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Abstract— We study scheduling of multimedia traffic on the focused on maximizing throughput and optimizing system
downlink of a wireless communication system. We examine a performance for non-real-time delay tolerant traffic. Thmé-u

scenario where multimedia packets are associated with st ; ; ; ot
deadlines and are equivalent to lost packets if they arrive faer fying thread for all this work was the idea @pportunistic

their associated deadlines. Lost packets result in degradian of sched_qllng(seg 21, [3_] a”‘?' _reference_zs therem), which entails
playout quality at the receiver, which is quantified in terms of ~€xploitingmultiuser diversityinherent in wireless systems due
the “distortion cost” associated with each packet. Our goalis to  to fluctuating channel conditions. However, such scheduler

design a scheduler which minimizes the aggregate distortiocost peing oblivious to packet deadlines, perform poorly in the

over all receivers. We study the scheduling problem in a dynaic _ i ; ; it
programming (DP) framework. Under well justified modeling context of delay-sensitive multimedia applications.

reductions, we extensively characterize structural propsies
;)f the optimal control_assocnatec_;l with the DP prc_)blem. We A. Related work
everage these properties to design a low-complexity @nnel,

Deadline, and Dstortion (C D?) aware heuristic scheduling policy ~ More recently, the idea of deadline-aware packet scheglulin

amenable to implementation in real wireless systems. We eN@te  h3s recejved attention in the wireless community. Georgjiad
the performance of C'D? via trace-driven simulations using

H.264/MPEG-4 AVC coded video. Our experimental results sho et al. [4] ShOW_ed the_optimality Of_ the earlies_t deadlinetfirs
that C'D* comfortably outperforms benchmark schedulers like (EDF) scheduling policy for deadline constrained scheuyli
earliest deadline first (EDF) and best channel first (BCF).C'D? over wired (error-free) channels. However, EDF is not well-
achieves these performance gains by using the knowledge ofsuited to the wireless scenario, owing to its disregard for
packet deadlines, wireless channel conditions, and appddon  channel variations. In [5], Shakkottai and Srikant modeled
:ﬁzcgﬁf;ggom?u%r; gﬁ[&?ggﬁ; s(':itgémﬂg‘fosm) N a syematic  he wireless channe_l as a two-state ON—OFF Markoy chain,
i . ) and showed that using EDF for ON users in each time slot
scrllz?ji)iin;erg;sr;n\fi/gifsgraﬁmﬁéksy video streaming, packet ig “nearly optimal” for minimizing the number of packets
’ ' dropped due to missed deadlines. They were the first to
study a channel-aware version of EDF. Khattab and Elsayed
|. INTRODUCTION [6] proposed a heuristic channel dependent EDF policy, and
The advent of the third generation (3G) of cellular wirelesgdemonstrated its performance gains via simulations.
communication systems has sparked an ever increasingstter In [7], Ren et al. used dynamic programming (DP) for a
in mobile wireless multimedia applications like video sime  simulation based study of scheduling constant bit-rateRCB
ing. Transmission of multimedia traffic over wireless linkgraffic over wireless channels modeled as finite-state Marko
poses challenging theoretical as well as practical problenchains. Johnsson and Cox [8] proposed a heuristic cost
This is attributed to temporal and spatial variations ineldss function, and showed via simulations that a policy which
channel quality, stringent availability of resources lik@nd- minimizes this cost function performs well with respecttie t
width, and unique characteristics of multimedia traffictsas number of missed packet deadlines. Dua and Bambos [9] stud-
packet interdependencies and deadline constraints. ied deadline and channel aware scheduling in a DP framework.
Scheduling algorithms employed at the base station (BS) Dhhey leveraged provable structural properties of the ogitim
access point (AP) play a key role in determining the perfosolution to the DP problem to design low-complexity, near-
mance of wireless systems. The problem of downlink schedwolptimal scheduling policies. Our current work is similaf®
ing, wherein a single transmitter at the BS is shared amongstspirit.
multiple downlink users, has been studied extensively [spe Even though schedulers proposed in the work cited above
for an overview). Most initial work in downlink schedulingaccount for both channel conditions and packet deadlines,
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Fig. 1. Schematic of the wireless downlink wiffi parallel queues and a single time-multiplexed schedSlet the base-station.

none of them take into consideration the unique charatitaris playout deadline. Only one user can be scheduled in each
of multimedia traffic. Amongst the several authors who havéne slot. The scheduler must decide which user to schedule
explicitly accounted for characteristics of multimediaftic, and which packet to transmit to the scheduled user in every
Chou and Miao [10] studie®ate-Distortion(RD) optimized time slot to minimize aggregate distortion incurred ovdr al
streaming of packetized media. In their work, the “impoclh users. Under well justified modeling reductions, we forrmila

of every packet is determined by its associated distortidine scheduling problem in a dynamic programming (DP)
value, and packet (re)-transmissions are scheduled irr twdeframework [17] and establish key structural propertieshef t
minimize distortion, given the rate constraint of the chelnn optimal control. Prominent amongst these are the optignalit
Wee et al. [11] focused on networks with large delay vardf a switch-overpolicy [18], the time-invarianceof switch-
ations, and achieved improvements in video playout qualibver curves for a two user problem, and the optimality of a
by maximizing the probability of on-time delivery of morepairwise comparisorapproach for a problem with more than
important packets. Liebl et al. [12] proposed a heurististcotwo users. We leverage these properties to propos€hé
function which incorporates deadline, channel, and distor scheduling algorithm, which is amenable to implementation
information. They demonstrated via simulations that a dehen real systems. We also demonstrate the performance gains
uler which minimizes this cost yields considerable perfoachieved byC' D? over benchmark schedulers via trace-driven
mance gains over benchmark schedulers. Apostolopoulds [$Bnulations.

examined low-complexity RD optimized streaming of mukipl To the best of our knowledge, our work is the first to study
encrypted video streams over a shared bandwidth bottlenectkannel, deadline, and distortion aware scheduling of imult
Chakareski and Frossard [14] studied RD optimized stregmimedia traffic over a shared wireless link in a mathematical
of multiple video streams by prioritizing re-transmissonframework.

based on packet contents. They expressed their optimizatio

problem in a Lagrangian framework and used sub-gradient paper outline

mee;EOs?snfl tf)og\geislet.r;i)lmggNeé arlﬁa[ii?r]ﬂzuast?odn ?gcr?:ipegedThe rest of this paper is organized as follows: We present
P S9 . (. ) . o the system model in Section Il, where we discuss the wireless
examine scheduling of multiple transcoded video streanss ov.

a shared wireless link. Pahalawatta et al. [16] proposedsser channel model, the distortion cost model, and the optimal
| hW(Ij i II ' ith fW i - prop ded wid acket prioritization policy. In Section Ill, we formulatbe
ayer scheduling aigorithm Ior streaming pre-encoded i cheduling problem as a DP, under well justified modeling
over wireless downlink packet access networks to multip

In thei | dat i q “Tréductions. We then propose our heuristicannel,Deadline,
USers. In their proposal, user dala rates were ynamlgqil;{d Distortion (C'D?) aware scheduling algorithm, based on
varied based on channel quality as well as gradients ofyutili

) : . ) . . a quasi-staticapproach to scheduling’D? has the optimal
functions, V.Vh'Ch were designed as functions of the distarti solution to the DP problem (for the reduced model) at its
of the received video.

core. In Section IV, we establish key structural properties
- of the optimal control for the DP, which are leveraged to
B. Contributions develop a low complexity implementation 6fD2. In Section

Our goal in this work is to design a scheduling algorithriv, we employ trace-driven simulations (using H.264/MPEG-4
which combines knowledge of multimedia characteristiachwi AVC coded video) to demonstrate the efficacy @D? and
deadline and wireless channel information in a systemadig wits performance gains (2-12 dB increase in average PSNR)
to enhance system performance. We consider video translative to benchmark schedulers like “earliest deadlirst”fi
mission over wireless channels with time-varying religjil and “best channel first”. We furnish concluding remarks in
Distortion is incurred at the receiver if a packet misses iection VI.



II. MoDEL CONSTRUCTION We denote byw;(k;) the distortion cost incurred if;

We study a time slotted wireless system withdownlink Packets from the HOL frame o@; miss their deadline. We
users and a time-multiplexed schedufmt the base station a8ssume that; (k;) is a non-negative, strictly increasing, and
(BS). There is a queue corresponding to each downlink usec@fvex function ofk; v i. While the first two assumptions
the BS, which buffers video frames the user wishes to recei@® consistent with intuition, the convexity assumption is
The queue for the!" user is denote@;. A schematic of the corrobora_ted by empirical data. Fig. 2 depicts plotsvg(fk;)
system is depicted in Fig. 1. Each video frame is divided infg" four different frames of the “Foreman sequence” (a test
multiple network packets. The video is encoded to achie¥gduence widely used by the video community) in CIF format
a roughly constant quality for each frame, which leads to&pcoded using H.264/MPEG-4 AVC with a single leading |-
variable number of network packets per frame, depending §ame followed by 299 P-frames. Observe that the empirical
the difficulty in compressing each frame. The video qualifigSults are in accordance with our assumptions.
is measured in terms of peak signal-to-noise ratio (PSNR),
defined as PSNR 10 log; (2552 /Distortion). The distortion

20

is measured in terms of mean-squared error. 7 5
In each time slotS schedules one packet from the head- /
of-line (HOL) frame of one of theV queues for transmission 6 10
according to some scheduling policy. The HOL frameQf ; .
comprises ofN; packets and is associated with a deadline oz 3 456 oz 3 458

D;. This deadline reflects the time by which the frame must
be received at the downlink receiver to ensure uninterdipte
playout. All packets in the HOL frame share this common 15
deadline. Any packets in the frame which are not succegsfull
transmitted before the expiration of the deadline are dedpp
This results in a degradation of video quality at the reaeive .

due to increased distortion. The objective of the schedsler toros s v oo e
to minimize aggregate distortion at the downlink receiwre
to missed packet deadlines.
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Fig. 2. Plots ofw; (k;) for four different frames of the Foreman sequence

A. Wireless Channel Model We computew;(k;) by dropping packets, decoding, and

Wireless channels exhibit temporal and spatial fluctuatiorfomputing the resultant MSE. We assume that distortion
which are attributed to user mobility, interference frormeo iS additive across multiple dropped packets. There Zfe
current transmissions, and signal attenuation due to palysiPossible ways (dropping patterns) of dropping packets from
phenomena. Different models have been used in the literatdr frame comprised ofX’ packets.w;(1) is defined as the
to abstract this behavior of wireless channels. While sorf@nimum MSE distortion incurred by dropping only one
authors model the wireless channel as a reliable “bit-pigigri ~ Packet from the HOL frame 0D;. w;(k; + 1) is defined as
time-varying capacity, others model it as a fixed-size fije” the minimum MSE distortion incurred by dropping one more
with time-varying reliability. We adopt the latter apprbeand Packet, in addition to the packets dropped to inc(#; ). This
quantify the channel quality in time slétby the probability embedded computation af;(k;) imposes a rank ordering on
of successful transmission of a packet over the channéigif the packets within a frame, which might be quite different
channel is used in time slot For Q;, we denote this success/fom the ordering imposed by encoding. These computations
probability by st. For examples! can be modeled as beingare performed offline at the time of encoding, and the results
modulated by an underlying finite-state Markov chain (FSMc@'€ placed in the packet/frame headers, so that they are
[19], where each state corresponds to a different protaioili readily available to a distortion-aware scheduler. Thek rain
successful transmission. We employ a two-state FSMC modePacket in a frame expresses its priority for transmissioa b
for performance evaluation in Section V. We further assungéstortion-aware scheduler. The number of dropping paster
that the wireless channels from the BS to the downlink us?§W reduces tds + 1 from 2%,
are independent of each other.

I1l. PROBLEM FORMULATION

B. Distortion Costs In general, the scheduling problem can be formulated within
If one or more packets in a frame miss their deadline, tl@econtrol/optimization framework and solved using numedric

decoder is forced to use error concealment techniques stethniques, given statistical characterizations or dcaadiza-

as “previous frame copy”, and a distortion cost is incurretions of the distortion cost curves and channel conditiars f

We measure distortion in the mean-squared error (MSEI users. Such an approach, apart from being computalyonal

sense. The distortion cost associated with each packethwhprohibitive from an implementation perspective, does not

expresses the packet's application layer importance,aisepl provide insight into the fundamental trade-offs inherenthe

in the packet header and thereby is accessible to the s@redsitheduling problem. Moreover, detailed knowledge of traffi

[13]. or channel conditions is not available to the scheduler & re



. . . N
wireless systems. We seek a formulation which encapsulates LT B
the fundamental scheduling tradeoffs, is amenable to a'malyand the boundary conditionis™ ™" (n) = Z wi(ni), where

and leads to implementation friendly scheduling policies. =t
this end, we (sequentially) introduce two modelmguctions ol (n) = { stVti(m —e;) — Vi+i(m)], n; > 0,t< D;

0, else
« Modeling Reduction RITo formulate our optimal control 2)
problem, we assume that each queue contains only of&itinga!(n) = 0 whenn; = 0 ort > D; eliminatesQ; from
frame. consideration as a scheduling candidate whgns empty, or

« Modeling Reduction R2Ve assume static (in a proba+the deadline on its HOL frame has expired.
bilistic sense) channel conditions in the control problem golving the DP equations to compuf@*(N) requires

formulated under reduction R1. non-causal knowledge of channel conditions over a period
In Section I1I-A, we will study an optimal control problem®f 7' time slots, which is unavailable to the scheduler in
which incorporates reduction Rdnly. Then, in Section I1I- eal wireless systems. Thus, the single frame offline optima
B, we will study a control problem which incorporatbsth problem (based on R1 alone) does not immediately lead to
reductions. implementable scheduling policies.

B. A quasi-static approach to scheduling €D

A. Single frame optimal — problem formulation under R1 only Motivated by the foregoing discussion, we now introduce
reduction R2 into the our formulation, in addition to R1. énd

R1 is a reasonable assumption if the frames are beiRg, the probability of successful transmission is fixed facte
generated periodically by a real-time media source, soahatiser over a horizon of' time slots. Equivalently! = s, for
new frame arrives to a queue only after the current frame has- 1,...,7T, V. This is a reasonable assumption for slowly
been transmitted. This assumption is also consistent With tvarying channels. We denote the optimal control in this tgse
principles of low-latency media system design. We consid@*(N), which is computed via (1) and (2), witk} replaced
a finite time-horizon ofI" time slots starting at = 1, where by s,. Thus, P*(N) is a special case oP*(NN) where the
T = max(D1,...,Dy) and D; is the deadline associatedsuccess probability for each user is constant over the droriz
with the HOL frame ofQ;. The deadlines on all HOL framesT of interest.
expire by the end of the time-horizah Any residual packets How doesP}(N) translate into an implementable schedul-
at the end of the horizon are dropped and a cost is incurré@elj policy? To answer this question, we proposejuasi-
as described in Section II-B. static approach to scheduling. We name our proposed policy

Our objective is to design a scheduling policy which minCD?, since it is aChannel,Deadline, andDistortion aware
imizes the sum, over all users, of expected dropping coSgheduling policy. The key steps {iD? are:
at the end of time-horizof”. The scheduler is assumed to 1) Given a system characterization in terms of instanta-

know the channel statistics in terms of success probagsiliti neous channel conditions, HOL frame deadlines, and
for all users in time slots = 1,...,7. We call this problem number of packets in the HOL frame of each queue
the single frame optimabnd the associated optimal control in the current time slot, comput? (V) by solving (1)
policy P*(N). and (2) under the assumptions imposed by R1 and R2.

We adopt the methodology of dynamic programming (DP) 2) Schedule a packet in the system based on the decision
to computeP*(N). Let n = (ny,...,ny) denote thestate of P(NN) computed in Step 1.

of the system (all vectors are denoted hnldface), where 3) Update the system parameters based on the outcome of

n; < N; is the number of remaining packets in the HOL Step 2 and most recently acquired channel knowledge

frame of Q; at the beginning of the current time slot.df; is (through receiver feedback or measurements made by

scheduled in time slat, the state in time slot+ 1 changes to the BS).

n —e; with probability (w.p.)s! (transmission successful) and 4) Repeat steps 1-3 in every time slot.

nw.p.s;" £ 1—s! (transmission fails). Here; is the standard Thus, the scheduling decision 6fD? in each time slot is

i*" unit vector inR”, that is,e; = (0,...,0,1,0,...,0) with based on the static channel assumption (R2). However, the

thel in thei'” location. Without loss of generality, we assumetatic operating point is updated in each time slot as wseele

0 <Dy <...< Dy =T. The assumption implies th@; channels evolve over time. This justifies the nomenclature

is not a scheduling candidate after= D; < T, since the quasi-static. Note that'D? requires only instantaneous chan-

deadline on its HOL frame expires in time siot= D;. nel knowledge, rather than non-causal channel knowledge or
Denote byV*(n) the expected cost-to-gin time slot¢, a detailed statistical characterization of the channehiiein.

starting in staten. By definition, V*(n) is the minimum  We reiterate thatUD? is based ornP*(N), which is the

expected cost incurred by the optimal poli@g*(N) over optimal control policy for the scheduling problem formelet

time slotst, ..., T, starting in staten in time slotz. Vi(n) is under modeling reductions R1 and R2. The gains provided by

computed from the following recursive DP equations: CD? relative to benchmark policies (Section V) suggests that

s . . i1 B the reduced model was a reasonable one to study from the

Vin) = iy {ai(m)} + V@), t=1,....T, 1) perspective of efficient scheduler design.



V. STRUCTURAL PROPERTIES OFP*(N)

In this section, we present important structural propsie
P*(N), which is at the core o’ D?. We initially focus on T
a two user scenarioN = 2), and show in Section 1V-B that of
Pr(N) for N > 2 can be computed by usirg}(2) multiple
times in a pairwise fashion. <

A. Key properties oP}(2)

To make the static channel assumption (R2) explicit, we
suppress the superscriptfrom the successful transmission R SR S SR R I U S
probabilities and simply denote them by and s;. Once 0
again, we assume without any loss of generality fhat< D-. n,

Thus,Q; is a scheduling candidate fore= 1, ..., D, provided

ny > 0, while 9, is a scheduling candidate over the entiréig' 3. A typical switch-over curvey ande denote the states in which it is
. " 2 . optimal to schedule2; and Q2, respectively.

time-horizon providedhs > 0. We employ the notatiom =

(n1,n2), e1 = (1,0), andes = (0,1). Since no scheduling

decision needs to be made afte D, (Q» is scheduled, if Definition: A scheduling policy is of switch-over type if in

non-empty), we reformulate our control problem for a time- . , .
. . : . every time slott, the policy can be characterized by a non-
horizon of lengthT" = D, (instead ofDs, as in Section II). y policy y

- : decreasing switch-over curvg’ : N — N U {0}, such that
The DP equations can be re-written as the policy schedule®s in time slott if ns i z}/Jt(nl), and
Vi(n) =min {ef(n),ab(n)} + V™' (n), t=1,...,7, schedulew, else (see Fig. 3).
3) Theorem 1 (Optimality of Switch-over PolicyJhe policy
along with the boundary conditiong”*!(n) = wi(ny) + P2(2) is of switch-over type.
¢2(ne, Dy — D7), where The scheduling decision dP*(2) in the current time slot
a1 a1 (t = 1) is determined by)'. Since our problem (3)-(5) is for-
al(n) = { si Ve (n — %i) — Vi m)), Zlis> 0 (4) mulated as &ackward recursionone expects that”', . . ., 12
’ & must be computed prior to computing'. Interestingly, our
and . (-, -) is computed via the recursion next result shows that this is not the case.
0, y=0 Theorem 2 (Time-invariance)The switch-over curves)®
do(y,t) = 3 sada(y — 1,6 — 1) + S2a(y,t — 1), 4,6 >0 which characterizeP*(2) are time-invariant, that isy’ =
wa (), t—0. ’l/),v-t:L...,T. - - - -
(5) Since the switch-over curves are time-invariant, comutin
Here,w;(ny) is the distortion cost associated with droppinghe desired switch-over curvg' is equivalent to computing
n, packets fromQ; at the end of the time-horizon, while?’”. However,y)" is determined by the sign of” (n), which
$2(na, Dy — Dy) is the expected distortion cost incurred iwas computed as a function f (-) and¢.(-) in the proof of
transmittingn, packets fromQ, over a static channel with Lemma 3 (see Section VII-C). We reproduce the expression

success probability, during time slotsT" + 1,. .., Ds. here for convenience:
min{y,t} T
t Ny 7 () ==sifwi(m) —wi(m —1)]
Lemma 1:* ¢o(y,t) = (>w —j)s(1—s9)t79. 7
() jgo J i) + 52[¢2(n2, Dy — D1) — ¢a(n2 — 1, Dy — D1)].

Lemma 2:¢,(y, t) is a non-decreasing and convex functiodlso, recall thatps (-, -) was computed as a function of(-)
of y for fixed ¢. in Lemma 1. In summary)”, and hence)! can be explicitly
Now, define thedecision functiony!(n) by computed in terms of the distortion cost functiang-) and

. a . wa (), which are available to the scheduler from the packet
7'(n) = aj(m) —ay(n), t=1,....T. (6)  headers. The implication is that we have the optimal two user
Clearly, P*(2) schedulesQ; in staten in time slot ¢ if Policy for the scheduling problem formulated under recaresi -~
~vt(n) < 0, and schedule®; else. ThusPx(2) is completely R1 and R2 in closed form. Note that the foregoing analysis is
determined by theignof 4*(n). We now state a key propertyValid under the assumptiofd; > D,. Analogous results for

of ~'(n). the caseD; > D, are gotten by interchanging the roles@f
Lemma 3:~%(n) is a non-increasing function of; and a and Qs. . _ .
non-decreasing function of;. An alternate interpretation of Theorem 1 and 2 is as follows:

An immediate and important consequence of Lemma 3 f®r fixedn, andn,, P;(2) is characterized by a switchover
the optimality of aswitch-overtype policy in each time slot. Curve on the(Dy, D) plane, which is a straight line with

offset is a function o#1, sa, n1, ne, w1 (+), andws(+), but not of

*Proofs of all lemmas/theorems are available in the Appendix t. If the line passed through the origi®}(2) would reduce



Repeat
o If Q' =07, quit.
o If Qf = {k}, scheduleQ,, andquit.
. Settd = ) andQ = Q'. Repeat
—1f Q =0, quit
—If Q ={k}, setd =U U{k}, Q=10.
—If |Q] > 2, selectk, !, k # [ randomly fromQ.
o UseP*(2) to choose one of eithe®;, or Q.
o If Qy is chosen, setd = U U {k}, else setd = U U {l}.
In both cases, sed = O\ {k,[}.
e SetQ! = U.
t Q* denotes the set of scheduling candidates (non-empty queuéme slott.
TABLE |
IMPLEMENTATION OF STEP 2 OF PAIRWISEC' D?

to earliest deadline first (EDF). However, a non zero offsés a computational complexit@(N )T, since the complexity
demonstrates tha®; (2) accounts for channel conditions andf each pairwise comparison based Bi(2) is O(1) (due
queue state, in addition to deadline information. This axid to the time-invariance property). In contragt,D? based
why C'D?, which hasP(2) at its core, outperforms EDF, on solving the DP equations directly has a computational
which makes scheduling decisions based on deadlines alonemplexity of O(n" D) if n; = O(n) and D; = O(D) V i.

B. Optimality of pairwise comparisons, ardD? re-visited V. SIMULATION RESULTS

How do the above results generalize®o(N), the optimal ~ In this section, we experimentally examine the performance
control for a system withN > 2 users? To answer thisOf our pro_posed?DQ scheduling policy. We compa@DQ to
question, we define theairwise decision functions the following benchmarks: Round Robin (RR), which sched-
. a . ules users in periodic fashion; Earliest Deadline First FED

i3 (n) = ai(n) — aj(n), (8)  which schedules the user with the most imminent deadling; an
P*(N) “prefers” Q; over Q, in time slot ¢ in staten if Best Channel First (BCF), which schedules the user with the
7fj(n) < 0, and prefersQ; else. Now consider anotherbest instantaneous channel conditichD? jointly accounts

decision rule, namelyIpw(N), which discriminates betweenfor channel conditions, deadlines, and distortion costgsin
Q; and Q; in time slot¢ in staten based on the sign of scheduling decision. We consider two versions of each of

7;;(n*) instead of the sign ofy};(n), where n”/ agrees the benc_hmar_k schedulers —bfasic.version whic_h i_gnores
with n in the i*" and j* locations, and is zero elsewherePacket distortion costs and transmits packets within a éram

Ipw(NN) is therefore gairwise comparisomule which solves N Séquential order, and distortion-aware version which
the N-user problem as a sequence of two user problent$es distortion information to reorder packets within arfea

t=1,...,T.

Clearly, P*(N) = Ipw(N) for N = 2. DoesP*(N) =
pr(N) vV N? Yes!

according to the prioritization rule described in Sectidn |
B. Table Il summarizes the decision criteria of all scheuyli

Theorem 3:For the scheduling problem formulated undePlicies considered here.

reductions R1 and R2, the pairwise comparison filgg,(N)
is optimal, that is;P*(N) = pw(N).

Pairwise C D?: Recall from Section IlI-B thatC'D? com-
putes P*(N) in each time slot (Step 1) and schedules

We examine a system with four downlink users. Video
frames for users arrive periodically to their respectiveugs
at the BS, and get associated with a deadline equal to the
geriod of arrival. A frame is comprised of multiple network

packet in the system based on the decisiorP6{N) (Step packets. Any packets within a frame which are not succdgsful

2). Theorem 3 provides an alternative way of implementi

rEaansmitted before deadline expiration are dropped, tiesul

Step 2 of CD?, based on computin@®*(N) by using the in degradation of video quality at the corresponding down-

pairwise comparison rullpy(N). In Step 2 of pairwis€’ D?,

users are grouped randomly into pairs. Users within a pair drs
compared using policfP;(2), which is computable in closed 101ogy
form, as shown in Section IV-A. The winner of each pair i

promoted to the next round. The process continues till o

one user survives. This user is scheduled in the current ti

slot. Implementation details of Step 2 of pairwi€eD? are
enumerated in Table I. Steps 1,3, and 4 are identical 7.
Pairwise C D? based onllpw(N) requires at mostV — 1

link receiver. The received video quality is characteribsd
PSNR (peak signal-to-noise ratio), defined as PSNR
(2552 /Distortion). Distortion is measured in terms of

fean-squared error. We use average PSNR (averaged over

four users) as a performance metric to compare different

Shedulers. PSNR is the most widely used metric for quanti-

fying video quality. Typically, a 0.5dB difference in PSNR i

fLet my be the number of pairwise comparisons requiredIip(N).
Then,my = N/2+my/, if Nisevenandny = (N—1)/2+mn41)/2

pairwise comparisons to make a scheduling decision ancehefav is odd. It is now easily verified thaiy = (N — 1) V N.



Policy | Channel| Deadline| Distortion |

Round Robin (w/o reordering)

Round Robin (w/ reordering) v

Earliest Deadline First (w/o reordering) v

Earliest Deadline First (w/ reordering v v

Best Channel First (w/o reordering) v

Best Channel First (w/ reordering) v v

CD? v v v
TABLE II

DECISION CRITERIA FOR DIFFERENT SCHEDULING POLICES

noticeable, while a 2dB improvement in PSNR translates toFig. 4 depicts the average PSNR (averaged over all users) as
significant improvement in perceived video quality. a function of the average success probability for uses;"?),
avg

keepingss”! = s3"? = 54" fixed. CD? comfortably outper-

In our simulation setup, each users wishes to recaie ms the basic versions of RR, EDF, and BCF by several

frames of the “Foreman sequence” (a commonly used t’éﬁi 5 . - :
video sequence) at 352x288 pixels/frame (CIF format), 0‘;:33!30? also achlev_es S'g?'g%anégims ?jf ggFZE:_ﬁ
frames/sec, encoded using the new H.264/MPEG-4 AVC vid@ger he dis ;)r |0|n-awatre Versl'aosnlis ' ,han L. 1he
compression standard [20] with a leading I-frame followgd Hmprozemegsésé i\rgfhs g\g\:R all br?ngZSSZivB etrhe Viewing '(‘;‘
299 P-frames. All P-frames were chosen in order to produggs're . -Asthe alls below , the perceve
a homogeneous stream of coded frames, in the sense o quality f‘?‘"S quickly, and when it falls below roughly
the coded frames (and associated packets) were a priori _B the quality can ;’Se,fl%mef %gz%ze%aflz' 6lgloteh¢hé)t2
approximately equal importance. The video was coded usi IEVES an average 0 dt’ ~ 0.65, w ereas
H.264 reference software version JM10.2 [21]. Each cod sic versions of benchmark schedulers do not achieve that

vg ) T
frame was divided into independently decodable netwoﬂgrformancet Igvetlheven ?ﬁ =09 fTrgere ;]S a sl,(lgnn?]c%ntl
packets of sizel500 bytes or less. This resulted in thredmProvement in the pertormance of benchmark schedulers

to seven packets per frame, depending on the video cont\éllli]ten they are al_lowe_d to_pr|or|t|z_e packet _transmssmrseda_
per-packet distortion information. For instance, EDRhwi

encoded in the frame. For example, a frame which captur%g _ . . .

a sudden scene change is likely to contain more packets t without reorderl_ng drop an identical numbgr of paCk.etS

a frame which encodes a relatively static scene. “Frame co f each corresponldlng frame. However, EDF with reqrder!ng

error” concealment techniques were used to estimate rgiss ops packets wh|qh cause the least am(_)unt of_d|stort|on,
ding to 4-5dB gains. The results emphasize the impogtanc

information when one or more packets in a frame miss h ; rod t " ket diisio
their decoding deadlines. A perfectly received copy of thg '€ PrEprocessing required to compute per-packe '

Foreman sequence corresponds to a PSNR of 40.7dB. Tlﬂ{é)rmation fo include in packet headers to enhance system
establishes an upper-bound on the performance achiembleosrformance.

any scheduler. Note that this upper bound is finite because ofFig. 5 shows the performance of the worst-case user for
the distortion introduced by lossy compression of the aagji each policy.CD? achieves up to 4dB gains over the next
video stream. best benchmark policy (distortion aware EDF). The gains are

We used a two-state Gilbert-Elliot model for simulatin _reate.r relative to average PSNR performance. *?ec"i‘use _the
bursty downlink wireless channels. The two states, GOOE%Sparlty between all uzsers In the benchmark policies isequi
and BAD, were associated with success probabilitesand !arge_. However, folC'D* the variance in PSNR across USErs
sp respectively, withsg > sg. The probability of transition IS fairly Sm?‘” — the PSNR of the best user drops Shghtly
(in every time slot of duration- 1.3ms) from the GOOD to in order to increase the PSNR of the worst user. TI@B'Q
BAD state, as well as from the BAD to GOOD state, Wagas betterfairnessproperties than benchmark policiesD

. 9 :
fixed at 0.05. The success probabilities for users 2,3, anoaﬁh'evifha Evorsthcasi PﬁNR of ﬁS(:quF ~ 0.73, Whhfltlaelcet
were fixed atsy — 0.75 and s — 0.95, 0.97, and 0.99, "°ne Of the benchmarks (basic or distortion aware) ac

avg ) o
respectively. Alsose = 0.9 was fixed for user 1, while even fors{"? = 0.9. This clearly demonstrates the superiority
was varied from0.1 to 0.9, in steps of0.1. For our choice

of CD? under disparate channel conditions, a situation very
of parameters, the stationary probability of being in eith

éikely to arise in real wireless systems, where users famfro
channel state i9.5. Thus, the average success probability i@e BS are more likely 1o experience poor channels.
computed as*’9 = 0.5(s¢ + sp). Under the assumption of  Fig. 6 depicts the average number of packets dropped under
additive distortion across multiple packets [13], we siatetl each policy. Interestingly, in some cas€sD? drops more
100 channel realizations for each policy and fordifferent packets than EDF and BCF, but the average PSNRoF is
success probabilities, for a total 8200 channel realizations. still significantly higher. This is attributed to the facatrEDF
We contrasted the performance 6fD? to other benchmark and BCF (both basic and distortion-aware versions) ignore
policies over identical channel realizations. channel conditions and frame deadlines respectively while
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making their scheduling decisions. In contraStD? jointly
utilizes all available information to make more “intelligt®
scheduling decisions.

VI. CONCLUSIONS

This paper examined the problem of scheduling multiple
video streams across a shared wireless channel. We proposed
the Channel,Deadline, andDistortion (C D?) aware schedul-

Packet Drop Rate

—*—RR
—8— EDF
—o—cp?
—*—BC

10 L I
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

avg
Sl

Fig. 6. Packet drop rate versus average probability of sstaktransmission
for user 1,79

1) y > t: At leasty —t packets get dropped. Additionally,
t — j packets get dropped w.@(¢, j, s2). Thus, a total of
v~ j packets get dropped w.pi(r, j. s2), implying é» (y. 1) =

Zw y— )8
2) y < t: Consider each channel use as equivalent to a

coin toss with biasss. If y or more tosses result in success,
no packets are dropped.jif< y tosses result in success-j

szv ]

Combining the two cases, we get the desired result.

t j7 82)'

packets get dropped. Thug (v, ¢ B(t, j, $2).

B. Proof of Lemma 2
For y > t it follows from the proof of Lemma 1 that

Zwyﬂ
linear comb|nat|0n of non-decreasing and convex functions
and hence inherits the same properties. §er ¢, we have

B(t, j,s2), which is a non-negative

P2(y +1,1) — o(y,t) =
Z[wg(y—j+1)—wg(y—j)]ﬁ(t,j, s5)>0, (O
; N——

ing algorithm to provide a unified and systematic way to, ,

enhance system performan¢&D? determines the best sched- Z
ule based on channel characteristics, packet delay deadlln
and packet importance, and prioritizes transmission okeiac

>0 from monotonicity ofws () >0
—Jj+ 1) — 2wa(y — J) +waly —j — 1)]B(t, 4, 52)

0 from convexity ofwa ()

within a stream as well as across multiple streams, in ordet w2 (1)3(t, 1/,52)

to minimize the expected aggregate distortion across all of

the video streams. Our experimental results show €hBf
provides significant gains vig-vis benchmark schedulers.

VII.
A. Proof of Lemma 1

A PPENDIX

>0

) (10)
Monotonicity of ¢(y, t) as a function oy now follows directly
from (9) and convexity follows from (10) and a basic property
of convex functions, viz., a non-decreasing derivative].[22

DenoteS(z,y,s) £ <x> sY(1 — s)*Y. Two distinct cases C. Proof of Lemma 3
Y

arise:

The proof is based on inductive arguments.



1) Base Caset(= T): From (4), (6), and the boundary « Case 2 P*(2) schedule); in statesn —e;, n, n —es,
conditions for the two user problem it follows tha?(n) = n-+e; andn + e; — ey in time slott + 1. In this case:
—51[%(”1) —wi(n — 1))+ 52[¢2(n2) - ¢2(T‘L2 —1)]. Since AV (n+e)) — AV (n) =
w1(+) is convex (by assumption) and.(-) is convex (by o i o
Lemma 2), the desired result follows. $2AV 7 (n+ e —e) + A0V T (n +e)
A1Vt+1(l’l + e1) — A1Vt+1(l’l +e; — e2) =
82A12Vt+2 (Il +e; — 82) + S_2A12Vt+2 (Il + e1)

2) Inductive Stept(< T): We will show that~*(n) is Ay (n+e) =

a non-decreasing fl_mction @fl. 'I_'hg proof for monotonicity — 51ALV 2 (04 e1) + 5285V 2(n + e)
of 4t(n) as a function ofny is similar. We assume that the
lemma is true in all statea in time slot¢ + 1, for some - o
t < T. We introduce the following notation for the sake of  — 51812V 7 (n+e1 —e2) + 5280,V (n+e1 — ).
compactnessA; f'(n) £ f'(n) - f'(n—e;) andA;; f*(n) = Combining the above with (12) we get,

A ff(n)—A;f*(n—ey) fori,j = 1,2 and any functiory*(n).
Now, by definition

Ay (n+e; —er) =

Al'yt(n + el) = 89 Al’ytJrl(n + e — 82) +

) = s DV () 280V () 5 A nt o) -
vt(n—i—el) = —slAﬂ/tH(n—i—el)+52A2Vt+1(n—|—e1) QL,_lz’
Y+ es) = —s1 A1V + e3) + 520V (n 4 e9) =0
(11) where the non-negativity of the terms on the right follows

from our inductive assumption.
We want to show thaf\;+!(n + e;) < 0. From (11),

A1y'(n+ep) = of mathematical induction.
— 81A11Vt+1(1’1 + el) + 5991 Vt+1(l’l + el)
Agy'(n+ey) = D. Proof of Theorem 1

t+1 t+1
— 51812V (n 4 eg) + 5280V (0 + e2). Recall thatP*(2) is fully characterized by the sign of!.
Five different cases arise, depending on whefg(2) sched- For fixedt, it follows from Lemma 3 that/* changes sign at
ulesQ; or Qs in statesa—eq, n, n—e-, n+eq, andn+e;—e, MOSst once from negative to positive ag increases for fixed
in time slott + 1. Due to space constraints, we present details . Thus, for fixedn,, 3 ny = ¢*(n1) such that the optimal
only for two representative cases. The remaining threescag€cisionswitches ovefrom Q; to Q, in state(ny,¢"(n1)).
can be treated in similar fashion. Since~! is a non-increasing function of;, it follows that
vt(n, n2) can change sign only later thah(ny, ns) for fixed
n} > ny asns increases, implying)t(n}) > ¢'(ny). The

The hypothesis of the lemma now follows from the principle

desired result follows from the definition of a switch-over

policy.
o Case 1P7(2) schedule€; in statesn — ey, n, n — eo,
n+ ey, andn + e; — es in time slot¢ + 1. In this case: ¢ of Th )

E. Proof of Theorem

AV (n+e) — A VT (n) = Ieh A () ()]

_ We will show that sg n)l =sgny'(n)| Vi< T, Vn,
t+2 t+2 9
stAn V() + 51 AnV T (nt er) where sgfw] = 1 if 2 > 0 and sgfiz] = —1 if = < 0. Since

1 1 ; = : ;
AV i +e) - AV T (nt e —e) = the optimal decision in time slatis completely determined by
51012V 2 (n) + 5541V 2 (n + e1). the sign ofy¢, the implication is that the decisions & (2)
Ay t(n) = are identical in time slot and time slott + 1 for every state.

o t+2 t+2

S1ﬁ111V (n) + 52812V (n) We first assume that’*'(n) < 0. Lemma 3 implies that
Ay (nte) = 7' (n — e3) < 0. However,y'™!(n — e;) could be negative
— 1AV (n + 1) + 52 A1V (n + e)). or positive. Accordingly, we have two cases:

1) v**1(n —e;) < 0: In this case,
Vit (n) = s; V"% (n —e1) + 51V 3(n)
Vitln —ey) = 51V (n—e; —ex) + 51V (n — ey)

(12) Vitln —e)) = 51V (n — 2e)) + 51 VT2 (n —ey).

Combining the above with (12) we get,
Alvt(n 4+ el) = S A17t+1 (n) =+
———
<0
8_1 Al'yHl(n + 91) S O,
D ——
<0

where the non-negativity of the terms on the right follow&rom (14),7'(n) = s17"*!(n — e1) +517""'(n) < 0.
from our inductive assumption. <0 <0

Sincet is arbitrarily chosen, the claim of the theorem follows.
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2) v"*1(n—e;) > 0: In this case, sgg»y?(l(?])] = r?g{'—[g{(;llg)l]lQ)]. T?{u?(wg)]conclude
LY — o T2 (o - 1th2 sgnvi2(n)] = sgrvy;~ (n9)] = sgryiy(n)], where
t+1V (n) = Slvt”(n er) + 5V . (nt)+2 the last equality follows from Theorem 2.
Vi —ep) =51V (n—ep —ex) + 51V (n—e2)  \yg pave established that dgf,(n)] = sgriyt,(n'?)]. Using
Vitin—e)) =5V (n—e; —e) + V2 (n—e1).  similar analysis, we can establish synonymous equalites f
745 and~4;, and also extend the results 2 > 3.

From (14),7'(n) = 519'™*(n) < 0. Using Lemma 3 and the
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