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Abstract—The growing popularity of multimedia streaming
applications brings a growth in diversity of media clients (laptops,
PDAs, cellphones). Effectively serving this heterogeneous group
of users is highly desirable. Scalable media codecs such as
H.264/MPEG-4 SVC help make this adaptation possible. To ac-
count for the various capabilities and requests of each user, such
as varying spatial or temporal resolutions, Multiple Distortion
Measures (MDM) are considered [1]. Rather than consider a
homogeneity in users, the MDM framework considers multiple
different distortion values for each media packet for each user
type. We consider the scenario of simultaneously broadcasting a
video stream to multiple users over wireless links. The objective
is to design a scheduling algorithm which achieves the highest
aggregate Quality-of-Service, measured by distortion anddelay,
over all different user types. We cast the problem as a stochastic
shortest path problem and use Dynamic Programming to find the
optimal policy. For statistically static channels, the optimal policy
is shown to be of threshold type. For time-varying channels,
a quasi-static policy is introduced. Experimental resultsshow
that our policy reduces distortion by up to a factor of 2 over
conventional approaches which do not consider MDM.

Index Terms—Multiple distortion measures, wireless schedul-
ing, dynamic programming, multimedia streaming.

I. I NTRODUCTION

In current media streaming systems, media is often simul-
taneously streamed to users with various display capabilities
over different network conditions. Scalable media, such as
JPEG2000 [2] for images and H.264/MPEG-4 SVC [3] for
video, allows content providers to transmit and adapt mediafor
different types of receivers by simply discarding packets.Rate-
Distortion optimized scheduling has attracted a significant
amount of attention (see [4] and related references) even in
the case of scalable media [5]. By prioritizing the different
packets in an intelligent manner, the needs of all clients can
be addressed to supply the best media content possible.

Scalable media can be quickly and easily adapted to differ-
ent user types. How to evaluate performance of a scalable
media system is examined in [1], [6]. To account for the
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varying display capabilities of each user, we consider me-
dia packets with Multiple Distortion Measures [1]. Multiple
Distortion Measures capture the varying display capabilities
of each user. Suppose we simultaneously stream an image or
video to users with large displays, such as laptop monitors,
as well as to users with small displays, such as cellphone
screens. The amount of distortion incurred with the loss of a
packet will depend on the type of user. For instance, the loss
of a packet which contains high frequency information, such
as texture in a sweater or grass in a field may result in high
distortion incurred for a user with a large display. However,
the loss of this packet may be negligible to a different user
because the high frequency information cannot be displayed
on the smaller display.

By considering the viewing capabilities of each user when
making a scheduling decision, up to4dB gains can be achieved
in Multiple Distortion Measure aware embedded schedules
[1]. Embedded schedules are schedules which incrementally
add packets so that all packets in the schedule at rateR1

are also included in the schedule at rateR2 > R1. Embedded
schedules are useful because they make rate reduction possible
by simply truncating the bitstream. It is most surprising that
distortion values associated with each packet vary greatly
depending on the type of consumer. A packet that is very
important to a high resolution user can be virtually uselessto
a low resolution user. The disparities between packet values of
each user makes scheduling packets with Multiple Distortion
Measures an interesting problem.

In this paper, we examine a different streaming media
scenario. We consider the case of a single wireless trans-
mitter broadcasting the same content to multiple receivers.
Each receiver may have a different distortion measure due
to his display capabilities. In each time slot, the server must
determine whether to transmit the Head of Line (HOL) packet
or drop it. Dropping the packet will lead to incurred distortion
at each user who has not yet received the packet and the
amount of distortion will depend on the user type. Transmitting
the packet may only benefit a subset of the users, depending
on who receives it successfully, and it blocks transmissions
of packets waiting in the queue. Suppose the HOL packet
is transmitted, but only a fraction of the users receive it. A
control dilemma arises: should we retransmit the packet, only
benefiting those users who have not yet received the packet,
or should we drop it, hurting the same users who have not
received it, and send a different packet that potentially benefits
all users? We examine this scheduling decision.

A significant body of work in the Computer Science com-
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munity has examined broadcast scheduling [7], [8], and [9].
This work focuses on generating near-optimal approximation
algorithms for throughput maximization in wireless broadcast
scenarios. One significant distinction between these worksand
ours is that we consider stochastic channels where transmis-
sions are not guaranteed to be successful. Furthermore, we
account for differing prioritization of each packet to each
user, whereas these works consider the case where there is
no prioritization of packets or users.

Our model is closely related to existing models for cer-
tain broadcast scheduling applications; as an example [10]
considers a multimedia broadcast problem where many users
wish to simultaneously consume the same media stream.
As is the case with many multimedia applications, latency
is an important Quality of Service aspect to address. Low
latency broadcast scheduling has been examined in [11] and
[12] among others. Our work differs from these in that
we consider the unique properties of media communications
where packet/frame importance varies between frames and
even across users. This work is similar in flavor to [13] and
[14]. In [13], backlog is used as a measure of the time until
the transmission session completes and the transmission buffer
is emptied. However, backlog is a very coarse measure for
delay because two systems with the same backlog size, but
with different media importance, may result in very different
transmission times and delays. For instance, a backlog of 1
packet can have zero delay if the distortion of that packet is0
and it is immediately dropped. On the other hand, a backlog
of 1 can have very high delay if the distortion of that packet is
extremely high and requires complete reception by all users,
possibly requiring many retransmissions, before concluding
the transmission session. As such, we propose to measure
delay by the average number of retransmissions performed per
packet. In the case of periodic video traffic, this corresponds
to the average delay of each frame. In contrast to [14], we
provide a more in depth look into the optimal scheduling
policy and further study the tradeoff between the distortion
and delay. In this paper, we introduce a knob to tune for a
precise target frame rate. We include a new simulation study
of these delay results as well as extend upon the previous
simulation scenarios.

The rest of the paper is as follows. In Section II we formally
introduce the problem formulation for the broadcasting prob-
lem we study. In Section III we present an offline algorithm
to generate the optimal scheduling policy for a general class
of networks. We cast the problem as a stochastic shortest path
problem and use Dynamic Programming to find the optimal
policy which is stored in a lookup table the transmitter refers
to at each scheduling time slot. In Section IV we examine
the optimal policy in the case of i.i.d Bernoulli packet losses.
We show that the optimal policy is of threshold type and can
be calculated online. In Section V we compare our Multiple
Distortion Measure aware policy to standard policies which
only consider a single distortion measure. Through simulation
results for actual H.264/MPEG-4 SVC encoded videos, we
show that up to3dB gains can be achieved by considering
Multiple Distortion Measures when making scheduling deci-
sions. Finally, we conclude in Section VI.

II. PROBLEM FORMULATION AND SETUP

The problem we study is how to schedule media packets
given the diverse needs of individual users, which can be
quantified via Multiple Distortion Measures. We consider the
wireless broadcast scenario depicted in Fig. 1. A pre-encoded
video stream is stored in a transmission buffer. In each time
slot,t, the transmitter broadcasts a packet over a single channel
frequency or CDMA code. AllU users are tuned to the same
frequency/code and can potentially receive the broadcasted
packet. However, due to varying path loss and fading to each
user, the channel quality differs at each receiver. Therefore,
the probability of successful reception may be different to
each useru ∈ U = {1, 2, . . . , U}. At the beginning of each
time slot, the transmitter must make a decision about the Head
of Line (HOL) packet: transmit or drop. That is, packets are
transmitted according to a FIFO discipline and in each time
slot, the dilemma is whether to serve the HOL packet by
retransmitting it or to service the following packet by dropping
it. It is possible to consider other service disciplines; however,
we will assume a First-In-First-Out discipline in our discussion
in order to focus on the distortion versus delay tradeoff.
Transmitting or retransmitting the packet makes it possible for
users who have not yet received the HOL packet to receive
it. However, retransmissions will induce delay for all other
packets waiting in the transmission queue. By dropping the
HOL packet, the next packet in the queue can be transmitted
and delay can be reduced. However, dropping a packet comes
at a cost. All users that have not received the packet that is
dropped will suffer an increase in media distortion. There is
clearly a tradeoff between incurring distortion versus delay. It
is this tradeoff which we will examine throughout this paper.

...

Rx1

Rx2

Rxn

Fig. 1. Broadcasting media packets to multiple users.

A. Wireless Channels

Wireless channels are generally modeled in one of two
ways–either by a time-varying bit-rate or by a time-varying
probability of successful transmission. We take the second
approach. We assume that in each time slot,t, the quality
of the wireless channel to each user,u, is characterized
by the probability of successful transmission,su(t). su(t)
can be an arbitrary stochastic process. There has been a
substantial amount of work to construct reliabledynamic
models to describe this variability (for instance, see [15]and
associated work). Consequently, it is common to model the
success probabilities via a Finite-State Markov Chain with
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statescu ∈ C = {1, 2, . . . , C} and transition probabilities
from c ∈ CU to c̄ ∈ CU as qcc̄. If cu(t) is the state of
channelu in time slot t then the probability of successful
transmission to useru is su(t) = su(cu(t)). We assume, after
each transmission, acknowledgements are transmitted backto
the server and this feedback is reliable. Therefore, the server
knows which users have and have not yet received the HOL
packet.

B. Distortion Costs: Multiple Distortion Measures

The objective of the transmitter is to minimize the total
distortion of all receivers. Distortion can come in two forms:
media (spatial) distortion and play out delay (temporal dis-
tortion). Hence forth, we will refer to distortion as the media
distortion which is a measure of the fidelity of the displayed
image or video and play out delay as the disruption due to
late packets. We will assume that distortion is additive across
multiple dropped frames as in [16] and related works. While
there are more complex distortion models (see [17], [18]), the
additive model is a commonly used model which is relatively
simple and accurate, while also being tractable and we believe
practical. In Section V we show evidence of the performance
of algorithms which use this model. It is also possible to
model simple linear dependencies, which can be depicted as
a tree structure, as will be seen in Section V. These types
of dependencies often suffice in depicting accurate distortion
models for many video codecs. In conventional media systems,
each packet is assumed to have a single distortion measure.
The distortion value associated with each packet is the increase
in incurred distortion which would occur with the loss of that
packet. Equivalently, the distortion value is the reduction in
distortion with the inclusion of that packet.

Typically, distortion is measured as the mean-squared error
compared to the original high resolution, high frame rate video
sequence. However, this ignores the case of different user types
who measure distortion in various ways–hence, the need for
Multiple Distortion Measures [1]. The latter arise due to the
increase in diversity of multimedia consumers. Intuitively, a
user with a low resolution display will have very different
requirements than a user with a high resolution display.

We assumeM packets are to be transmitted in some
predetermined order to each receiver. Each packet may cor-
respond to part or the whole of a single video frame. Packet
m ∈ {1, 2, . . . , M} is the mth packet to be transmitted.
We denote bydm

u ≥ 0 the amount of distortion incurred
by useru if he does not receive packetm. The distortion
value is precomputed and stored in the header of packetm
as in [19] and is available information to the transmitter. In
conventional systems,dm

u = dm
u′ for all u, u′ ∈ U , but because

of Multiple Distortion Measuresdm
u 6= dm

u′ for someu 6= u′.
Note that a packet is only useful to a receiver the first time
it is received, i.e., distortion is not reduced further withthe
second reception of the same packet. Suppose useru does not
receive packets in the setK. Then his total incurred distortion
is: du = d0

u +
∑

k∈K dk
u whered0

u is the base distortion due
to lossy compression assuming all packets are received. Then
the media quality of useru can be measured by the typical
metric of PSNR, where PSNRu = 10 log10(2552/du).

Conventional media systems today do not account for
Multiple Distortion Measures, which leads to the question:
Where do MDMs come from and how do we calculate
them? MDMs introduce multiple benchmarks against which
to evaluate performance in order to enable more applicable
performance metrics. A block diagram of how to generate
Multiple Distortion Measures can be seen in Fig. 2 for a
more detailed description see [1]. We define byTu(X) a
transformation operator of media content,X , for user typeu.
A transformation converts media contentX into a modified,
benchmark version which user typeu will view and consume
the content. For example, this transformation could be spatial
downsampling to convert our original benchmark image,X ,
into a low resolution benchmark image,Tu(X), if user typeu
wishes to view the image on a low resolution display. The
transformation could also be a temporal downsampling or
framerate conversion operation, such as frame dropping in the
simplest case, to reduce the frame rate for video. Therefore,
Tu(X) is the reference media against which performance
evaluation is measured for useru. DefineTI as the identity
transformation such thatTI(X) = X . There will be multiple
transformation operators–one corresponding to each user type.

These multiple benchmark images (one for each transfor-
mation) are now used to calculate distortion values of recon-
structed images–hence, Multiple Distortion Measures (MDM).
Let’s defineDTu

(X̂) as the distortion of reconstructed image
X̂ compared to the benchmark imageTu(X). Note that
this is a function ofX and X̂ as well as the transform
Tu, DTu

(X̂) = f(X̂, Tu(X)). The conventional approach in
media transmission systems is to assume the receiver wishes
to consume the data in the original format of encoding, so
performance evaluation is done by calculating distortion of
the reconstructed image,̂X , compared to the original, i.e.
D = DTI

(X̂) = f(X̂, X) as in Fig. 2. However, this is still
done even if the image,̂Y , is displayed and reconstructed
differently such as on a cellphone screen. It is difficult to
make a comparison between̂Y andX since the reconstructed
image and benchmark image have different resolutions. Thisis
sometimes bypassed by up-sampling the low resolution image.
Instead of calculating distortion of̂Y compared to the original
benchmarkX , we propose to calculate distortion compared
to the transformed benchmark image,Tu(X). This provides
a more applicable performance evaluation. In the scenario of
Fig. 2 with a desktop and a cellphone user, there would be two
distortion measures for each packet: one for the high resolution
user,DTI

(·), and one for the low resolution user,DTL
(·).

C. Delay Costs

Another form of distortion is the disruption caused by
delayed packets. We assume that the video sequence has a
target frame rate. This corresponds to a target periodR ≥ 1
at which frames will be played out. We assume that the period
is normalized to the length of a time slot so that users wish
to play a new frame everyR time slots. Suppose packetm
is retransmittedτ times. If τ < R , more retransmissions
are possible while still allowing the receivers to play out the
video sequence at the target frame rate. However, ifτ > R, the
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(Ŷ ) = f(Ŷ , X)
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(Ŷ ) = f(Ŷ , TL(X))

TL

Fig. 2. Diagram of Multiple Distortion Measures. The conventional approach assumes all users evaluate performance compared to the original benchmark
image,TI(X) = X. This is often done by upsampling a low resolution version ofthe received image,̂Y , to the original image resolution. Multiple Distortion
Measures calculate distortion compared to atransformed benchmark image,TL(X), which accurately captures the display capabilities of theuser in question.
In this case, the low resolution benchmark imageY = TL(X) is a downsampled version of the original benchmark image.

receivers must deviate from the target frame rate while waiting
for the next frame and incur play out delay. We measure this
type of disruption by a delay cost,D(τ). D(τ) is a non-
decreasing function ofτ , as more transmissions translates to
more delay which should be penalized. However, we make no
other assumption about its functional form and leave that under
the control of the system designer. One possible function isa
step function whereD(τ) = 0 for τ ≤ R and D(τ) = 1 for
τ > R. This would penalize uniformly for each retransmission
that leads to deviation from the target frame rate.

If each packet had a single distortion measure, each user
would incur the same amount of distortion with the loss
of the same packet. By accounting for multiple distortion
measures, the transmitter can intelligently determine whether
to (re)transmit the HOL packet or drop it and transmit the
next one in order to collectively maximize the viewing quality
of all users. Suppose a packet has been received by user
A, but not userB. Suppose also that this packet is very
important for userA, but not at all for userB. In standard
systems, this packet would be identically prioritized for both
users and a scheduling algorithm may require that both users
receive the packet. However, if the transmitter is aware of the
Multiple Distortion Measures, he can drop the HOL packet
with little loss of performance and spend more resources on
future transmissions. It is this scheduling dilemma which we
wish to examine.

The scheduling problem we will address is precisely for-
mulated as follows. Given the Multiple Distortion Measures,
the Head-of-Line packet reception information, the channel
success probabilities, and channel dynamics, the transmitter
must determine whether to transmit the HOL packet, or drop
it and transmit the next packet. Our goal is to find an efficient

algorithm to resolve this control dilemma in a manner that
maximizes the viewing quality for all receivers.

III. G ENERAL OPTIMAL OFFLINE ALGORITHM

In this section, we model the scheduling dilemma of
transmitting or dropping the Head-of-line (HOL) packet as a
stochastic shortest path problem. We use Dynamic Program-
ming to find the optimal solution and store the scheduling
protocol in a lookup table [20]. In each time slot, the trans-
mitter accesses the system state based on packet reception
information, channel statistics, and packet distortion values,
then references this table and determines whether it is optimal
to transmit or drop the HOL packet.

All users need/want to experience low play out delay
and high media quality. Unfortunately, these are competing
objectives and there is a tradeoff between delay and media
distortion. Requiring high media quality can result in high
delays, whereas low delay can result in low media quality.
We weigh the delay costD(τ) by α ≥ 0, which varies
the importance of distortion cost versus delay costs along
this tradeoff. If α = 0, customers are only concerned with
distortion and in order to ensure successful reception of all
packets by all users, the number of retransmissions by the
transmitter, and subsequently the delay, can be arbitrarily high.
As α → ∞, users are only concerned with costs associated
with deviating from the target frame rate, and many packets
may be dropped. Implicitly,α is the tradeoff factor between
distortion costs and play out delay.

We can now cast the control problem as a stochastic shortest
path problem. The state to be tracked in each time slot is
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(v, τ, m, c). v is a vector of indicator variables,vu, where:

vu =

{

1, if user u has not yet received packetm;
0, if user u has already received packetm.

(1)

τ is the number of previous transmissions of the HOL packet,
m, and c is the vector of the current channel states so
that s(c) = {s1(c1), s2(c2), . . . , sU (cU )} is a vector of the
success probabilities to each useru ∈ U . Define xu(cu) as
a Bernoulli random variable which represents the successful
transmission to useru given channel statecu. Therefore
xu(cu) ∼ Bernoulli(su(cu)), (xu(cu) = 1 if the transmission
is successful, and0 otherwise). For the rest of the discussion,
we suppress the dependence oncu of xu = xu(cu) and
understand that the success of a transmission is dependent on
the channel state. We can then definep(v, v̂, c) = p(v, v̂)
as the probability of transitioning fromv → v̂ given the
channel statec, i.e. v̂u = vu(1 − xu). Let J∗(v, τ, m, c) be
the minimum expected cost to go associated with initial state
(v, τ, m, c). ThenJ∗(v, τ, m, c) satisfies Bellman’s equation
which relates the optimal cost in the current state to the
expected future costs:

J∗(v, τ, m, c)

= min{αD(τ) + E(v̂,c̄|v,c)[J
∗(v̂, τ + 1, m, c̄)],

∑

u

vudm
u + E(v̄,c̄|1,c)[J

∗(v̄, 1, m + 1, c̄)]}

= min{αD(τ) +
∑

qcc̄

∑

p(v,v̂)

qcc̄p(v, v̂)J∗(v̂, τ + 1, m, c̄),

∑

u

vudm
u +

∑

qcc̄

∑

p(1,v̄)

qcc̄p(1, v̄)J∗(v̄, 1, m + 1, c̄)}

(2)

The first term in the minimization corresponds to the
decision to transmit the HOL packet. An instantaneous cost,
αD(τ), due to (re)transmission is incurred. The expected
future cost is given byJ∗(·) with the system state updated.
v → v̂ is updated based on the (un)successful transmissions
to each user. The decision to transmit the HOL packet results
in the number of transmission attempts to increment by one.
Finally, the channel state is updatedc → c̄ (with probability
qcc̄).

The second term in the minimization corresponds to drop-
ping the HOL packet and transmitting the next packet in the
queue,m + 1. By dropping the packet, distortion is incurred
by each user who has not yet received packetm, for all u
such thatvu = 1. At the beginning of this time slot, before
the transmission of packetm + 1 occurs,v = 1, because
no users have yet received packetm + 1. Now 1 → v̄ and
c→ c̄ in a similar manner as before. Notice that each user’s
distortion is weighed uniformly. However, as we will later
see, this means that sometimes one user’s Quality-of-Service
(QoS) is sacrificed for the global good. It is possible to avoid
this and introduce “fairness” to the system by weighing each
user’s distortion byβu so that the distortion contribution for
each user for the loss of packetm is βudm

u . This does not
significantly alter our discussion and we omit the details for
the sake of space.

The optimal decision is to select the action (transmit/drop)

in order to minimize the total costs. The tradeoff here is to
either transmit the HOL packet and pay an immediate delay
cost while potentially reducing the distortion costs versus
dropping the HOL packet and pay the immediate distortion
costs while avoiding the delay cost from retransmitting the
HOL packet.

There areM total packets to be transmitted. Once all the
packets are transmitted, no more distortion or delay can be in-
curred; hence, our terminal state cost isJ∗(v, τ, M+1, c) = 0.
Solving the DP recursion in (2) will result in the minimal cost
and the transmission policy for each HOL packet corresponds
to the action which minimizes the cost in each state. The
solution can be found using thevalue iteration method [20].

Proposition 1: There exists a stationary optimal control
solution to (2) which is obtainable via value iteration.

Proof: The Bellman’s recursion terminates when there are
no more packets in the transmission queue left to transmit. i.e.,
m = M + 1. There is no cost for being in this state and the
optimal policy will never leave this state once it reaches it.
Any policy which does not empty the buffer in finite time
will incur infinite cost due to the retransmission costs,D(τ).
There exists a policy which will empty the transmission buffer
and cause the Bellman’s recursion to terminate in finite time.
(i.e., we can dropall HOL packets and terminate inM time
slots.) Therefore, there should exist a stationary optimalpolicy
which is obtainable via value iteration [20].�

Let M be the number of packets to transmit,U be the
number of users to transmit to,C be the number of channel
states per user, andRmax be the maximum allowable retrans-
missions. The state space for this problem is:

S =
[

(v, τ, m, c) : v ∈ {0, 1}U , τ ∈ {0, 1, . . . , Rmax},

m ∈ {1, . . . , M + 1}, c ∈ {0, 1, . . . , C}U
]

The size of the state space for this problem is exponen-
tial in the size of some problem parameters–|S| = (M +
1)2UCURmax. Without a restriction on the number of re-
transmissions, the state space is countably infinite. Ignoring
the vast computation required to calculate the optimal policy,
the memory requirements, itself, to store a lookup table of the
optimal policy would be intractable. Clearly, the size of the
state space precludes the use of this approach in real world
systems.

IV. A T HRESHOLDPOLICY FOR STATISTICALLY STATIC

CHANNELS

Due to the potential intractability of the general DP formu-
lation in the previous section, we leverage a key case in order
to develop practical algorithms for real world implementation.
We model the wireless channel to each user by i.i.d. packet
losses, equivalently, by a single state Markov Chain. The
success probabilities differ for each user, but are fixed across
subsequent time slots. This assumption is justified in the case
of slowly varying channels. In this case, the optimal control
is of threshold type and can be computed online. Based
on this key case, which yields tractable solutions, we later
investigate how to apply these results to develop algorithms



6

which mimic the optimal policy in the more general case of
dynamic channels. We begin by appropriately modifying the
DP recursion in (2).

Because the success probabilities are fixed, we no longer
have to track the state of the channel. We now denote bysu

the probability of successful transmission to useru in all time
slots. The DP recursion in (2) can be rewritten as:

J∗(v, τ, m)

= min{αD(τ) + E(v̂|v)[J
∗(v̂, τ + 1, m)],

∑

u

vudm
u + E(v̄|1)[J

∗(v̄, 1, m + 1)]}

= min{αD(τ) +
∑

p(v,v̂)

p(v, v̂)J∗(v̂, τ + 1, m),

∑

u

vudm
u +

∑

p(1,v̄)

p(1, v̄)J∗(v̄, 1, m + 1)}

(3)

Again, the first term in the minimization corresponds to
the cost of transmitting the HOL packet and the second term
corresponds to the cost of dropping the HOL packet and
transmitting the next packet.

Suppose a packet is retransmitted, but no new users suc-
cessfully receive it, so that̂v = v. Intuitively, the cost in state
(v, τ + 1, m) should result in larger costs than(v, τ, m) as
the delay is increased, but the distortion is not decreased.The
following proposition establishes this claim.

Proposition 2 (Monotonicity): J∗(v, τ, m) is increasing in
τ , for each fixedv andm.

Proof: Let’s consider2 systems, one starting in state
(v, τ, m) and the other starting in state(v, τ +1, m). Consider
a coupling of the systems so that they see that same sample
paths or realizations of packet transmissions, i.e. the same
successful and unsuccessful transmissions. Letπ∗

τ+1 denote
the optimal policy used by the system starting withτ +1. Let
Jτ+1(v, τ, m) denote the cost of the system starting in state
(v, τ, m) which tracks the evolution of the(v, τ+1, m) system
and uses policỹπ = π∗

τ+1 instead of the optimal policy,π∗
τ

for this state. More formally, letS(v) be the random evolution
of v given a transmission of the HOL packet. Then,

π̃(v, τ, m) = π∗(v, τ + 1, m)

It is easy to see that if̃π(v, τ, m) = Transmit, then the
(v, τ, m) system evolves to(S(v), τ + 1, m) and the(v, τ +
1, m) system evolves to(S(v), τ + 2, m). Then,

π̃(S(v), τ + 1, m) = π∗(S(v), τ + 2, m)

Alternatively, if π̃(v, τ, m) = Drop, then both the(v, τ, m)
and(v, τ +1, m) systems evolve to(S(1), 1, m+1). And for
all subsequent time slots̃π = π∗.

Therefore, in each time slot, each system employs the same
transmit or drop decision given byπ∗

τ+1. Once the decision
is to drop the HOL packet, both systems will be in the same
state,(S(v), 1, m + 1) and, hence, incur identical costs in all
future states due to the coupling. Prior to dropping, the system
starting in state(v, τ + 1, m) incurs larger costs in each time
slot becauseD(τ) ≤ D(τ + 1). Let J π̃(v, τ, m) denote the
expected cost of policỹπ starting in state(v, τ, m). Let Z be

the random stopping time such thatπ̃(v′, τ + Z, m) = Drop
Then,

J∗(v, τ, m) ≤ J π̃(v, τ, m)

= EZ [

Z
∑

t=0

αD(τ + t) +
∑

u

v′udm
u ]

+E[J π̃(S(1), 1, m + 1)]

= EZ [

Z
∑

t=0

αD(τ + t) +
∑

u

v′udm
u ]

+E[J∗(S(1), 1, m + 1)]

≤ EZ [

Z
∑

t=0

αD(τ + 1 + t) +
∑

u

v′udm
u ]

+E[J∗(S(1), 1, m + 1)]

= J∗(v, τ + 1, m) (4)

where the first inequality follows from the optimality ofJ∗(·).
The second equality follows from the definition of thẽπ
policy. The second inequality follows from the non-decreasing
property of D(τ). And the last equality follows from the
definition of the optimal policy. This concludes the proof.�

Define d̃m
u as the effective distortion of packetm to useru

given the current system state. This is the distortion incurred
by useru if packet m is dropped, given the current state.
d̃m

u = 0 if the packet has already been received, i.e.,vu = 0,
and d̃m

u = dm
u if the packet has not yet been received, i.e.,

vu = 1. We can now prove the optimal transmission/drop
policy is of threshold type. This policy is analogous to the
one in [13] which, instead of comparing transmission versus
distortion costs, compares backlog versus distortion costs.

Theorem 1 (Optimal Threshold Policy): The optimal pol-
icy for independent i.i.d. packet losses is of threshold type.
That is, for each fixedv and m, there exists someτmax ∈
[1, 2, . . . ,∞) such that (re)transmitting the Head of Line
packet if τ ≤ τmax and dropping it otherwise is an optimal
policy; τmax depends onv andm.

Proof: If the optimal policy is to transmit in state(v, τ +
1, m), then it is also optimal to transmit it in state(v, τ, m).
This is because, in state(v, τ, m) the cost to transmit is less
than the dropping cost; indeed, note that

αD(τ) + E(v̂|v)[J
∗(v̂, τ + 1, m)]

≤ αD(τ) + E(v̂|v)[J
∗(v̂, τ + 2, m)]

≤ αD(τ + 1) + E(v̂|v)[J
∗(v̂, τ + 2, m)]

≤
∑

u

vudm
u + E(v̂|1)[J

∗(v̂, 1, m + 1)] (5)

The first inequality is due to the monotonicity result in Propo-
sition 2. The second inequality is due to the non-decreasing
property ofD(·). The last inequality is because it is optimal
to transmit in state(v, τ +1, m). Similarly, if we drop in state
(v, τ, m), we also drop in state(v, τ +1, m). Therefore, there
exists τmax, such that ifτ ≤ τmax the optimal policy is to
(re)transmit packetm, otherwise, the optimal policy is to drop
and transmit packetm+1. This τmax is a function ofd̃m and
will vary for each Head of Line packet.�

We have just established that the optimal transmission
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policy for i.i.d. Bernoulli packet drops is of threshold type.
We now turn our attention to determining the value ofτmax

which defines this policy.
Theorem 2 (Value of τmax): In the optimal threshold pol-

icy under i.i.d. Bernoulli packet losses,τmax is defined as
τmax = max

{

τ
∣

∣

∣
αD(τ) ≤

∑

u sud̃m
u

}

.
Proof: Supposeτ = τmax, then it is optimal to transmit

in the current time slot and, regardless of the transmission
outcome, it is optimal to drop the HOL packet in the next time
slot. In the current time slot,τ = τmax, the retransmission
and future costs are incurred. The future costs comprise of the
dropping cost in the next time slot and the expected total cost
after m is removed. With probabilitys̄u = 1 − su, the HOL
packet is not received by useru during the retransmission, and
distortion cost,d̃m

u = vudm
u is incurred for dropping packet

m. Then,

J∗(v, τmax, m) = αD(τmax)

+E(v̂|v)[J
∗(v̂, τmax + 1, m)]

= αD(τmax) +
∑

u

s̄uvudm
u

+E(v̄|1)[J
∗(v̄, 1, m + 1)] (6)

= αD(τmax) +
∑

u

s̄ud̄m
u

+E(v̄|1)[J
∗(v̄, 1, m + 1)]

≤
∑

u

d̄m
u + E(v̄|1)[J

∗(v̄, 1, m + 1)]

The first equality is by definition. The second equality is
because it is optimal to drop atτ = τmax + 1. The third
equality is by definition of̃dm

u . The final inequality is because
it is optimal to transmit atτ = τmax. This simplifies to
αD(τmax) ≤

∑

u sud̃m
u . Therefore, for allτ that satisfy

αD(τ) ≤
∑

u sud̃m
u , it is optimal to transmit the HOL packet.

Otherwise, it is optimal to drop it.�
We have just shown the optimal policy is of threshold

type. Theorem 1 and 2 define the optimal transmission policy
for statistically static channels where packet losses are i.i.d.
over time and independent across users. Given the channel
success probabilities,su, the optimal transmission policy can
be summarized as:

Policy 1 (Optimal Static Policy): If su(t) = su, ∀t

1) Initialize: m = 1, v = 1.
2) Given distortion values̃dm

u = vudm
u :

(i) Transmit the HOL packet if
αD(τ) ≤

∑U

u=1 sud̃m
u .

(ii) Otherwise,drop HOL packet.v = 1 and transmit
packetm← m + 1.

3) Update the reception vectorv based on the outcome of
Step 2.

4) Repeat steps 2-3 in every time-slot.

Therefore, the optimal transmission policy can be inter-
preted as to transmit the HOL packet when the expected
reduction in distortion,

∑

u sud̃m
u , is greater than the expected

cost of retransmission,αD(τ).
The threshold policy described in Policy 1 has low com-

plexity and optimal performance for scheduling media packets

with multiple distortion measures and a target frame rate over
static channels. The target frame rate can be used to select an
appropriate functionD(τ). These are valuable properties for
practical implementations.

A. A Heuristic for Quasi-Static Channels

In the case of slowly varying channels compared to the
length of the transmission horizon, it is reasonable to assume
the channel is static. However, due to varying path loss,
fading, and mobility, wireless channels are typically dynamic.
For statistically varying channels, we leverage the optimal
policy for static channels, Policy 1, to develop a well-justified
“quasi-static” heuristic. We assume that in each time slot,
the transmitter has accurate information about the current
channel success probabilities, which may change over time.
We then use Policy 1 to determine whether to transmit or
drop the Head of Line packet. However, because the channel
success probabilities may change in each subsequent time slot,
they are continuously updated to reflect the current success
probabilities. If the channels are static over the horizon of
transmission of the entire video sequence, this quasi-static
policy is optimal and coincides with Policy 1. For slowly
varying channels, which are “quasi-static”, this policy will
achieve near optimal performance. More dynamic channels
will likely lead to some loss in performance. The quasi-static
transmission policy is as follows:

Policy 2 (Quasi-Static Policy): For time-varying channels,
su(t) = su(cu):

1) Initialize: m = 1, v = 1.
2) Given the current channel conditions,c, and distortion

valuesd̃m
u = vudm

u :

(i) Transmit the HOL packet if
αD(τ) ≤

∑U

u=1 su(cu)d̃m
u .

(ii) Otherwise, drop HOL packet.v = 1 and transmit
packetm← m + 1.

3) Update the reception vectorv based on the outcome of
Step 2.

4) Update the current channel conditions,c.
5) Repeat steps 2-4 in every time-slot.

This algorithm has the same simple form as in the case
of i.i.d Bernoulli packet losses. It is easy to implement and
independent of packet transmission order. By updating the
channel success probabilities in each time slot, this algorithm
can adapt with slowly varying channels.

In the following section, we will show, via experimental re-
sults, that this heuristic has near optimal performance. Recent
work on this type of “quasi-static” scheduling has shown very
good results in practice, [21] and [22]. It has also been shown
that heuristics based on this approach may have near optimal
performance, with finite bounds on the loss of optimality [23].

B. Measure of Delay

In this section, we discuss the relationship between play out
delay and distortion. In some scenarios, achieving a certain
target play out rate is the highest priority. We examine how to
achieve this rate with the minimum incurred media distortion.
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The distortion costs are easily measured by comparing the
received media to the original. Here we look deeper into
the delay costs and the tradeoff with distortion costs. More
precisely, how does the delay costD(τ) actually correspond
to delay?

From Policy 1, the optimal policy is to transmit as long as
τ ≤ D−1

(

1
α

∑

u sud̃m
u

)

. Now, suppose the target frame rate
is 1 and thatD(τ) = τ . Let τm be the expected number of
transmissions for packetm. Then the average expected number
of transmissions per frame, i.e. the average expected deviation
from the target frame rate, is:

E[τ ] =
1

M

∑

m

τm

≤
1

M

∑

m

[

D−1
( 1

α

∑

u

sud̃m
u

)

]

=
1

αM

∑

m

∑

u

sud̃m
u (7)

The last equality follow from the assumption thatD(τ) = τ .
So, if we wanted to guarantee a certain average transmission
rate, we could appropriately scaleα to achieve that target.
For other invertible functions,D(τ), an appropriateα can be
determined for the target transmission rate.

In order to determine the appropriateα for the target trans-
mission rate, we need to know what the expected transmission
rate is as a function ofα: E[τ ] = f(α). For simplicity, we
consider a scenario with2 users. The case for more users will
follow similarly.

For each packet, there are4 scenarios: (v1, v2) =
{(1, 1), (1, 0), (0, 1), (0, 0)}. Clearly, it is optimal to drop the
HOL packet ifv1 = v2 = 0. Therefore there are3 thresholds,
τ1
max,τ2

max, andτ12
max corresponding to the maximum number

of retransmissions given user1, 2, or both1 and 2 have not
received the HOL packet. We will drop themax with the
knowledge that theseτs correspond to thresholds. Without loss
of generality, assume thatτ1 ≥ τ2, equivalently,dm

1 ≥ dm
2 .

Now for each HOL packet, we can calculate the distribution
of the number of retransmissions,τ .

P (τ > t) =



















P (v1 = 1 ∪ v2 = 1), τ2 ≤ t

P (v1 = 1), τ1 ≥ t > τ2

P (v1 = 1 ∩ v2 = 1), τ12 ≥ t > τ1

0, t > τ12

=



















s̄t−1
1 + s̄t−1

2 − (s̄1s̄2)
t−1, τ2 ≤ t

s̄t−1
1 , τ1 ≥ t > τ2

s̄t−1
1 s̄t−1

2 , τ12 ≥ t > τ1

0, t > τ12

(8)

So that

E[τ ] = f(α) =

∞
∑

t=1

P (τ ≥ t)

= 1 +

τ2

∑

t=2

[

s̄t−1
1 + s̄t−1

2 − (s̄1s̄2)
t−1

]

+

τ1

∑

t=τ2+1∧2

s̄t−1
1 +

τ12

∑

t=τ1+1∧2

s̄t−1
1 s̄t−1

2

= 1 +
s̄2
1 − s̄τ1+1

1

s1s̄1
+

s̄2
2 − s̄τ2+1

2

s2s̄2

+
(s̄1s̄2)

τ1+1 + (s̄1s̄2)
τ2+1

s̄1s̄2(1 − s̄1s̄2)

−
(s̄1s̄2)

2 + (s̄1s̄2)
τ12+1

s̄1s̄2(1− s̄1s̄2)
(9)

Then given a target frame rate,R, one can determine theα
which satisfiesR = f(α). In summary, through this approach
for selectingα we have the ability to operate the system in a
manner which would provide the desired average target frame
rate at the clients.

V. PERFORMANCEEVALUATION

In this section, we present experimental results which
highlight the performance of Policy 1 and 2. We present our
results for 200 CIF frames of the standard Soccer test sequence
encoded using H.264/MPEG-4 SVC JSVM 8.6. Each media
packet corresponds to a single, whole frame. We encode with
a single leading I-frame and an I or P frame every8th frame
with B frames in between. The GOP structure defines how
the video sequence is encoded and is depicted in Fig. 3.
We assume there are two user types, a low frame rate user
and a high frame rate user, and there are2 users of each
type for a total of4 users. The high frame rate users wish
to consume the video at the original 60 frames per second.
The low frame rate users wish to consume the video at 30
frames per second in order to save battery power. Therefore,
every other B frame of the original video sequence can be
discarded without any incurred distortion to the low frame
rate user, but with some incurred distortion to the high rate
user. Lost frames are reconstructed using frame copy error
concealment techniques. If no frames are lost, the maximum
achievable PSNR is 40.31dB for the low frame rate users and
39.74dB for the high. We calculate the distortion values of
frames by dropping one at a time and calculating the resulting
mean-squared error. In order to account for the precedence
constraints, we calculate the distortion of a packetm as the
distortion incurred with the loss of packetm and all of its
children frames. For instance, the distortion ofB2 is that
distortion incurred with the loss of framesB1, B2, andB3. Our
algorithm relies on these distortion values for each packetand
the additive model presented in Section II-B. However, for all
results the quoted distortion is the actual distortion incurred
by dropping all the lost packets, decoding, and calculating
the resulting distortion. In order to focus the distortion versus
delay tradeoff under MDM, these experimental results only
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utilize the temporal scalability of the video; however, it is
certainly possible to consider SNR and spatial scalabilityas
well.

We compare our algorithm to 3 different benchmark poli-
cies. If lossless transmission is required, a persistent policy,
which transmits each packet until all users successfully receive
it must be used. We refer to this policy as thePersistent policy.
Unfortunately, this policy can lead to arbitrarily long delays
if there is a single poor channel that causes a bottleneck,
preventing further transmission of waiting frames. We also
consider a periodic policy where each packet is allotted the
same number of retransmissions. This policy ignores the
reception acknowledgements and blindly transmits packets
at a fixed, periodic rate. We refer to this repetition coding
policy as thePeriodic policy. A more intelligent transmitter
could employ an optimization framework, such as the one
discussed in Section IV. Conventional approaches assume a
single distortion metric, so for this policy we assume that the
scheduler believes all users are high frame rate viewers, i.e.,
dm

u = dm
u′ , ∀u, u′. We refer to this policy as theSDM (Single

Distortion Measure) policy. We refer to Policy 1 and 2 from
Section IV which incorporates multiple distortion measures
as theMDM (Multiple Distortion Measure) policy. For static
channels we use Policy 1; for dynamic channels we use Policy
2.

We present performance results in terms of the standard
metric for media quality, PSNR= 10 log(2552

D
), whereD is

distortion in mean-squared error over all frames. Note that
our algorithm is optimized to minimize distortion which has
a non-linear transformation into PSNR. In Fig. 4, we see the
performance, in terms of average PSNR of all users, versus
the average number of transmissions per packet. For the sim-
ulations, we assume the probability of successful transmission
is static over subsequent time slots. We examine the case of
dynamic success probabilities later. As an illustrative example,
we assume the probability of success to the high frame rate
users is.9 and .85. For the low rate users is.5 and .55. We
look at other values ofsL later. We also assume a linear delay
costD(τ) = τ .
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S

N
R

E[τ ]

Fig. 4. Static Channels: Transmitting to four users with different channel
qualities. Average PSNR versus average number of transmissions.

MDM outperforms the other benchmarks by over 3dB.

Periodic performs very poorly, performing over 20dB worse.
Clearly, utilizing feedback information is very important.
Persistent achieves the highest PSNR, but because of the
bottleneck to the low resolution user, the average number of
retransmissions is very high.MDM achieves the same PSNR
as Persistent, but with, on average, 3 fewer retransmission
attempts every 4 frames. The effect due to the poor channel
to the low frame rate users is most noticeable in Fig. 5,
which plots the PSNR performance for the same experiment
but for the high and low frame rate viewers separately. The
channel quality is so great to the high frame rate users, that
after a single retransmission it is highly likely that both have
received the packet. However, the low success probability to
the low frame rate users causes a bottleneck and requires
multiple retransmissions before the PSNR improves.SDM and
MDM can overcome the blocking effect caused by the poor
channel–incurring some distortion, but reducing the average
number of retransmissions. However, becauseMDM is Mul-
tiple Distortion Measure aware, the performance of the low
frame rate user is improved. Instead of retransmitting frames
which do not help the low frame rate users,MDM can drop
them without incurring distortion whileSDM and Persistent
will not. As such,MDM can achieve the same PSNR with
fewer retransmissions per frame. Also, with the same average
number of retransmissions,MDM, achieves gains up to 3dB
in average PSNR .
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Fig. 5. Static Channels: Transmitting to four users with different channel
qualities. Average PSNR versus average number of transmissions for high rate
users (top) and low rate users (bottom).

The poor channel quality to the low frame rate users can
cause delays. However, only half of the video frames are
important to this user type because he is viewing at half the
original frame rate. As such, a Multiple Distortion Measure-
aware transmitter could drop the packets which are not useful
to the low frame rate users to help avoid the bottleneck
they causes. In Fig. 6, we examine the average number of
transmissions necessary to achieve minimum distortion. Aswe
increase the probability of success to the low rate user with
the worse success probability, the bottleneck effect is reduced
and theMDM and SDM policies perform similarly. Because
one of the low rate users still has a low probability of success
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B1

B1

B2

B2

B3

B3

B4

B4

B5

B5

B6

B6

B7

B7

I/P I/P

Fig. 3. For hierarchical B frames, the hollow circles correspond to anchor I or P frames. The dependency structure can be mapped to a simple tree structure
where each frame’s parent is the most junior parent. The mostjunior parent corresponds to the lowest parent in the precedence tree. For instance,B3 has2
parents:B2 andB4. However,B4 is a parent toB2 so the precedence constraint ofB4 on B3 is captured by a single precedence constraint ofB2 on B3.
We assume that all I and P frames are successfully transmitted and received, and therefore the dependencies on I and P frames are not listed.

(.55) some bottleneck effect still remains. Not surprisingly, the
SDM policy requires the same number of retransmissions as
Persistent to achieve the highest viewing quality because it
is not aware that some frames are useless to the low frame
rate user and transmits them until all users have received each
frame. MDM can reduce the number of retransmissions by
nearly a factor of 2 by realizing some packets do not benefit
the low frame rate user.
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Fig. 6. Static Channels: Expected number of transmissions to achieve highest
PSNR quality versus channel quality to low rate user.

A. Delay

In Section IV-B, we presented a method to determineα
to achieve a target frame rate,R, given the channel success
probabilities and distortion values of the frames. We again
consider the scenario of static channels. This time with one
high frame rate user with channel success probability.95 and
one low frame rate user with channel success probability.7.
We search for theα which satisfies Eqn. 9 for our target rate
R. The empirical ratêR is plotted versus the target rate ofR in
Fig. 7. The empirical frame rate is quite close to the desired
frame rate. Because the channels are so good, the expected
frame rate saturates at the expected number of transmissions
(1.252) until all packets are received. For largeR, each packet

is transmitted until it is received by both users. Because of
the quality of the channel, the number of transmissions is less
than the target frame rate. Once all users receive the necessary
frame, the HOL packet is dropped, even if the target frame rate
is higher. Clearly, by delaying the play out at the receiver,
the target frame rate can be achieved exactly if the number
of retransmissions is lower than this rate. Alternatively,the
transmitter can idle during some time slots in order to achieve
the desired rate at the receiver.
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Fig. 7. Selectα to achieve a target frame rateR. R̂all selectsα based on
all frames whileR̂GOP selectsα every8 frames.

It may be impractical to assume the scheduler has access to
all frames at once in order to determineα(R). If we modify
eachα for each frame, the different distortion values of each
frame would be ignored and the algorithm would reduce to the
periodic strategy which we have seen perform quite poorly.
For real-time applications, we propose determining anα(R)
for each Group-of-Pictures (GOP), so that knowledge ofall
frames is not required, but that there is enough diversity inthe
distortion values of the frames to be able to tradeoff transmis-
sion for a low distortion frame to allow high retransmissions
for a high distortion frame. The empirical ratêRGOP is plotted
versus the target rate ofR in Fig. 7. We see that by modifying
α for each GOP, the frame rate deviates slightly from target,
although minimally. The frequent update ofα is also beneficial
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for the case of time-varying channels.

B. Dynamic (non-Quasi-Static) Channels

Thus far, we have examined statistically static channels. Due
to user mobility and other physical phenomenon, it is often the
case that the channel quality is varying. We model the channels
as 2-state Markov Chains. To stress and assess our quasi-
static heuristic policy, we examine the following challenging
channel. The probability of success to the high rate user is.9
or .6. The probability of success to the low rate user is.9 or .1.
We assume that the transition probabilities are.8. Therefore,
the channel is varying quickly and we expect this to stress the
performance of the quasi-static algorithm. We use the quasi-
static heuristic presented in Section IV-A. We compare the
performance of this heuristic to the optimal policy which we
find using Dynamic Programming. In order to ensure that the
state space is sufficiently small that Dynamic Programming
techniques are possible, we introduce a sufficiently large
maximum possible number of retransmissions,Rmax = 50,
and consider only2 users–a low and high rate user. One may
expect the quickly varying channel to cause the heuristic policy
of Policy 2 to fail, but this is not the case. Fig. 8 shows the
average PSNR versus the average number of retransmissions.
We can see that the heuristic policy is within 1dB of optimal
and outperforms the conventionalSDM approach by over 5dB.
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Fig. 8. Dynamic Channels: Transmitting to two users with channel qualities
modeled as2-state Markov Chains. Average PSNR versus average number of
transmissions.

VI. SUMMARY

In this paper we have examined the problem of broadcasting
multimedia packets with Multiple Distortion Measures. With
the growth in diversity of mobile multimedia users, MDM
can satisfy the diverse needs of each user. Using Dynamic
Programming techniques, a simple, optimal transmission pol-
icy for broadcasting packets with Multiple Distortion Measures
over statistically static channels was presented. This policy was
shown to be of threshold type, so that the decision to transmit
or drop a packet can be calculated online. We gained insight
into the fundamental tradeoff between delay and distortion. We
presented an algorithm which minimizes aggregate distortion
given a target frame rate. Experimental results showed that
this policy outperforms current media systems which do not

consider MDM. Leveraging the optimal policy for statistically
static channels, a quasi-static heuristic for general channel
dynamics was proposed. This heuristic was experimentally
shown to have near optimal performance. In this work, we have
shown that accounting for MDM can significantly improve
QoS of multimedia users. Furthermore, we have shown that
simple, high performing algorithms can be developed within
this framework.
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