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Abstract—As the diversity in end-user devices and networks
grows, it becomes important to be able to efficiently and
adaptively serve media content to different types of usersA
key question surrounding adaptive media is how to do Rate-
Distortion optimized scheduling. Typically, distortion is measured
with a single distortion measure, such as the Mean-Squaredrior
compared to the original high resolution image or video segence.
Due to the growing diversity of users with varying capabiliies
such as different display sizes and resolutions, we introcie
Multiple Distortion Measures to account for a diverse range of
users and target devices. Multiple Distortion Measures (M)
gives a clear framework with which to evaluate the performarce
of media systems which serve a variety of users. Scalable @od,
such as JPEG2000 and H.264/MPEG-4 SVC, allow for adaptation
to be performed with relatively low computational cost. We
show that accounting for MDM can significantly improve systen
performance; furthermore, by combining this with scalable
coding, this can be done efficiently. Given these Multiple Bitor-
tion Measures, we propose an algorithm to generatembedded
schedules, which enables low-complexity, adaptive streang of
scalable media packets to minimize distortion across muitile
users. We show that using MDM achieves up taldB gains for
spatial scalability applied to images and12dB gains for temporal
scalability applied to video.

Index Terms—Multiple distortion measures, scalable stream-
ing, embedded packet schedules, rate-distortion optimizen,
JPEG2000, H.264/MPEG-4 SVC

I. INTRODUCTION

Traditionally, the incremental distortion value of eaclchost
is computed in relation to the original multimedia contemtcl
each multimedia packet has a single distortion value associ
ated with it. Traditional scheduling algorithms use a sngl
distortion measure, such as mean-squared error in relation
to the original image. However, multimedia delivery syssem
are increasingly serving many receivers with a diverse eéang
of characteristics. For example, display devices for insage
and video range from cellphones to PDAs to PCs, each with
capabilities for different sizes, resolutions, and fraates.
Scalable media, such as JPEG2000 [1] and H.264/MPEG-4
SVC [2], has the capability to adapt to different user types
and helps address this issue. However, scalable mediatends
give a coarse granularity for adaptation and, as we willrlate
show in Section lll, it does not necessarily provide optimal
performance. In order to account for each user’s capagslitt
may be appropriate to customize a different distortion meas
for each device, e.g., for a low-resolution display device t
mean-squared error should be computed in relation to a low-
resolution version of the original image.

In this paper, we propose usifgultiple Distortion Mea-
sures (MDM) to explicitly account for the diversity of re-
ceivers in today’s multimedia delivery systems. Within the
MDM framework, each multimedia packet has multiple distor-

Multimedia delivery systems encode multimedia contefibn values associated with it, one for each chosen distorti
into packets that are sent over a network to one or mafgeasure. Scheduling algorithms can then be developed using

receivers, and receivers receive some or all of these padket

these multiple distortion measures, specifically, usirgyith

pending on network congestion and packet loss. A criticetl p&remental rate and the multiple incremental distortiorugal

of a multimedia delivery system is the scheduling algorithmf each packet. To our knowledge, this class of algorithnss ha
that the sender uses to determine which multimedia packatst yet been explored.

to prioritize and send over the network. Much prior work has

been done to find scheduling algorithms that optimize the rat
distortion performance of the delivery system. In much @f th
work, each packet has an associated incremental rate éside)

incremental distortion value (e.g., mean-squared err@)) it

contributes to the reconstruction of the multimedia cotte
The incremental rate and incremental distortion value chea
packet can be used to determine the relative importancesof
packets, and scheduling decisions can be made accordin

this information.
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Two questions that arise are: 1) What is the difference in
the optimal schedule for different distortion measures] an
2) What is the benefit of using multiple distortion measures

An packet scheduling algorithms? While one might intuitive

expect some difference in the distortion values of multirmed
fhackets, one might expect the relative importance of packet

éotcpe quite similar. A surprising result we found was that

he difference in the relative importance of packets can be
quite large for different distortion measures. We show ¢hes
results in Section Ill. Furthermore, by using multiple dision
measures we were able to develop scheduling algorithms that
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only consider a single distortion measure. We show results
for this in the context of images in Sections IV and in the
context of video in Section V.



A. Related Work [20], [21] for embedded scheduling. We refer the reader to

) . . . . ) ... the preceding references and the references therein fog mor
With the growing diversity of mobile devices, a S'gn'f'canbackground on packet scheduling.

body of work has been done to develop effective methods t0Gjyen this prior work, and using the conventional approach

serve media content to multiple user types. of a single distortion measure, one possible approach is to

When the capabilities of all clients are known a priori, ONgenerate many schedules—one for each user type. However,
can encode a scalable stream to optimally serve them all.tif\s could be costly for a number of reasons. First is the
large body of work has looked at how to adapt frame rate apgbmory required to store all the different schedules, rathe
modify encoding for different users (see [3]-{8] and redatethan just one which can serve many. Also, suppose a media
work). In all of this work, the benchmark for performance (itream were transmitted to a relay node before adapting it
one exists) is the original sequence-an approach which mgyspecific users needs—it is unrealistic to require complex
neglect different user types. In [9], the authors look at howanscoding operations on a per-user basis at the relagilyin
to encode for multiple spatial resolutions. In this caseyth f the media stream is encrypted, using an embedded schedule
use CIF and QCIF benchmark video sequences to evalugftly optimized for multiple users, given MDMs, allowsrfo
performance of the scalability. There has been a substanfigaptation without requiring access to the unencryptedstr
amount of work focused on modifying frame rate, imaggye will explore the scheduling dilemmas—specifically in the
quality, and spatial resolution at the encoder in order tvese case of embedded scheduling—that arise due to the conflicts i
different types of users. It is possible to encode the me%oritizaﬁon of packets for each user.
sequence to adhere to the specific needs of each user type, ffiost closely related to our work, [22] examines temporal
they are known. However, when the bitrate and user type giq spatial adaptation of scalable video and how to evaluate
a particular client is not known at the time of encoding, howerformance of scalable media. Thus far, it has been difficul
can a service provider adapt the media content to satisBethey evaluate the relationship between scalable operatiods a
constraints in a visually pleasing manner? viewer utility of the resulting stream. In their work, the

If adaptation is necessary after encoding, it is possible &thors propose using a user/classification-based peafuren
decode and re-encode the media sequence in order to adhergd@ric for quality assessment. Through subjective tests an
the rate constraint and viewing needs of each particular usg¢ machine-learning, predictive framework, they are able to
Unfortunately, this can be extremely expensive in terms efaluate performance of scalable video systems. In our work
computation time and power. Rather, transcoding can be dafieextension to [23], we propose a general framework in which
to modify a (non-scalable) coded sequence into a differet evaluate the performance of scalable systems and how to
coded sequence with different properties, such as bifrat®e optimize embedded schedules of scalable media packets. Our
rate, spatial resolution, etc. An overview of transcodi@a@ ¢ goal is to minimize the associated distortion for each user.
be found in [10]-[12]. In [13], [14], the authors look atin the remainder of this paper, we discuss how to customize
how to transcode pre-encoded video into video with lowgfew distortion measures which accurately capture the ipeci
spatio-temporal resolution. While these works adapt to th@eds of each user and how to schedule packets given these
various display capabilities of different users, by upstimgp measures. Our contribution is the introduction of a franéwo
and interpolating, they also focus on the original highheat which we call Multiple Distortion Measures (MDM). The main
than low, resolution display as the benchmark for perforeean distinction between our work and [22] is the generality of
In this paper, we will show that modifying the benchmarlur work—we can incorporate their utility functions detéred
image/video leads to significant gains. through subjective studies—as well as our study of how to do

With the growth of scalable codecs such as JPEG2000 amdilti-objective scheduling given these multiple user s/p&e
H.264/MPEG-4 SVC, transcoding operations can be simpiitroduce a clear framework which is robust and independent
fied to truncations of bitstreams, and discard or truncatiai highly variant user opinions and allows the use of the
operations of packets. This makes it possible to encode #tandard measure of mean-squared error (MSE) distortion.
media once and adapt it to user demands without expensive@esstomizing a distortion measure for each user type leads
encodings or transcoding operations. We focus on this prablto substantial gains, due to the surprising variance in aedi
of developing scheduling algorithms to jointly optimizans- packet importance depending on the user and device type.
mission of packetized scalable media, where the bitstream ¢ The rest of the paper is organized as follows. In Section
be altered by discarding packets. We assume that we are gillenwe present the general framework in which Multiple
an encoded bitstream and we wish to transmit it to multipRistortion Measures is formally defined. In Section Ill, we
types of users. We look at how to evaluate performance agply the MDM framework to a specific instance of images
well as how to generate embedded packet schedules givdrere distortion measures are defined by spatial resolution
the new framework. Embedded schedules are schedules whidgh use this instance to gain insight about Multiple Distorti
build upon themselves. They are useful because they rediweasures. In Section IV, we look at the scheduling problem of
transcoding operations to simple truncations of the codast, generating embedded schedules involving media packels wit
and also allow for meaningful transcoding even when thaultiple distortion measures defined by resolution. We bigve
codestreams are encrypted [15]. Optimized packet schmedula scheduling algorithm and use the framework from Section
is an important problem and has garnered quite a lot BfB to evaluate performance via empirical experimentatio
attention. Some of the early work includes [16]-[19] anth Section V, we discuss the generality of our framework



| Application | Types of MDM | We define by7,(X) a transformationoperator of media

Resolution content, X, for user typeu. A transformation converts media
Image PSNR fidelity content X into a modified, benchmark version which user
Color fidelity type u will view and consume the content. For example,
Resolution this transformation could be spatial downsampling to canve
PSNR fidelity our original benchmark imageX, into a low resolution
Video Color fidelity benchmark image7,, (X), if user typeu wishes to view the
Frame Rate image on a low resolution display. The transformation could
. Bandwidth also be a temporal downsampling or framerate conversion
Audio # of channels (mono/stereo) operation, such as frame dropping, to reduce the frame rate
. Shape for video. Therefore7,(X) is the reference media against
Graphics Texture which performance evaluation is measured for usddefine

7; as the identity transformation such tlg{ X ) = X. There
Fig. 1. Summary of some potential applications of Multipléstortion ~ Will be multiple transformation operators—one correspogd
Measures. to each user type.
These multiple benchmark images/videos (one for each
transformation) are now used to calculate distortion \&lofe
with an extension to temporal scalability of video. Finallythe reconstructed media—hence, Multiple Distortion Measu

we conclude in Section VI. (MDM). Let's define D, (X) as the distortion of reconstructed
media X compared to the benchmark medfa(X). Note
Il. MULTIPLE DISTORTION MEASURE FRAMEWORK that this is a function ofX and X as well as the transform

7., Du(X) = f(X,T,(X)). When the received media;,

This section formally introduces the Multiple Distortion displaved and tructed diff tv. it be diff
Measures framework. Packetized scalable media allows 3rC/SP'ay€d and reconstructed aitrerently, it may be ¢

adaption beyond the original high resolution image or oddi to makte at cgmpacr;_son t?j tge Ol;glﬂ&:( Comsm' r;c,mce J-r;fe t
high resolution, high frame rate video by simply discardinlbzcoﬁ_ruce :c‘ne 1a a? _T_EC mar m?_ a :l;)lve ! Zrel;]
select packets of the encoded bitstream. Typically, eaehiss solutions or frame rates. 1hiS IS somelimes bypassed by

most concerned with metrics that impact his own performan -tsargpllfng Ia llot\.N rzsotluttlp nllg}w frame réﬂte tlrr1n ag?/\.”dTO'
For instance, a low resolution viewer cares about distortig > cac OF caicuiating distortion @ comparea to the origina

and PSNR compared to a low resolution image, rather th ﬁnchmarkX for all users, we propose to calculate distortion
the original high resolution image—a resolution he canimtyv compared to a transformed benchmark media X), spe-

However, if a single metric is used based on the high reﬂutic'al;zed for eachluste_r type. This plr;)vlldes a mlorethappllcable
image, then the needs of the low resolution viewer cou riormance evajuation across multiple users. in ine stena

be ignored. For this reason, we introdudeltiple Distortion Of Fig. 2 with & low and high resolution user, there wouldbe

Measuredo account for and measure performance relative gdstortlpn measures defined Bybenchmark images: one h'gh
multiple user types. resolution benchmark?;(X) = X, and one low resolution

With the growing diversity in multimedia devices, it isbenchmarl_cTL(X) =Y. . .
o . These distortion measures may be applied at differentdevel
generally the case that users will view content on differen

0% granularity. For example, distortion values may be com-

types of displays. Therefore, we generate multiple benckma ] . .
: . S : : . uted for packets of packetized multimedia content such tha
images/videos which incorporate the various display cd)cpabo ultiple distortion values are calculated for a single K

ities of each user type and which are used to measure [he ) : .
. . , . yrthermore, the distortion values may be calculated with
distortion of a reconstructed image or video sequence. For . . .
. . . respect to different benchmarks, e.g., for image or video,
instance, a benchmark image/video could be a downsample ) . .
. . o . a packet’s value can be calculated in relation to the low
low resolution version of the original; a grayscale versidn

the original, 3 color component image/video; a temporall)fesomtlon and high resolution reconstructions.

downsampled version of the original video sequence; Orgf gypnedded Scheduling for Packetized Media with Multiple
highlighted Region-of-Interest (ROI). Table 1 summarizes Distortion Measures

few potential application areas and capabilities whichtijld
Distortion Measures could help account for multiple US(ﬂ'1

types.

A schedule is an ordering of packets that indicates how
ey should be sent over a network. Embedded schedules
have the characteristic that all packets included at Ratare

o ) ) . also included at raté&; > R;. That is, embedded schedules
A. Defining Multiple Distortion Measures incrementally add packets for increased rates.

A key aspect of MDMs is calculating the different distortion Given a single distortion measure, an embedded schedule
measures. This involves selecting a distortion metrichsucan be determined in a rate-distortion optimized manne}; [20
as mean-squared error or mean-absolute difference, and[2ii. The extension of this algorithm to packetized scaabl
appropriate reference. The reference can be an appropriagdia with Multiple Distortion Measures is not obvious. Our
transformation of the original content. We define the transeheduling goal is to generaembeddedschedules in the
formation and distortion metric in this section. context of Multiple Distortion Measures.
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Fig. 2. Diagram of Multiple Distortion Measures. Multipletchmark images (or videos) are generated: the origifidlX) = X, and atransformedone,
71 (X). Distortion of reconstructed images is compared to theskipteubenchmarks which are able to accurately capture thplay capabilities of the
particular user in question. In this case, the low resafutbenchmark imag®” = 77, (X) is a downsampled version of the original benchmark image.

Embedded schedules allow for simple transcoding operate constraint,R. Then, given weightso, r, the expected
tions with a simple truncation of the bitstream. With a senglweighted distortion for schedul§ is:
distortion measure, the optimal embedded schedule can be Ronen
found via the fused-greedy algorithm, described in Section p p|g] — w. RVw. »D. (S(R 1
[I-C. However, Multiple Distortion Measures introduced-di DIS] ;Rz:%p( R ( ( )> @)

ferent quality measures for different devices and userg Th. . . . .
q y .glven this performance metric, we have a framework in which

media packet importance varies depending on the distortion
measure used. This creates a conflict when simultaneouSh°P2"€ schedules. K., [D]S1] < Ew[D|S], then we can

serving multiple users with different distortion measurEise saX/ schedules) is better than scheduls,.

fused-greedy algorithm is not applicable for multiple disbn We focus on the scheduler part in Fig. 3, which we
measures, thus alternative scheduling algorithms foripielt examine more closely in Fig. 4. The scheduler is given
distortion measures are presented in Section IV. This@ectithe distribution of user types and rate constraintsy, R),

will discuss the framework for embedded scheduling witas well as the transformsl,, which define the MDM to
multiple distortion measures. make scheduling decisions. Conventional systems incatpor

The goal is to build the MDM-aware scheduler in the systefly @ single distortion measurel;, to make scheduling
depicted in Fig. 3. We want to adapt a precoded scalable me@ifgisions. They assume that there is only one user typeaso th
stream to serve multiple user types at various rate conssrai P(u, 2) = p(R). By introducing multiple benchmarks defined
Let U/ be the set of user types. In Fig. 3, we depict low anly transforms 73, 7s,...,7,, we generate multiple lists of
high resolution user types—each with, users. Each user type,distortions,dl, do,...,d,, which define the importance of
u, will consume the media at some rate< R, < Rmax. In €aCh packet to each user type. The lif, generated by
this caseZ,,(-) is the transformation benchmark for user typ&ansformZ,, consists of valuesi,,;, which is the amount of
u € U. Let p be the probability distribution function for mediadistortion incurred by the loss of packewhen distortion is
consumption, so thai(u, R) is the probability that user type Measured against the benchmark image defined.byNow,

u views the image/video at ratg. Our goal is to design the instead of each packet having a single distortion vaiije,
MDM scheduler to schedule the packets of the scalable me§@ch packet has multiple distortion valu€s { dz,;, . . . , du,)

in order to minimize the distortion over the diverse set dgiorresponding to each user type and associated transformat
clients. operator,7,. Note that these distortion lists can be generated

A natural performance metric to optimize over is expectedour.Ing or after encoding. Our g.oal IS to. design Fhe scheduler
\é/hICh incorporates the MDM information provided by the

weighted distortion, or expected distortion where all th vsis € ¢ dered set of packets from thealidi
weights are equal td. These weights are useful to allop2N@Vs!s to generale an ordered set of packets from theafigi

varying prioritization of different user types. For instan if set of packets provided by a scalable encoder.

one user type is willing to pay more for better viewing qualit Define S;, as the schedule optimized for low resolution
it may be useful to weight his distortion contribution moreiewing. Let R,,,... be the highest possible viewing rate; for
heavily in order to ensure it is small. A schedule define@stance, the size of the original coded image. In this case,
for each rate, a subset of packets of the encoded bitstream assume onlyl type of userl/ = {L}, and a uniform
which adhere to the rate constraint. L#tdenote a schedule distribution of ratesp(L, R) = %x i.e., the probability of

R
and S(R) is the reconstructed content of the schedule witiewing the image at rate € [1, R,,,.] is uniform and all
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Fig. 3. System diagram for scheduling problem. We want tagdethe Multiple Distortion Measure (MDM) scheduler to ordsalable media packets to
serve multiple types of users over multiple rate constsaiiihe rate constraints and user types can be known detstitétly or probabilistically.

MDM Scheduler

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, rates.

This algorithm assumes distortions are additive across mul
 E— . .
— tiple dropped packets, but allows for simple precedence con
— straints that can be depicted as trees. A precedence dohstra
— of packetk to packetj means that packet must precede
E L packet; in the schedule. That is, packgtannot be decoded
Packets correctly without the inclusion of packét Precedence con-

straints can be represented by a simple tree structure where

all parent nodes must precede their children. In JPEG2000,
we can assume that across different tiles, resolutionsyr-col
components, and precincts, packets are independent. legwev
within the same tile, resolution, color-component, anctinet,

Fig. 4. Our scheduling problem focuses on the MDM schedulire packets are dependent across quality layers. Distortion is

scheduler is given multiple transforms to define benchmarkgies/videos addit_ive across qua”ty layers only if the preceding layers
for each user type as well as the channel and user type distrils. Given also included. Fig. 5(a) shows the tree structure for theegre

this information, it orders the packets into a MDM-awareesiifle. Note that - gence constraint for JPEG2000 packets within the same tile,
the original sequence may not be available, so it may be astnas the . .
decoded sequence at the highest possible quality. resolution, color-component, and precinct. In H.264/MPEG
SVC with hierarchial B frames, there is a clear dependency
between B frames. We can map these dependencies to a tree
structure where each frame’s parent is the most junior paren
as in Fig. 5(b). The most junior parent is the lowest parent
in the precedence tree. For instané®, has2 parents: B,
S;, = argmin E,[D|S] and B,. However, B, is a parent toB, so the precedence
5es constraint of B4 on Bs is captured by a single precedence
. Amac 4 constraint of B, on Bs. We assume that all | and P frames
- el RmaxD £(S(R)) @) are successfully transmitted and received—I and P frames ca
f=0 be scheduled first and transmission only occurs if there is
This optimal schedule can be determined using the fusethough bandwidth to ensure successful reception of them
greedy algorithm of [20]. Analogously, we can defiSg;, a||. Therefore, the only relevant precedence constraiotsio
the optimal schedule for high resolution viewing. between B frames. Finding the Rate-Distortion optimal stibs
of packets with these precedence structures is an insténce o
C. Fused-Greedy: Embedded Scheduling for a Single Distde Precedence Constraint Knapsack Problem [24], which can
tion Measure be solved optimally using dynamic programming.

users have low resolution displays. If we I8tbe the set of
all possible embedded schedules, titgncan be defined as:

We now briefly review the algorithm to generate embeddedWhile dynamic programming will give the optimal subset
schedules developed in [20]. This algorithm generates tbé packets given a rate constraint, the schedules are not
optimal embedded schedule forsingle distortion measure, embedded. Therefore, we proposed a fused-greedy algorithm
assuming a uniform distribution of weights. This algoritisn to generate embedded schedules. This algorithm can be shown
similar to that in [21] which looks at different distributis of to give the optimal embedded schedule [21]. The algorithm



ILU

Ly

ILﬂl
Ln

(a) JPEG2000 (b) B Frames

Fig. 5. Precedence constraints for JPEG2000 packets andh&v&chical B frames. For JPEG2000, within the same TilesdRition, Color Component,

and Precinct, packets are dependent in a linear fashioke®acorresponding to Layérmust be included prior to packejs> <. For hierarchical B frames,

the hollow circles correspond to anchor | or P frames. Theedéency structure can be mapped to a simple tree structueeevdach frame’s parent is the
most junior parent. We assume that all I/P frames are suttigssansmitted and received, and therefore the deperidsron I/P frames are not listed.

takes in the distortion valued,, and sizess,; of each packet images. By accounting for Multiple Distortion Measures whe
and returns the embedded schedule. ket= g— be the making scheduling decisions, up to 4dB gains can be achjeved
distortion-to-size ratio. LeP be a set of integer bairs whichas well as noticeable subjective improvements in image-qual
represents the set of precedence constrain{s, 1j € P, then ity. In Section V, we show these gains in the case of temporal
packetj must precede packét The fused-greedy algorithm scalability—low and high frame rates—for video.
is as follows: We consider the case where we have low and high resolution
viewers. This would be the case if some users wish to view the
content on a cellphone or PDA and others wish to view it on a
L laptop. We examine this scenario in the context of JPEG2000
Qheck precedeqce constrains, j) E P , encoded images and gain insight into the value of Multiple
if k; > k;: Violation between packet and j

2
3 . .
Distortion Measures.
4 then Fuse CPackets:
5 =
6
7

FUSED-GREEDY(d, s)
1 ki=%vi

fo — dig _ ditds In our experiments, the high resolution benchmark is the
U sy sitsy original image, 7y (X) = X, and the low resolution bench-
ki = 0. . mark, 7., (X), is a4 x 4 downsampled version of the original
So_rt packets In despendmg order ky . . igh resolution image. In some cases, the original image may
Fusing pqcl_<et$ andj corresponds to generating a thuant be available, so the benchmark imafe(X) would be
p?‘c"e? consisting of p_acketsand]. This packet has a N€Wihe decoded image at the original high resolution. JPEG2000
dlstortlo_n \_/alye and size equal tp the .sum of m@a(;kets is a packetized scalable image coding standard, where sub-
fused W.'th'n It By.fusmg packets an_d], an empty virtual sets of packets are independently decodable. To calculate
packet is left behind. Npte that _fusmg does not affect tnﬂe distortion values associated with each media packet, we
contents of the pa_ckets, rathe_r I SErves as a way to V'%rementally drop packets along the dependency structure
packets when making scheduhr_lg deC|S|on_s. Certam_ly’dUSSecode, and calculate the resulting mean-squared errdeYMS
packets can be separated during truncation and wewedhii\&ead of comparing the decoded image to just the original

unique packets as long as the precedence constraints r%% resolution imageX — 7 (X), we also compare to

satisfied. : :
. . _ the low resolution benchmark imagé;, (X ). Therefore, each
The fused-greedy algorithm we have briefly described ge acket has multiple2) distortion values associated with it:

erates optimal embedded schedules for a single distorti(?He for each resolution
measure; however, the extension to packets with multiple '
distortion measures is not immediate. As we further the

discussion of Multiple Distortion Measures, we will contan A. Transformation: Spatial Downsampling

to reference this algorithm. Furthermore, in Sections IM an The downsampling captured by transformatidn,can be
V, we develop MDM-aware embedded scheduling algorithmg,ne via one of the many different downsampling methods
which stem from the fused-greedy algorithm. which exist. It is important to note that the rest of our résul
and analysis are independent of the downsampling method and
IIl. SPATIAL RESOLUTIONS AN INSIGHTFUL INSTANCE  gnly utilize the fact that multiple distortion values exist
OF MULTIPLE DISTORTION MEASURES our experiments, we examine two linear methods Fox 2

In this section, we demonstrate, through quantitative awddwnsampling: a basic block filter to dox 2 pixel-averaging
qualitative results, some of the gains that can be achieyedds well as thel3-tap downsampling filter developed by the
accounting for Multiple Distortion Measures. Specificalle Scalable Video Coding effort, which we denote by "SVC”.
look at an insightful instance of Multiple Distortion measst We apply each2 x 2 downsampling filter twice in order to
as applied to multiple—low and high—display resolutions fachieve4 x 4 downsampling.




Image | Rate | LowRes PSNR opt PSNR coarse granularity for scalability. For instance, a lowoteton
(bytes) | Pix-Avg | SVC | Pix-Avg | SVC user type may have a rate constraint that does not allow [for al
Actor 20386 | 30.52 | 36.43| 32.72 | 36.70 low resolution packets to be transmitted. In this case, Wwhic
Aerial 16344 | 32.22 | 37.97| 34.46 | 38.74 packets should be discarded to generate the optimal Rate-
Barboo | 16119 | 28.85 | 34.23| 29.81 | 34.28| Distortion tradeoff?

Bike 17583 | 28.10 | 34.24| 31.36 | 35.27 Again, define a schedule as the operator which, given a rate

Cafe 17270 | 25.38 | 31.09| 26.76 | 31.24| constraint and a set of packets, generates a subset of packet

Woman| 16983 | 36.21 | 41.10| 38.71 | 41.47| which adhere to the rate constraint. Togtimal is then the
subset of packets which minimizes distortion while adhgton

Flilg- ?- hSplatial Scallability: Col?wpar(ijs?n O(fj Pt;SNE for 6 imla@%&n including  the rate constraint. Typically, schedules are optimizedifgh

ol o e lon resckon paciets ceined by the vavelel dSion 35 roolution viewing even when the viewer has a low resolution

done using pixel-averaging and the SVC downsampling filter. display. We can see in Fig. 7 the PSNR versus Rate curves

for schedules optimized at low and high resolutions. Thalsol

lines correspond to the schedules optimized and evaluated a

Many scalable coders allow for images to be scaled dovie low and high resolution distortion measures. The dashed
by resolution. Suppose one wanted to reduce the rate OfVes correspond to the schedules optimized to minimize th

the encoded bitstream with the goal of minimizing distartio!OW resolution distortion measure, but measured at the high
solution distortion measure, and optimized for high iy

of the low resolution image. This would result in selectin ) et
t measured at low. There is up to2dB gain in the low

the JPEG2000 packets which minimize the resulting lo g ga e
resolution distortion. Typically, as in the case of the JRE® resolution PSNR when the packet selection is optimized for

codec, the resolutions are determined by the wavelet decdR resolution viewing rather than the original high resn
position. It is therefore possible to reconstruct a low heion  Viewing and downsampling is done via pixel-averaging. This
image (downsample bg* x 2%, k € N) by extracting only gain increases tddB when using the H.264/MPEG-4 SVC

the packets which correspond to the low resolution wave@pwnsampling filter.
packets. This would be identical to downsampling via the
low resolution wavelet filter. However, while the wavelef
decomposition is very effective for compression, it does ni
necessarily correspond to the most visually appealing Ic
resolution version of the image. Also, by allowing for othe ,,
downsampling methods, we generalize to user types whe%
downsampling does not correspond to projecting onto a st

30|

20|

space defined by the wavelet filter. Because we obtain the Ic oo lov e e | Lovop g Low-fes e
. . . . . = = =High-opt using Low-Res metric = = =High-opt using Low-Res metric

resolution image by downsampling the image via some meth I High-optusing Hh-es metri 2 opLusing High-Res metrc

other than by the wavelet decomposition, often times thé hi¢ ™ * * =« = =© 7 ©° &+ 2 3. = &

resolution packets improve the low resolution image more

than the low resolution packets. It is particularly suripigsto  Fig. 7. Spatial Scalability: PSNR vs Rate (in bytes) for sttties optimized

; ; ; ; ow and high resolutions measured at both low and higbluéisn metrics.
see how much gain can be achieved by conS|der|ng the hlgﬁcker lines correspond to the performance of the Highi@git Schedule.

resolution packets. Table 6 summarizes comparisons of BSNfRwnsampling by pixel-averaging (left) and SVC filter (righ
evaluated for low resolution viewing fdt different standard
test images for JPEG2000. The benchmark images against

W.hiCh distort_ion s calcqlated are the downsampled "T‘a@“’S V' Fig. 8 provides a visual example of the benefits of Multiple
pixel-averaging and using the H.264/MPEG-4 SVC filter. WBistortion Measures. Here, images are decoded at one#th t

first examine the PSNR when the image is reconstructed usﬁ]gginal bitrate. The image on the right is optimized for fhig

all of the low resolution packets as defined by the Wavel?ééiolution viewing and the image on the left for low. There is

depomp03|t|on. We compare this to an image reconstruciggy-eaple color degradation in the image on the right. Many
using packets optimally selected to minimize distortiovegi of the cafe patrons in the middle of the image as well as

the slame rate li:onstralnrt]. 33' aggvglng .the Sﬁ'ec“or.‘ of “.“‘";' detailing on the buildings have lost their color contentisTh
resolution packets, we haue- gains when using pIXek- i hocayse when the image is optimized for high resolution

averaging, an(ﬂ)—_ ldB gains When_ using the H'_264/MPEG' iewing, edges become more important. So, edges are much
SVC downsampling filter. Clearly, if downsampling were dong, e \ye|| defined for full resolution viewing on the right.

via the wavelet decomposition filter, there would be no 9aPyowever, once the image is reduced in size for low resolution
_ ) ) viewing, these edges cannot be displayed in such a prondunce
B. Differences in Optimal RD Tradeoff manner and are no longer as important. Therefore, bytes have
Scalable media allows for adaptation for various user typdseen wasted on edges that cannot be seen on a low resolution
however, as shown in the previous section, this is not alwagisplay rather than on improving the color quality of the low
optimal. Another drawback to relying solely on the levels afesolution image. This is a key factor about why accounting
scalability defined by the scalable codec is that it only é=fim for multiple distortion measures is important.
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Fig. 9. Spatial Scalability: Correlation vs Rate (in bytesjween schedules
optimized for low and high resolution viewing. Downsampglitby pixel-
averaging (left) and SVC filter (right)

Fig. 8. Spatial Scalability: Decoded images at one-fifthhef original bit-

rate. The image on the left is optimized for low resolutioewing and the taking MDM into consideration, up to 4dB gains can be
image on the right is optimized for high resolution viewirigach image is . . . . .

decoded to the high resolution size ®f2 x 640 pixels, then downsampled, achieved with spatlal Scalab'“ty' In Section V, we look fae t
using pixel-averaging, for low resolution viewing 828 x 160 pixels. The gains in the context of temporal scalability. Systems which
image on the right is missing color quality for some of theecphtrons in incorporate Multiple Distortion Measures need to deteamin
the middle of the image as well as on the building sides. Thislue to . .

the inclusion of high resolution detail, such as sharp edgtsch cannot be how to generate schedules given these multlple measures. We
displayed at low resolution viewing. examine this question in the rest of the paper.

IV. AN ALGORITHM FOR EMBEDDED SCHEDULING WITH
MULTIPLE DISTORTION MEASURES

To examine the benefits of considering Multiple Distortion
By examining some properties of schedules optimized f@feasures when making scheduling decisions, we examine an
different distortion measures, we can gain some importgfktance withl user types. We turn our focus to a special,
insight into the causes for the drop in performance wheRsightful case where rates are uniformly distributed glon
optimizing for the wrong measure. Define a schedtii¢) the non-overlapping support for each user type. Therefare,
as the optimal subset of packets which minimize distortifhch rate, the distortion is measured using only one distort
according to distortion measure defined By(-) and given measure. The goal is to generate an embedded schedule which
rate constraintz. minimizes the expected distortion. In this case, there alg o
Define the correlation between the low and high resolutiqn transformation operators arid associated distortion lists
optimized schedules$;, and Sy, as the fraction of packetsin Fig. 4.
from the low resolution schedule that are also in the high we consider the scenario where we switch between distor-
resolution schedule at the same rate constraint. Therefgtgh measures at distinct switching rak (u): i.e. for rates
C(SL,Sm) = % Correlation is a good way to measure) < R < R, (1), all distortion is measured accordingp, for
the similarities between schedules. Fig. 9, shows the €orfatesr, (1) < R < R,(2), all distortion is measured according
lation between schedules optimized for different resohgi to 73, and for all ratesR,(u— 1) < R < R,(u), all distortion
is fairly varied. At rates25 — 45 kbytes, the correlation is js measured according t,. We assume there is a uniform
very low, which means the optimal packet selection for loistribution of rates, so that with probability!—, a user will
and high resolution viewing is very disparate. This larggiew the content at raté. This is a special case of a more
discrepancy between schedules is why there are the PShleral distribution of user types and rate constraints.
gaps in Fig. 7 around the same rates. At very high and veryEven with2 user types (a single switching ratg,), there
low rates, the schedules are quite correlated. Clearlyigit his a conflict between objectives: minimizing[D;] versus
rates, most packets are included in the schedule and the f@Wimizing £[D-]. In fact, the vast discrepancies, even in this
that are not are negligible for both types of users. Alsopat | simple scenario, are surprising and help validate the need t
rates, so few packets are selected that the same packets inglbrporate Multiple Distortion Measures. One way to exam-
create the foundation for the image, regardless of the vigwiine this conflict is to look at the similarities and dispamiti
resolution. between packet selection for each schedule. Suppose that th
It is quite surprising how different the low and high resolow rate users wish to view an image at low resolution, so
lution optimized schedules are from each other. Because té¢.X) corresponds to downsampling. Also suppose that the
two prioritizations of the packets differ so greatly, it ist@ally high rate users wish to view the image at the original high
impossiblefor a single embedded schedule to jointly minimizeesolution so that7;(X) = 7;(X) = X. For simplicity,
distortion for the low and high resolution users. Thereforassume that the switching rate is half the bitrate of therenti
optimized PSNR vs. Rate performance in the previous sectipnage, R, = RgaX. In order to understand the (dis)similarities
acts as an upperbound for any schedule. of packet rank/importance across the two distortion messur
In this section, we examined the use of Multiple Distortiome examine the packets chosen before and &fteio see how
Measures in the context of multiple viewing resolutions. Bynany are similar. If the low and high resolution optimized

C. Correlation between Schedules




Image | Total # Frac. bytes Frac. bytes | incurred due to the inability to decode all packets which

of bytes before R after R packeti must precede. Equivalently,, ; denotes the amount
Pix-Avg [ SVC | Pix-Avg | SVC | distortion is reduced if user typereceives packet assuming

Actor 64046 | 0.3661 | 0.3615| 0.3683 | 0.3569| all packets preceding packiehave been received. A schedule,

Aerial 52514 | 0.3762 | 0.3706| 0.3811 | 0.3777| S, can also be defined byr;}, the rate at which packet

Barboo | 51567 | 0.3674 | 0.3607| 0.3678 | 0.3627] is included in the schedule. Then, given a schedtilehe

Bike 65736 | 0.3937 | 0.3439| 0.4010 | 0.3450] expected distortionu,, r = 1) is given by:

Cafe 66477 | 0.3544 | 0.3473| 0.3513 | 0.3547 | [Rme U

Woman| 66216 | 0.3126 | 0.2989| 0.3301 | 0.3227| E[D(S)] = e | RXZ:O ;DU(S(R))l{RS(u1)<R<Rs(u)}]

Fig. 10. Spatial Scalability: Fraction of total packets,as@red by their size U
in bytes, that are common to both the lo#®;, and high, Sy, resolution - 1 Z
optimized schedules before and after the switching tte, If the schedules - Rinax
were identical,S;, = Sy, then the fraction of bytes before and aftBg
U
1
Rmax Z

would be 5 since R, = fimax.

Image | Total # Frac. pkts Frac. pkts “u=l R=R;(u—1)
of pkts before R, after R, where 14, is an indicator such that; 4, = 1 if A is true
Pix-Avg | SVC | Pix-Avg | SVC | and0 otherwise.
Actor 540 0.2426 | 0.2392] 0.4574 | 0.4527 Defines; as the size in bytes of packetAs defined in Sec-
Aerial 432 0.1740 | 0.1717| 0.5940 | 0.5777| tionll-C, P is the set of packets with precedence constraints
Barboo | 432 01921 | 0.1852| 05417 | 0.5255| between them. For instance, if packetnd; corresponded to
Bike 540 | 0.2338 | 0.2245| 0.5436 | 0.4842| D1 and B, respectively, of the same GOP, thénj) € P,
Cafe 540 0.2189 | 0.2134| 0.4787 | 0.4378 SinceB2 preCGdeSBl, as seen in Flg 5(b) An(RS is the
Woman | 540 0.2356 | 0.2352| 04601 | 0.4426| Switching rate at which we switch from distortion measure
defined by7;, to distortion measure defined byy. The
Fig. 11. Spatial Scalability: Fraction of total packetstthge common to optimization problem is to find schedute’ over all possible

both the low,S7,, and high,S};, resolution optimized schedules before andschedules that satisfies:

after the switching rateR. U  Re(u)—1
1 s
o | 2

(Z (Zdu,il{km})]

min
ses u=1 R=R,(u—1) i
schedules were equdl; = S, then all the packets would be st ri >, (i,j) €P

identical. In this case, half of the total number of bytesha t
bitstream would be prior té2, and half would be after. Table
10 shows that approximateB5% of the bytes are common ! ) .
before and afteR,. Itis the discrepancy of the remainigg% Where lmax is the total number of bytes in the image. The
of the bitstream which causes the significant drops in PSNigst constraint corresponds to the precedence constrEiet.
when optimizing for the wrong distortion measure, as showi¢cond constraint is the rate capacity constraint.
in Fig. 7. Examining the discrepancies in terms of bitrate js The objective and last constraint of the optimization prob-
more intuitive than looking at the discrepancies in terms M are nonlinear, which makes this problem hard. There
packets. However, scheduling is done on a packet-levespadf®n! Possible permutations of packets; hence! possible
rather than on a bit/byte-level basis. Table 11 summarizes fs_chedules. _A_n exhaustive searph of_ all possible schedales t
fraction of total packets which are common between the Iofffd the minimum expected distortion would be computa-
and high resolution schedules before and after the swigchifionally infeasible. We want to find a less computationally
rate, R,. A large percentage of packets are the same after @gPensive algorithm that achieves high performance.
switching rate; however, their contribution, in terms atf &iie,
is approximately35%. For both the high and low resolutionA- MDM-fused Scheduling Algorithm
user, the least important packets tend to be small in sizéleWh We present an algorithm which runs @Un") by using
it may seem insignificant that the low and high resolutiowhat we call a changing-rate. The basis of this algorithm is
optimal schedules disagree on the importance of aBo%t the fused-greedy algorithm of Section II-C, which we unite
of the bitstream, it is these discrepancies which lead te losith Multiple Distortion Measures. We refer to this algbit
in performance when ignoring Multiple Distortion Measuresas the "MDM-fused” algorithm.

Acknowledging these competing objectives, we aim to find We relay the key idea behind this algorithm by focusing on
an embedded schedule to minimize the expected distortion. the case of/ = 2 users typesL and H. Intuitively, for small
defined in Section I,D,(S(R)) is the distortion measured, R, all packets should be prioritized based on their low rate

Zsil{ng} <R, VR

(4)

with benchmarkZ, (X)), for scheduleS evaluated at rateR.
Let d,,; denote the distortion incurred by user typeif he
does not receive packet excluding the additional distortion measures]y ;. For intermediate values di;, there should be

distortion measured;, ;. Likewise, for high R, all packets
scheduled are prioritized based on their high rate dishorti
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Fig. 12.  Block diagram of our MDM-aware schedule. The fugeeedy Fig 13, Spatial Scalability: PSNR vs. Rate for varying eslwf the changing
algorithm is performed on the low and high distortion metdaenerate low a0 p. R, = 33 kbytes. Downsampling using pixel-averaging (left) and
and high optimal schedulesy, and Sz. The combining of schedules can begy/c filter (right).

done in multiple ways. We propose to fix a changing rate to gadretween

the optimal low scheduless;,, to the optimal high schedule$,;. One can

also iterate over changing rates to find the optimal drg,
ands. Note also that these results are for uniform probability
distributions and uniform weights and the actual value Rgr

a baance between the g, an o, schces, Fig, 1 1" 25 e chinge G coded seavece of e
"12 is a_block dlagra:n of an algo.rl_thm of this nature where t $d R* which minimizes the expected distortion.

Combine Schedule” block specifies how to balance these two ™~ ¢
schedules. We propose an algorithm which utilizes a changin v
rate, R., to define this block.R. is the rate at which we .|
change from low to high rate scheduling, i.e., fBr< R, 308
packets are scheduled according to its low rate distortic *”
measured,, ;, and for R > R. the remaining packets are ..
scheduled according to its high rate distortion meastig;. 3
The changing rate allows the schedule to switch from fogusir "
on low to high rate users. Given a switching rdte, packet ..

distortion informationd;, ; anddy ;, and packet sizes;, the

changmg-rate s"(:hedul]ng algorlthm“|s (NOt.e th.at stepsd% aEig. 14. Spatial Scalability: Expected distortion vs. dafiag rate with
4 make up the "Combine Schedule” block in Fig. 12): Rs = 30 kbytes (left) andRs = 40 kbytes(right). Downsampling by pixel-

CHANGING-RATE-SCHEDULING(d, ,d g, s, R.) averaging.

1 S = FUSED-GREEDY(dy,s)

2 Sy = FUSED-GREEDY(dy,s) We can modify the changing-rate scheduling algorithm to
3 Fill S according toSy, until S hasR. bytes incorporate the search to find the optimaf. We call this

4 Fill remaining packets int&' according toSy algorithm the "MDM-fused” algorithm as it is based on the
5 return S fused-greedy algorithm, but it is MDM-aware by searching

In Fig. 13, the PSNR versus Rate curves for varidys for R to optimize the tradeoff between users. Without loss
values are plotted wher&;, corresponds to downsampling toof generality, index packets by the optimal low resolution
a low resolution benchmark image and; corresponds to scheduleS;. Let R; correspond to the rate at which packet
the original high resolution image. There is clearly a tradés included inSy,. Therefore Ry =0, Ry = 51, R3 = 51+ 82,
off between the competing objectives of optimizing for lovetc. wheres; corresponds to the size of thi# packet ofSy.
versus high resolution viewing. The curves vary signifigantWe have just modified the "Combine Schedule” block in Fig.
as the changing ratez., varies for a fixed switching rate, 12 to incorporate the search for the optinfal in steps4
R, = 33 kbytes. For low values oR., packets are scheduledthrough9 of the new scheduling algorithm:
according to high resolution distortion measures starihg MDM-FuseD(dy, dy, s)
low rates. Therefore, the performance of the high resatutiol S, = Fusep-GREEDY(dy,s). SetS* = 51,
users improves significantly, while the performance of the | 2 5, — FUSED-GREEDY(dy, s)
resolution users degrades significantly. Likewise, fogdaR., 3 for i — 1 to n
the low resolution performance is very high while the highy do R, — R;

resolution performance takes a hit. 5 Fill S according toS;, until S hasR, bytes
Every value of R, corresponds to a schedule whose ex6 Fill remaining packets int& according toSy

pected distortionF[D] can be evaluated. Fig. 14 shows the7 if E[D|S] < E[D|S*]

expected distortion as a function of the changing rdtg, 8 then §* «— §

with a fixed switching rateR,. Empirically, there is a unique 9 return S*

R, that corresponds to the minimum expected distortion. This

optimal changing ratek’, depends on the switching ratg,, Thus far, this algorithm has focused Dser types, but the
as well as the packet distortion values and siags, dgy, extension to more user types is trivial. Instead of emplgyn



11

single changing rate between usérand2, we requirel/ — 1 wp —von ottt ~ovom

changing rates—oneR(.(1)) between userg and2, (R.(2)) . N\ et o

users2 and 3, etc. asl

1) Complexity AnalysisHere we analyze the run-time of _*°
the changing-rate algorithm with search f&. The search Y
space has been reduced from an exhaustive search over =
n! possible schedules to a special subset'of! schedules.
Each schedule také3(n) time to evaluate, which gives a total ...
run-time of ©(UnY).

There aren total media packets. The fused-greedy algorlthllgg. 15. Spatial Scalability: Expected distortion vs. shing rate for various

takes©(nlogn) to find the optimal SChed_UIeS for each US&igorithms. Downsampling by pixel-averaging (left) andGS¥ilter (right).
type, S... To generate the schedule for a given set of changing

rates, we incrementally add packets fréfn until rate R.(u).

Then we scan through, 1 and add remaining packets that ) )

have not yet been added until rai (u + 1). This process _I.n each algorlthm3 sch_edules are de_termlned ba;ed on em-
takes ©(Un) to generate the resulting schedule as we Stgwcally calculated (_j|stort|on .valugs whlch can be starethe N
through S, packet by packet. The expected distortion is packet head_ers as in [25]. Distortion is assumed to be ad_dm_
summation ofs terms corresponding to the expected distorticf€T0SS Multiple packet drops. If a precedence constraint is
contribution of each of the packets. Therefore, it takes(n) Violated, i.e., a packet is included but a packet correspgnd

to calculate the expected distortion. For each switchirig, ral© its lower quality layer is not, the packet's inclusion domt
there aren distinct changing rates which will give different"éduce distortion. While all schedules are generated daupr

schedules: one after the first packetdp, after the second © this model, their performance is evaluated via decoded
packet inS,,, after the third packet itS,, and so on. Therefore, Images. We present the results for the Cafe image, althdiegh t
to evaluate the expected distortion forali—! changing rates tren.ds and performance gains are-5|m|l.ar for the other image
takesO((U + 1)nV). We can find the best changing rate in Fig- 15 shows the expected distortio]D], versus the
linear time while we evaluate the expected distortion. ThigVitching rate R. For low switching rates, the high resolution
gives a total run time o®((U+1)nU +Unlogn) = O(UnY). optlmal schedule$y, performs very WeII: This is because th_e
This can be costly for a large number of user types, but is veigh and low schedules are nearly identical at low ratesckwhi

manageable foB or less types. Even considering jususer esults in little loss in performance for the low resolution
types will prove to have large gains. viewers, and optimal performance to the majority of users wh

are high resolution viewers. However, &% increases, the
_ o performance of the high resolution schedule drops becduse i
B. MDM-switch Heuristic ignores the low resolution users and their different diar

For a very large number of user types, MDM-fused cametric. Likewise, the low resolution schedule performsiwel
be quite computationally intensive. Rather than searcfong for high R, but very poorly for lowR;. SettingR. = R, can
the optimal R?, another option is to seR, = R,. This is outperform the low and high resolution schedules because it
a natural heuristic with complexit (Unlogn) since there tries to account for multiple distortion measures by svirigh
is only one changing rate per switching rate. We call thiketween the low and high distortion metrics. However, we can
scheduling algorithm the "MDM-switch” algorithm since theS€e that if we optimizez., we can achieve even higher perfor-
changing rate is equal to the switching rate. This policy iance. MDM-switch may be more favorable in situations with
MDM-aware in the sense that it tries to balance between tRENY user types as the complexity of MDM-fused may limit
optimal schedules, given by the fused-greedy algorithm, ft§ Practicality. However, MDM-switch is easy and quick to
each of thd/ user types. However, it is easy to see that MDMMPlement, while out performing scheduling algorithmsezas
fused will perform better than MDM-switch aB, = R, is ©n one distortion measure.
a possible solution ta?’. As we will see in the following
discussion, in some cases the gap in performance will »7

—Low Opt —Low Opt
MDM-switch
== MDM-fused

- - ~High Opt

significant, whereas in others, it is minimal. Ny MOM-swich)|

== MDM-fused
- - ~High Opt

C. Results

PSNR

In this section we present results for the performance ' »
MDM-fused and the MDM-switch heuristic in the context of -
U = 2 user types. We compare the performance of this alg - , J ,
rithm to the conventional approach which generates schkedu  °  *  *  “pee’ ° ° 75 ° ' % et
using the fused-greedy algorithm of Section 1I-C assuming a
single distortion measure of the high resolution measuoe. FFig. 16.  Spatial Scalability: PSNR versus rate wih = 35 kbytes for
completeness, we also compare to the fused-greedy algoriqﬁélﬁtl;.s algorithms. Downsampling by pixel-averaging tfleind SVC filter
performed on just the low resolution distortion measure.
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Fig. 16 shows the PSNR versus Rate curves for the differentn this scenario, we wish to transm20 frames of the
scheduling algorithms given switching rat®, = 35 kbytes. Soccer sequence in CIF format with an original frame rate
The MDM-switch policy ignores the high resolution schedulef 30 frames per second. This sequence has periods of low
for too long, and switches t§5 much too late. Therefore, its background motion and minor foreground motion as well as
performance is quite similar to the low optimized scheduleeriods with large background and foreground motion. We
However, because it does account for the high resolution useicode using a GOP structure®frames and an intra-refresh
for rates abover,, it outperforms the optimal low resolutionevery 16 frames. In Fig. 5(b), we map the dependencies of
schedule,Sz,, which completely ignores all high resolutionthe hierarchical B frames into a tree capturing the preceglen
users. The proposed MDM-fused policy clearly outperforntnstraints. We only allow rate reduction and scalabiliyy b
the others. There is a very slight drop in PSNR, at modiscarding B frames, so we assume all | and P frames are
.1dB, from the high optimal schedule just after the switchinguccessfully transmitted and received. If a frame is drdppe
rate. However, at rateB < R;, MDM-fused performs nearly we use frame copy error concealment to reconstruct the
2dB better than the standard approach of the high optimizedssing frame.
schedule, and nearly as well as the low optimized scheduleSuppose there ar& users types. One type of user wishes
When downsampling using the H.264/MPEG-4 SVC filtetp view the video at the original high frame rate 38f frames
over 3dB gains are achieved. per second, another type wishes to view the video at a lower

Intuitively, as the switching rate increases, so will th&ame rate ofl5 frames per second, and the final type wishes
changing rate. It is interesting to note thAt < R, since to view the video at the lowest frame rate ©f5 frames
once the user type switches, there is no benefit to schedulper second. In this scenario, the transformation operason
according to the incorrect distortion measure. Thus far, vee straightforward frame dropping operation. The distortio
have assumed a uniform distribution of rates at which usereasure for the30Hz user is the standard average MSE
will consume the media. As we increase the weight for the loper frame compared to the original sequence. The distortion
resolution usery, r), or equivalently, increase the probabilitymeasure for thel5Hz user is the average MSE per frame
of a low resolution userp( L, R)), the optimal changing rate, compared to every other frame in the original sequence—the
R will increase. By increasing the weight or probability obriginal sequence temporally downsampled by a facto®.of
the low resolution users, the performance of the low regmiut Likewise, the distortion measure for the5Hz user is the
users contributes more to the expected weighted distorti@verage MSE per frame compared to every forth frame of the
Hence, the performance of the low resolution user is moeoeiginal sequence—a temporal downsampling by a factat. of
important, and that of the high resolution user is sacrificed
by changing to high resolution scheduling at a later rate. s
Conversely, if the weight, or probability of the high resodm
users were increase®’ would decrease. Certainly?’ de-
pends on the distribution of user types as will the perforoean =
of the different scheduling algorithms. The question of How
schedule with arbitrary distributions of user types reraan

a0

301

PSNR

interesting research problem which we are currently expdor & ]
,»" 1 fléHz opt at 15Hz metric

il /"/ - - -30Hz opt at 15Hz metric|]
Z ——30Hz opt at 30Hz melr!c
V. TEMPORAL SCALABILITY 15 —— L5tz opt at 30z metre

0.8 1 12 14 16 18 2 22
Rate (bytes) x10°

Multiple Distortion Measures can be applied in a number of

settings. Thus far, we have presented experimental refeults Fig. 1_7-d fTemporal Scl’clla?i“tyi PSNR vs Féate rﬁgnf bytes) foheshllesd
BTN : A optimized for viewing atl5 frames per second a rames per secon

the case Of, still images :’;lnd SPat'a! scalability. To emphms'measured at both frame rate metrics. Thicker lines correspo performance

the generality of the Multiple Distortion Measures frameko of the schedule optimized a0 frames per second.

we now present experimental results of MDM for temporal

scalability in the case of video encoded using H.264/MPEG-4

SVCL. An example of such a scenario is two mobile devices, Fig- 17 shows the PSNR versus Rate curves for embedded

where one is very power constrained and thus choosesSghedules optimized for frame rates 39fHz and15Hz. This

consume the video at a lower frame rate, while the othisrthe analogous figure to Fig. 7 for temporal scalabilityeTh

prefers the highest quality and chooses to consume the vidé@ Solid lines correspond to the schedules which are both

at the original high frame rate. SVC has spatial temporQPt'm'Zed and evaluated at the same frame rate distortion

and quality scalability. We focus on temporal scalability tmeéasures, e.g., optimized afHz and evaluated at5Hz.

highlight the gains that can be achieved when accounting f'glge_ d_otted curves c.orres.pond to the schedules optimized to

users with different frame rates: however, we stress thamvipMinimize the 15Hz distortion measure, but measured at the

can be used in conjunction with multiple forms of scalagilit 30Hz distortion measure, and optimized f80Hz viewing,

including a combination of spatial and temporal scalapilit Put measured at5Hz. There is al2dB improvement in the
15Hz frame rate PSNR when the frame selection is optimized

1Because we are only using the temporal scalability of SV, whleo is for 15Hz viewing rather than the prigin&lOHz_ viewing. All
also compatible with H.264/MPEG-4 AVC. of the odd numbered B frames in the origirtédlHz frame
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Fig. 18. Temporal Scalability: Motion between subsequemmnes, measured by mean-squared error between adjacemsfrotion= E[|F; — F;_1|?]
(top). Frame inclusion for a given bit-rate constraint optied for 15 frames per second (left) ar¥) frames per second (right) viewing. The bit-rate constraint
is constant for each horizontal plot (betweksHz and30Hz) and increases vertically. When the bit-rate constrdd®s not allow all packets to be transmitted,
the frames corresponding to low motion in the video sequemeethe first to be dropped.

rate sequence are dropped during the temporal downsamplisgumeZs and7, correspond to the temporally downsampled
to generate thé5Hz frame rate sequence. As a result, thesgeenchmark video to be viewed &t5 and 15 frames per
frames have zero associated distortion tthBlz user and the second, respectively, and is the original video sequence
transmission of these frames cannot improve the PSNR of tleebe viewed a30 frames per second. Now that there @re
15Hz video sequence. However, if these frames correspondéawels of scalability, we have switching rates—one between
a section of the video with very high motion, they may b&.5Hz and15Hz viewers and another betwe&bHz and7.5Hz
very important (large associated distortion) to a user wigw users. So for ratesR < R;(1) all users view the video at
the content aB0Hz. This vast discrepancy in distortion value§.5 frames per second; foR,(1) < R < R4(2), all users
of the same frames across multiple users results in thepteultiview at 15 frames per second; and fdt,(2) < R, all user
dB gains in PSNR when optimizing transmission specificalljiew at 30 frames per second. Fig. 19 shows the expected
for the correct user type. Analogous results hold for embddddistortion as a function oR,(2), the switching rate from5
schedules optimized fdr.5Hz frame rates. to 30Hz viewing, for2 different values of?, (1), the switching
Frame selection is directly correlated with the amount aridte from7.5 to 15Hz viewing. Again varying the switching
temporal location of motion in the video sequence. Fig. 1@tes modifies the relative performances of the single disto
shows just how dependent the frame selection is on motion. Weasure schedulessOHz opt, 15Hz opt, and7.5Hz opt).
express the amount of motion by the per-pixel mean-squargédsome cases, MDM-switch performs identically to MDM-
error between adjacent frames. Therefore, the motion atdrafused (as wher,(1) = 1200kbytes). As more user types are
i is Motion(i) = E|[|F; — F;_1|%], where F; corresponds to considered, this may prove to be a very effective and efficien
framei. The top plot corresponds to the amount of motiogcheduling algorithm. However, we can see that optimizing
in the original sequence at5Hz and 30Hz as a function for the best changing rate can vastly improve performance
of the original frame number. Because thgHz video is an (as whenR(2) = 1600kbytes). In the case of temporal
integer downsample of the original, every other frame hasscalability, we see that accounting for Multiple Distortio
motion. The3 other plots correspond to the frame selectioMeasures has a significant impact.
given increasing bitrate constraints which are identioakach

user type. For low bitrates, not all frames can be transthitte ij;@zuzq‘ gt
The ones that are transmitted correspond to sections of lai T&"g“g:“;‘m? f?fmﬂ"gg:";@?

motion in the video sequence. As the rate constraint inesgas =
more frames can be added. For the bottom plot 1fitéz user g..
receivesall packets which benefit him. However, his packe
selection is quite different from that of tI8Hz user. Instead
of receiving frames at a periodic rate, it is optimal for gtéiz

Tl
Twl_ @
Sw @
RE
SR
R T

200

user to lose some frames which correspond to low motic &< s w7 % 35w 15 1w : % G5 1w o7 o 19 e 15 1
. . . . . . s x 10 's x10

areas in order to transmit at a higher frame rate in high motio

areas. Fig. 19. Temporal Scalability: Expected distortion vs.tshing rateRs(2)

Clearly, the optimal frame selection for users with diffetre (15Hz to 30Hz) for various algorithms. For switching rafés (1) (7.5Hz to
frame rates conflicts with each other. We apply the changintpt'?) of 1200 (left) and 1600 (right) Kbytes.
rate scheduling algorithm to the case of temporal scatgbili
In [22], the authors found that there exists distinct switgh  In Fig. 20, we plot the PSNR versus Rate curves for
rates at which the preferred frame rate changes, whichdsslstfixed switching rates ofR;(1) = 1260kbytes andR;(2) =
the validity of this type of scheduling scenario. In thisease 1600kbytes as well as the Distortion versus Rate curves.
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We can see that with little loss in performance prior tMultiple Distortion Measures will allow service providets

the switching rates, our scheduling algorithm, MDM-fusecfficiently serve multimedia streams in a manner that actsoun
is more than10dB better than the conventional approacfor the various needs of each user. We showed that quality
of optimizing for 30Hz viewing. Note that the optimization measures used for streaming media are highly dependent
goal is to minimize the expected distortion. PSNR is then user types. In fact, in the case of packetized media,
standard objective metric for evaluating the performante a packet's importance can be quite different depending on
video systems, so we also present the results in terms of PSMRich user consumes it. These differences cause conflicts
However, because we are minimizing the expected distqrtiamhen simultaneously scheduling media packets to multiple
and because of the nonlinear mapping to PSNR, the PSNR caer types. We also presented a framework in which to
be somewhat misleading. By looking at the results in ternevaluate embedded scheduling algorithms for systems with
of distortion, one can see our policy successfully balatices Multiple Distortion Measures. We developed an MDM-aware
tradeoff betweer0Hz, 15Hz, and7.5Hz viewing and nearly embedded scheduling algorithm based on our prior work
achieves the optimal distortion for all rates. which assumed only a single distortion measure. We applied

our framework and scheduling algorithm fbocases where

45 ; MDM is relevant: spatial scalability for various resolut®
..... f/lo;,;_c’spvtvitch and temporal scalability for various frame rates. Theserexa
4ol == MDM-fused | - v | ples are illustrative of the gains which can be achieved by
- - -15Hz opt accounting for MDM, but are by no means exhaustive. MDM
7.5Hzopt | ‘ ! is a general framework which can be applied to any type of
351 : i i i 1 benchmark images or videos. Spatial scalability was erplor
x in the case of still images through the JPEG2000 standard.
Z 30 | Temporal scalability was studied in the case of video stiegm
g with H.264/MPEG-4 SVC. In our experiments, for spatial
scalability with JPEG2000, accounting for Multiple Didion
25r 7 Measures resulted in up tdadB gains and for temporal
scalability with H.264/MPEG-4 SVC, gains of up t@dB. By
20l | accounting for the diverse needs of its clients, a multimedi
server can significantly improve the provided service bygsi
and accounting for Multiple Distortion Measures.
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