1

η
V πIP(Γ),η ,η

0 (xη) = V̄ ∗0 (x). (12)

Theorem 3 indicates that πIP(Γ),η is asymptotically optimal. The proof of the theorem is

provided in Appendix C.3. Since the result in Theorem 3 holds for any Γ ≥ 0, setting

Γ>N
∑I

i=1 ciµi/mi, we have the following corollary.

Corollary 1. The idle-avoid cµ/m rule is asymptotically optimal to the MDP in (2), in

the many-server regime.

We note from Theorem 3 that when the system size is large, the performance of any

idle-aware cµ/m rule are asymptotically indistinguishable. However, as seen in Section 3,

for small systems, there can be significant differences in the performance of different idle-

aware cµ/m rules. In particular, while the priority-induced idleness becomes negligible for

large systems, it has a critical impact on performance in small systems.
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6. Throughput Optimality of Idle-Avoid cµ/m Rule

In this section, we move away from the main problem setup in (2), and study the long-

time behavior of the idle-avoid cµ/m rule. In contrast to the analysis in Section 5, we fix

the size/scale of the system, and study its performance as t→∞. Analyzing long-time

behavior requires us to impose more restrictions on the system parameters. In particular,

we need some notion of long-run regularity of the arrival rates. In this section, we make

the following assumption on the arrival probabilities.

Assumption 1. There exists λ̄i ∈ [0,1], i= 1, . . . , I, such that

lim
t→∞

1

t

t∑
s=1

λi(s) = λ̄i.

In what follows, we refer to λ̄= (λ̄1, . . . , λ̄I) as the limiting arrival rate.

The setting we studied in this section is quite different from the transient optimal

scheduling problem we started with, but provides important insights into the performance

of the proposed scheduling policies over relatively long time horizons.

When planning for a long time horizon, the first order goal is to ensure system stability,

so that the queue will not grow without bound as time increases. We employ the notion of

rate stability as in Armony and Bambos (2003).

Definition 2. We define a System X (under a scheduling policy π) to be rate stable if

lim
T→∞

1

T

T∑
t=1

I∑
i=1

Ai(t) = lim
T→∞

1

T

T∑
t=1

I∑
i=1

Di(t) almost surely.

We first note that due to the multiple resource requirements, ρ :=
∑I

i=1
λ̄imi
Nµi

< 1 does

not imply that the system can be stabilized. For example, in a single-class queue with

N = 3 and m = 2, if λ̄ ∈ (µ,3/2µ), ρ < 1 but the system cannot be stabilized. Thus, we

start by defining the maximum stability region of the system, i.e., the set of the arrival

rates that can be processed/stabilized using some scheduling rule. For a multi-class system

with different resource requirements, let φ1, . . . , φK denote the list of all possible service

configurations. In particular, φk = (φk1, . . . , φ
k
I ), k = 1, . . . ,K, is a server allocation scheme

satisfying the following conditions

φki
mi

∈N0,

I∑
i=1

φki ≤N.
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Then, the maximum stability region of the system can be characterized by

M=

{
λ̄∈ [0,1]I : λ̄imi/µi ≤

K∑
k=1

αkφ
k
i , for some αk ≥ 0, k= 1, . . . ,K and

K∑
k=1

αk = 1

}
.

In the above definition of M, αk’s can be interpreted as the proportion of time service

configuration φk is employed. A scheduling policy that achieves the maximum stability

region is known to be throughput optimal. That is for any limiting arrival rate λ̄∈ S, the

scheduling policy can achieve rate stability.

Under the preemption and Markovian assumptions, any scheduling policy can be viewed

as a mapping from the state of the system to an allocation of servers. Thus, we define the

set of feasible scheduling policies as

Ω =

{
ψ :

I∑
i=1

ψi(x)≤N, ψi(x)/mi ≤ xi, ψi(x)/mi ∈N0, for i= 1, . . . , I, and ∀x∈NI
0

}
.

Note that not all the service configurations are feasible for a given state x, because we have

the extra constraint that φki /mi ≤ xi. We also define a special subset of feasible policies

that minimizes the idleness in the system:

Ωm =

{
ψ :ψ ∈Ω, ψ(x)∈ arg max

ψ̃∈Ω

{
I∑
i=1

ψ̃i(x)

}
,∀x∈NI

0

}
.

Note that the idle-avoid cµ/m rule belongs to Ωm, while the other idle-aware cµ/m

rules may not belong to Ωm. The following theorem establishes that policies in Ωm are

throughput optimal under the assumption that the resource requirement has a hierarchical

structure as defined in Assumption 2.

Assumption 2. mi/mi+1 ∈ N for i = 1, . . . , I − 1, and N/m1 ∈ N, where N is the set of

positive integers.

Theorem 4. Under Assumptions 1 and 2, for any ψ ∈Ωm, i.e., πi(t) = ψ(X(t))/mi, for

i= 1, . . . , I, t≥ 0, if the limiting arrival rate λ̄∈M, then

lim
t→∞

1

t

I∑
i=1

mi

µi
Xi(t) = 0 almost surely,

which implies that the system is rate stable.
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The proof of Theorem 4 can be found in Appendix D. Since the idle-avoid cµ/m rule

belongs to Ωm, we have the following corollary.

Corollary 2. Under Assumptions 1 and 2, The idle-avoid cµ/m rule is throughput opti-

mal.

6.1. Stability under Other Idle-Aware cµ/m Rules

In this section, we demonstrate through numerical experiments that the other idle-aware

cµ/m rules may not be throughput optimal. Consider the two-class queues with different

resource requirements, Figures 7 and 8 plot E[X1(t) +X2(t)] for different values of t. In

Figure 7, we study a system with m= (2,1) and c1µ1 < c2µ2. In this case, the cµ/m rule

follows policy P2, which may incur some idleness, while the idle-avoid cµ/m rule follows

policy P I
2 . We note that under PI

2, E[X1(t) +X2(t)] is around 20 for all values of t. Under

P2, E[X1(t) +X2(t)] is growing in t, suggesting that the system is not stable. In Figure 8,

we study a system with m= (3,1) and c1µ1 < c2µ2. In this case, we have three idle-aware

cµ/m rules depending on the value of Γ. Γ = 0 leads to P2, which is the cµ/m rule, Γ = 0.25

leads to P I1
2 , while Γ = 100 leads to P I2

2 , which is the idle-avoid cµ/m rule. We note that

only PI2
2 stabilizes the system. Under either P2 or PI1

2 , E[X1(t) +X2(t)] is increasing in t.

As P2 can incur more idleness than PI1
2 , E[X1(t) +X2(t)] increases faster in t under P2

than under PI1
2 .

Figure 7 E[X1(t) + X2(t)] as a function of t under different idle-aware cµ/m policies. N = 15, λ = (0.26,1),

µ= (0.35,0.7), and c= (1,0.8).

1000 2000 3000 4000 5000 6000 7000

t

0

20

40

60

80

100

120

140

160

180

T
o
ta

l 
n
u
m

b
e
r 

o
f 
c
u
s
to

m
e
rs

 i
n
 t
h
e
 s

y
s
te

m

N = 15

Policy P
2

Policy P
2

I



28

Figure 8 E[X1(t) +X2(t)] as a function of t under different idle-aware cµ/m policies. I = 2, N = 3η, η = 1 (left

plot) and η = 5 (right plot), m = (3,1), Ai(t) ∼ Binomial(η,λi), where λ = (1/24,1/8), µ = (0.5,1),

c= (1,0.8) and x(0) = (N/3,N − 1).
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6.2. Implications for Holding Cost over Long Time Horizons

For a specific time-homogenous system, we call a policy stable if the system under this

policy is rate stable, and we call a policy unstable otherwise. If a policy is unstable, the

corresponding queue can grow without bound as time increases. This implies that when

planning for long time horizons, the difference in holding cost between stable and unstable

policies can be very large. In Figure 9, we consider a two-class queue with m= (2,1) and

compare the holding costs under P2 (the cµ/m rule) and PI
2 (the idle-avoid cµ/m rule)

over a very long planning horizon, i.e., T = 2000. We vary the value of ρ, which is defined

in (7), by scaling down the service rates. Note that for small values of ρ, the performances

of P2 and PI
2 are very similar. However, as ρ increases, P2 leads to a much higher cost

than PI
2. We also note that as the system size increases from N = 3 to N = 30, significant

differences in performance between P2 and PI
2 start occurring at a higher value of ρ. For

example, for N = 3, when ρ= 0.9, the cost under P2 is more than twice the cost under PI
2.

However, for N = 30, when ρ= 0.9, the costs under the two policies are almost the same.

In the next experiment, we fix the traffic intensity ρ, but vary the scale of the system.

Figure 10 compares the costs of the cµ/m rule and the idle-avoid cµ/m rule over a very

long planning horizon, i.e., T = 2000. We consider the two-class queues with c1µ1 < c2µ2.

The systems have time-homogeneous arrival probabilities, which we sample from U [0,1].
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Figure 9 Total cost for P2 versus P I2 . T = 2000, I = 2, m= (2,1), N = 3η, µ= (0.5/k,1/k), k varies between 1,

and 1.485, c= (1,0.8), ξ = 5, and Ai(t)∼Binomial(η,λi) with λ= (0.25,1). On the left, η = 1, and on

the right, η= 10.
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In the left plot m= (2,1), we compare P2 versus PI
2. We plot the maximum, minimum,

and average of V P2
0 (x)/V

PI
2

0 (x), with x= (bN/2c,N −1), over 50 randomly drawn problem

instances (arrival probabilities). We observe that when N = 2, the maximum ratio between

the two costs can be very large, i.e., the cost under P2 can be more than 11 times the cost

under PI
2. On the other hand, the minimum ratio between the two policies is bounded by

1/2 as suggested by Theorem 2. This suggests that the idle-avoid cµ/m rule achieves more

robust performance than the cµ rule when planning over a long time horizon, especially in

small systems. As N increases, the performance of the two policies are practically indistin-

guishable as suggested by Theorem 3. In the right plot, m= (3,1) and we compare costs

under P2 versus PI2
2 . We observe again that the idle-avoid cµ/m achieves more robust

performance than the cµ/m rule.

The analysis in this section provides additional evidence supporting the use of the idle-

avoid cµ/m rule in practice. This is especially important in small systems where priority-

induced idleness can lead to very bad performance. We also emphasize that there is value to

understanding small systems. In the healthcare setting, the number of servers (nurses/beds)

in a unit is more commonly on the order of 10s instead of 100s or 1000s.

7. Additional Numerical Experiments

In this section, we provide additional numerical experiments to provide more insights into

the performance of our proposed policy. We first look at preemption versus non-preemption.
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Figure 10 Cost comparison (log) – cµ/m rule vs. idle-avoid cµ/m for different values of N . T = 2000, I = 2,

c = (1,1), and ξ = 5. On the left, Policy P2 vs. Policy PI
2 for m = (2,1), N = 2η, η = 1, . . . ,10,

µ= (0.25,1), Ai(t)∼Binomial(η,λi), where λ1, λ2 ∼U [0,1], and X(0) = (bN/2c,N−1). On the right,

cost ratio between P2 (Γ = 0) and PI2
2 (Γ� 0) for m = (3,1), N = 3η, η = 1, . . . ,10, µ = (0.09,1),

Ai(t)∼Binomial(η,λi), where λ1, λ2 ∼U [0,1], and X(0) = (bN/3c,N − 2).
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Our theoretical analysis assumes that preemption is allowed. In Section 7.1, we investigate

how the insights from our analysis for preemptive systems can be generalized to non-

preemptive systems. We then compare the idle-avoid cµ/m rule to the max-weight policy

in Section 7.2. We have shown that the idle-avoid cµ/m is throughput optimal in Section

6. Another important class of throughput-optimal policies is the max-weight policy. It is

of interest to compare the performance of both policies.

7.1. Non-Preemption

Consider imposing non-preemption in the idle-aware cµ/m rules. In particular, we require

that once a customer starts service, he/she cannot be moved back to the queue. This is

natural in many service systems, and particularly healthcare systems. Let x= (x1, . . . , xI)

denote the state of the system at the beginning of time epoch t, z′ = (z′1, . . . , z
′
I) denote

the number of servers occupied by each class before assignment, and z = (z1, . . . , zI) denote

the number of servers allocated to each class after assignment. The new IP under non-
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preemption is defined as

max RN(z) :=
I∑
i=1

ciµi
mi

zi + Γ

I∑
i=1

zi

s.t.

I∑
i=1

zi ≤N

z′i ≤ zi ≤ ximi, i= 1, . . . , I

zi/mi ∈N0, i= 1, . . . , I,

In general, non-preemption can introduce a number of challenges. For example, it may

be optimal to keep servers idle in anticipation of more ‘important’ incoming customers

(Pinedo 2012). As such, we focus on comparison only across different non-preemptive idle-

aware cµ/m rules.

We know that translation of results derived from a preemptive system to a non-

preemptive system does not always result in good performance (see, e.g., Rozenshmidt

(2008)). However, we expect that as the system size grows, the difference between non-

preemption and preemption will be minimal (Atar et al. 2004). For example, we expect

the idle-avoid cµ/m-rule to perform well for large systems even without preemption.

Consider a two-class model with m= (2,1) and three possible scheduling policies accord-

ing to the idle-aware cµ/m rules: P1, P2 and PI
2. Figure 11 compares V π

0 (x) under the

preemptive (left plots) versus non-preemptive (right plots) assumptions. The top plots are

for a small system with only N = 2 servers, while the bottom plots are for N = 20. The

vertical lines in the figures depict where the cost under PI
2 becomes smaller than the cost

under P1 as µ2 increases. Note that when preemption is allowed, it is where c1µ1/2 = c2µ2.

We observe that even though the two systems have different costs, in both systems, the

optimal policy among the three policies considered, switches from prioritizing Class 1 to

prioritizing Class 2 as µ2 increases. The value of µ2 at which PI
2 surpasses P1, i.e., the

vertical line, is different in the two systems. In the preemptive system, it is at µ2 = 0.225.

In the non-preemptive system, it is at µ2 = 0.33. For sufficiently large values of µ2, P2 can

perform better than PI
2, but the difference is very small. In the bottom plots, the system

size, N = 20, can reasonably capture the size of an average ICU. We observe that in this

case, non-preemption does not lead to much cost difference. When comparing the three

policies, the optimal policy switches from P1 to PI
2 as µ2 increases. PI

2 leads to slightly

better performance than P2 in both the preemptive and nonpreemptive cases.
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Figure 11 Cost comparison – preemption (left plot) vs. non-preemption (right plot) for N = 2η, η = 1 (top

plots) and η = 10 (bottom plots), I = 2, m= (2,1), and different values of µ2. Here, T = 50, Ai(t)∼

Binomial(η,λi(t)), λ(t) = (0.05,0.15), for all t, µ1 = 0.09, c= (5,1), ξ = 5, and X(0) = (N,N).
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Note that we can also come up with extreme examples in small systems where policy PI
2

can perform much worse than P2 when preemption is not allowed. For example, consider

a system where N = 2 and the service rate of Class 1 is very small. Policy PI
2 may admit a

Class 1 customer over a Class 2 customer at some point. Then, the Class 1 customer will

“block” the servers for a very long time. Meanwhile, policy P2 can keep admitting Class

2 customers. If the service rate of Class 2 customers is sufficiently larger, P2 can achieve

a much lower cost than PI
2 in this case. Thus, one must be careful when operating small

and nonpreemptive systems in these types of extreme parameter regimes.
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7.2. Comparison with the Max-Weight Policies

We compare the idle-avoid cµ/m rule to the max-weight policy, which is also known to

be throughput optimal (Stolyar 2004, Armony and Bambos 2003). Note that the idle-

avoid cµ/m rule is primarily designed to handle linear holding cost and transient cost

minimization problems with arbitrary time-varying arrival rates, while the optimality of

the max-weight policy with respect to cost minimization requires strongly convex holding

costs and is in a long time-horizon sense (see Stolyar (2004)). To facilitate a relatively fair

comparison, we consider time-homogeneous arrival probabilities and look at longer time

horizons. At each time t, given X(t) = x, the server allocation, z = (z1, . . . , zI), under the

max-weight policy is the solution to the following IP:

max
z

I∑
i=1

ciµi
mi

zix
β
i

s.t.
I∑
i=1

zi ≤N, 0≤ zi
mi

≤ xi,
zi
mi

∈N0, i= 1, . . . , I,

(13)

We allow different values of β > 0. β = 1 is commonly used in the literature (Armony

and Bambos 2003, Dai and Lin 2005). When β is small, the convex cost function, i.e.,∑I
i=1 ciX

β+1
i , is ‘close’ to being linear; thus, this max-weight policy with β close to 0 should

have performance that is close to optimal for our linear objective function (Stolyar 2004).

Figure 12 plots the ratio of the total cost of the max-weight policy to that of the idle-

avoid cµ/m rule for different values of µ2 in the regime where c1µ1 < c2µ2. We consider

two values of β for the max-weight policy: 1 and 0.1. We observe that the max-weight

policies have worse performance than the idle-avoid cµ/m rule. When β = 1, the cost ratio

can be above 1.5 for small values of µ2 and is slightly above 1 for large values of µ2. On

the other hand, when β = 0.1, the cost ratio can be above 4 for large values of µ2 and is

slightly above 1 for small values of µ2. To take a closer look at the reason behind the poor

performance of the max-weight policy with β = 0.1 when µ2 is large, in Figure 13, we plot

the average queue length process (averaged over 50 sample paths) under the three policies

when µ2 = 0.85. While all three policies stabilize the system, the number of customers

in each class are quite different. When β = 0.1, the max-weight policy prioritizes Class 2

customers too much, which can cause a significant amount of priority-induced idleness.

This leads to a very small Class 2 queue but an extremely large Class 1 queue.
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Figure 12 Total cost incurred by each policy for different values of µ2. T = 5000, N = 2, I = 2, m = (2,1),

λ(t) = (0.2,0.32), for all t, µ1 = 0.3, c= (1,1), ξ = 5, and Γ = 100.
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Figure 13 Total number of customers as a function of t under different policies. N = 2, I = 2, m= (2,1), λ(t) =

(0.2,0.32), for all t, µ= (0.3,0.85), ξ = 5, c= (1,1) and Γ = 100.
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To conclude this section, we would like to point out that in order to have a fair com-

parison, we do not show experiments with large initial values, time-varying arrivals, or

short time horizons. In these cases, the idle-avoid cµ/m rule can significantly outperform

the max-weight policy. This is not surprising since the idle-avoid cµ/m rule is designed for

such problems, while the max-weight policy is designed for very long time horizons, even

though it is agnostic to the arrival rates.

8. Discussion and Future Directions

In this paper, we study the optimal scheduling policy for multi-server queues with multiple

classes of customers. The special feature we study is that different classes of customers

may require a different number of servers. We propose an index-based policy, the idle-avoid
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cµ/m rule, that minimizes the amount of idleness incurred while prioritizing customers

according to their cµ/m index. We prove that this policy is asymptotically optimal under

the many-server regime and is throughput optimal under certain regularity conditions on

the arrival probabilities.

We find that the addition of the different resource requirements introduces new dynamics

that did not arise in the classical multi-class queues. In particular, the impact of priority-

induced idleness is a direct consequence of the different resource requirements. As we have

shown, this idleness can have substantial consequences, such as leading to poor performance

of seemingly good policies. While avoiding idleness may sacrifice the instantaneous cost

reduction rate, we demonstrate theoretically and through numerical experiments that the

amount of suboptimality is limited. More specifically, our results indicate that in small

and heavily loaded systems, which are highly relevant to healthcare applications, avoiding

idleness is crucial. When the system is very large and/or very lightly loaded, there is more

slack in capacity to accommodate idleness; hence, other idle-aware cµ/m rules, such as the

cµ/m rule, can perform well. However, because uncertainty in demand (e.g., unpredictable

disease outbreaks) can quickly alter the system dynamics, we recommend using the idle-

avoid cµ/m rule all the time unless the system administrator is certain that the system is

lightly loaded, in which case, the holding costs are likely to be low anyway.

We identify several directions for future research from the modeling perspective. First,

it would be interesting to study a network of resources instead of a single type of resource.

For example, in the ICU setting, we need both an ICU bed and the required nurses to

admit a patient, and either one can be the bottleneck. The challenge then is to develop

good scheduling policies that balance multiple resource constraints. Second, for ICUs in

particular, patients’ acuity levels may evolve over time, suggesting that the same patient

may have different resource requirements during his/her length of stay. The staffing level

can also change from shift to shift. It would be interesting to incorporate these time-varying

dynamics (e.g., class transition behavior) and study the acuity-based optimal staffing policy

in this setting.
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Appendix A: Proof of Theorem 1 - Cases 2a and 2b

Recall that π̂ denotes the policy characterized by Theorem 1 and π∗ denotes the optimal policy.

A.1. Case 2a. π̂=P2

Base Case: t= T − 1. Due to the linearity of (4) in π(t), it is straightforward to see that when

c2µ2 > c1µ1, we shall allocate as much capacity as possible to Class 2. Thus, π∗(T − 1) = P2 =

π̂(T − 1).

Inductive step. Suppose that π̂ minimizes V π
t for some 1≤ t≤ T − 1. We show by contradiction

that at time t− 1, it is also optimal to follow π̂. Suppose by contradiction that at time t− 1, it is

optimal to follow some other policy, and then by the induction argument, from time t onward, we

shall follow π̂.

We consider two coupled systems s∗ and s′. Both systems start from the same state at t−1, i.e.,

X(t− 1) = x, and see the same arriving customers. s∗ system uses policy π∗ while the s′ system

uses a (possibly) suboptimal policy π′ that will be specified later.

We conduct the analysis for different values of x.

� If x1 = 0 or x2 = 0, π∗ and π̂ coincide.

� If x1 ≥ 1, x2 = 1, for π∗ and π̂ to deviate, π∗ should admit one Class 1 customer at t− 1.

For π′, the Class 2 customer is admitted at t−1. There are four potential outcomes across the two

systems at the end of time epoch t− 1 (see Figure 14 for a pictorial illustration):

1. Only the Class 2 customer completes service.

2. Both the Class 1 customer and the Class 2 customer complete their service.

3. Only the Class 1 customer completes service.

4. Neither customer completes service.

Figure 14 Coupling illustration for Case 2a, Scenarios 1–4.
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We construct policy π′ such that we will admit the Class 1 customer at time t, and from time

t+ 1 onward, π′ will follow π∗. Under the coupling construction, the two systems, s∗ and s′, are

fully synchronized at t+1 under each of the 4 scenarios. Thus, the cost difference between s∗ and s′

is the difference in the holding costs incurred at t. The cost difference (∆Ct) and the corresponding

probability (Pr) for each scenario is summarized in Table 3. Putting all the scenarios together, we

have

V π∗

t−1(X)−V π′

t−1(X) = c2(1−µ1)µ2 +µ1µ2(c2− c1)− c1µ1(1−µ2) = µ2c2−µ1c1 > 0,

where the last inequality comes from condition of Case 2a. This contradicts the assumption that

π∗ is optimal.

Table 3 The cost difference and the corresponding probability for each scenario

Scenario 1 Scenario 2 Scenario 3 Scenario 4

∆Ct c2 c2− c1 −c1 0

Pr (1−µ1)µ2 µ1µ2 µ1(1−µ2) (1−µ1)(1−µ2)

� If x1 ≥ 1 and x2 ≥ 2, following similar lines of argument as in the case where x1 ≥ 1 and

x2 = 2, we can also show that admitting two Class 2 customers is preferable over admitting one

Class 1 customer, i.e., π̂ is optimal. Note that we have already proved that admitting one Class 2

customer is preferable over admitting one Class 1 customer, and admitting two Class 2 customers

is straightforwardly preferable over admitting one Class 2 customer.

A.2. Case 2b. π̂=PI
2

Base case: t= T − 1. Due to the linearity of (4) in π(t) and since 2c2µ2 > c1µ1, we would prefer

admitting two Class 2 customers over one Class 1 customer. However, since c2µ2 < c1µ1, we would

prefer admitting one Class 1 customer over admitting only one Class 2 customer. Thus, π∗(T −1) =

P I
2 = π̂(T − 1).

Inductive step. Suppose π̂ minimizes V π
t for some 1≤ t≤ T − 1. We show by contradiction that

at time t−1, it is also optimal to follow π̂. Suppose by contradiction that at time t−1, it is optimal

to follow some other policy, and then by the induction argument, from time t onward, we shall

follow π̂.

We consider two coupled systems s∗ and s′. Both systems start in the same state at t− 1, i.e.,

X(t−1) = x, and see the same arriving customers. The s∗ system uses policy π∗ while the s′ system

uses a suboptimal policy π′ that will be specified later.

We next conduct the analysis for different values of x.
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� If x1 = 0 or x2 = 0, the π∗ and π̂ do not deviate.

� If x1 ≥ 1 and x2 = 1, for π∗ to deviate from π̂, in System s∗, we admit the Class 2 customer

at t− 1. In System s′, we admit one Class 1 customer at t− 1. Similar to Case 2a, there are four

possible outcomes across the two systems. Their corresponding probabilities are also the same as

in Case 2a.

If there is no Class 2 arrival at t− 1, we construct π′ such that we admit the Class 2 customer

at t, and from t+ 1 onward, π′ follows π̂. From Figure 15, it is easy to see that the two systems

are fully synchronized at t+ 1 in all scenarios.

Figure 15 Coupling illustration for Case 2b with one Class 2 customer and no Class 2 arrival at t− 1.
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If there is a Class 2 arrival at t− 1, π′ admits two Class 2 customers at t. In this case, we will

allocate an additional server to s∗ at t. We denote this new system with the extra server at t by s̃

and the corresponding optimal policy by π̃. Let Gt(x) denote the optimal cost to go with X(t) = x

when having an extra server in time slot t only. From Lemma 3 in Appendix A.3, we have

Gt(St−1(x,π∗(t− 1)))≤ V π∗

t (St−1(x,π∗(t− 1))).

From time t+1 onward, both systems follow the same policy, i.e., π∗. Figure 16 provides a pictorial

illustration of the coupling. We note that s̃ and s′ are fully synchronized at t+ 1.

Taking expectation over the eight (four without a Class 2 arrival and four with a Class 2 arrival

at t− 1) scenarios together, we have

V π∗

t−1(x)−V π′

t−1(x)

=E[Ct−1(x,π∗(t− 1)) +V π∗
t (St−1(x,π∗(t− 1)))

−Ct−1(x,π′(t− 1))−V π′

t (St−1(x,π′(t− 1)))|A2(t− 1) = 1]P(A2(t− 1) = 1)
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Figure 16 Coupling illustration for Case 2b with one Class 2 customer and a Class 2 arrival at t− 1.
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+E[Ct−1(x,π∗(t− 1)) +V π∗

t (St−1(x,π∗(t− 1)))

−Ct−1(x,π′(t− 1))−V π′

t (St−1(x,π′(t− 1)))|A2(t− 1) = 0]P(A2(t− 1) = 0)

≥E[Ct−1(x,π∗(t− 1)) +Gt(St−1(x,π∗(t− 1)))

−Ct−1(x,π′(t− 1))−V π′

t (St−1(x,π′(t− 1)))|A2(t− 1) = 1]P(A2(t− 1) = 1)

+E[Ct−1(x,π∗(t− 1)) +V π∗

t (St−1(x,π∗(t− 1)))

−Ct−1(x,π′(t− 1))−V π′

t (St−1(x,π′(t− 1)))|A2(t− 1) = 0]P(A2(t− 1) = 0)

=µ1c1−µ2c2 > 0,

where the last inequality follows from the condition of Case 2b. This contradicts the assumption

that π∗ is the optimal.

� If x1 ≥ 1 and x2 ≥ 2, for π∗ to deviate from π̂, under π∗, we admit one Class 1 customer at

t− 1. Under π′, we admit two Class 2 customers at t− 1. At t, π′ admits one Class 1 customer,

and from t+ 1 onward, π′ will follow π̂. Similar to Case 1, there are 6 outcomes across the two

systems at t−1. Their corresponding probabilities are also the same as in Case 1. From Figure 17,

it is easy to see that the two systems are fully synchronized at t+ 1. Thus,

V π∗

t (X)−V π′

t (X) = 2c2µ2− c1µ1 > 0,

where the last inequality follows from the condition of Case 2b. This contradicts the assumption

that π∗ is the optimal policy. �
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Figure 17 Coupling illustration for Case 2b with X2(t− 1)≥ 2.
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A.3. An auxiliary lemma for the proof of Case 2b

We consider the benefits of adding an extra server in a single time slot. Given state x, let zG(x)

denote a feasible server allocation strategy at this time slot, i.e.,

I∑
i=1

zGi (x)≤N + 1,
zGi (x)

mi

∈N0, and 0≤ zGi (x)

mi

≤ xi.

Let Gt(x) denote the optimal cost to go at time t with X(t) = x, when there are N + 1 servers at

t, and N servers from t+ 1 onwards.

Lemma 3. If an additional server is added at time epoch t for one time slot,

Gt(x)≤ V ∗t (x).

Proof: We consider two coupled systems, s∗ and s̃, that start from the same state at time t, i.e.,

X(t) = x, and see the same arriving customers. System s∗ follows the optimal scheduling policy.

System s̃ is identical to s∗, except that at time t, an additional server is added for that time slot

only. Consider a feasible policy for s̃, under which the extra server is not utilized. Then, the two

systems would incur the same holding cost. Since Gt(x) is minimized over all feasible policies, the

result directly follows. �

Appendix B: Proof of the Competitive Ratio Bound in Section 3.2

B.1. An Auxiliary Lemma

Before we prove Theorem 2, we first provide an auxiliary lemma.

Lemma 4. When c1µ1 < c2µ2, for any t= 0, . . . , T − 1, if X1(t)≥ 1 and X2(t)≥ 2, π∗(t) 6= P1.

Lemma 4 indicates that in this parameter regime it is never optimal to schedule one Class 1

customer over two Class 2 customers.
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Proof of Lemma 4 The proof is based on backwards induction.

Base Case: t = T − 1. Due to the linearity of (4) in π(t), it is straightforward to see that as

c1µ1/2< c2µ2, we would prefer two Class 2 customers over one Class 1 customer.

Inductive step. Suppose the claim is true for all s, t≤ s≤ T −1, for some 1≤ t≤ T −1. We show

by contradiction that at t− 1, the claim is also true. Suppose X(t− 1) = x. We can restrict our

attention to states x with x1 ≥ 1 and x2 ≥ 2. Suppose by contradiction that at t−1, P1 is optimal,

i.e., we prefer admitting one Class 1 customer over two Class 2 customers at t− 1.

Following the same lines of analysis as in Case 1 of Theorem 1, we can construct a coupled System

s′ which operates under a suboptimal policy π′. In particular, π′ admits two Class 2 customers at

t− 1 and one Class 1 customer at t. From t+ 1 onward, π′ follows π∗. Then we can show that

V π∗

t (x)−V π′

t (x) = 2c2µ2− c1µ1 > 0.

This contradicts the assumption that π∗ is the optimal policy. �

B.2. Proof of Theorem 2.

We start by using a coupling argument to establish a bound on the difference in the number

of customers between a system that follows the optimal policy and a system that follows PI
2.

Specifically, consider two coupled systems that see exactly the same customers in terms of their

arrival and service times. The system that follows π∗ is denoted as s∗ and the system that follows

PI
2 is denoted as s̃.

Let Ni(t) denote the number of Class i arrivals by time t; by our coupling this is the number

of Class i arrivals in each system. Let U∗,ki (t), k≤Ni(t), denote the remaining service time of the

k-th Class i arrival at time t in the s∗ system. U∗,ki (t) = 0 implies that the customer has already

left the system. Similarly, we denote Ũk
i (t) as the remaining service time for the k-th Class i arrival

in s̃ at time t. Let X∗i (t) denote the number of Class i customers present in s∗ at time t and X̃i(t)

denote the number of Class i customers in s̃.

We now describe how we couple the scheduling policies in both systems.

System s∗ follows the optimal scheduling policy and serves customers within each class in the

first come first served (FCFS) order. Note that from Lemma 4, if there are at least two Class 2

customers in s∗, s∗ will prioritize the Class 2 customers. System s̃ follows policy PI
2 and serves

customers within each class according to FCFS with the following exceptions:

� At time t ∈ {0,1, . . . , T − 1}, if s∗ admits two Class 2 customers, i and j, and there are at

least two Class 2 customers in s̃, we consider the following two scenarios. 1) If the same Class 2

customers admitted in s∗, i and j, are still in the s̃, we admit them in s̃ as well. 2) If the i and/or j

Class 2 customers have already left s̃, but there are Class 2 customers in s̃, who have been served
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more times in s∗ (i.e., there are Class 2 customers, m and n, with U∗,m2 < Ũm
2 and U∗,n2 < Ũn

2 ),

we admit those customers. Note that other than the above two scenarios, we admit two Class 2

customers in s̃ according to FCFS.

� At time t ∈ {0,1, . . . , T − 1}, if s∗ admits a Class 1 customer and there are at least two Class

2 customers in s̃, we consider the following scenario. If there are Class 2 customers in s̃ who have

been served more times in s∗ (i.e., there are Class 2 customers, m and n, with U∗,m2 < Ũm
2 and

U∗,n2 < Ũn
2 ), we admit those customers. Note that other than the above-mentioned scenario, we

admit two Class 2 customers in s̃ according to FCFS.

Next, we prove the following statement, which we refer to as Statement S:

1. Ũk
2 (t)≤ U∗,k2 (t) for all k = 1, . . . ,N2(t), except at most one k∗, for which Ũk∗

2 (t) = U∗,k
∗

2 (t) +

κ2(t) for some κ2(t)∈ (0, T ]. If there is no such k∗, we set κ2(t) = 0.

2. Ũk
1 (t) ≤ U∗,k1 (t) for all k = 1, . . . ,N2(t), and

∑N1(t)

k=1 U∗,k1 (t) =
∑N1(t)

k=1 Ũk
1 (t) + κ1(t) for some

κ1(t)≥ κ2(t).

That is, all Class 2 jobs have been served more times in the s̃ system than the s∗ system, except

for at most one Class 2 job, k∗, which has been served κ2(t) more times in the s∗ system than the

s̃ system. Additionally, all Class 1 jobs have been served more times in the s̃ system than the s∗

system. The total amount of additional Class 1 service times is κ1(t), which is at least as large as

κ2(t).

Under Statement S, we have

X̃2(t) =

N2(t)∑
k=1

1{Ũk2 (t)>0} ≤X∗2 (t) + 1{κ2(t)>0},

X̃1(t) =

N1(t)∑
k=1

1{Ũk1 (t)>0} ≤X∗1 (t).

(14)

We next prove Statement S by induction following the coupled policies:

Base Case: At t= 0, the two systems starts from the same state. Thus, Statement S holds trivially.

Inductive step: Suppose Statement S is true at time t. We next show that it holds at time t+ 1

as well.

We divide the analysis into different cases depending on the value of X∗(t) and X̃(t).

Case I X∗2 (t)≥ 2. In this case, s∗ admits two Class 2 customers at t.

Case Ia. If X̃2(t)≥ 2, s̃ admits two Class 2 customers as well. κ1(t+ 1) = κ1(t). If the admitted

Class 2 customers are the same in the two systems, κ2(t + 1) = κ2(t). If the admitted Class 2

customers are not the same in the two systems and κ2(t) > 0, customer k∗ in Class 2 will be

admitted in s̃ and κ2(t+ 1) = κ2(t)− 1. Otherwise, κ2(t) = 0, which implies κ2(t+ 1) = 0.
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Case Ib. If X̃1(t) ≥ 1 and X̃2(t) ≤ 1, s̃ admits a Class 1 customer. κ1(t+ 1) = κ1(t) + 1. If i)

X̃2(t) = 1, ii) one of the two Class 2 customers admitted in s∗ is the Class 2 customer remaining

in s̃, and iii) that Class 2 customer has less of equal remaining service time in s∗ than in s̃,

κ2(t+ 1) = κ2(t) + 1. Otherwise, κ2(t+ 1) = κ2(t) = 0.

Case Ic. If X̃1(t) = X̃2(t) = 0, no customer is served in System s̃, κ1(t+ 1) = κ1(t). X̃2(t) = 0

implies that κ2(t) = 0. Thus, κ2(t+ 1) = 0.

Case II X∗1 (t)≥ 1, X∗2 (t) = 1, and π∗(t) = P2. In this case, by (14), X̃2(t)≤ 2.

Case IIa. If X̃2(t) = 2, s̃ admits two Class 2 customers. κ1(t+ 1) = κ1(t). As X̃2(t)>X∗2 (t), one

of the two Class 2 customers admitted in s̃ is behind the corresponding Class 2 customer in s∗.

Thus, κ2(t+ 1) = κ2(t)− 1.

Case IIb. If X̃1(t) ≥ 1 and X̃2(t) ≤ 1, s̃ admits a Class 1 customer. κ1(t + 1) = κ1(t) + 1. If

X̃2(t) = 1, denote the Class 2 customer in s̃ as customer i. If Ũ i
2(t)≥ U∗,i2 (t) (customer i could be

the remaining Class 2 customer in s∗ or could have already left s∗), κ2(t+1) = κ2(t)+1. Otherwise,

κ2(t+ 1) = κ2(t) = 0.

Case IIc. If X̃1(t) = 0 and X̃2(t) = 1, s̃ admits the Class 2 customer, which we denote as customer

i. κ1(t+ 1) = κ1(t). If customer i is still in s∗, κ2(t+ 1) = κ2(t). If customer i has already left s∗,

κ2(t)> 0 and κ2(t+ 1) = κ2(t)− 1.

Case IId. If X̃1(t) = X̃2(t) = 0, no customer is served in s̃. κ1(t+ 1) = κ1(t). X̃2(t) = 0 implies

that κ2(t) = 0. Thus, κ2(t+ 1) = 0.

Case III X∗1 (t)≥ 1, X∗2 (t) = 1, and π∗(t) = P I
2 , so that the s∗ system admits a Class 1 customer.

In this case, by (14), X̃2(t)≤ 2.

Case IIIa. If X̃2(t) = 2, s̃ admits two Class 2 customers. κ1(t+ 1) = κ1(t)− 1. As there is one

more Class 2 customer in s̃ than in s∗, κ2(t)> 0. Then, κ2(t+ 1) = κ2(t)− 1.

Case IIIb. If X̃1(t)≥ 1 and X̃2(t)≤ 1, s̃ admits a Class 1 customer as well. In this case, κi(t+1) =

κi(t) for i= 1,2.

Case IIIc. If X̃1(t) = 0 and X̃2(t) = 1, s̃ admits the Class 2 customer. Since a Class 1 customer

is admitted in s∗, κ1(t)> 0 and κ1(t+ 1) = κ1(t)− 1. If κ2(t)> 0, κ2(t+ 1) = κ2(t)− 1. Otherwise,

κ2(t+ 1) = κ2(t) = 0.

Case IIId. If X̃1(t) = 0 and X̃2(t) = 0, κ1(t+ 1) = κ1(t)− 1 and κ2(t+ 1) = κ2(t) = 0.

Case IV X∗1 (t) = 0 and X∗2 (t) ≤ 1. Based on the induction argument, X̃1(t) = 0 and κ1(t) = 0.

As κ2(t)≤ κ1(t), we have κ2(t) = 0 and X̃2(t)≤X∗2 (t). Note that if X∗2 (t) = X̃2(t) = 1, the Class

2 customer in s̃ has less or equal remaining service time than the Class 2 customer in s∗. Thus,

κi(t+ 1) = κi(t) = 0 for i= 1,2.

Case V X∗1 (t)≥ 1 and X∗2 (t) = 0. In this case, s∗ admits a Class 1 customer and by (14), X̃2(t)≤ 1.

Case Va. If X̃1(t)≥ 1, s̃ admits a Class 1 customer as well. Then, κi(t+ 1) = κi(t) for i= 1,2.
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Case Vb. If X̃1(t) = 0 and X̃2(t) = 1, s̃ admits the Class 2 customer. Since X∗2 (t) = 0, κ2(t)> 0.

Then, κi(t+ 1) = κi(t)− 1 for i= 1,2.

Case Vc. If X̃1(t) = 0 and X̃2(t) = 0, no customer is served in s̃. Since there is at least one Class

1 customer in s∗, κ1(t)> 0 and κ1(t+ 1) = κ1(t)− 1. Since X̃2(t) = 0, κ2(t+ 1) = κ2(t) = 0.

The above cases cover all possible scenarios. We have thus shown that S holds at t+ 1 as well.

Based on Statement S (and hence, (14)), the following inequality holds path-by-path, i.e., for

t= 0, . . . , T :

c1X̃1(t) + c2X̃2(t)≤ c1X
∗
1 (t) + c2X

∗
2 (t) + c2 · 1{κ2(t)>0}

In addition, when κ2(t)> 0, κ1(t)≥ κ2(t)> 0 (from the second part of Statement S). Thus,

1{κ2(t)>0} ≤X∗1 (t) for t= 0, . . . , T .

Through stochastic dominance, we have

E

[
T−1∑
s=t+1

c1X̃1(s) + c2X̃2(s)

]
≤E

[
T−1∑
s=t+1

c1X
∗
1 (s) + c2X

∗
2 (s) + c21{κ2(s)>0}

]
(15)

and

E

[
T−1∑
s=t+1

1{κ2(s)>0}

]
≤E

[
T−1∑
s=t+1

X∗1 (s)

]
. (16)

Then,

V
PI

2
t (x)

V π∗
t (x)

=
E
[∑T−1

s=t+1 c1X̃1(s) + c2X̃2(s)
]

+E
[
F1(X̃1(T )) +F2(X̃2(T ))

]
E
[∑T−1

s=t+1 c1X∗1 (s) + c2X∗2 (s)
]

+E [F1(X∗1 (T )) +F2(X∗2 (T ))]

≤
E
[∑T−1

s=t+1 c1X
∗
1 (s) + c2X

∗
2 (s) + c21{κ2(s)>0}

]
E
[∑T−1

s=t+1 c1X∗1 (s) + c2X∗2 (s)
]

+E [F1(X∗1 (T )) +F2(X∗2 (T ))]

+
E
[
F1(X∗1 (T )) +F2(X∗2 (T ) + 1{κ2(T )>0})

]
E
[∑T−1

s=t+1 c1X∗1 (s) + c2X∗2 (s)
]

+E [F1(X∗1 (T )) +F2(X∗2 (T ))]
by (15)

=1 +
E
[
c2

∑T−1

s=t+1 1{κ2(s)>0}

]
+E

[
F2(1{κ2(T )>0})

]
E
[∑T−1

s=t+1 c1X∗1 (s) + c2X∗2 (s)
]

+E [F1(X∗1 (T )) +F2(X∗2 (T ))]

≤1 +
E
[
c2

∑T−1

s=t+1X
∗
1 (s)

]
+E [F2(X∗1 (T ))]

E
[∑T−1

s=t+1 c1X∗1 (s) + c2X∗2 (s)
]

+E [F1(X∗1 (T )) +F2(X∗2 (T ))]
by (16)

≤2 as c1 ≥ c2.

�

Appendix C: Proofs of the Results in Section 5

We denote π̄∗ as the optimal scheduling policy. We also denote π̄LP as the optimal policy induced

by the LP (9), which we also refer to as the fluid cµ/m rule.
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C.1. Proof of Lemma 1

We prove process level convergence by induction on t.

We first note that by assumption, X̄η(0)⇒ x̄(0).

Suppose X̄η(t)⇒ x̄(t) as η→∞. Then, as ψ̄η→ ψ̄,

D̄η
i (t)|X̄η(t)

D
=

1

η
Binomial(ηψ̄ηi (X̄η(t))/mi, µi)⇒ µiψ̄i(x̄(t))/mi as η→∞.

In addition, because

Āηi (t)⇒ λi(t) as η→∞

and X̄η
i (t+ 1) = X̄η

i (t) + Āηi (t)−D
η
i (t), we have X̄η

i (t+ 1)⇒ x̄i(t+ 1) as η→∞.

C.2. Proof of Lemma 2

For ease of exposition, we sort the I customer classes in the decreasing order of their corresponding

cµ/m index. Let [i] denote the i-th class in this order.

The proof is based on backwards induction and an interchange argument. We first introduce

V̄ π̄
t (x) as the cost to go function under policy π̄ for the fluid model, i.e.,

V̄ π̄
t (x) =

T−1∑
s=t+1

I∑
i=1

cix̄i(s) +
I∑
i=1

F̄i(x̄i(T ))

with x̄i(t) = xi, and for s= t+ 1, . . . , T ,

x̄i(s) = x̄i(s− 1) +λi(s− 1)−µiπ̄i(s− 1).

We define

V π̄
T−1(x) =

I∑
i=1

F̄i(x̄i(T )) given x̄i(T − 1) = x

=
I∑
i=1

ξci(xi +λi(T − 1)−µiπ̄i(T − 1)).

Base Case: t= T − 1. Let z = (z1, . . . , zI)∈RI0 denote the amount of service capacity allocated to

each class. Then,

min
π̄
V π̄
T−1(x) = min

z

I∑
i=1

ξci(xi +λi(T − 1)−µizi/mi)

s.t.
I∑
i=1

zi ≤N, 0≤ zi ≤mixi for i= 1, . . . , I.

It is straightforward to see that the optimal solution is to prioritize according to the cµ/m index.

Inductive Step. Suppose it is optimal to follow the cµ/m rule for s= t, . . . , T −1 and 0≤ t≤ T −1.

We now consider the time epoch t − 1. Let x̄(t − 1) = x for some initial state x. Suppose by
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contradiction that it is optimal to deviate from the cµ/m rule at time t−1. Then for some x, there

exists i and j, having [j]< [i], such π̄∗j (t−1)> 0 while xi− π̄∗i (t−1)> 0, i.e., some service capacity

is allocated to Class [j] while there is still Class [i] fluid waiting. If Class [i] is served some time

after t− 1 under π̄∗, let σ ≥ t be the first time after time t− 1 at which Class [i] is served under

π̄∗. Let ε := min{π̄∗i (σ), xi − π̄∗i (t− 1), π̄∗j (t− 1)mj/mi}. Consider a policy π̄′ which is identical to

π̄∗, except that at time t− 1, π̄′i(t− 1) = π̄∗i (t− 1) + ε, π̄′j(t− 1) = π̄∗j (t− 1)− ε, and at time σ,

π̄′i(σ) = π̄∗i (σ)− ε, π̄′j(σ) = π̄∗j (σ) + ε, i.e., the ε capacity is swapped under π̄′. Then,

V̄ π̄∗
t−1(x)− V̄ π̄′

t−1(x) = ε(σ− t+ 1)
ciµi
mi

− ε(σ− t+ 1)
cjµj
mj

> 0.

If Class [i] is not served after t−1, let ε= min{xi− π̄∗i (t−1), π̄∗j (t−1)mj/mi}. Consider a policy π̄′

which is identical to π̄∗, except that at time t−1, π̄′i(t−1) = π̄∗i (t−1) + ε, π̄′j(t−1) = π̄∗j (t−1)− ε.

Then,

V̄ π̄∗

t−1(x)− V̄ π̄′

t−1(x) = ε(T − t+ ξ)
ciµi
mi

− ε(T − t+ ξ)
cjµj
mj

> 0.

This contradicts the optimality of π̄∗. Thus, it is optimal to follow the cµ/m rule at t−1 as well. �

C.3. Proof of Theorem 3

The proof is decomposed into two steps.

Step 1: Prove that the optimal fluid value function is a lower bound for the stochastic value

function. Formally, we shall prove the following lemma.

Lemma 5. For any Markovian policies πη,

V πη ,η
0 (x)/η≥ V̄ ∗0 (x/η).

Note that V̄ ∗0 (x) is continuous in x when the cµ/m-index takes distinct values (note that the

optimal fluid trajectory is continuous in its initial condition). Thus, if xη/η→ x as η→∞,

lim inf η→∞V πη ,η
0 (xη)/η≥ lim inf η→∞V̄ ∗0 (xη/η) = V̄ ∗0 (x).

Step 2: Prove that the idle-aware cµ/m policy achieves the lower bound asymptotically. Formally,

we first have the following lemma. Let ψIP(Γ),η denote the mapping from the state of the system

to the allocation of servers according to the idle-aware cµ/m rule with parameter Γ≥ 0. We also

write ψ̄LP as the mapping corresponding to the cµ/m rule for the fluid model.

Lemma 6. For any fixed Γ≥ 0, ψ̄IP(Γ),η→ ψ̄LP, as η→∞.

Under the assumption that the cµ/m index takes distinct values, the LP (9) has a unique optimal

solution:

ψ̄LP
[j] (x) =

(
N −

j−1∑
i=1

ψ̄IP
[i] (x)

)
∧x[j]m[j],
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and the mapping ψ̄LP(x) is continuous in x. Thus, from Lemma 1, we have

X̄πIP(Γ),η ,η⇒ x̄π̄
LP

uniformly on [0, T ] as η→∞. (17)

We next establish the uniform integrability of X̄πIP (Γ),η ,η. We shall drop the superscript πIP (Γ),η

as it can be clearly understood from the context. Because sup0≤t≤T X̄
η
i (t)≤

∑T

t=1 Ā
η
i (t), we have

sup
η

E

[(
sup

0≤t≤T
X̄η
i (t)

)2
]
≤ sup

η
E

( T∑
t=1

Āηi (t)

)2
= sup

η

1

η2
E

( T∑
t=1

Aηi (t)

)2


= sup
η

1

η2

Var

(
T∑
i=1

Aηi (t)

)
+

[
E

(
T∑
t=1

Aηi (t)

)]2


= sup
η

1

η2

 T∑
i=1

Var (Aηi (t)) +

[
T∑
t=1

E (Aηi (t))

]2


= sup
η

1

η

[
T∑
i=1

λi(t) (1−λi(t))

]
+

[
T∑
t=1

λi(t)

]2

<∞.

This implies the uniform integrability of X̄πIP(Γ),η ,η, which combining with (17) indicates that if

xη/η= x as η→∞, then

lim
η→∞

V πIP(Γ),η ,η
0 (xη)/η= V̄ π̄LP

0 (x).

Lastly, by Lemma 2, we have V̄ π̄LP

0 (x) = V̄ ∗0 (x).

C.3.1. Proof of Lemma 5 We first note that for any feasible Markovian policy πη, we have

1

η
V πη ,η

0 (x) =
T−1∑
t=1

I∑
i=1

E[ciX̄
η
i (t)] +

I∑
i=1

E
[
Fi
(
X̄η
i (T )

)]
and

E[X̄η
i (t+ 1)] =E[X̄η

i (t)] +E[Āηi (t)]−E[D̄η
i (t)]

=E[X̄η
i (t)] +λi(t)−µiE[π̄ηi (t− 1)],

where π̄ηi (t) = πηi (t)/η and satisfies that
∑I

i=1miπ̄
η
i (t− 1)≤N and 0≤ π̄ηi (t− 1)≤ X̄η

i (t− 1). This

further implies that
∑I

i=1miE[π̄ηi (t− 1)]≤N and 0≤E[π̄ηi (t− 1)]≤E[X̄η
i (t− 1)].

Next, if we set x̄i(t) =E[Xη
i (t)]/η and π̄i(t) =E[πηi (t)]/η, then (x̄, π̄) constitutes a feasible solution

to the fluid optimization problem (8). Thus, V πη ,η
0 (x)/η≥ V̄ ∗0 (x/η).

C.3.2. Proof of Lemma 6 For a given xη, we denote zη = ψ̄IP(Γ),η(xη/η), i.e., it is the fluid-

scaled optimal solution to the IP (6). Suppose xη/η→ x as η→∞. Let z̄ = ψ̄LP(x), i.e., it is the

optimal solution to the LP (9). We also write z̃η = bηz̄c/η. Note that ηz̃η is a feasible solution to

the IP (6). This implies that R(ηz̃η)≤R(ηzη). Then, for any η≥ 1, we have

R̄(z̄)≥ R̄(zη)≥ R̄(z̃η).
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Next,

0≤ R̄(z̄)− R̄(zη)≤ R̄(z̄)− R̄(z̃η)≤
I∑
i=1

(
ciµi
mi

+ Γ

)
1

η
→ 0 as η→∞.

Thus, R̄(zη)→ R̄(z̄) as η→∞.

Lastly, as the LP (9) has a unique optimal solution when the cµ/m index takes distinct values,

we have zη→ z̄ as η→∞.

Appendix D: Proof of Theorem 4

The proof of Theorem 4 follows a similar sample-path construction as that in Armony and Bambos

(2003). Fix a sample path ω, suppose by contradiction

limsup
t→∞

1

t

I∑
i=1

mi

µi
Xi(t) = δ > 0. (18)

Then, there exists an increasing unbounded sequence of times {tu}∞u=1 such that

lim
u→∞

1

tu

I∑
i=1

mi

µi
Xi(tu) = δ.

We partition the state space into two mutually disjoint sets, such that for any ψ ∈Ωm:

Set A includes all states for which there are some idle servers under ψ. Under Assumption 2, there

are no jobs waiting under ψ for the states in set A .

Set B includes all states for which there is no idle server under ψ.

Define ŝu = sup{t < tu, X(t)∈A}, i.e., ŝu is the last time before tu at which X(t) ∈ A. By

convention, we set ŝu = 0 if X(t) has always been outside A. Then, lim infu→∞(tu− ŝu)/tu = ε1, for

some ε1 ∈ (0,1].

This implies we can find a further increasing unbounded subsequence {tv}∞v=1 such that

limv→∞(tv− ŝv)/tv = ε1. (With a little abuse of notation, we index v from 1 to∞ as well.) We next

construct an increasing unbounded sequence of times {sv}∞v=1 based on ŝv. Fix ε2 ∈ (0,1) and set

sv = max{ŝv, (1− ε2)tv} . Our construction of sv implies that

lim
v→∞

tv − sv
tv

= ε3 = min{ε1, ε2} ∈ (0,1).

Note that X(t) /∈A throughout the interval (sv, tv] and

Xi(tv)−Xi(sv) =

tv∑
t=sv+1

Ai(t)−
tv∑

t=sv+1

Di(t) =

tv∑
t=sv+1

Ai(t)−
K∑
k=1

Tk(sv + 1, tv)
µiψ

k
i

mi

,

where Tk(sv+1, tv) denotes the amount of time the system spends using the service configuration k

during the interval [sv +1, tv]. Note that here we only use feasible configurations for a given system

state. Thus,
∑K

k=1 Tk(sv + 1, tv) = tv − sv − 1. As tv − sv→∞ as v→∞,

lim inf
v→∞

∑I

i=1
mi
µi

(Xi(tv)−Xi(sv))

tv − sv − 1
=

I∑
i=1

λ̄imi

µi
−

K∑
k=1

γk

I∑
i=1

φki , (19)
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where γk ≥ 0, k = 1, . . . ,K, and
∑K

k=1 γk = 1, i.e., γk is the proportion of time configuration φk

is used. Next, we divide the K service configurations into two groups: ΦI which includes the

configurations that do not utilize all servers, and ΦNI which includes the configurations that utilize

all servers. When X(t) /∈A, all the configurations utilized (i.e., with γk > 0) under ΩM are in φNI .

Then, we can rewrite the limit in (19) as

I∑
i=1

λ̄imi

µi
−N

∑
k∈ΦNI

γk =
I∑
i=1

λ̄imi

µi
−N (20)

Next, we prove that the expression in (20) is less than or equal to 0. Suppose by contradiction that

I∑
i=1

λ̄imi

µi
>N (21)

Since λ̄∈M,
I∑
i=1

λ̄imi

µi
≤N

∑
k∈ΦNI

αk +
∑
k∈ΦI

αk

I∑
i=1

φki , (22)

for some αk ≥ 0, k= 1, . . . ,K, and
∑K

k=1αk = 1. Combining (21) and (22) yields that

N <N
∑
k∈ΦNI

αk +
∑
k∈ΦI

αk

I∑
i=1

φki <N,

where the last inequality follows because
∑I

i=1 φ
k
i <N for k ∈ΦI . We get a contradiction.

Thus,

lim inf
v→∞

∑I

i=1
mi
µi

(Xi(tv)−Xi(sv))

tv − sv − 1
≤ 0.

This further implies that

lim inf
v→∞

1

sv

I∑
i=1

mi

µi
Xi(sv) = lim inf

v→∞

1

tv(1− ε3)

I∑
i=1

mi

µi
Xi(sv)

≥ lim inf
v→∞

1

tv(1− ε3)

I∑
i=1

mi

µi
Xi(tv)

=
δ

1− ε3
> δ,

which contradicts the assumption in (18). Thus,

lim
t→∞

1

t

I∑
i=1

mi

µi
Xi(t) = 0, (23)

and note that the argument here applies sample-path wise. The convergence in (23) further implies

that the system is rate stable by Lemma 2.2 in Armony and Bambos (2003). �
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