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Patients whose transfer to the Intensive Care Unit (ICU) is unplanned are prone to higher mortality rates

and longer length-of-stay than those who were admitted directly to the ICU. Recent advances in machine

learning to predict patient deterioration have introduced the possibility of proactive transfer from the ward

to the ICU. In this work, we study the problem of finding robust patient transfer policies which account

for uncertainty in statistical estimates due to data limitations when optimizing to improve overall patient

care. We propose a Markov Decision Process model to capture the evolution of patient health, where the

states represent a measure of patient severity. Under fairly general assumptions, we show that an optimal

transfer policy has a threshold structure, i.e., that it transfers all patients above a certain severity level to

the ICU (subject to available capacity). As model parameters are typically determined based on statistical

estimations from real-world data, they are inherently subject to misspecification and estimation errors. We

account for this parameter uncertainty by deriving a robust policy that optimizes the worst-case reward

across all plausible values of the model parameters. We show that the robust policy also has a threshold

structure under fairly general assumptions. Moreover, it is more aggressive in transferring patients than the

optimal nominal policy, which does not take into account parameter uncertainty. We present computational

experiments using a dataset of hospitalizations at 21 Kaiser Permanente Northern California hospitals, and

present empirical evidence of the sensitivity of various hospital metrics (mortality, length-of-stay, average

ICU occupancy) to small changes in the parameters. While threshold policies are a simplification of the

actual complex sequence of decisions leading (or not) to a transfer to the ICU, our work provides useful

insights into the impact of parameter uncertainty on deriving simple policies for proactive ICU transfer that

have strong empirical performance and theoretical guarantees.
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1. Introduction.

In a hospital, critically ill patients are treated in the Intensive Care Unit (ICU), where they

require a significant amount of human and material resources (Milbrandt et al. (2008)). Effective

management of ICUs has substantial implications, both for the patient outcomes and for the

operational costs of the hospital. The sudden health deterioration of a patient in the general

medical/surgical ward can result in an unplanned transfer to the ICU and a severe downturn in

the chance of survival of the patient. Such unplanned transfers typically have worse outcomes than

patients who are directly admitted to the ICU (e.g. Barnett et al. (2002), Escobar et al. (2013)).

Developing strategies to effectively manage the limited ICU beds (Green 2002) is becoming even

more critical as demand for ICU care is increasing (Mullins et al. 2013). The primary focus of this

work is to derive and evaluate robust proactive ICU transfer policies in order to improve patient

flow and patient outcomes.

Recent advances in machine learning have brought real-time risk scores of a patient’s likelihood

of deterioration available to clinicians’ use in hospitals (Kipnis et al. 2016). Consequently, under-

standing the impact of intervening on patients based on such scores (which is currently occurring

based primarily on informed clinical judgment and empirical observation) needs to be better under-

stood from a theoretical perspective. In practice, alerts based on such scores are known to trigger

multiple types of response, which can range from simple maneuvers (e.g., increased monitoring,

one time fluid boluses) to immediate transfer to the ICU. In some cases, alerts trigger discontin-

uation of life support. In this work, as a first step towards better theoretical understanding of

the pathways involved in early warning systems and in order to focus on the impact of parame-

ter uncertainty, we focus on proactive ICU admissions, while recognizing this is just one of many

potential interventions that could take place. Using the data of nearly 300,000 hospitalizations at
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KPNC, the authors in Hu et al. (2018) provide empirical evidence that proactively transferring

patients to the ICU can significantly reduce the average mortality risk and the Length-Of-Stay

(LOS). However, using simulation to consider the system-wide effect of various proactive transfer

policies, the authors provide a cautionary tale that overly aggressive transfers can have a signifi-

cant impact on increasing ICU occupancy, which is associated with worse outcomes (e.g. Kc and

Terwiesch (2012)).

While Hu et al. (2018) demonstrates that there is promising potential in the use of proactive

transfers, there are some limitations with respect to the insights developed at the system-wide level.

First, in practice, the actual ICU admission decision relies on a complex sequence of events that are

activated when a patient’s severity score reaches the alert threshold. Therefore, the model of ICU

transfer based only on the severity scores is a simplification. Second, there is limited theoretical basis

for the class of policies (threshold and random) which are considered. But, perhaps more critically,

the core parameters of the simulation model are calibrated from real data and are subject to

uncertainty. In particular, the transition rates of a Markov chain are estimated from a finite dataset

of patient hospitalizations and are an approximation of the true parameters. This is concerning

because the performance of a policy can significantly deteriorate, even under small variations from

the true parameters (e.g. Section 5 of this paper). Consequently, an optimal transfer policy for

the estimated parameters might perform very poorly in practice even if the true parameters are

close but different. This limitation is widely acknowledged in the healthcare community and is

typically addressed by conducting sensitivity analysis. This is the approach taken in Hu et al.

(2018). However, when models have many parameters – as ours does – the comprehensiveness of

these types of sensitivity analysis can be limited due to computational reasons. This paper proposes

to look at the problem by optimizing the worst-case performance over an uncertainty set by using

tools from robust optimization.

Our goal in this paper is to develop robust transfer policies, i.e., transfer policies with guarantees

of good performance over a given set of plausible hospital parameters, which are consistent with
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available data. This is in contrast to nominal transfer policies, which are only guaranteed to have

good performances for known fixed values of the parameters and could have very bad performance

for close, but different, parameters. In doing so, we will leverage results from the Robust MDP

literature (e.g. Iyengar (2005), Mannor et al. (2007),Wiesemann et al. (2013), Goh et al. (2018),

Goyal and Grand-Clement (2018)) to develop a theoretical and empirical basis for our proposed

transfer policies.

Our main contributions can be summarized as follows:

Markov model for a single patient. We propose an approximation of the full hospital

dynamics, using the health evolution of a single patient. In particular, we present a Markov Decision

Process (MDP) to model the patient health evolution. This MDP is able to capture the fundamental

trade-off between the benefit of proactive transfer for individual patients versus suboptimal use of

limited ICU resources for patients who may not ‘really need it’.

Structure of optimal nominal policies. Under fairly general and interpretable assump-

tions that we expect to hold in practice, we show that an optimal proactive transfer policy in

our single-patient MDP is a threshold policy. In particular, there exists an optimal policy that

transfers all patients above a certain severity score. This structure is particularly nice because of

its interpretability and implementability.

Robustness of transfer policies. Building upon the nominal model, we incorporate the real-

world limitation of parameter uncertainty. In particular, we consider parameter misspecification

for the transition matrix in our single-patient MDP model. Underlying factors, such as genetics,

demographics, and/or physiologic characteristics of certain diseases, could dictate the health evo-

lution of patients in specific health states. As such, we consider a model of uncertainty where the

transition probabilities of different health states are correlated and depend on a factor model (Goh

et al. (2018) and Goyal and Grand-Clement (2018)), which is a departure from Iyengar (2005) and

Wiesemann et al. (2013).

We present an algorithm to compute an optimal robust policy, i.e., a policy that maximizes the

worst-case possible outcomes over all plausible transition matrices. Moreover, we prove structural
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results for the optimal robust policy. In particular, an optimal robust policy is always deterministic

and – under the same assumptions as in our nominal model – of threshold type. Additionally, the

threshold of the optimal robust policy is lower than the threshold of the optimal nominal policy.

Therefore, the optimal robust policy transfers more patients to the ICU than the optimal nominal

policy.

Numerical experiments. We present detailed numerical experiments to compare the perfor-

mances of the optimal nominal and robust transfer policies, making use of the hospitalization data

of almost 300,000 patients at Kaiser Permanente. We observe that, for our single-patient MDP, the

performance of the optimal nominal policy can deteriorate even for small variations of the model

parameters. Moreover, there are significant differences in the recommended thresholds between the

nominal and robust policies, which reflects that these polices could have substantial differences

in the proportion of patients who are proactively transferred. When considering the full hospital

model, we observe similar deteriorations in performance (as measured by mortality, length-of-stay,

average ICU occupancy) even for small parameters deviations. Additionally, we find that correlated

uncertainty in the transition matrix results in different and more useful insights than when con-

sidering uncorrelated uncertainty which can be overly conservative. We also highlight the contrast

between this worst-case analysis and more standard sensitivity analysis approaches.

The rest of the paper is structured as follows. We finish this section with a brief overview of

related literature. In Section 2, we present the hospital model and the Markov chain that describes

the evolution of a patient’s health. In Section 3, we introduce a Markov Decision Process to

approximate the full hospital model and we theoretically characterize the structure of optimal

nominal policies. We address parameter uncertainty in Section 4, where we introduce our model

of uncertainty and we prove some theoretical results on the structure of optimal robust policies.

In Section 5, we present computational experiments based on a dataset from Kaiser Permanente

Northern California and we examine the contrast between the optimal nominal and optimal robust

policies.
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Notations. For an integer n≥ 0, we denote by [n] the set {1, ..., n}. Vectors and matrices are in

bold font whereas scalars are in regular font, except for policies π which are also in regular font.

The vector e has every component equal to one and its dimension depends on the context.

1.1. Related work.

Our work mainly involves three topics of research: (i) ICU management and proactive care in

hospitals, (ii) Markov Decision Process in healthcare and (iii) robust Markov Decision Process,

particularly those applied to problems in healthcare.

ICU management and proactive care in hospitals. There is a large and growing body of literature

in both the operations and medical literature on the management of ICUs. For instance, the impact

of congestion and demand-driven discharges has been considered both empirically (e.g. Chrusch

et al. (2009) and Kc and Terwiesch (2012)) and theoretically (e.g. Chan et al. (2012)). More closely

related to our work is admission into the ICU. A number of papers, including Shmueli et al. (2004),

Bountourelis et al. (2012), and Kim et al. (2014) consider the impact of ICU admission decisions on

patient outcomes when patients arrive to the hospital. Theoretical guarantees for the optimality of

threshold policies in various admission control settings (including the ICU) have been investigated

in Altman et al. (2001) and Shmueli et al. (2003). In contrast to these works, we consider a dynamic

decision-making approach where patients can be admitted to the ICU at any point while they are

in the general medical/surgical ward. In many hospitals, rapid response teams are utilized to make

these types of dynamic decisions about which patients should be admitted to the ICU (Butcher

et al. (2013), Guirgis et al. (2013)).

Given the limited number of hospital resources and the adverse impact of strained ICUs on

the quality of care provided (Opgenorth et al. (2018)), there has been a growing interest in the

development of predictive models for patients dynamics and outcomes (LOS, death, readmission to

the ICU, etc.). For instance, the authors in Putnam et al. (2002) develop a risk-adjustment metric

to predict patient hospitalization. The authors in Bilben et al. (2016) study the performances of the

National Early Warning Score (NEWS) as a risk score for ED patients, while the NEWS risk score
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has been specifically developed for patients in the hospital ward. Peck et al. (2012) utilize expert

opinion, naive Bayes and logistic regression to predict the number of patients in the Emergency

Department (ED) who will be admitted to a particular inpatient unit. Higgins et al. (1997) develop

ICU admission scores aimed at predicting mortality risk after coronary artery bypass grafting,

while Brunelli et al. (2008) develop a scoring system for predicting ICU admission after major

lung resection; see Rapsang and Shyam (2014) for a review of the medical severity scores for ICU

patients.

The operations community has studied how preventative/proactive care can be used to improve

patient care. For instance, Xu and Chan (2016) design efficient proactive ED admission control

policies based on predictions of potential patient arrivals, while proactive care using Markov models

can be dated back to at least Özekici and Pliska (1991), where the authors introduce an MDP to

compute an optimal inspection schedule in the case of post-operative periumbilical pruritus and

breast cancer.

This paper focuses on the dynamic decision of whether and when to proactively transfer a patient

to the ICU based on a patient’s risk of deterioration (e.g. Kipnis et al. (2016)). The particular

problem we study is related to that in Hu et al. (2018) which uses simulation to investigate the

impact of proactive transfers to the ICU on the patients’ flow in the hospital and on the in-hospital

mortality, LOS and ICU occupancy. While a substantial focus of Hu et al. (2018) is to rigorously

estimate the causal effect of proactive transfers on individual patients, we focus on utilizing MDP

approaches to derive theoretically justified transfer policies. Interestingly, Hu et al. (2018) conduct

a sensitivity analysis by considering random deviations in the parameters of their model over the

confidence intervals of the parameter estimates as an acknowledgement of the potential impact of

parameter uncertainty. However, this approach does not capture a possible adversarial deviation

of these parameters and, as we will show in this work, such deviations can substantially impact

system performances.
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Markov Decision Process in healthcare. In this work, we will leverage the methodology of Markov

Decision Processes (MDP). This modeling framework has been used extensively in many healthcare

applications including early detection, prevention, screening and treatment of diseases. MDPs are

particularly efficient to analyze chronic diseases and decisions that are made sequentially over

time in a stochastic environment. In particular, MDPs have been used, among others, for kidney

transplantation (Alagoz et al. (2004)), HIV treatment recommendation (Shechter et al. (2008)),

breast cancer detections (Ayer et al. (2012)), cardiovascular controls for patients with Type 2

diabetes (Steimle and Denton (2017)) and determining the optimal stopping time for medical

treatment (Cheng et al. (2019)). We refer the reader to Alagoz et al. (2010), Schaefer et al. (2005)

for reviews of applications of MDP to medical decision making.

Robust Markov Decision Process. In most medical applications, we only have access to observa-

tional data. Consequently, we can only obtain a noisy estimate of the true parameters of the MDP,

and the decision-maker may recommend a treatment that performs poorly with respect to the true

parameters. Robust MDPs address the issue of parameters misspecifications in the MDP (Satia

and Lave (1973), Iyengar (2005), Nilim and El Ghaoui (2005), Xu and Mannor (2006), Delage and

Mannor (2010), Wiesemann et al. (2013), and Mannor et al. (2016)). The goal is to compute an

optimal robust policy, i.e., a policy that maximizes the worst-case expected outcome over the set

of all plausible parameters. More specifically, the authors in Iyengar (2005), Nilim and El Ghaoui

(2005) and Wiesemann et al. (2013) present algorithms to efficiently compute an optimal robust

policy, provided that the parameters related to different state-action pairs are unrelated. Such

rectangular uncertainty sets are quite conservative and do not allow relations across transition

probabilities from different states. This is potentially very conservative especially if the transition

probabilities depend on a common set of underlying factors, as could be the case in healthcare

applications.

Robust Markov Decision Process in healthcare. In light of the limitations of the rectangularity

assumption for modeling parameters uncertainty, the authors in Steimle et al. (2018) develop a
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multi-model MDP approach and apply it to a case study of cholesterol management. However, com-

puting the optimal robust policy of multi-model MDP is intractable in general. We use the model

of factor matrix uncertainty, introduced in Goh et al. (2018) and further analyzed in Goyal and

Grand-Clement (2018). In particular, the authors in Goh et al. (2018) use a model of uncertainty

(later referred to as factor matrix uncertainty set) which captures transitions that are jointly vary-

ing in the set of all plausible parameters; prove that one can compute the worst-case reward for a

given policy; and, then apply these methods to a cost-effectiveness analysis of fecal immunochemi-

cal testing for detecting colorectal cancer. Goyal and Grand-Clement (2018) show that for a factor

matrix uncertainty set, one can also compute the optimal robust policy, i.e., the policy with the

highest worst-case reward. Our work builds upon Goh et al. (2018) and Goyal and Grand-Clement

(2018) by making use of a factor matrix uncertainty set in the specific setting of a Markov chain to

model the patient’s trajectory in a hospital and capture different levels of connectivity in parameter

deviations. Moreover, we make use of the theoretical tools developed in Goyal and Grand-Clement

(2018), and more specifically of the robust maximum principle (see Section 4), in order to prove

optimality of threshold policies in both the nominal MDP and the robust MDP setting, as well as

to prove ordering on the thresholds of the optimal nominal policy and the optimal robust policy.

While this paper builds upon the same model of uncertainty as in Goh et al. (2018), we are able

to (i) compute an optimal robust policy where as Goh et al. (2018) only compares the worst-case

performances of various policies, and (ii) give theoretical guarantees on the structure of the opti-

mal policies, i.e., we prove that the optimal nominal and the optimal robust policies both have a

threshold structure. Moreover, our work differs from Goyal and Grand-Clement (2018) in that we

consider the specific case of an MDP modeling patient dynamics and the ICU admission decision.

While we make use of the theoretical tools developed in Goyal and Grand-Clement (2018), we

go further by providing the structure of the optimal policies and detailed numerical experiments

(Section 5) on the impact of proactive policies on the hospital performances, which goes beyond

our MDP model for the single-patient dynamics.
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2. Hospital model and proactive transfer policies.

We formally present our discrete time hospital patient flow model. This model is similar to Hu et al.

(2018) and is depicted in Figure 1. We consider a hospital with two levels of care, the Intensive Care

Unit (ICU) and the general medical/surgical ward (ward). In order to focus on the management

of the ICU, we assume that the ward has unlimited capacity while the ICU has a limited capacity

C <+∞.

Never been 


to the ICU

Been to the ICU

Ward
ICU

Arrivals

ArrivalsDischarge/death

Discharge/death

Proactive transfer

Crash

Nominal readmission

Nominal discharge

Demand-driven discharge

Proactive readmission

Discharge


/death

Figure 1 Simulation model for the hospital.

2.1. Model Dynamics

Ward patients: We start by describing the dynamics of the patients on the ward. These patients

are divided into those who have already been to the ICU during their hospital stay and those who

have not. The state of a patient who has never been to the ICU is captured by a severity score
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i ∈ {1, ..., n}, for a given number of severity scores n ∈N; each patient is assigned a severity score

at arrival in the hospital, and this score is then updated in each time slot. We model the arrivals of

patients with severity score i as a non-homogeneous Poisson process λi(t). We model the evolution

of the severity scores as a Markov Process with transition matrix T 0 ∈Rn×(n+3). In each time slot,

a patient whose current severity score is i∈ [n] transitions to another severity score in j ∈ [n] with

probability T 0
ij. In addition, one of the three following events may happen at the end of each time

slot:

1) With probability T 0
i,n+1, the patient may crash and require a reactive transfer to the ICU.

2) With probability T 0
i,n+2, the patient may fully recover and leave the hospital.

3) With probability T 0
i,n+3, the patient may die.

Reactive transfer to the ICU. If a patient crashes on the ward, s/he will be admitted to the ICU.

Upon ICU admission, this patient’s remaining hospital Length-Of-Stay (LOS) is modeled as being

lognormally distributed with mean 1/µC and standard deviation σC . We consider a model where

a proportion pW (following a distribution with density fpW ) of this LOS is spent in the ICU, while

the remaining proportion of time, 1− pW , is spent in the ward. During this time, the patient may

again require ICU admission, with a rate of ρC . Any patient still in the ward at the end of this LOS

is assumed to die with probability dC, or to fully recover and be discharged with probability 1−dC.

If there are no available beds in the ICU when a patient crashes, the ICU patient with the shortest

remaining service time in the ICU is discharged back to the ward in order to accommodate the

incoming patient; we refer to this event as a demand-driven discharge. A demand-driven discharged

patient has an ICU readmission rate of ρD. The authors in Kc and Terwiesch (2012) suggest that

ρD is higher than ρE , the readmission rate of patients who are naturally discharged from the ICU.

Therefore, we set ρD =1.15 · ρE.

Proactive transfers to the ICU. If there are beds available in the ICU, a patient can be proactively

transferred from the ward to the ICU. Such patients typically have better outcomes than those who

crash and require a reactive ICU transfer (Hu et al. (2018)). If a patient with severity score i∈ [n]
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is proactively transferred, the LOS is modeled as being lognormally distributed with mean 1/µA,i

and standard deviation σA,i, while a proportion pW ∼ fpW of this LOS is spent in the ICU. As in the

case of reactive transfer, the patient will then survive to hospital discharge with probability 1−dA,i.

We assume that 1−dA,i ≥ 1−dC, i.e., the patient is more likely to survive if proactively transferred.

If the patient is naturally discharged from the ICU, the readmission rate is ρA,i, otherwise it is

ρD. We set ρA,i = ρC ; note that the readmission rate for a demand-driven discharged patient is the

same, regardless of whether the patient is a reactive or a proactive transfer.

Note that in practice when a patient reaches an alert threshold he may enter an evaluation

state where further tests and examinations are required before an admission decision is made. In

some instances, the patient may never be admitted to the ICU; e.g. if the alert is an error or

the patient has a directive to not provide rescue measures. In order to focus on the impact of

parameter uncertainty, our model assumes that ICU admission decisions are made right after the

alert threshold is attained.

Direct admits to the ICU: In addition to reactive and proactive ICU transfers from the ward,

patients can also be directly admitted to the ICU. We model the arrivals of theses patients with

a non-homogeneous Poisson process with rate λE(t). Their LOS is lognormally distributed with

mean 1/µE and standard deviation σE, and a proportion pE (following a distribution with density

fpE ) of this LOS is spent in the ICU, while the remaining time is spent in the ward. At the end

of this LOS, the patient fully recovers and leaves the hospital with probability 1− dE, or dies with

probability dE.

Details about the distribution laws of the different stochastic processes (arrivals in the ward and

in the ICU, transition matrix across severity scores, distribution of LOS and mortality rate, etc.)

involved in the hospital model of Figure 1 can be found in Appendix A.

2.2. Transfer policies

A transfer policy π is a decision rule that, for each patient in the ward, decides whether and when

to proactively transfer the patient to the ICU (subject to bed availability). Our goal is to study the
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impact of the proactive transfer policies on hospital performance as measured by the mortality rate,

average LOS and average ICU occupancy. A particular class of simple and interpretable transfer

policies is the class of threshold policies. A policy is said to be threshold if it transfers to the ICU

all patients whose severity score are higher than a certain fixed threshold. Such proactive transfers

are subject to bed availability in the ICU.

2.3. Challenges

The hospital model just described captures many salient features of real patient flows. Moreover, it

is able to capture the core trade-off we are interested in studying between the benefits of proactive

transfers for individual patients and needlessly utilizing expensive ICU resources. That said, the

model also suffers from some limitations that we elaborate below.

Tractability. While our model could be described as a Markov Decision Process (MDP, Puterman

(1994)), the state space is prohibitively large. For instance, with p patients in the ward and n

severity scores, one needs a state space of cardinality np to describe the state of the ward. Thus,

numerically solving this MDP is highly intractable.

Alternatively, one could take the approach in Hu et al. (2018) and use simulation. However, there

are 2n deterministic, state-independent, transfer policies (with n the number of severity scores).

The number of state-dependent policies grows by the size of the ICU and/or the large ward state-

space. Expanding to allow for randomized policies results in an uncountable number of potential

transfer policies. Therefore, it is intractable to simply compare all the deterministic transfer policies

using simulations1.

Parameter uncertainty. The hospital model is specified by the stochastic processes detailed above,

including a transition matrix T 0 ∈ R
n×(n+3)
+ . The coefficients of this matrix are estimated from

historical data and consequently suffer from statistical estimation errors. The hospital performance

could be highly sensitive to variations in coefficients of the transition matrix T 0 and therefore,

1 For each transfer policy, computing the hospital performance (average mortality, LOS, ICU occupancy) takes a

couple of hours on a laptop with 2.2 GHz Intel Core i7 with 8 GB of RAM.
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optimizing the policies using the estimated transition matrix could lead to suboptimal policies. In

particular, the optimal transfer policy for the hospital model with transition matrix T 0 might lead

to significantly suboptimal performance for the true, underlying transition matrix, even for small

deviations in T 0. Additionally, the hospital model is itself an approximation of the true hospital

dynamics and is therefore, subject to further misspecification errors.

Given these limitations of the model, we turn our attention to the development of insights using

an approximation of the hospital dynamics.

3. A single-patient Markov model.

In light of the discussion in Section 2.3, we propose a tractable approximation of the full hospital

model using an MDP that captures the health dynamics of a single patient.

3.1. Single-patient MDP.

State and Action spaces. We consider an MDP with (n+4) states. The set of states is

S= {1, ..., n}
⋃

{n+1=CR,n+2=RL,n+3=D,n+4=PT} .

The states i ∈ {1, ...n} model the severity scores of the patient. There are 4 terminal states,

CR,RL,D and PT . The state CR models the crash of a patient, its subsequent reactive transfer

to the ICU, as well as the outcome when the crashed patient finally exits the hospital (i.e., fully

recovering or dying). The state RL corresponds to Recover and Leave, the state D corresponds to

in-hospital Death, and the state PT corresponds to a patient who has been Proactively Transferred,

as well as the outcome when the patient finally exits the hospital (i.e., fully recovering or dying).

For each state i= 1, ..., n, there are 2 possible actions, which model the decision of proactively

transferring the patient (action 1) or not (action 0).

Figure 2 depicts the single-patient MDP.

Policies. A policy consists of a map π : S→ [0,1], where for each severity score i ∈ [n], π(i) ∈

[0,1] represents the probability of proactive transfer of a patient with current severity score i. For

terminal states i∈ {CR,RL,D,PT}, we set π(i) = 0.
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Arrivals


p0, i

Severity scores transitions

ij

T0
i,j

T0
i,D

T0
i,RL

T0
i,CR

i, j ∈ {1,...,n}

1

T0
j,i

PT

CR

RL

D

Figure 2 Single-patient MDP model. Terminal states are indicated as square. The patient arrives in the ward with

a severity score of i ∈ {1, ..., n} with an initial probability p0,i. The solid arcs correspond to transitions

where no transfer decision is taken (action 0), and the patient can transition to another severity score

j with probability T 0
i,j or to the terminal states CR,RL or D. When the patient is in state i and the

decision-maker takes the decision to proactively transfer the patient (action 1), the patient transitions

with probability 1 to the terminal state PT (dashed arc).

A policy π is said to be of threshold type when π(i) = 1⇒ π(i+ 1) = 1,∀ i ∈ [n− 1]. In other

words, the policy proactively transfers patients at all severity scores above a given threshold.

Therefore, the policy π can be described by an integer τ ∈ [1, n+ 1], such that all patients with

severity score higher (or equal) than τ is transferred. Note that a threshold of τ = n+ 1 means

that no patient is proactively transferred, while a threshold of τ = 1 means that all patients are

proactively transferred. We write π[τ ] to denote the threshold policy parametrized by threshold τ .

For any threshold policy π, we write its threshold τ(π).

Transitions. The states i∈ [n] model the n possible severity scores of a patient. When a patient

is in state i ∈ [n], the decision-maker can choose to proactively transfer the patient to the ICU

(action 1) or not (action 0).
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• If the patient is proactively transferred from i∈ [n], s/he transitions with probability 1 to the

state PT . The state PT is a terminal state, the decision-maker receives a terminal reward.

• If the patient is not proactively transferred from state i ∈ [n], the patient transitions to

state j ∈ [n] with probability T 0
ij in the next 6 hours (where T 0 is the transition matrix among

severity scores). Alternatively, the patient can either transition to state CR with probability

T 0
i,n+1, to state RL, with probability T 0

i,n+2 or the patient transitions to D with probability T 0
i,n+3.

When the patient reaches one of the terminal states – CR,RL or D – s/he receives the asso-

ciated terminal reward. Note that the patient exits the ward almost surely, assuming that θ =

mini∈[n]min{T 0
i,CR, T

0
i,RL, T

0
i,D}> 0.

Rewards. The discount factor λ ∈ (0,1) captures the decreasing importance of future rewards

compared to present rewards. The goal of the decision-maker is to pick a policy π that maximizes

the expected discounted cumulated rewards, defined as

R(π,T 0) =Eπ,T 0

[

∞
∑

t=0

λtritat

]

, (3.1)

where ritat is the reward associated with visiting state it and choosing action at at time t∈N.

For each policy π, we can associate a value-vector V π ∈Rn+4, defined as

V π
i =Eπ,T

[

∞
∑

t=0

λtr
tat

∣

∣

∣

∣

i0 = i

]

,∀ i∈ {1, ..., n+4}. (3.2)

We want our MDP model to capture the trade-off between the benefits of proactive transfers

for the patients’ health and the costly use of resources and staff in the ICU. We achieve this by

choosing the rewards in order to reflect the preference of the decision-maker who is balancing

between improving patient outcomes by transferring them to the ICU proactively and the risk of

such transfers resulting in a congested ICU.

Without loss of generality, we can consider that all rewards are non-negative. We consider a

uniform reward across both actions for all states, i.e., ri,0 = ri,1 = ri,∀ i∈ S. Therefore, the reward

only depends of the current state, while the action dictates the likelihood of transitioning to states

with different rewards. There is a reward of rW associated with being in the ward: ri = rW ,∀ i∈ [n].
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If a patient is proactively transferred, s/he transitions to state PT with probability 1. In state PT,

the patient either dies with probability dA or recovers. Hence, the reward rPT is

rPT = dA · (rPT−D)+ (1− dA) · (rPT−RL),

where rPT−RL (respectively, rPT−D) corresponds to the rewards for a patient recovering (respec-

tively, dying) after having been proactively transferred. The scalar dA is the probability to die

when having been proactively transferred and is calibrated to be the same as in the Markov model

for the hospital in Section 2.

Similarly, there is a reward of rCR associated with the state CR. A patient who crashes (and

does not die immediately) will be transferred to the ICU before recovering or dying. We have that,

rCR = dC · (rCR−D)+ (1− dC) · (rCR−RL),

where rCR−RL (respectively, rCR−D) corresponds to the rewards for a patient recovering (respec-

tively, dying) after having been proactively transferred and dC is the probability that a patient

dies after crashing.

We would like to note that the rewards rW , rD, rRL, rCR and rPT are a priori policy-dependent.

For instance, for a policy that proactively transfers many patients, the reward rPT should take

into account the (a priori) detrimental increase in ICU occupancy. Moreover, estimating the exact

values of the rewards can be challenging (see McClean and Millard (2006) for a solution for a two-

state hospital model, and see Yauney and Shah (2018) for a Reinforcement Learning approach).

Therefore, we focus on the relative ordering of these rewards, in order to capture the trade-off

between better health outcomes by proactive transfers and increased congestion in ICU. For the

same outcomes (e.g. mortality, LOS), the decision-maker favors the policy which uses the fewest

ICU resources. Conditional on the patient recovering and leaving the hospital, it is natural to

assume that rRL ≥ rPT−RL ≥ rCR−RL. This is because leaving the hospital after recovering in the

ward uses less ICU resources than recovering after being proactively transferred, which in turn

uses less ICU resources than if the patient crashes (see Hu et al. (2018) for empirical evidence of
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this relationship). For similar reasons, rD ≥ rPT−D ≥ rCR−D. We assume that rCR−RL ≥ rD, since

the decision-maker wants to achieve a low in-hospital mortality rate.

Note that, as expected, this ordering of the rewards implies that rRL ≥ rPT ≥ rCR.

In the rest of the paper, for any state i∈ [n] we define the outside option as

out(i) = rCR ·T 0
i,n+1 + rRL ·T 0

i,n+2 + rD ·T 0
i,n+3.

The outside option out(i) represents the expected one-step reward if a patient with severity score i

is not proactively transferred and leaves the ward in the next period, i.e., if this patient transitions

to one of the states in CR,RL, or D in the next period.

We make a first mild assumption, which has the following interpretation: the total cumulated

reward is higher when the patient recovers and leaves after one period in the ward than if s/he

stays in the ward forever.

Assumption 1.
rW
1−λ

≤ rW +λ · rRL.

This natural assumption implies the natural relationship that it is most desirable for a patient

in the ward to recover and leave the hospital at the next period. This is stated formally in the

following lemma:

Lemma 1 (Upper bound on the value vector). Let V π be the value vector of a policy π.

Under Assumption 1, we have

V π
i ≤ rW +λ · rRL,∀ i∈ [n].

We present the proof in Appendix B.

We are ready to state the main result in this section,Theorem 1. Namely, under a mild assump-

tion, the optimal nominal policy in our single-patient MDP is a threshold policy. In particular, we

consider the following assumption.

Assumption 2. We assume that

out(i)≥ out(i+1),∀ i∈ [n− 1]. (3.3)
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and we assume that

rW +λ · rPT

rW +λ · rRL

≥

(

∑n

j=1 T
0
i+1,j

)

(

∑n

j=1 T
0
ij

) ,∀ i∈ [n− 1]. (3.4)

Condition (3.3) implies that out(i) is decreasing in the severity score i. This is meaningful since

we expect that in practice, the severity score i captures the health condition of a patient, from

i= 1 (as healthy as possible in the hospital) to i= n (a very severe health condition). Therefore,

it is reasonable to assume that the outside option of a patient is worse than the outside option of

a patient with a better health condition (e.g. the healthier patient is more likely to leave the ward

in a better state).

Condition (3.4) assumes that the chance of staying in the system in risk score i is non-increasing

in severity score i. Additionally, the rate at which the chance of staying in the system decreases is

higher than the ratio
rW +λ · rPT

rW +λ · rRL

, which captures the preference between the reward for proactively

transferring a patient (rW + λ · rPT ) and an optimistic reward in the case that the patient is not

transferred (rW +λ · rRL). Similar to condition (3.3), we expect condition (3.4) to hold in practice,

since patients with more severe health states are more likely to crash or die (and therefore exit the

ward) than patients with better health conditions. In particular, it holds for our dataset of nearly

300,000 patients across 21 hospitals.

We would like to note that both condition (3.3) and condition (3.4) are homogeneous; they

hold if we scale all rewards by the same (positive) scalar. Moreover, condition (3.4) is stable by

translation, i.e., it holds if we add the same scalar to all rewards. However, this is not the case for

condition (3.3) (see Lemma 2 in Appendix C).

3.2. Optimality of threshold policies.

We are now in a position to characterize structural properties of the optimal transfer policy for

our single-patient MDP. Using standard arguments, without loss of generality we can restrict our

attention to stationary deterministic policies. We show that there exists an optimal policy that is

a threshold policy in the single-patient MDP. Formally, we have the following theorem.
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Theorem 1. Under Assumptions 1 and 2, there exists a threshold policy that is optimal in the

single-patient MDP.

The proof relies on proving that all the policies generated by a Value Iteration algorithm (Section

6.3, Puterman (1994)) are threshold policies, provided that we initialize the algorithm with a

threshold policy. Since Value Iteration is known to converge to an optimal policy of the MDP, we

can conclude that there exists an optimal policy that is threshold. We present the detailed proof

in Appendix D.

We give some intuition on why Assumptions 1 and 2 are sufficient to prove the existence of an

optimal policy that is threshold. In order to show that a policy π is threshold, it is sufficient to

show that for any state i∈ [n− 1],

π(i) = 1⇒ π(i+1)= 1.

We note that the reward associated with a proactive transfer, (rW +λ · rPT ), is constant across the

severity scores. However, for a patient in severity score i∈ [n− 1], the optimal policy is comparing

the expected reward associated with a proactive transfer and the expected reward without proactive

transfer, which decomposes into out(i) (when the patient transfers to CR,D or RL in the next

period) and the expected reward if the patient remains in the ward in the next period. Conditions

(3.3) and (3.4) ensure that the reward for not proactively transferring a patient is non-increasing

in the severity scores. Indeed, the outside option, i.e., the expected reward when exiting the ward,

is non-increasing (condition (3.3)), while the probability to exit the ward is increasing (condition

(3.4)). If the decision-maker chooses to proactively transfer a patient with severity score i, this

means that the reward for proactive transfer, rW + λ · rPT , is larger than the reward for not

proactively transferring the patient. This last quantity is non-increasing, and therefore, for any

severity score j > i, the optimal policy should also choose to proactively transfer the patient.

Several remarks are in order.
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Remark 1. We would like to note that Theorem 1 holds if we replace Assumption 2 by the

following weaker, but less interpretable condition:

(

n
∑

j=1

T 0
ij

)

· (rW +λ · rPT )+ out(i)≥
(

n
∑

j=1

T 0
i+1,j

)

· (rW +λ · rRL)+ out(i+1),∀ i∈ [n− 1]. (3.5)

Note that condition (3.5) is implied by Assumption 2, simply by summing up (3.3) and (3.4).

Moreover, condition (3.5) is homogeneous and holds under translation of the rewards (see Lemma

3 in Appendix C). However, even though condition (3.5) is more general than Assumption 2, it is

much less interpretable.

Remark 2. We show in Appendix E that Assumption 2 is necessary for the existence of an optimal

policy. We provide an instance of a single-patient MDP, whose parameters do not satisfy Assump-

tion 2 where there is no optimal policy that is threshold. The instance has two severity scores

{1,2}, and out(2)> out(1), which violates condition (3.3). By selecting parameters such that the

outside option out(2) is high, the optimal policy does not proactively transfer the patient in state 2.

However, by setting a sufficiency small discount factor λ, the reward in state 1 becomes unrelated

to the reward in state 2 and the optimal policy will proactively transfer a patient in severity score

1. We would like to note that condition (3.5) does not hold either for this instance.

Remark 3. Recall that, by assumption, the rewards in the ward are uniform, i.e., ri = rW ,∀ i∈ [n].

Also, the reward for proactively transferring a patient from severity score i∈ [n] does not depend of

the severity score. We can relax these assumptions and consider a model where the rewards in the

ward and the rewards for proactive transfers are heterogeneous across different severity scores and

still establish the optimality of a threshold policy under assumptions which are generalizations of

Assumptions 1 and 2. We present the assumptions and the proof of optimality of threshold policies

in Appendix F.

4. Robustness analysis.

Thus far, we have assumed the health state of a patient evolves according to a Markov chain

with known transition matrix T 0. However, the parameters of the transition matrix are estimated
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from a historical data and are subject to statistical estimation errors. At best, we have a noisy

estimate of T 0. Therefore, an important practical consideration is to develop an understanding of

the impact of small deviations in the hospital parameters. We start by focusing on the robustness

of the optimal policy for the single-patient MDP.

4.1. Robust MDP and model of uncertainty set.

In a classical MDP, it is assumed that the transition kernel T 0 is known so that one finds a policy

that maximizes the expected nominal reward. That is, one solves the optimization problem:

max
π∈Π

R(π,T 0).

In Theorem 1, we show that the optimal nominal policy for the matrix T 0 is a threshold policy,

under certain fairly reasonable assumptions. In order to tackle model misspecification, we consider a

robust MDP framework, where the true transition matrix is unknown. We model the uncertainty as

adversarial deviations from the nominal matrix in some uncertainty set U , that can be interpreted

as a safety region. The goal is to compute a transfer policy that maximizes the worst-case reward

over the set of all possible transition matrices U , i.e., our goal is to solve:

max
π∈Π

min
T∈U

R(π,T ). (4.1)

A solution πrob to the optimization problem (4.1) will be called an optimal robust policy.

The choice of uncertainty set is important and dictates the conservatism and usefulness of

the model. In this paper we consider a factor matrix uncertainty set (Goh et al. (2018), Goyal

and Grand-Clement (2018)). In this model we consider that the transition probabilities are con-

vex combination of some factors, which can themselves be uncertain. Such a model allows us to

capture correlations across transitions probabilities, unlike rectangular uncertainty sets (Iyengar

(2005),Wiesemann et al. (2013)) that allow unrelated adversarial deviations. In particular, we

assume that U is of the following form:

U =

{

T ∈R
n×(n+3)
+

∣

∣

∣

∣

Tij =
r
∑

ℓ=1

uℓ
iwℓ,j∀ (i, j)∈ [n]× [n+3], wℓ ∈Wℓ,∀ ℓ∈ [r]

}

(4.2)
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where u1, ...,un are fixed vectors in Rr
+ and Wℓ, ℓ= 1, ..., r are convex, compact subsets of R

(n+3)×r
+

such that:

r
∑

ℓ=1

uℓ
i = 1, ∀ i∈ [n],

n+3
∑

j=1

wℓ,j = 1, ∀ ℓ∈ [r],∀wℓ ∈Wℓ.

To understand better the implications of this uncertainty set, consider T , a transition matrix in

our factor matrix uncertainty set U . Each of the rows of the matrix T is a convex combination of the

factors w⊤
1 , ...,w

⊤
r ∈R1×(n+3). Therefore, for U = (uℓ

i)(i,ℓ) ∈Rn×r and W = (w1, ...,wr) ∈R(n+3)×r,

we have T =UW⊤. This model of uncertainty set is very general, and covers the case of (s, a)-

rectangular uncertainty sets (Iyengar (2005)), i.e., the case where all the rows of the transition

matrix T are chosen independently, when r= n (where n is the number of rows of T ). This model

is able to incorporate relationships in the transitions from various severity scores which may arise

since the health dynamics of a patient is likely to be influenced by some underlying common factors,

such as demographics, past medical histories, current blood sugar level, etc. As different rows of a

matrix T ∈ U are convex combinations of the same r factor vectors, we can use our factor matrix

uncertainty set to model correlations between the probability distributions related to different

states when r is smaller than n.

We assume that the nominal matrix T 0 satisfies Assumption 2. Our uncertainty set U models

small parameters variations from T 0. Therefore, it is reasonable to assume that all the matrices in

U will satisfy Assumption 2. In particular, we assume:

Assumption 3. Every matrix T in U satisfies Assumption 2.

Under this model of uncertainty, the authors in Goh et al. (2018) prove that one can compute

the worst-case reward of a given policy. Goyal and Grand-Clement (2018) prove that an optimal

robust policy can be chosen to be deterministic and provide an efficient algorithm to compute an

optimal robust policy. Moreover, they show that for U as in (4.2), the robust maximum principle
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holds. As this is a key theorem that will be essential for our analysis, we state it formally for

completeness.

Let vπ,T be the value vector of the decision-maker when s/he chooses policy π and the adversary

chooses factor matrix T =UW⊤, defined by the Bellman Equation:

vπ,Ti = rπ,i +λ · (1−π(i)) ·
r
∑

ℓ=1

uℓ
iw

⊤
ℓ v

π,W +λ ·π(i) · rPT ,∀ i∈ [n].

For any state i ∈ [n], the scalar vπ,Ti represents the infinite horizon discounted expected reward,

starting from state i.

Theorem 2 (Robust Maximum Principle (Goyal and Grand-Clement 2018)). Let U be

a factor matrix uncertainty set as in (4.2).

1. Let T̂ ∈U and

π̂ ∈ argmax
π∈Π

R(π, T̂ ).

Then

vπ,T̂i ≤ vπ̂,T̂i ,∀ π ∈Π,∀i ∈ [n]. (4.3)

2. Let π̂ be a policy and

T̂ ∈ argmin
T∈U

R(π̂,T ).

Then

vπ̂,T̂i ≤ vπ̂,Ti ,∀ T ∈ U ,∀ i∈ [n]. (4.4)

3. Let

(π∗,T ∗)∈ arg max
π∈Π

min
T∈U

R(π,T ).

For all policy π̂, for all transition matrix T̂ ∈ argminT∈U R(π̂,T ),

vπ̂,T̂i ≤ vπ
∗,T ∗

i ,∀i∈ [n]. (4.5)

Inequality (4.3) implies that in a classical MDP setting, the value vector of the optimal nominal

policy is component-wise higher than the value vector of any other policy. Therefore, for any state,
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the nominal expected reward obtained when the decision-maker follows the optimal nominal policy

is higher than the nominal expected reward obtained when the decision-maker follows any other

policy. Following Inequality (4.4), when a policy is fixed but the transition matrix varies in the

uncertainty set U , the worst-case value vector of the policy is component-wise lower than the value

vector of the policy for any other transition matrix. Finally, when we consider an optimal robust

policy, Inequality (4.5) implies that the worst-case value vector of the optimal robust policy is

component-wise higher than the worst-case value vector of any other policy. Therefore, the optimal

robust policy is maximizing the worst-case expected reward starting from any state.

4.2. Theoretical guarantees.

We show that under Assumption 1 and Assumption 3, the optimal robust policy is a threshold

policy. Moreover, we show that the threshold of the optimal robust policy is smaller than the

threshold of the optimal nominal policy. Therefore, the optimal robust policy is more aggressive in

proactively transferring the patients. In particular, we start with the following theorem.

Theorem 3. Under Assumptions 1 and 3, there exists an optimal robust policy that is a threshold

policy.

Proof. Following Assumption 3 and Theorem 1, for any transfer policy π̃ ∈Π,

∃ T̃ ∈ U , π̃ ∈ argmax
π∈Π

R(π, T̃ )⇒ π̃ is a threshold policy.

Theorem 4.2 in Goyal and Grand-Clement (2018) shows that

(πrob,T rob)∈ argmax
π∈Π

min
T∈U

R(π,T ) ⇐⇒ πrob ∈ argmax
π∈Π

R(π,T rob).

Since the matrix T rob belongs to the uncertainty set U , it satisfies Assumption 2 by Assumption 3

and therefore the optimal robust policy πrob is threshold.

�
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This result highlights the critical role of threshold policies. Not only is the optimal nominal

policy a threshold policy (Theorem 1), but the optimal robust policy, i.e., the policy with the

highest worst-case reward, is also a threshold policy. It is natural to compare the thresholds of the

optimal nominal and the optimal robust policies. Our next result states that the threshold of the

optimal robust policy πrob is always lower than the threshold of the optimal nominal policy πnom.

Theorem 4. Under Assumptions 1 and 3, we have τ(πrob) ≤ τ(πnom), where πrob is the optimal

robust policy and πnom is the optimal nominal policy.

Proof. Let Π̂ denote the set of policies that are optimal for some transition kernel in U :

Π̂ = {π | ∃ T ∈U , π ∈ argmax
π∈Π

R(π,T )}.

Note that πnom ∈ Π̂. We will prove that

τ(πrob)≤ τ(π),∀ π ∈ Π̂.

Following Theorem 3, we can pick πrob to be an optimal robust policy that is a threshold policy.

We denote T rob a matrix in U such that

(πrob,T rob)∈max
π∈Π

min
T∈U

R(π,T ).

Let π̂ ∈ Π̂. There exists a transition matrix T̂ ∈U such that

π̂ ∈ argmax
π∈Π

R(π, T̂ ).

Let us assume that π̂(i) = 1 for some i∈ [n]. We will prove that πrob(i) = 1. We have

rW +λ · rPT > rW +λ · T̂⊤
i,·V

π̂,T̂ (4.6)

≥ rW +λ · T̂⊤
i,·V

πrob,T̂ , (4.7)

where Inequality (4.6) follows from the Bellman Equation for the MDP with transition matrix T̂

and Inequality (4.7) follows from Inequality (4.3) of Theorem 2:

π̂ ∈ argmax
π∈Π

R(π, T̂ )⇒ V π̂,T̂
j ≥ V π,T̂

j ,∀ j ∈ [n],∀ π ∈Π.
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Now for the sake of contradiction let us assume that πrob(i) = 0. Therefore,

rW +λ · T̂⊤
i,·V

πrob,T̂ = V πrob,T̂
i . (4.8)

Therefore, if πrob(i) = 0, we can conclude that

rW +λ · rPT >V πrob,T̂
i (4.9)

≥ V πrob,T rob

i , (4.10)

where the strict Inequality (4.9) follows from (4.8) and (4.6), and Inequality (4.10) follows from

(4.4) in the robust maximum principle:

T rob ∈ arg min
T∈U

R(πrob,T )⇒ V πrob,T̂
j ≥ V πrob,T rob

j ,∀ j ∈ [n].

We can therefore conclude that

rW +λ · rPT >V πrob,T rob

i . (4.11)

But since πrob is an optimal robust policy, we know following Theorem 2 that

πrob ∈ arg max
π∈Π

R(π,T rob).

Therefore, from the Bellman Equation we know that πrob(i) = 1 if rW + λ · rPT > rW + λ ·

T rob⊤
i,. V πrob,T rob

and πrob(i) = 0 if rW +λ · rPT ≤ rW +λ ·T rob⊤
i,. V πrob,T rob

. This implies that

V πrob,T rob

i ≥ rW +λ · rPT ,

which contradicts Inequality (4.11), and therefore it is impossible that πrob(i) = 0. Since πrob is a

deterministic policy,

πrob(i) 6= 0⇒ πrob(i) = 1.

We have proved that if π̂(i) = 1 for some π̂ in Π̂ and some i ∈ [n], then πrob(i) = 1. Therefore, we

can conclude that

τ(πrob)≤ τ(π),∀ π ∈ Π̂.
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Since πnom is the optimal policy for the nominal transition kernel T 0, we can conclude that πnom ∈ Π̂

and therefore in particular

τ(πrob)≤ τ(πnom).

�

Theorem 4 highlights the crucial role of threshold policies in ICU admission decision-making.

In the framework of our single-MDP for modeling the patient dynamics, both an optimal nominal

policy and an optimal robust policy can be found in this class of simple and implementable policies.

Moreover, there exists a natural ordering on the threshold of a nominal policy and a policy that

accounts for parameter misspecification. In particular, the robust optimal policy is more aggressive

in proactively transferring patients.

5. Numerical experiments.

In this section, we utilize real data from 21 Northern California Kaiser Permanente hospitals to

examine the potential implications of our theoretical results in practice. We utilize this data to

estimate the nominal parameters and uncertainty set of our hospital model (Figure 1) and our

single-patient MDP (Figure 2). We then compare the performances of optimal nominal and optimal

robust policies on several metrics of interest: mortality, Length-Of-Stay (LOS) and average ICU

occupancy.

5.1. Dataset.

Our dataset consists of 296,381 unique patient hospitalizations at one of 21 Northern California

Kaiser Permanente hospitals. For each hospitalization, we have patient-level data which is assigned

at the time of hospital admission: age, gender, admitting hospital, admitting diagnosis, classification

of diseases codes, and three scores that quantify the severity of the illness of the patient (CHMR,

COPS2, LAPS2, see Hu et al. (2018) for more details). During the patient’s hospitalization, we can

track each unit (i.e., ICU, Transitional Care Unit, general medical-surgical ward, operating room,

or post-anesthesia care unit) the patient stayed in and when. Additionally, we have a sequence
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of early warning scores, known as Advance Alert Monitor (AAM) scores, that are updated every

six hours. This early warning score uses the LAPS2, COPS2, individual vital signs and laboratory

tests, interaction terms, temporal markers, and location indicators to estimate the probability of

in-hospital deterioration (requiring ICU transfer or leading to death on the ward) within the next

12 hours, with an alert issued at a probability of ≥ 8% (Kipnis et al. 2016). Similar to Hu et al.

(2018), we focus on medical patients who were admitted to the hospital through the emergency

department (this comprises more than 60% of all patients). Our final dataset consists of 174,632

hospitalizations, each corresponding to a patient trajectory that evolves across n = 10 severity

scores, possible ICU visit(s), and terminates with the patient either recovering and leaving the

hospital or dying and leaving the hospital. In order to have a more accurate estimate for the

dynamics of the most severe patients, the number of patients in each severity group is nonuniform.

Summary statistics (partition, mortality rate, average length-of-stay, etc.) for the patients across

the different severity scores is given in Appendix A.

5.2. Transition matrix and model of uncertainty.

We first calibrate the transition matrix which determines the evolution of patient severity score

while in the general ward.

5.2.1. Nominal transition matrix. We use the AAM scores as our severity scores. The

matrix T 0 has dimension n×(n+3) where n= 10 is the number of severity scores. T 0 is constructed

as follows. Let i∈ [n] and j ∈ [n]
⋃{CR,RL,D}. The coefficient T 0

ij represents the probability that

a patient in severity score i will transfer to state j in the next period. We use the empirical mean as

the nominal value for T 0
ij. We use the method in Sison and Glaz (1995) to obtain the 95%-confidence

intervals for the matrix T 0:

[T 0
ij −αi, T

0
ij +2 ·αi],∀ (i, j)∈ [n]× [n+3]. (5.1)

This expression highlights the skewness of the confidence intervals, which follows from the skewness

of the multinominal distribution. Also, note that for a given severity score i ∈ [n], the parameter

uncertainty in T 0
ij is uniform across all j ∈ [n+ 3]. See Appendix G for the values for α1, ..., αn,

which are in the order of 10−4 to 10−3.
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5.2.2. Nominal factor matrix. In order to construct a factor matrix uncertainty set (4.2),

one needs to compute the coefficients (uℓ
i)(i,ℓ) ∈ Rn×r, the nominal factors W = (w1, ...,wr) ∈

R
(n+3)×r
+ such that T 0 ≈UW⊤, and the confidence regions W i for each factor wi, i= 1, ..., r. To do

this, we solve the following Nonnegative Matrix Factorization (NMF) problem:

min ‖T 0 −UW⊤‖22

Uer = en,

e⊤
n+3W = er,

U ∈R
n×r
+ ,W ∈R

(n+3)×r
+ .

(5.2)

Although (5.2) is a non-convex optimization problem, there exist fast algorithms for efficiently

computing local minima. We adapt the block-coordinate descent method of Xu and Yin (2013),

starting from 106 different random matrices and keep the best solution2. For r = 8, our solution

T̂ =UŴ⊤ achieves the following errors: ‖T 0− T̂ ‖1 = 0.0811,‖T 0− T̂ ‖∞ = 0.0074,‖T 0− T̂ ‖relat,T0 =

0.3385, where ‖ · ‖relat,T0 stands for the maximum relative deviation from a parameter of T 0:

‖T 0 − T̂ ‖relat,T0 = max
(i,j)∈[n]×[n+3]

|T 0
ij − T̂ij |
T 0
ij

.

Table 1 summarizes the errors across the n× (n+3)= 130 elements of T 0.

max. mean median 95% percentile

absolute deviation 0.0074 0.0006 0.0003 0.0022

relative deviation 0.3385 0.0565 0.0204 0.2656

Table 1 Statistics of the absolute and relative deviations of T̂ij from T 0
ij , for all (i, j)∈ [n]× [n+3].

The maximum absolute deviation between T 0
ij and T̂ij is less than 0.01 (0.0891 instead of 0.0817).

Moreover, the maximum relative deviation is about 34%, with a coefficient of 4.8527 · 10−4 instead

of 7.34 · 10−4 for T 0. This occurs for T 0
3,9, which represents a sudden, dramatic, and relatively rare

health deterioration from state 3 to state 9.

2 This takes less than 5 minutes on a laptop with 2.2 GHz Intel Core i7 and 8 GB of RAM.



31

By construction, any two rows T̂i1,· and T̂i2,· are convex combinations of the same factors

ŵ1, ..., ŵr, with coefficients Ui1,· and Ui2,·. We compute ∆(i1, i2) = ‖Ui1,· −Ui2,·‖1 as a measure of

relatedness between the uncertainty on Ti1,· and Ti2,·. We note that our NMF decomposition cap-

tures the intuition that close severity scores are more related than very different severity scores. To

see this, consider any severity score i∈ [n] and any two alternative severity scores (j, k)∈ [n]× [n]

which are different from i. Then, we observe that |i− j|< |i− k| ⇒∆(i, j)<∆(i, k).

Errors related to the confidence intervals. The intent of the structured nominal transition matrix

(and the subsequent uncertainty sets) is to capture the parameter uncertainty inherent in the

estimation process from real data. As such, it is of interest to understand whether our nominal

matrix is consistent with the confidence intervals of our parameter estimates. To do this, we consider

a relative error of T̂ compared to T 0, measured in terms of the confidence bounds α1, ..., αn. That

is, we compute the ratios

ratio(i,j) =
T 0
ij − T̂ij

αi

,∀ (i, j)∈ [n]× [n+3]. (5.3)

For r = 8, we find that all coefficients are in the confidence intervals as defined by (5.1), i.e.,

ratio(i,j) ∈ [−1,2],∀ (i, j) ∈ [n]× [n+ 3]. In particular, the mean over (i, j) of the absolute values

of the ratios (5.3) is 0.2345, with a median of 0.1579. Moreover, 95% of these absolute values are

below 0.6729. Thus, we conclude that T̂ (our NMF solution of rank 8) is a plausible approximation

for T 0.

For completeness, we also computed the solutions to the optimization problem (5.2) for lower

ranked matrices: r = 5,6,7. While the errors in the 1− and ∞−norms remain small, the relative

errors increased substantially, up to 0.43 for r= 7, 0.98 for r= 6 and 5.8 for r= 5. For rank 7, we

have 10 coefficients outside of the confidence intervals, with a maximum deviation of 4.840 ·α9 for

T 0
9,9. Despite that one coefficient being well out of its confidence interval, we find that the mean of

the absolute value of the ratios is 0.4818, with a median at 0.2380. Therefore, the NMF solution

for r= 7 appears to be a reasonable approximation for T 0. However, it does not seem reasonable to

decrease the rank even further. For instance, for a rank r=5, our NMF solution has 70 coefficients
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that are outside the 95% confidence intervals, with a maximum ratio of 48.4931. Similarly, for

r = 6, there are still 54 coefficients outside of the confidence intervals, with a maximum ratio of

44.0267. Therefore, in the rest of the paper we will focus on NMF solutions corresponding to rank

r= 8. Detailed experiments for r= 7 are provided in Appendix I.

5.2.3. Choice of uncertainty sets. Recall that in our main analysis, we considered a factor

matrix uncertainty set. That is, the coefficient matrix U is fixed and the factors w1, ...,wr belong

to W1 × ...×Wr. We consider several uncertainty sets:

• Umin: We construct a factor matrix uncertainty set based on the 95% confidence interval

in the most optimistic manner. Specifically, for αmin = mini∈[n]αi, we consider Umin = {T | T =

UW⊤,W ∈Wmin}, where Wmin =W1
min× ...×Wr

min,

Wℓ
min = {wℓ | ∀ j ∈ [n+3],wℓ,j − ŵℓ,j ∈ [−αmin,+2 ·αmin],wℓ ≥ 0,w⊤

ℓ en+3 = 1},∀ ℓ∈ [r].

Thus, the deviation on each component of the factor vectors must be within [−αmin,+2 · αmin],

which in turn implies that T =UW T is within [−αmin,+2 ·αmin] from the matrix T̂ (in ‖ · ‖∞).

• Uemp: We also consider another possibly less restrictive uncertainty set that is constructed

empirically from the 95% confidence intervals. To do this, we generate 95% confidence intervals of

the factor vectors. First, we sample q transition matrices T 1, ...T q uniformly in the 95% confidence

intervals around T 0, for q= 104. For each sampled matrix, we use Nonnegative Matrix Factorization

to compute factor vectors W 1, ...,W q such that Tm ≈UWm⊤,m=1, ..., q. Let σℓ
j be the empirical

standard deviations of each coefficients wℓ
j , for (ℓ, j)∈ [r]× [n+3], from the resulting W 1, ...,W q .

We then define the uncertainty set Uemp = {T | T =UW⊤,W ∈Wemp}, where Wemp =W1
emp × ...×

Wr
emp represents the bootstrapped 95% confidence intervals for the factor vectors. That is:

Wℓ
emp = {wℓ | ∀ j ∈ [n+3], |wℓ,j − ŵℓ,j| ≤ σℓ

j ·
1.96√

q
,wℓ ≥ 0,w⊤

ℓ en+3 = 1},∀ ℓ∈ [r].

• Usa: Finally, for completeness, we also consider the following (s, a)-rectangular uncertainty set,

where transitions from each state can be chosen unrelated to the transitions out of any other states:

Usa = {T | Tij −T 0
ij ∈ [−αi,+2 ·αi],

13
∑

j=1

Tij = 1,∀ i∈ [n] }.
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This uncertainty set is unable to capture the fact that there are likely characteristics which intro-

duce correlations across different states.

5.3. Robustness analysis for the single-patient MDP.

We first give the details about the parameters of our single-patient MDP.

5.3.1. Choice of MDP Parameters.

Nominal transition matrix. The probability that the patient transitions from severity score i∈ [n]

to next state j ∈ [n+3] is T 0
ij . The probability that a patient dies after having crashed in the ward

is given by dC = 0.4761, and is estimated by sample mean in our dataset. The probability that

a patient dies after having been proactively transferred to the ICU is estimated similarly and is

dA = 0.0009, which is significantly lower than dC .

Initial distribution and rewards. We set the initial distribution p0 ∈R
n+4
+ as the long-run average

occupation of patients in each severity score group according to the data (see Appendix A, table

A). We choose a discount factor of 0.95 to capture the importance of future outcomes for the

decision-maker. We choose the following rewards, satisfying Assumption 1 and Assumption 3,

rW = 100, rRL =
1

1−λ
· 250, rPT−RL =

1

1−λ
· 190, rCR−RL =

1

1−λ
· 160,

rD =
1

1−λ
· 30, rCR−D =

1

1−λ
· 20, rPT−D =

1

1−λ
· 10,

(5.4)

We would like to note that the following natural ordering conditions are satisfied:

rRL ≥ rPT−RL ≥ rCR−RL,

rD ≥ rCR−D ≥ rPT−D.

Certainly, different choices of rewards may lead to different thresholds for the optimal nominal and

the optimal robust policies. Appendix H summarizes a detailed sensitivity analysis of our numerical

results for different rewards. The single MDP is most valuable in identifying candidate worst-case

transition matrices. Thus, while the thresholds of the optimal and nominal robust policies for the

single MDP are highly dependent on the rewards, the performance of the hospital (in terms of

mortality, LOS and average ICU occupancy) based on the resulting worse-case matrix is fairly

consistent across different rewards, including those in (5.4).
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5.3.2. Empirical results for the single-patient MDP. From Theorems 1 and 3, we know

the optimal nominal and robust policies are of threshold type. Therefore, we consider all threshold

policies, denoted by π[1], ..., π[11], and compare their nominal and worst-case rewards in the single-

patient MDP for the different uncertainty sets. Figure 3 summarizes these results.
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Figure 3 Nominal and worst-case performance of threshold policies for an NMF approximation of rank 8. For

any threshold τ = 1, ...,11, ‘Nom.’ stands for R(π[τ ],T 0), while ‘NMF-8’ stands for R(π[τ ], T̂ ). The other

three curves represent the worst-case reward of π[τ ] for the specified uncertainty set (Umin,Uemp,Usa).

Note that for all threshold policies π[τ ], the corresponding reward using the estimated transition

matrix, R(π[τ ],T 0), and that using the NMF approximation of the transition matrix, R(π[τ ], T̂ ),

are practically indistinguishable. This provides additional support for using our NMF solution as

an approximation for T 0.
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We observe that the optimal nominal policy (π[6]) is different than the optimal robust policy (π[5])

for the three different uncertainty sets. Our primary goal with the single MDP is not to provide

direct recommendations for the hospital system, but rather to determine candidate transition

matrices under which the hospital system can be evaluated. As we will see later, the performance

of these policies under their corresponding transition matrices is quite different in the hospital

simulation.

We would like to note that the worst-case matrices in Umin and Uemp do not belong to the 95%

confidence intervals (5.1), even though T̂ belongs to (5.1). That said, only a few of the coefficients

are outside of the 95% confidence regions, and the violations are small. For instance, for the worst-

case matrix in Umin associated with π[5], only five coefficients (out of 130) are outside of (5.1), and

the worst-case deviation is −1.2179 ·α3 (instead of −α3), while the mean of the absolute values of

the deviations is 0.3381 and 95% of these absolute values are below 1.0690. The results are similar

for Uemp. For instance, for the worst-case matrix in Uemp associated with π[5], 20 coefficients out

of 130 are outside the confidence intervals. While the coefficient (1,1) is about 10 ·α1 away from

T 0
1,1 (instead of 2α1), the mean of the absolute values of the deviations is 0.4430, and 95% of these

absolute values are below 2.3057. Therefore, we can still consider the worst-case matrices for Umin

and Uemp as plausible transition matrices for our hospital model.

5.4. Robustness analysis for the hospital.

The primary purpose of our single-patient MDP model is to develop insights into the management

of the full hospital system. To that end, we use our single-patient MDP to generate transition

matrices that are candidates for a worst-case deterioration of the hospital performances. Given the

complexity and multi-objective nature of the hospital system (i.e., minimize mortality rate, LOS,

and average ICU occupancy), defining, let alone deriving, an optimal policy is highly complex. As

such, we focus on the class of threshold policies given their desirable theoretical properties (see

Theorems 1 and 3) and their simplicity which can help facilitate implementation in practice. For
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each threshold policy π[τ ] and each uncertainty set U (among Umin,Uemp,Usa), we compute T [τ,U ] a

worst-case transition matrix for the single-patient MDP in U :

T [τ,U ] ∈ argmin
T∈U

R(π[τ ],T ).

Then, we use the pair (π[τ ],T [τ,U ]) to simulate the hospital performance as measured by the mor-

tality rate, length-of-stay, and average occupancy of the ICU.

5.4.1. In-hospital mortality and Length-Of-Stay.

In-hospital mortality. In Figure 4a we study the variation of the hospital performance over the

95% confidence intervals for the nominal transition matrix T 0. In particular, we sample N = 20

transition matrices in the confidence intervals (5.1) and plot the nominal performance (mortality

rate versus average ICU occupancy) of all threshold policies as well as the performances for 4 of the

N sampled matrices. The mortality rate for all sampled transition matrices are very close to the

nominal mortality rate. The maximum relative observed deviation from the nominal mortality rate

is 8.82%, with an average relative deviation of 3.84%. We present more details about the statistics

of the random deviations from the nominal performance in Appendix J.

In Figure 4b, we compare the worst-case performance of all threshold policies with the nominal

performance. For each threshold policy, we construct a worst-case transition matrix that minimizes

the single-patient MDP reward and compute the hospital performances for this particular matrix

and threshold policy. As we saw in the single-patient MDP experiments, the hospital performance

for T 0 and T̂ are very close, again suggesting that the NMF approximation is reasonable. We

consider the three uncertainty sets Umin,Uemp and Usa. Note that Umin and Uemp are centered around

our NMF approximation T̂ . Under uncertainty set Umin, the mortality rate can significantly increase,

with relative increases from 18% to 23%. This substantial degradation occurs even though Umin

is our most-optimistic uncertainty set, with variations in the order of 10−4 from T̂ . For worst-

case matrices in Uemp or Usa, the mortality rate of any threshold policy increases by 40% to 50%.

Therefore, our worst-case analysis (Figure 4b) shows that the mortality may severely deteriorate,
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even for very small parameters deviations from the nominal transition matrix T 0. Note that this

is not the case in our random sample analysis (Figure 4a). This suggests that not considering

worst-case deviations may lead to overly optimistic estimations of the hospital performances.

As a thought experiment, suppose the decision-maker determined that the average ICU occu-

pancy should not exceed 72%. The decision-maker then chooses the threshold policy with the

lowest mortality and average ICU occupancy lower than 72%. Based on the nominal performance,

the decision-maker will choose π[5] which proactively transfers 27.1% of the patients. However, our

analysis demonstrates there exists a ‘worst-case’ transition matrix that is consistent with the avail-

able data which, under the selected policy π[5], would result in a higher average ICU occupancy of

74.0%. In contrast, if the decision-maker were to account for the parameter uncertainty and con-

sider the worst-case performance in Umin, the decision-maker would choose π[6], which proactively

transfers 10.2% of the patients and results in a worst-case average ICU occupancy of 71.9%.

In general, as the threshold decreases, and proactive transfers are used more aggressively, the

ICU occupancy increases while the mortality rate decreases. This behavior does not generalize to

the uncertainty set Usa. In particular, we notice in Figure 4b that for Usa, the worst-case mortality

rate and the ICU occupancy decrease from π[11] to π[8]. Therefore, the (worst-case) average ICU

occupancy decreases when the decision-maker decides to transfer more patients to the ICU. In

principle, this could be explained by the fact that the patients with severity scores in {8,9,10} are

the sickest patients. Thus, proactively transferring them may actually be Pareto improving. That

said, we are somewhat cautious about the interpretations of Usa. The worst-case transition matrices

in Usa are extreme perturbations from T 0. For instance, the coefficients T 0
1,RL, ..., T

0
n,RL become

T 0
1,RL −α1, ..., T

0
n,RL −αn, and the coefficients T 0

1,D, ..., T
0
n,D become T 0

1,D +2 ·α1, ..., T
0
n,D +2 ·αn. In

that sense, such coordinated, structured parameter misspecification appears unlikely. This is due

to the ability to arbitrarily perturb the coefficients of T 0, provided that the resulting rows still

form a transition kernel, rather than accounting for potential correlations across states that our

factor matrix approach incorporates. Such extreme perturbations are unlikely to arise in practice,

which is why we focus our attention on the model of factor matrix uncertainty set.
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(a) Random samples analysis.
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(b) Worst-case analysis.

Figure 4 In-hospital mortality of the 11 threshold policies for the nominal estimated matrix, randomly sampled

matrices in the 95% confidence intervals (left-hand side), and the worst-case matrices found by our single

MDP model (right-hand side). Each point corresponds to a threshold policy: the policy with highest

mortality rate corresponds to threshold τ =11 (top-left of each curve) and the threshold decreases until

the bottom-right point of each curve, corresponding to threshold τ = 1. We consider the uncertainty sets

Umin,Uemp and Usa when the rank r = 8. On the right-hand side, we also report the hospital mortality

rate when the transition matrix is our NMF approximation with rank 8.

In comparing the worst-case matrices in Umin and Uemp to that in Usa, we find the magnitude of

the deviations from T 0, as measured by the 1-norm, are of the same order. Despite having similar

amount of deviations with Usa, we see the behavior of the hospital system under the worst-case

matrices from Umin and Uemp is consistent with that of the nominal matrix, which is not the case

with Usa.
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Underlying physiologic characteristics dictate the evolution of a patient’s health. As such, it is

reasonable to assume these similar medical factors manifest themselves in our model through corre-

lated dynamics across the different severity scores; thus, we expect the uncertainty to be reasonably

captured by a low-rank deviation from the nominal estimation T 0. Therefore, we expect the true

worst-case performances of the threshold policies to be somewhere in between the performances in

Umin and the performances in Uemp.

From these experiments we see that 1) ignoring parameter uncertainty may result in overly

optimistic expectations of system performances; and 2) the type of parameter uncertainty (e.g.

correlated or arbitrary) can have a substantial impact on the insights derived from the robust

analysis.

Length-Of-Stay. In the case of Length-Of-Stay (LOS), we notice similar trends as compared to

the in-hospital mortality rate. Figure 5a shows the deviations in performance for some randomly

sampled matrices. The average deviation ranges from 0.34% for π[3] to 1.04% of deviation for

threshold π[11]. Therefore, the hospital flow seems stable as regards to parameters deviations from

the nominal matrix T 0

We compare the worst-case LOS with the nominal performance. We see that the LOS can

increase by up to 2.5% in Umin, and up to 5.0% in Uemp and Usa. The impact of worst-case parameter

deviations is less severe for the Length-Of-Stay than for the mortality rate. However, worst-case

deviations are still more substantial than random deviations from the nominal transition (Figure

5a). As for in-hospital mortality rate, in Figure 5b we notice that under uncertainty set Usa, it

appears to be Pareto improving to be more aggressive in proactively transferring patients with

threshold policy π[8] rather than π[11]. However, as discussed before, we believe that Usa is not able

to fully capture reasonable types of uncertainty one would expect to see in practice.

6. Conclusions and Discussion.

Interest in preventative and proactive care has been growing. With the advancements in machine-

learning, the ability to conduct proactive care based on predictive analytics is quickly becoming a
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(a) Random samples analysis.
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(b) Worst-case analysis.

Figure 5 Length-Of-Stay of the 11 threshold policies for the nominal estimated matrix, randomly sampled matri-

ces in the 95% confidence intervals (left-hand side), and the worst-case matrices found by our single

MDP model (right-hand side). Each point corresponds to a threshold policy: the policy with highest

LOS corresponds to threshold τ = 11 (top-left of each curve) and the threshold decreases until the

bottom-right point of each curve, corresponding to threshold τ = 1. We consider the uncertainty sets

Umin,Uemp and Usa when the rank r = 8. On the right-hand side, we also report the hospital mortality

rate when the transition matrix is our NMF approximation with rank 8.

reality. In this work, we consider the decision to proactively admit patients to the ICU based on a

severity score before they suffer a sudden health deterioration in the ward and require even more

resources. In practice, an early warning system alert could trigger many potential interventions such

as placing the patient in an evaluation state where admission decisions could be made from. While

a threshold policy for proactive admission is a simplification of what could happen in practice when

an alert is triggered, our analysis facilitates the derivation of valuable insights on the performances
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of this simple class of transfer policies and the impact of parameter uncertainty. We explicitly

account for parameter uncertainty that arises naturally in practice due to the need to estimate

model parameters from finite, real data. Since the severity scores are likely influenced by common

underlying medical factors, we introduce a robust model that accounts for potential correlations

in the uncertainty related to different severity scores. Under mild and interpretable assumptions,

our model shows that the optimal nominal and optimal robust transfer policies are of threshold

type. Our extensive simulations show that not accounting for parameter misspecification may

lead to overly optimistic estimations of the hospital performances, even for very small deviations.

Moreover, we find that unrelated uncertainty may lead to extreme perturbations from the nominal

parameters and unreliable insights for the impact of threshold policies on the patient flow in the

hospital. Our work suggests that it is crucial for the decision-makers to account for parameters

uncertainty when basing their decisions on predictive models where some parameters are estimated

from real data.

One limitation of our work is the choice of worst-case as a relevant metric for the decision-maker.

While worst-cases performances may be unlikely in practice, it is worth noting that the resulting

parameter values for some worst-case performances are in the confidence intervals and therefore

are as likely as the nominal parameters. Moreover, in the field of healthcare operations where the

goal is to save the lives of the patients, it is still relevant to obtain an estimation of the potential

deterioration of the performances of the hospital, especially if the deviation from the nominal

parameters is small (i.e., in the confidence intervals). We would like to highlight that our work

gives insight on potential misestimations of the metrics (average in-hospital mortality, length-of-

stay and ICU occupancy) on which the physicians may base their decisions of a transfer policy.

More specifically, we provide a tool to estimate worst-case deteriorations, within the confidence

intervals given by some statistical estimators. It is to the merit of the physicians to decide what

levels of risks are acceptable

Another limitation is tied to the ability of the severity score to fully capture the patient potential

health deterioration. We must recognize that the impact of proactive transfer policies will be highly
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dependent on the quality of the evaluation of the severity scores. As such, proactive transfer policies

could also be beneficial if based on other metrics, such as LAPS2, MEWS or others, as long as

these scores accurately describe a predicted potential patient health deterioration.

There are various interesting directions for future research that arise from our work. For instance,

one could consider various level of actions for the proactive policies, ranging from a simple alert to

the physicians for more continuous monitoring, to an immediate ICU transfer (the action considered

in this paper). Moreover, the proactive transfer policies considered in this work do not account for

the number of empty beds in the ICU. One could consider adaptive thresholds, varying with the

number of free beds in ICU. While Hu et al. (2018) shows with simulations that the performances

of such adaptive threshold policies are comparable to the non-adaptive ones, it could be of interest

to investigate the theoretical guarantees of such adaptive policies in the framework of our single-

patient MDP. Finally, given the vast amount of patients trajectories available in our dataset, one

could utilize recent methods from the off-policy evaluation literature (Kallus and Uehara (2019) for

a review) to obtain a model-free performance estimator, in contrast to our model-based analysis

using our single-patient robust MDP.
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Appendix A: Details about the hospital model of Figure 1.

We give details on the hospital model from Figure 1, as introduced by the authors of Hu et al.

(2018). As in Hu et al. (2018), the parameters of the model were calibrated using sample means

across all 21 hospitals and/or estimates from regression models.

Direct admits. The arrivals of the patients who are directly admitted to the ICU follows a non-

homogeneous Poisson process. The empirical arrival rates are estimated using 12 months of data

across all 21 hospitals. The LOS of a direct admit patient is lognormally distributed with mean

1/µE and standard deviation σE, and a proportion pE (following a distribution with density fpE) of

this LOS is spent in the ICU, while the remaining time is spent in the ward. The rate of readmission



47

to the ICU is ρE. At the end of this LOS, the patients are discharged with probability 1− dE. The

value of the parameters are the following: dE = 9.41%, ρE = 15.76%,1/µE = 5.49 (days), σE = 5.71

(days), E[pE] = 50.79%. The density fpE is the empirical distribution derived from the dataset.

Transfer from the ward. These patients can be divided into the patients who have versus have

not already been to the ICU. Consider the patients who have never been to the ICU. A patient

arrives in the ward with a severity score of i ∈ {1, ..., n} following a non-homogeneous Poisson

process. Every 6 hours, s/he then transitions to another risk score j with probability T 0
ij , or s/he

may ‘crash’ and require ICU admission, recover and leave the hospital, or die. After a patient has

crashed, a LOS is chosen which is lognormally distributed with mean 1/µC and standard deviation

σC , and a proportion pW (following a distribution with density fpW ) of this LOS is spent in the

ICU, while the remaining proportion 1− pW of time is spent in the ward. At the end of this LOS,

the patient is discharged with probability 1− dC. If there are no available beds in the ICU when

a crashed patient requires an admission, the ICU patient with the shortest remaining service time

in the ICU will be discharged, and this is called a ‘demand-driven discharge’. Such a patient will

have a readmission rate of ρD, higher than the readmission rate ρC of ward patients who were

naturally discharged from the ICU after finishing their service time in the ICU. In particular, we

have the following values, estimated through empirical averages in our dataset: ρC = 16.88%, ρD =

18.13%,1/µC = 12.54 (days), σC = 10.13 (days), E[pW ] = 46.92%, and dC = 57.28%. Similarly, the

density fpW is derived as the empirical distribution from the dataset.

Proactive transfer. Every 6 hours, the doctors might perform a proactive transfer and transfer

a patient in the ward to the ICU, if there is an available bed. When a patient is proactively

transferred, the hospital LOS is lognormally distributed with mean 1/µA,i and standard deviation

σA,i, while a proportion pW ∼ fpW of this LOS is spent in the ICU. The patient will then survive

the hospital discharge with a probability 1− dA,i. If this patient is naturally discharged from the

ICU, the readmission rate is ρa,i = ρC , otherwise it is ρD. We indicate below the proportion, the

mortality rate and the LOS related to each n= 10 severity scores.

Appendix B: Proof of Lemma B

Proof. We will prove that for any policy π and for any transition matrix T , for all severity

score i∈ [n], the value vector V of policy π satisfies

Vi ≤ rW +λ · rRL.

Let i∈ [n]. By definition, Vi is the expected infinite-horizon reward starting from state i:

Vi =Eπ,T

[

∞
∑

t=0

λtritat

∣

∣

∣

∣

i0 = i

]

.
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Severity score i 1 2 3 4 5 6 7 8 9 10

Proportion (%) 17.6 20.3 20.0 14.9 16.9 2.2 2.0 2.0 2.0 2.0

Mortality dA,i (%) 0.01 0.02 0.04 0.05 0.11 0.18 0.28 0.39 0.70 6.84

LOS average 1/µA,i (days) 0.85 0.91, 0.97 1.04, 1.17 1.36 1.45 1.57 1.85 3.77

LOS std σA,i (days) 0.68 0.74 0.78 0.84 0.95 1.10 1.17 1.27 1.50 3.04

Table 2 Statistics of patients across the 10 severity scores.

Let us consider a trajectory O of the Markov chain on S associated with (π,T ). Then either the

patient stays infinitely in the ward, in which case the reward is rW · (1−λ)−1, which is smaller than

rW + λ · rRL by Assumption 1; otherwise during the trajectory O, there is a time t at which the

patient leaves the ward and reaches the state n+1=CR, n+2=RL, n+3=D, or n+4= PT .

In that case the reward is smaller than

rW · (1−λt)

1−λ
+λt+1 ·max{rCR, rRL, rD, rPT }.

Since the maximum instantaneous reward is rRL, the reward associated with the trajectory O is

smaller than
rW · (1−λt)

1−λ
+λt+1 · rRL.

Now

rW · (1−λt)

1−λ
+λt+1 · rRL ≤ (rW +λ · rRL) · (1−λt)+λt+1 · rRL (B.1)

≤ rW +λ · rRL −λt · rW −λt+1 · rRL +λt+1 · rRL (B.2)

≤ rW +λ · rRL −λt · rW (B.3)

≤ rW +λ · rRL, (B.4)

where Inequality (B.1) follows from Assumption 1. Therefore, the reward associated with any

trajectory O is smaller than rW +λ · rRL. We can thus conclude that the value vector V satisfies

Vi ≤ rW +λ · rRL,∀ i ∈ [n].

�

Appendix C: Homogeneity of conditions (3.3) and (3.4).

We prove the following two lemmas.

Lemma 2. Let (rW , rCR, rRL, rD, rPT ) ∈ R5
+ denote some rewards and T a transition matrix such

that condition (3.3) and condition (3.4) hold.
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1. Let α≥ 0. For α · (rW , rCR, rRL, rD, rPT ) and T , condition (3.3) and condition (3.4) still hold.

2. Let α≥ 0. For (rW +α, rCR +α, rRL +α, rD +α, rPT +α) and T , condition (3.4) still holds.

Proof. 1. This follows from α≥ 0 and

α · rCR ·T 0
i,n+1 +α · rRL ·T 0

i,n+2 +α · rD ·T 0
i,n+3 =α · (rCR ·T 0

i,n+1 + rRL ·T 0
i,n+2 + rD ·T 0

i,n+3),

and
α · rW +λ ·α · rPT

α · rW +λ ·α · rRL

=
rW +λ · rPT

rW +λ · rRL

.

2. Let us assume that

rW +λ · rPT

rW +λ · rRL

≥

(

∑n

j=1 T
0
i+1,j

)

(

∑n

j=1 T
0
ij

) ,∀ i∈ [n− 1].

We write φ the function of R such that for any scalar α,

φ(α) =
rW +α+λ · (rPT +α)

rW +α+λ · (rRL +α)
.

We will prove that φ is non-decreasing and therefore that

φ(α)≥ φ(0) =
rW +λ · rPT

rW +λ · rRL

≥

(

∑n

j=1 T
0
i+1,j

)

(

∑n

j=1 T
0
ij

) ,∀ i∈ [n− 1].

Indeed, φ has a derivative in R+ and

φ′(α) =
(1+λ) · (rW +α+λ(rRL +α)− rW −α−λ · (rPT +α))

(rW +α+λ · (rRL +α))2

=
λ(1+λ) · (rRL − rPT )

(rW +α+λ · (rRL +α))2

≥ 0,

since rRL ≥ rPT . Therefore φ is a non-decreasing function, and for all α ≥ 0, the condition (3.4)

holds. �

Lemma 3. Let (rW , rCR, rRL, rD, rPT ) ∈ R5
+ denote some rewards and T a transition matrix such

that condition (3.5) holds.

1. Let α≥ 0. For α · (rW , rCR, rRL, rD, rPT ) and T , condition (3.5) still holds.

2. Let α≥ 0 and let us assume that

n
∑

j=1

Tij ≥
n
∑

j=1

Ti+1,j ,∀ i∈ [n− 1].

Then for (rW +α, rCR +α, rRL +α, rD +α, rPT +α) and T , condition (3.5) still holds.
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Proof. 1. Let α be a non-negative scalar. For the same reason as in Lemma 2, condition (3.5)

still holds for α · (rW , rPT , rRL, rCR) and T .

2. Let α≥ 0. For any i∈ [n− 1], we have
(

n
∑

j=1

T 0
ij

)

· (rW +λ · rPT )+ out(i)≥
(

n
∑

j=1

T 0
i+1,j

)

· (rW +λ · rRL)+ out(i+1), (C.1)

where

out(i) = rCR ·T 0
i,n+1 + rRL ·T 0

i,n+2 + rD ·T 0
i,n+3.

Since
∑n+3

j=1 Tℓ,j = 1 for any severity score ℓ ∈ [n − 1], we notice that adding α to all rewards is

equivalent to adding α+λ ·α ·
(

∑10

j=1 Tij

)

to the left-hand side of (C.1) and α+λ ·α ·
(

∑10

j=1 Ti+1,j

)

to the right-hand side of (C.1). Therefore, condition (3.5) holds for all α≥ 0, as long as

n
∑

j=1

Tij ≥
n
∑

j=1

Ti+1,j ,∀ i∈ [n− 1].

�

Appendix D: Proof of Theorem 1.

Proof. Let V 0 ∈Rn+4 such that

V 0
i = 0,∀ i∈ [n],

V 0
n+1 = V 0

n+2 = V 0
n+3 = 0,

V 0
n+4 = rPT .

Let F :Rn+4 →Rn+4 denote the function that maps V ∈Rn+4 to F (V ), where

F (V )i =max{rW +λ ·
n+3
∑

j=1

T 0
ijVj , rW +λ · rPT },∀ i∈ [n],

F (V )n+1 = rCR, F (V )n+2 = rRL, F (V )n+3 = rD,

F (V )n+4 = rPT .

The function F is the Bellman operator associated with our single-patient MDP with transition

kernel T 0. Therefore, we know that the value iteration algorithm finds an optimal policy (Puterman

(1994)): if π∗ is an optimal policy and V π∗

is its value vector, then

lim
t→∞

F t(V 0) = lim
t→∞

V t =V π∗

,

and limt→∞ πt → π∗ where πt is the sequence of deterministic policies such that

πt(i) = 1 ⇐⇒ rW +λ ·
n+3
∑

j=1

T 0
ijV

t
j < rW +λ · rPT ,∀ i∈ [n].
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We will prove by induction that the policy πt is a threshold policy at every iteration t≥ 1.

At t= 1, for i∈ [n],

F (V )i =max{rW +λ ·
n+3
∑

j=1

TijV
0
j , rW +λ · rPT }

=max{rW +λ · 0, rW +λ · rPT },

and therefore we have

π1(i) = 1,∀ i ∈ [n].

Therefore, π1 is a threshold policy, and its threshold is 1 : π1 = π[1].

Let t ≥ 1 and let us assume that πt is a threshold policy, and let its threshold be τ ∈ [n+ 1].

We prove that the policy πt+1 is a threshold policy. In order to do so, we will prove that for any

i∈ [n− 1],

πt+1(i) = 1⇒ πt+1(i+1)= 1.

Let i∈ [n− 1] such that πt+1(i) = 1. From the definition of πt+1,

rW +λ ·
(

n
∑

j=1

T 0
ijV

t
j + out(i)

)

< rW +λ · rPT .

Moreover, since πt = π[τ ], we know that the vector V t is such that

V t
ℓ > rW +λ · rPT ,∀ ℓ∈ {1, ..., τ − 1}, (D.1)

V t
ℓ = rW +λ · rPT ,∀ ℓ∈ {τ, ...n}, (D.2)

V t
n+1 = rCR, V

t
n+2 = rRL, V

t
n+3 = rD, (D.3)

V t
n+4 = rPT . (D.4)

Now following the value iteration algorithm, we know that

F (V t)ℓ ∈max{rW +λ ·
n+3
∑

j=1

T 0
ℓ,jV

t
j , rW +λ · rPT },∀ ℓ∈ [n].

We have

rW +λ · rPT ≥ rW +λ ·
n+3
∑

j=1

T 0
ijV

t
j (D.5)

≥ rW +λ ·
n
∑

j=1

T 0
ijV

t
j +λ · out(i) (D.6)

≥ rW +λ ·
τ−1
∑

j=1

T 0
ijV

t
j +λ ·

n
∑

j=τ

T 0
ijV

t
j +λ · out(i) (D.7)
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≥ rW +λ ·
τ−1
∑

j=1

T 0
ijV

t
j +λ ·

n
∑

j=τ

T 0
ij(rW +λ · rPT )+λ · out(i) (D.8)

≥ rW +λ ·
τ−1
∑

j=1

T 0
ij(rW +λ · rPT )+λ ·

n
∑

j=τ

T 0
ij(rW +λ · rPT )+λ · out(i) (D.9)

≥ rW +λ ·
τ−1
∑

j=1

T 0
i+1,j(rW +λ · rRL)+λ ·

n
∑

j=τ

T 0
i+1,j(rW +λ · rPT )+λ · out(i+1) (D.10)

≥ rW +λ ·
τ−1
∑

j=1

T 0
i+1,jV

t
j +λ ·

n
∑

j=th

T 0
i+1,j(rW +λ · rPT )+λ · out(i+1) (D.11)

≥ rW +λ ·
n+3
∑

j=1

T 0
i+1,jV

t
j , (D.12)

where Inequality (D.5) follows from πt+1(i) = 1, Inequality (D.8) follows from the fact that the

policy πt is a threshold policy and therefore the vector V t satisfies Inequalities (D.1). Inequality

(D.10) follows from Assumption 2, because Assumption 2 and rPT ≤ rRL imply that for all threshold

τ ∈ {1, ..., n+1},
(

n
∑

j=1

T 0
ij

)

·(rW +λ ·rPT )+λ ·out(i)≥
(

τ−1
∑

j=1

T 0
i+1,j

)

·(rW +λ ·rRL)+

(

n
∑

j=τ

T 0
i+1,j

)

·(rW +λ ·rPT )+λ ·out(i+1).

Inequality (D.11) follows from Lemma 1: ∀ℓ∈ [n],

V t
ℓ ≤ V π∗

ℓ

≤ rW +λ · rRL,

where the first inequality follows from the fact that the operator F is a non-increasing mapping

and

lim
t→∞

V t = lim
t→∞

F t(V 0) =V π∗

.

Therefore, we conclude that

rW +λ · rPT ≥ rW +λ ·
n+3
∑

j=1

T 0
i+1,jV

t
j ,

which implies that πt+1(i+1)= 1. We can thus conclude that the policy πt+1 is a threshold policy.

Therefore, for all t≥ 1, the policy πt is threshold. We can conclude that there exists an optimal

policy that is a threshold policy.

�



53

Appendix E: Non-threshold optimal policies.

We provide an example of a single-patient MDP which does not satisfy Assumption 2 and for which

the optimal nominal policy is not threshold; in particular, the optimal policy in the MDP of Figure

6 is to proactively transfer a patient in state 1 and to not proactively transfer a patient in state 2.

1 2

RLCR DL

PT

p1,2

p1,CR

p1,RL

p1,DL

p2,DLp2,RL

p2,CR

1 1

Figure 6 Example of an MPD where the optimal policy is not threshold. There is no self-transition in state 1 or

2. In state 1, the patient transitions to state 2,CR,RL or D (solid arcs), or is proactively transfered

(dashed arc). In state 2, the patient has to exit the ward, either by proactive transfer , in which case

s/he transitions to PT with probability 1 (dashed arc), either by transitioning CR,RL or D (solid arcs);

s/he can not transition back to state 1. We provide values of the rewards and transitions for which the

optimal policy is not threshold.

Condition (3.3) is not satisfied, i.e., out(1)< out(2).We also set the rewards rW , rPT , rRL, rCR, rD

such that out(2)> rPT , which means that the optimal nominal policy will not proactively transfer

the patient when in state 2: π∗(1) = 0. However,

π∗(1) = 1 ⇐⇒ rW +λ · rPT > rW +λ · (out(1)+ p1,2(rW +λ · out(2))

⇐⇒ rPT > out(1)+ p1,2(rW +λ · out(2)).

Therefore, when out(1) < rPT < out(2) and the discount factor λ is small enough, the decision-

maker has an incentive to proactively transfer the patient in state 1. In particular, this is the case

for the following set of parameters:

(p1,RL, p1,CR, p1,D) = (0.3,0,0.3), p1,2 = 0.4, (p2,RL, p2,CR, p2,D) = (0.3,0.4,0.3), λ= 0.01,

rW =1.6, rRL = 3, rCR = 2, rD =1.5, rPT = 2.15.
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We detail the computation of an optimal policy for the single-patient MDP of Figure 6. We start

with the Bellman Equation in state 2:

V ∗
2 =max{rW +λ · out(2), rW +λ · rPT }.

Since out(2) = (0.3,0.4,0.3)⊤(3,2,1.5) = 2.15> rPT = 2, we know that π∗(2) = 0, and the optimal

policy does not transfer the patient with a severity score of 2. Moreover, V ∗
2 = rW + λ · out(2) =

1.6+0.01 · 2.15= 1.6215. Let us compute V ∗
1 . The Bellman Equation in state 1 gives

V ∗
1 =max{rW +λ · (p1,2 ·V ∗

2 + out(1)), rW +λ · rPT }.

Moreover, out(1) = (0.3,0,0.3)⊤(3,2,1.5)= 1.35< out(2) = 2.15. Therefore,

V ∗
1 =max{1.6+0.01 · (0.4 · 1.6215+1.35),1.6+0.01 · 2}=max{1.619986,1.62}=1.62,

from which we conclude that π∗(1) = 1, and the optimal policy proactively transfers the patients

with severity score of 1. Therefore, the optimal nominal policy is not threshold. We would like to

note that we could have chosen any set of parameters for which

out(2)> rPT > out(1),

rPT >p1,2 · (rW +λ · out(2))+ out(1).

In practice, the discount factor is likely to be significantly higher than 0.01, since the decision-maker

in the hospital likely does care about the long-term impacts of the transfer policies.

Appendix F: Non-uniform rewards for the single-patient MDP.

We now consider the case where the rewards in the ward (rW,i)i∈[n] and the rewards for proactive

transfers (rPT,i)i∈[n] depend on the severity of the patient. In this case, we will prove that in

our single-patient MDP, the optimal nominal policy is still threshold. In this section, we write

rW = (rW,i)i∈[n] and rPT = (rPT,i)i∈[n]. We will also write rRL = (rRL)i∈[n] the vector of Rn whose

components are rRL everywhere. Note that we need to introduce the states PTi, i ∈ [n] which

represent a patient who has been proactively transferred from severity score i ∈ [n]. Note that

there are now n+n+3= 2n+3 states. The states i ∈ {1, ..., n} correspond to the severity scores

of a patient in the ward, the states i ∈ {n+ 1, ...,2n} correspond to the terminal states after the

proactive transfer of a patient from state i − n. The (2n+ 1)-th state corresponds to CR, the

(2n+2)-th state corresponds to RL and the (2n+3)-th state corresponds to D.

Similarly as for the case of uniform rewards (Theorem 1), we need two assumptions to prove that

there exists an optimal nominal policy that is threshold (Theorem 5). We start with the following
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assumption which is an extension of Assumption 1 to non-uniform rewards. Condition (F.1) means

that it is better for the patient to recover and leave than to be proactively transferred (from any

state). Condition (F.2) means that it is better for the patient to recover and leave (from any state)

than to stay in the ward forever (in any state). We use Assumption 4 to bound the reward of the

value vector of any policy in our proof of Theorem 5.

Assumption 4.

rPT,i ≤ rRL,∀i ∈ [n], (F.1)

1

1−λ
rW,i ≤ rW,ℓ +λ · rRL,∀ (i, ℓ)∈ [n]× [n]. (F.2)

We also need the following assumption, which is a generalization of Assumption 2 for non-uniform

rewards. Note that condition (F.3) and condition (F.4) in Assumption 5 have the same interpreta-

tions as condition (3.3) and condition (3.4) in Assumption 2.

Assumption 5. We assume that

out(i)≥ out(i+1),∀ i∈ [n− 1], (F.3)

and that

T⊤
i,·(rW +λ · rPT )− rPT,i ≥T⊤

i+1,·(rW +λ · rRL)− rPT,i+1,∀ i∈ [n− 1]. (F.4)

The following theorem holds.

Theorem 5. Under Assumption 4 and Assumption 5, there exists an optimal nominal policy that

is a threshold policy.

Proof. We adapt the proof of Theorem 1 to the case of non-uniform rewards for the states in

the ward (i∈ [n]) and the proactive transfers (PTi, i∈ [n].) Let V 0 ∈R2n+3 such that

V 0
i =0,∀ i∈ [n],

V 0
n+i = rPT,i,∀ i∈ [n],

V 0
2n+1 = V 0

2n+2 = V 0
2n+3 =0.

Let F :R2n+3 →R2n+3 be the mapping such that

F (V )i =max{rW,i +λ ·





∑

j∈[n]
⋃
{CR,RL,D}

T 0
ijVj



 , rW,i +λ · rPT },∀ i∈ [n],

F (V )n+i = rPT,i,∀ i∈ [n],

F (V )2n+1 = rCR, F (V )2n+2 = rRL, F (V )2n+3 = rD.
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The function F is the Bellman operator associated for our single-patient MDP with transition

kernel T , when the rewards are not uniform. Similarly as in the proof of Theorem 1, we will prove

by induction that the sequence of policies (πt)t≥1 generated by the value iteration algorithm is

threshold for all periods t≥ 1.

At t= 1, for i∈ [n],

F (V )i =argmax{rW,i +λ ·





∑

j∈[n]
⋃
{CR,RL,D}

T 0
ijV

0
j



 , rW,i +λ · rPT,i}

=argmax{rW,i +λ · 0, rW,i +λ · rPT,i}.

We can conclude that π1 is a threshold policy, and its threshold is 1.

Let us assume that πt = π[τ ]for some t≥ 1 and some threshold τ ∈ [n+ 1]. Let i ∈ [n− 1] such

that πt+1(i) = 1. It holds that

rW,i +λ ·
(

n
∑

j=1

T 0
ijV

t
j + out(i)

)

< rW,i +λ · rPT,i.

Moreover, since πt is π[τ ], by construction the vector V t is such that

V t
ℓ > rW,ℓ +λ · rPT,ℓ,∀ ℓ∈ {1, ..., τ − 1}, (F.5)

V t
ℓ = rW,ℓ +λ · rPT,ℓ,∀ ℓ∈ [τ,n], (F.6)

V t
n+ℓ = rPT,ℓ,∀ ℓ∈ [n], (F.7)

V t
2n+1 = rCR, V

t
2n+2 = rRL, V

t
2n+3 = rD. (F.8)

We know that

F (V t)ℓ ∈ argmax{rW,ℓ +λ ·
∑

j∈[n]
⋃
{CR,RL,D}

T 0
ℓ,jV

t
j , rW,ℓ +λ · rPT,ℓ},∀ ℓ∈ [n].

We will prove that

rW,i+1 +λ ·
∑

j∈[n]
⋃
{CR,RL,D}

T 0
i+1,jV

t
j < rW,i+1 +λ · rPT,i+1.

We have

rW,i+1 +λ · rPT,i+1 = rW,i +λ · rPT,i + rW,i+1 +λ · rPT,i+1 − rW,i −λ · rPT,i (F.9)

≥ rW,i +λ ·
∑

j∈[n]
⋃
{CR,RL,D}

T 0
ijV

t
j + rW,i+1 +λ · rPT,i+1 − rW,i −λ · rPT,i (F.10)

≥ rW,i +λ ·
n
∑

j=1

T 0
ijV

t
j +λ · out(i)+ rW,i+1 +λ · rPT,i+1 − rW,i −λ · rPT,i (F.11)
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≥ rW,i +λ ·
τ−1
∑

j=1

T 0
ijV

t
j +λ ·

n
∑

j=τ

T 0
ijV

t
j +λ · out(i) (F.12)

+ rW,i+1 +λ · rPT,i+1 − rW,i −λ · rPT,i

≥ rW,i +λ ·
τ−1
∑

j=1

T 0
ijV

t
j +λ ·

n
∑

j=τ

T 0
ij(rW,j +λ · rPT,j)+λ · out(i) (F.13)

+ rW,i+1 +λ · rPT,i+1 − rW,i −λ · rPT,i

≥ rW,i +λ ·
τ−1
∑

j=1

T 0
ij(rW,j +λ · rPT,j)+λ ·

n
∑

j=1

T 0
ij(rW,j +λ · rPT,j)+λ · out(i)

(F.14)

+ rW,i+1 +λ · rPT,i+1 − rW,i −λ · rPT,i

≥ rW,i +λ ·
τ−1
∑

j=1

T 0
i+1,j(rW,j +λ · rRL)+λ ·

n
∑

j=τ

T 0
i+1,j(rW,j +λ · rPT,j)−λ · rPT,i+1

(F.15)

+λ · out(i+1)+ rW,i+1 +λ · rPT,i+1 − rW,i

≥ rW,i+1 +λ ·
τ−1
∑

j=1

T 0
i+1,jV

t
j +λ ·

n
∑

j=τ

T 0
i+1,j(rW,j +λ · rPT,j)+λ · out(i+1) (F.16)

≥ rW,i+1 +λ ·
∑

j∈[n]
⋃
{CR,RL,D}

T 0
i+1,jV

t
j , (F.17)

where Inequality (F.10) follows from πt+1(i) = 1, Inequality (F.13) follows from the fact that the

policy πt is a threshold policy and therefore the vector V t satisfies Inequalities (F.5). Inequality

(F.15) follows from Assumption 5, because Assumption 5 and ∀ ℓ∈ [10], rPT,ℓ ≤ rRL imply that for

all threshold τ ∈ {1, ..., n+1},

n
∑

j=1

T 0
ij(rW,j +λ · rPT,j)+ out(i)− rPT,i ≥

τ−1
∑

j=1

T 0
i+1,j(rW,j +λ · rRL)+λ ·

n
∑

j=τ

T 0
i+1,j(rW,j +λ · rPT,j)

+λ · out(i+1)−λ · rPT,i+1 − rW,i.

In order to show F.16, we can extend Lemma 1 to the case of non-uniform rewards:

1

1−λ
max
i∈[n]

rW,i ≤min
i∈[n]

rW,i +λ · rRL ⇒ V t
i ≤ V π∗

i ≤ rW,i +λ · rRL,∀i∈ [n]. (F.18)

Therefore, we conclude that

rW,i+1 +λ · rPT,i+1 ≥ rW,i+1 +λ ·
∑

j∈[n]
⋃
{CR,RL,D}

T 0
i+1,jV

t
j ,

and πt+1(i+1)= 1. We can thus conclude that the policy πt+1 is a threshold policy, and similarly

as in the proof of Theorem 1, there exists an optimal nominal policy that is a threshold policy.

�
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Appendix G: Details about the nominal matrix.

Confidence intervals. We use the method in Sison and Glaz (1995) to compute 95% confidence

intervals around the nominal matrix T 0. This method yields

[T 0
ij −αi, T

0
ij +2 ·αi],∀ (i, j)∈ [10]× [13],α=10−4 · (4,8,10,14,15,43,46,47,46,45). (G.1)

We notice that the confidence intervals are larger for small severity scores than for larger severity

scores (up to one order of magnitude). This is because large severity scores correspond to more

serious health conditions, which are less likely to be observed than smaller severity scores.

Details on nominal factor matrix. We want to know if the errors between T 0 and T̂ are more

important for some severity scores than others. Therefore, we compute the maximum absolute

and relative deviations between each row of T̂ and each row of T 0. In general, we notice that the

absolute errors are higher for high severity scores. For instance, for severity score 1 the maximum

absolute error is 0.0023. On the other hand, for severity score of 9, the maximum error is 0.0049.

However, the maximum relative error is higher for low severity scores (from 1 to 5). Even though

the absolute deviations are small, they amount to large relative deviations because they occur on

coefficients that are already small. For instance, T 0
1,7 = 5.40 ·10−5 and T̂1,7 = 6.23 ·10−5, which gives

a relative deviation of about 15%, even though the absolute deviation is in the order of 10−5.

Appendix H: Sensitivity Analysis for our single-parameter MDP and our hospital simulations.

In this section we present a detailed sensitivity analysis for our single-patient MDP and our hospital

simulations. We have mentioned that the ordering of the rewards of our single-patient MDP can be

inferred from the outcomes of the patients and the use of ICU resources (see (5.4)). We consider the

impact of a change in the reward parameters presented in Section 5.3.1. We have seen in Section

5.3.2 that for this setting of rewards, the optimal nominal policy is π[6], while the optimal robust

policy is π[5] (for Umin and Uemp). We choose to study the variations in rRL and rPT−RL, since these

rewards have reversed influences on the thresholds of the optimal policies. Indeed, rRL is associated

with a patient recovering from the ward, i.e., a patient who has not been proactively transferred,

while rPT−RL is the reward associated with a patient recovering after having been proactively

transferred.

We present in Table 3 and Table 4 the variations in the hospital performances of the optimal

robust policies, for changes in the value of rRL (from 240 to 260) and in the value of rPT−RL (from

180 to 200). We would like to note that both the thresholds of the optimal robust policies and the

associated worst-case transition matrix may vary when the rewards parameters change.
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Table 3 Change in the worst-case mortality, LOS and average ICU occupancy of the optimal robust policies for

the uncertainty sets Umin,Uemp and Usa, for variations in the reward rPT−RL, associated with a patient who has been

proactively transferred to the ICU and recovers.

rPT−RL Mortality (%) LOS (days) ICU occupancy (%)

Umin Uemp Usa Umin Uemp Usa Umin Uemp Usa

180 5.73 6.47 7.02 3.98 4.07 4.06 71.88 75.34 77.25

185 5.57 6.35 7.02 3.94 4.04 4.06 72.34 75.62 77.34

190 5.11 5.83 6.40 3.75 3.85 3.85 73.95 76.70 77.80

195 5.11 5.46 6.02 3.75 3.70 3.73 73.94 77.98 78.96

200 4.78 5.12 5.64 3.59 3.53 3.57 75.39 79.03 80.02

Table 4 Change in the worst-case mortality, LOS and average ICU occupancy of the optimal robust policies for

the uncertainty sets Umin,Uemp and Usa, for variations in the reward rRL, associated with a patient who is in the

ward and exits the hospital recovering without entering the ICU.

rRL Mortality (%) LOS (days) ICU occupancy (%)

Umin Uemp Usa Umin Uemp Usa Umin Uemp Usa

240 4.78 5.46 6.02 3.60 3.70 3.73 75.4 77.97 78.96

245 5.11 5.82 6.41 3.75 3.85 3.87 73.95 76.70 77.81

250 5.11 5.83 6.40 3.75 3.85 3.85 73.95 76.70 77.80

255 5.57 6.36 6.41 3.94 4.04 3.87 72.33 75.63 77.81

260 5.57 6.36 7.02 3.94 4.04 4.06 72.33 75.63 77.24

In both Table 3 and Table 4, we notice that the hospital performances of the optimal robust

policies can vary when the set of reward parameters of our single-patient MDP does change.

However, these changes are mostly due to the fact that we are comparing the optimal robust

policies for different values of the rewards, and therefore the thresholds of the policies that we are

comparing do vary. For instance, for Umin, the optimal robust policy is π[8] for rPT−RL = 240 but it

is π[4] for rPT−RL =260. On the contrary, we notice that when the optimal robust threshold is the
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same, variations in rewards value do not impact the hospital worst-case performances. For instance,

the optimal robust policies are the same (equal to π[5] across all three uncertainty sets) when

rRL = 250 and when rRL = 245. We can see in Table 4 that the hospital worst-case performances

(mortality, LOS, ICU occupancy) are also the same, when rRL =250 and when rRL = 245. However,

these two rows of worst-case performances are computed for different worst-case matrices (since

the reward parameters for our single-patient MDP were different).

Therefore, we can conclude that even though the optimal robust and nominal policies can vary in

our single-patient MDP, the hospital performances remain stable for each threshold policy individ-

ually. The ordering of the rewards does yield worst-case transition matrices for our single-patient

MDP that are good and robust candidate worst-case transition matrices for the hospital worst-case

performances, since variations in the rewards parameters on the single-patient MDP side still yield

worst-case hospital performances that are very similar.

Appendix I: Numerical results for rank r= 7.

In this section we present our numerical results for the performances of the hospital, when the

NMF approximation T̂ is of rank r=7.

Errors of the NMF approximations. For r=7, we compute a new T̂ solution of the NMF program

(5.2). Our solution T̂ = UŴ⊤ achieves the following errors: ‖T 0 − T̂ ‖1 = 0.1932,‖T 0 − T̂ ‖∞ =

0.0224,‖T 0− T̂ ‖relat,T0 = 0.4093. In more details, T̂ achieves the following errors.

max. mean median 95% percentile

absolute deviation 0.0224 0.0015 0.0004 0.0069

relative deviation 0.4093 0.0856 0.0432 0.3247

Table 5 Statistics of the absolute and relative deviations of T̂ from T
0 for a rank r= 7.

As we can see in Table 5, the absolute deviations remains small. Additionally, the relative

differences between the coefficients are moderate, with half being less than 8.56%. That said, the

maximum relative different is 40.93%. This occurs with T̂4,6 = 0.0035, while T 0
4,6 = 0.0060; so while

the relative deviation is quite large, the absolute variation is only in the order of 10−3.

Mortality and Length-Of-Stay. We present the worst-case performances of the 11 threshold poli-

cies, for our uncertainty sets Umin and Uemp, when the rank is r= 7. For references we still show the

performances for the nominal transition kernel T 0 (nominal performances), for the uncertainty set

Usa and for our NMF solution of rank r=7.

We first note that the hospital performances with our NMF approximation of rank r= 7 are very

close to the hospital performances for T 0, which provides support that T̂ is a plausible transition
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matrix. We notice that the performances of the threshold policies can still significantly deteriorate,

even for small variations from the nominal matrix T 0. In particular, there is a 20% increase in the

average mortality, for some worst-cases matrices in Umin and Uemp. Interestingly, the uncertainty set

Umin yields worst-case mortality rates that are higher than for worst-cases matrices in Uemp, contrary

to what we noticed in Section 5 for rank r= 8. However, these two uncertainty sets still yield the

same insights, which are that the performances can significantly degrade even for small deviations,

and that in worst-case, the initial decrease for proactively transferring the patients with the highest

severity scores (policy π[11], top-left of each curve, to policy π[6], the sixth point of each curve,

starting from the left) is steeper than the initial decrease for the nominal performances. Moreover,

these insights are still different from the worst-cases performances in Usa, since the results for Usa

are independent of the rank chosen for our NMF approximation. In particular, for worst-cases in

Usa, the decision-maker appears to be able to proactively transfer the patients with severity scores

in {8,9,10}, without increasing the ICU occupancy.

Therefore, our numerical simulations for rank r= 7 are corroborating our numerical simulations

of Section 5 for rank r = 8. We do not present the hospital simulations for lower ranks, since the

NMF approximations become very poor for rank r lower than 7. For instance, for r= 6, there are

54 coefficients (out of 130 coefficients) outside of the confidence intervals, and for a rank r=5, our

NMF solution has 70 coefficients that are outside the 95% confidence intervals.
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(a) Random samples analysis.
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(b) Worst-case analysis.

Figure 7 In-hospital mortality of the 11 threshold policies for the nominal estimated matrix, randomly sampled

matrices in the 95% confidence intervals (left-hand side), and the worst-case matrices found by our single

MDP model (right-hand side). Each point corresponds to a threshold policy: the policy with highest

mortality rate corresponds to threshold τ =11 (top-left of each curve) and the threshold decreases until

the bottom-right point of each curve, corresponding to threshold τ = 1. We consider the uncertainty

sets Umin,Uemp and Usa when the rank r = 7. On the right-hand side figure, we also report the hospital

mortality rate when the transition matrix is our NMF approximation with rank 7.
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(a) Random samples analysis.
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(b) Worst-case analysis.

Figure 8 Length-Of-Stay of the 11 threshold policies for the nominal estimated matrix, randomly sampled matri-

ces in the 95% confidence intervals (left-hand side), and the worst-case matrices found by our single

MDP model (right-hand side). Each point corresponds to a threshold policy: the policy with highest

LOS corresponds to threshold τ = 11 (top-left of each curve) and the threshold decreases until the

bottom-right point of each curve, corresponding to threshold τ = 1. We consider the uncertainty sets

Umin,Uemp and Usa when the rank r = 7. On the right-hand side figure, we also report the hospital

mortality rate when the transition matrix is our NMF approximation with rank 7.

Appendix J: Hospital performances for random deviations around the nominal kernel.

We sample at random 20 matrices in the confidence intervals (5.1). In order to do so, we first

sample a matrix of deviationsD ∈R10×13, withDij ∈ [−αi,+2 ·αi],∀(i, j)∈ [10]× [13]. Note that the

matrix T 0 +D is not necessarily a transition matrix, because each of its row does not necessarily

sum up to 1. Therefore, we project each of the rows of the matrix T 0+D onto the simplex and we

obtain a matrix a new matrix T̃ . If the corresponding matrix T̃ is inside the confidence-intervals,
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we compute the hospital performances of the 11 threshold policies; otherwise, we reject T̃ and

sample a new deviation matrix D.

Using this method, we compute the performances of the threshold policies for 20 matrices chosen

randomly inside the confidence intervals (5.1). Out of these 20 performances, 8 were pessimistic

(higher mortality / Length-Of-Stay / ICU occupancy than in the nominal case) and 12 were

optimistic (lower mortality / Length-Of-Stay / ICU occupancy than in the nominal case)

Mortality. For the in-hospital mortality, the average relative deviations from the nominal per-

formances ranged from 3.00% to 3.84% (from threshold 0 to threshold 11). For each policy, the

maximum relative deviation from the nominal performances ranged from 6.19% to 8.82% (again

for threshold 0 to threshold 11).

LOS. For the Length-Of-Stay, the average relative deviations from the nominal performances

ranged from 0.34% to 1.04% (for threshold 3 and threshold 11). For each policy, the maximum

relative deviation from the nominal performances ranged from 0.91% to 2.79% (for threshold 0 and

threshold 11).

ICU occupancy. For the average ICU occupancy, the average relative deviations from the nominal

performances ranged from 0.37% to 0.57% (for threshold 0 and threshold 11). For each policy,

the maximum relative deviation from the nominal performances ranged from 0.99% to 1.57% (for

threshold 11 and threshold 0).


