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In a number of service settings, customer waiting, admissiantrol, and speedup of service rates can occur during
periods of congestion. For example, in a healthcare settitig) means that patients who require care may be sent to
other, less ideal service outlets or hospital units. As etquk this comes at a cost to patient outcomes. In this woek, w
examine a multi-server queueing system which allows foriasiion control and speedup. We use dynamic programming
to characterize properties of the optimal control and firad th some instances, the optimal policy has a simple form of a
threshold policy. Leveraging this insight, we examine augiieg system where speedup is used when the number in the
system exceeds some threshold and admission control isnisadthe number in the system exceeds some (potentially
different) threshold. Using fluid analysis and a loss modelestablish approximations for the probability of speedoug
probability of admission control, and the expected quengtte We use the approximation analysis to characterize the
region of the optimal solution and develop a greedy heartsterive a near optimal solution to the original optimiaat
problem. We use simulation to demonstrate the quality afa@happroximations and find they can be quite accurate and
robust. This analysis can provide insight to system aditnatisrs as they evaluate how to balance admission and gpeedu

control—deciding when and to what extent to use each.

Key words Queueing models, admission control, service rate cqrdgoslamic programming, state-dependent queues,

healthcare operations

1. Introduction

Providing high quality service is of paramount importanaerhany service systems. Unfortunately, when
a system becomes congested, this is not always possiblemderuof approaches have been considered
and adopted to navigate these periods of congestion. Famites, admission control whereby customers

are denied service (presumably finding service elsewheretarning later) has arisen in hospital set-

tings (Kim et all 2014), call-centeris (Ormeci 2004), andegahservice systems (Ata and §hnggusgn 2006).

Alternatively, increasing service rate (with a sacrificgtmlity) has also been considered in Intensive Care

Units (ICUs) (Kc and Terwiesch 2012), production lin nd Schultz 2004), email contact centers

(Hasija et l 2010), and general service syste 6). In this work, we consider how
to balance admission and service rate control in a multiesesetting in order to provide high quality service

to as many customers as possible.



Our main motivating application is healthcare environreemhere congestion is pervasive. For exam-

ple, many hospital ICUs have insufficient capacity to marelbef the demands of critical patients (Green

2003). These units are often congested and physicians kiaytesl a number of adaptive mechanisms—

delays (Q_hﬁ.lﬂn_e_t_zltJL_ZD_W), admission control (Kim et afl£0) speedup (Kc and Terwiesch 2012), ambu-
lance diversion (Allon et 2“__2Ql3), etc.—to manage acoe$€lt) care. Both speedup (Kc and Terwiesch

2012, Chan et J;II. 2012) and admission control (Kim &t al. 2&nueli et aJI. 2003) have been examined

from both an empirical and analytic viewpoint. Patients vahe sped-up may suffer from physiologic dete-
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rioration due to shorter intensive care. On the other haeadyittg ICU admission to critical patients may
also result in worse patient outcomes as well as loss of finhnompensation to the hospital. Most of
the work in the healthcare Operations Management and niditigcature has examined each mechanism
individually. To the best of our knowledge, this work is affissep to examine the pros and cons of joint

speedup and admission control in the healthcare setting.

Related to our examination of speedup and its impact oncseqrjalityAna.nd_e_t_le (2010) examine the

trade-off between quality and service rate in a queueingegiamework. They consider a single server
system which can modify its service rate and price. They fivad the trade-off between quality and ser-
vice speed are critical components of equilibrium pricesgestion, and service. In contrast, we examine
a multi-server setting which includes admission controg gvovide characterizations of the optimal pol-
icy, approximations of performance metrics of interesti aramine methods to use these approximations
effectively to find a near optimal policy. Moreover, in a ltbahre setting, patients can be relatively price-
insensitive, as long as they have insurance coverage arfibtietal in question is within their network.
More often, quality of care is a stronger consideration.tTdad, hospitals operate under very real bud-
get constraints. In this work, we provide approach that ajuates the performance of different admission
and service strategies and b) finds a near optimal policy rumgleropriate (monetary and/or clinical) cost

metrics.

A few works consider joint admission and service rate cadifser for example, Adusumilli and Hasenbein
2010), Ata and Shneorson (2006), Lee and KullaJLm_LZOJAﬁ_a.nd_S_hn_egLs_Jr (2006) examine joint

arrival and service rate control in an M/M/1 queue. They alsesider how to set prices for service, when
customers are price and delay sensitive. However, we cenaignulti-server setting, provide structural
properties of the optimal solution, and develop approxiomet for cost. We do not consider price-setting,
as it is not a main driver in our healthcare application oéiiest. The properties we identify reveal poli-
cies which are both simple to implement as well as simple tonese the impact on patient flows of the
proposed policies. These characteristics are useful pofaeilitate adoption of speedup and admission con-

trol policies by physicians and hospital administratoesthaps most closely related to our work is that of



Le_e_and_lsulKa.LJli (2014), which examines arrival and servate control for a multi-server system. They
also characterize properties of the optimal policy. Howewe consider a slightly different cost setting
(concave rather than convex cost functions) and are ablertioer characterize the optimal policy as hav-
ing a threshold property. First, we find that it is optimal tdyouse the maximum or minimum arrival and
service rates. Second, we leverage this fact and a mondyopioperty to conclude the optimal policy can
be defined by two thresholdy, and V,,, such that if the number of customers in the system is laigar t

N, (N,) itis optimal to use service rate (admission) control. \Wlile are able to identify settings in which

threshold policies are optimal, studying such policiesisroader interest as they are simple to implement

and are often used in practice (e.g. Allon etlal. (2013)).
Via our analysis, we find that under the optimal policy, thenas$ion and service rates depend on the

amount of congestion in the system. Thus, we evaluate peaioce metrics of a system with these state-

dependent dynamics. Bekker and Boxma (2007) and Bekke @J&) consider the steady-state distribu-

tion of a single-server queue with workload-dependentisemates. In earlier work, Bekker et/al. (2004)

considers both arrival and service rates which depend onvirkload in the system. Bekker and Borst

2006) considers admission control for a system with wa#lldependent service rates. All of these works

consider a single-server setting. Our work is quite diffi¢iia that we consider a multi-server setting with

both admission and service rate control; the dependenceddoad is driven by properties of the optimal

control policy, which we derive; and, we utilize fluid andb/and the methods of di Bernardo et al. (2008)

and| Filippov [(1988) to provide approximations for the perfance metrics of interest: the probability of

speedup and admission control as well as the expected geegtn lunder our control policy. Similar to

Chan et all. (2014), we utilize fluid models with discontinadiifferential equations. However, here we
consider a system with admission control and speedup, lbouti feedback. In Sectidd 6, we consider
extensions to include customer returns.

We are motivated by the following questions: Under what dawras is speedup beneficial? When should
patients’ service rate should be accelerated? Similatgmshould admission control be used to manage
patient demand? What is the trade-off between ensuringtgeale for admitted patients versus providing
access to care for incoming patients?

In examining joint admission and service control, we introel a queueing model which extends prior
work. In particular, we consider a system with multiple gsy a modified policy space to capture con-
straints in a healthcare setting—such as requiring noo-@eival rates—and a combination of optimization
and performance evaluation to provide more insight intataeagement of a service system with adjustable

arrival and service rates. Arrival and service rates cardpested dynamically over a closed-set of possible
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rates. Increasing service rate comes at a cost, while de@ogearrival rate comes as a cost. In addition, costs
are incurred for each customer who enters the system and astt—longer waits result in larger costs.

We start with a stochastic optimization framework and ctirgze properties of the optimal policy. Some

of these properties are similar to those established in AdBSihneorson (2006) for a single-server system

and. Lee and Kulkarni (2014) for a multi-server system. Wehierr identify properties of the optimal pol-

icy under characterizations of the system’s cost functiamsch was not considered in these prior works.
Specifically, we are able to demonstrate the optimality diashold policy. We find that the optimal thresh-
olds can be highly dependent on system dynamics—which lesly Ipossible to estimate from empirical
data—and cost functions—which may be possible to coarstimmate, but difficult to compare across the
different sources of costs, i.e. admission rate versusceerate versus queue length. Due to the potential
challenges of precisely quantifying the relationship asrthese different costs, we examine performance
evaluation under the restriction of operating the queusysgem under a threshold policy. In doing so, sys-
tem administrators can assess the impact of their contoigidas, while being assured that the policy they
are considering lies within the space of optimal policieakimg this a step further, we propose a heuristic
algorithm to determine thresholds for admission contral speedup and demonstrate via simulation that
this heuristic can have very good performance. In this wakkmake the following key contributions:

e We derive properties of the optimal control of a multi-sergeeueing model with joint admission
and service rate control. By considering concave cost fonstwe demonstrate the optimality of a policy
which only utilizes the maximum and minimum service andvairiates. Thus, we are able to characterize
the optimal policy via a simple policy which is defined by tviweasholds/N, and N,.

e We leverage our results from the stochastic optimizatiochtaracterize the impact of the thresholds
on performance metrics of interest. In particular, we usiel funalysis to provide approximations for the
probability of speedup and admission control.

e Because the fluid model provides little insight into the hadiaof the queue length of our system, we
develop an approximation for that measure via a loss modese/parameters are based on the equilibrium
analysis of the fluid model.

e Our approximations allow for performance analysis giveeesfup and admission control thresholds.
Moreover, they also enable one to solve a constraint setisfaproblem. In particular, a hospital manager
can utilize our performance approximations to determimesiold values which will satisfy constraints in
the amount of admission control and/or speedup used as svisleeexpected queue length.

e \We then utilize our performance measure approximationslt@s cost minimization problem, where
costs are appropriately defined based on clinical and finhnonsiderations. We find a set of solutions

which appear to be ‘zero cost’. This set of solutions suggtsit—for all system parameters—admission



control and/or speedup should begin before a queue buildging that it is important to carefully select
thresholds, N, and N,, within this set and develop a greedy heuristic to do so thatipzes admission
control and speedup based on relative costs. Using sironjatie compare the performance of our heuristic
to the optimal solution found via exhaustive search. We fivad our heuristic is quite accurate and provides
a near optimal solution to our problem. Moreover, it is quitbust to misspecifications in system cost
parameters.

The rest of the paper proceeds as follows. We introduce ouhastic queueing model in Sectidn 2. We
then characterize properties of the optimal arrival andiserrates in Sectidnl 3. In Sectibh 4, we introduce
a fluid model and use it to develop approximations for perforoe metrics of interest. In Sectionl4.3, we
utilize these approximations to establish a heuristictgmiuto our original optimization problem. We do
numerical analysis to examine the quality of the approxiomastand the heuristic solution in Sectidn 5. In
Sectior 6, we consider an extension of our model which inm@tes customer returns to service. Finally,

Sectiorl ¥ provides some concluding remarks and discussion.

2. Model

We now formally introduce our queueing model. This stodoasbdel captures the possibility of admission
and speedup control. We consider a queueing system asetpidtiguré L. The station models a Medical
Unit (MU) with N beds, such as an Intensive-Care Unit (ICU), where patigetsreated. The queue at
Station 1 captures the time a patient spends waiting whewli@msaion request was made until the patient

is finally admitted to the ICU. Le® denote the stochastic number of patients in our system.

Medical Unit
(N-beds)
Rate - u(Q)

Arrivals Patient
Rate 1(Q) < : discharge

Figure 1 ICU model: N-server system with arrival rate,  A\(Q), and service rate, u(Q), which can depend on

the number of customers in the system, Q.

When the ICU becomes congested, the hospital can ugililreission contrglfor instance by utilizing
ambulance diversion or surgical cancellations, patient speeduppy discharging patients from the ICU at
afaster rate. Neither of these options is desirable. On and,fadmission control results in a loss of revenue
and potentially degraded care for the patient who is tremt@dhon-ICU (or less medically desirable) unit.
On the other hand, speedup impacts quality of patient cataareases the risk of physiologic deterioration
when discharging the patient earlier than would normallguscOur goal is to understand how and when

each mechanism should be utilized.



Remark 1 While our model presentation focuses on the ICU setting,ate that such dynamics can occur
when considering not only any other MU but also the entireplita§ with N capturing the number of
hospital beds. Moreover, other service settings may alswohstrate such dynamics. However, to streamline

the discussion, we will focus on the ICU setting.

Similar tolLee and Kulkarni (2014), we consider a continutime infinite horizon, discounted cost for-

mulation. The arrival rate of critical patients is depertden the selection o € [\, Ag]. Hence, we
consider the situation where admission control is possiliie nominal arrival rate i ; if admission
control is in place, the arrival rate is reduced. Note thahewith admission control, which can be achieved
via ambulance diversion and rerouting patients to othetsuttie arrival rate is likely to be non-zero as
there may be walk-ins or very severe patients who cannottoeited. If admission control is employed,
a cost rate ofp(\), which is non-increasing in, is incurred. This cost can capture the clinical cost (e.qg.
the increased mortality risk or readmission load) of dersiexice. Note that while the patient is ‘denied
service’ in our queueing model, in practice, this patierit g treated in another unit or at another hospital.
Thus, this cost can also incorporate any financial lossesaduet treating another patient.

Patient service is completed at the nominal serviceiratd he ICU can employ speedup which increases
the service rate tp € iz, uy]. When speedup is utilized, a cost rate f.), which is non-decreasing jm,

is incurred. This captures the undesirability of speedwpifistance, it can account for the increased mor-

tality risk or readmission load due to speedup (see Chan (#Gl2) for a discussion of different clinically

relevant cost functions). Note that, similar to Chan et201¢), we do not explicitly model patients being

readmitted and this co§tserves to capture this phenomenon. We examine this conneuntire extensively
in Sectior{6.

Finally, if there areQ) critical patients in the system, a cost ratew¢f)), which is non-decreasing i@, is
incurred. Without loss of generality, 16{0) = 0. This cost function can capture the clinical cost of waiting
in various ways. For example, if a waiting cestis incurred for each patient who is waiting to be treated in
the ICU, themh(Q) = ¢,,(Q— N)*. Similarly, if there is simply a cost for having a quet€Q) = cl g n3-
Our goal is to minimize the expected discounted cost incuskesr an infinite horizon. Leé®(¢) be the state
attimet, i.e. the number of patients in the system. Our goal is tordetes policyu (t)—which may depend
on Q(t)—such that:

11— 00

lim B [ | era@i uoy W
is minimized, where the cost rate is given as:
9(Q,u) = h(Q) + d(A(w)) + & (p(u)).

Throughout our analysis we assume that there are enougérseovsatisfy all demand, irrespective of

what control is employed. Thus, our control is about engusigrvice quality, rather than stability.



Assumption 1We make the following assumption about the number of seirvéte system:

3. Characterizing the Optimal Policy
We now turn our attention to characterizing the optimal @olvhich minimizes the average cost, given in
1l). Some of these results are similar to those derived ineAthShneorson (2006) and Lee and Kulkarni

2014), which we include here for completeness. Howevemlae establish new properties of the optimal

control, which are not included in the prior works. Thesepemties, which emit a simple, easily imple-

mentable policy, are vital for the performance evaluatiod aptimization discussed in Sectian 4.

p

Using the uniformization technique (Bertsekas 2001), wagform our continuous time problem into a

discrete time equivalent model. In particular, we can seefthr any action. = (A, i), the rate to the next

state transition in stat® is given as:

v (U)Z{A(u)’ Q=0;
¢ Au) +(QAN)p(u), Q> 1.

Hence, the maximum possible transition rate is A\ + N . We can write the Bellman equation for this

optimization problem. The minimum discounted cost-togo i

[

J(0) = min  {p(\) + (v— A\)J(0) + A\J(1)}

B4 relp gl
{h(Q) +o(A) +&(1) +
M(Q+1)+(QAN)pI(Q—1) + (0= A— (QAN)p)J (@)}

—_

= min
B4 v reldp Aglu€lur mp)

We define the following differential of the optimal discoadtcost:
A(Q) =J(Q)-J(@Q-1)

where by convention we defin®(0) = 0. Hence, the Bellman’s equation can be rewritten as:

1
- B+4vw

J(@) h(Q) +0J(Q) +min{6(\) + MA@+ 1)} + min{é () — (QA N)AQ)}

The optimal policy is then
w(Q) =\ (Q), 7 (Q) =argmin{@(A) + AA(Q+1) +{(w) — (QAN)uA(@)}
Y
Our goal is to understand properties of the optimal policyadrticular, we will show that the optimal policy

is monotonic in the number of patients in the system. Thahis optimal service rate*(Q) is increasing

in Q@ and the optimal arrival raté*(Q) is decreasing if). This result is similar to that in Lee and Kulkarni

2014). The proof is provided in the Appendix for complet&ne




Theorem 1The optimal policy is monotonic ). Thatis, if it is optimal to use speedup (admission control)
in stateQ, it is also optimal to use speedup (admission control) inesta+ 1. We have the following two
results:

1. The optimal service ratg;*(Q), is non-decreasing if.

2. The optimal admission rate,*(Q), is non-increasing irQ.

We now consider a special case of the cost functigidg and¢ (). In this case, we can further character-

ize the optimal policy as having binary notions of speedupashmission control. Note that this character-

ization of the cost functions was not considered in Ata ange®hson|(2006) or Lee and Kulkarni (2014);

thus, the corresponding results are new.

Assumption 2We make the following concavity assumptions about our aostibns.
1. The cost functio(\) > 0 is concave and non-increasing

2. The cost functiog(x) > 0 is concave and non-decreasingn

We first consider the arrival rate cost functigri)). One could consider a linear functigrwhich would
capture the clinical (or financial) cost associated withhe@enied admission. Generalizing to a concave
cost function would imply that the differential cost of raxdhg the arrival rate is highest when starting to
use admission control. This may hold when considering firgoc operational costs. Reducing the arrival
rate can be done in a number of way; for instance, via ambeldiversion or canceling surgeries. If one
considers there is administrative overhead to start cangeelirgeries, it may be reasonable to assume that
once the initial set up cost is incurred, further cancellaicome at a lower cost.

Similar to before, a linear function for the service ratetdosction,¢(u), is also reasonabledfcaptures
the clinical cost of a patient being ‘discharged early’. lnfar as the service rate dictates the expected
service time, the concavity assumption for the servicecast function implies that the relative change in
service time is a stronger indicator of costs than the abscliange. For instance, staying 1 less day for a
patient who is expected to stay for 10 days is much less traathan for a patient who is expected to stay
for 2 days.

Under these assumptions, we can establish the followingegpty of the optimal policy, which makes it

highly desirable for implementation.

Theorem 2Given Assumptiorig 1 afd 2, the optimal admission controkmegdup policy will only use the
maximum and minimum arrival and service rates. That is:

1 A(Q) e{Ar, Au}.

2. p(Q) € {pr, pr}-



Anyp € (pr, pgr) or X € (A, A ) is sub-optimal.

The proof is provided in the Appendix. Of course linear castdtions also satisfy Assumptiah 2; thus,
Theoreni 2 also holds for functions of this form. Theofém 2liegthat the optimal policy can be defined by
two parametersly, and N,, which represent thresholds at which to begin admissiotreband speedup,

respectively. That is, the optimal policy is such that:

e Admission Control: \*(Q) = { iL’ ::: 8;%@
H, = a-*

.k _ K, If Q < NS’

e Speedup Control: ;1*(Q) = { L, if Q> N,

Remark 2 We have identified conditions under which threshold pdices optimal. However, under-
standing the behavior of threshold policies is of broadeeiast as there is evidence that such policies are
often used in practice. For instance, hospitals often go mb@ance diversion (altering the arrival rate
betweem\y and ;) once the number of patients waiting exceeds some preddfiressthold. Additionally,
speedup in the ICU has been shown to take place once the nairdnailable beds goes below some value
Kc and Terwiesch 2012).

3.1. Average Cost Problem
Thus far, we have considered the infinite-horizon, discedigbst problem. It turns out that our structural
results for the discounted cost problem also extend to theage cost problem. In this case, the objective

is to minimize the average cost per-stage:

1

im e[ [N oew.uo)a]

where the cost rate is the same as before.

Proposition 1 Given Assumptioris 1 afdl 2, the optimal admission controlsgpe@dup policy which mini-
mizes the average cost will only use the maximum and mininniwaleand service rates. That is:

1 A(Q) €{AL, Au}

2. p(Q) €{pr, pm}

Anyp € (g, gr) or X € (A, Ay ) is suboptimal.

The proof is provided in the Appendix.

4. Performance Evaluation and Cost Minimization: Fluid Analysis
Now that we have characterized the optimal policy, a natueat step is to determine the thresholds,
and N,, which specify when admission control and speedup shouldsked. As expected, these thresh-

olds are highly dependent on system parametersXy, 1, g, N) as well as the cost functions, ¢, k).
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Since there exist methodologies to estimate many of thaserqders and cost functions (see, for instance,

Kim et all (2014), Kc and Terwiesch (2012), Chan etlal. (2D1®) this work, we assume that they are

given. In addition, since we know the optimal policy is ofdkhold type, and in light of Remakk 2, we
restrict our analysis to policies of this form. We then usBows approximations to examine the effect of
the thresholds on the performance metrics of interest: xpeated queue lengtt#[Q], the probability of
speedupP(Q > N,), and the probability of admission contrét(Q > N, ). Not only does this provide per-
formance evaluation approximations, but also optimizimgrahese approximations will provide thresholds
which approximately minimize the system operating cosesvilll start with deriving these approximations
here and then use simulation to examine the quality of thecxppations in Sectiohl5.

We now have a state-dependent queueing system, which cantbeegmbersome to analyze. Thus, we
start by considering a fluid approximation for our system.d&rote the fluid function of our queueing net-
work by @ = {Q(t),t > 0}. HereQ(¢) is the fluid content of patients in the system at tim&/e derive the
fluid formula directly. We assume that arrivals and depagurccur deterministically at the specified rates
and also regard the number of patients and beds as contiquauasties. Thus, the fluid arrives determinis-
tically and continuously at a state dependent P@). Fluid is served in the ICU deterministically at rate
w(@Q)(QAN), where(Q A N) is the number of occupied beds in the ICU. The arrival ratetion (A(-))

and the service rate functigp(-)) are discontinuous. These functions are giveriby (2) @nd&8pectively

@={3 TGN @
and
if
@ ={ ke O ©)

The dynamics of our model can be captured by the followingit@my Differential Equations (ODE)
with discontinuous Right Hand Side (RHS):

Q(t) = Liaw<nay M + Liowsna A — Liowena e (Q(E) AN) = Ligusnaku(QE) AN).  (4)

This discontinuous ODE is discontinuous@h but continuous irt. From [3), it is easy to see that the
derivative values(), which specify the flow dynamics are discontinuougét) = N, andQ(t) = N,. We
will analyze the long-term behavior of this fluid system, flee behavior as— co. Let g be the steady-state

value such that:
lim Q(t) =g

t—o00
In theory, this limit may be infinite and/or may not be unigeey( it may depend on initial conditions). As

we will see later, the limit is finite and unique under Assuiopfl.
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We begin by defining the following parameters, which will s=ful in describing the system dynamics:
¢t = % ¢t = 2—H
L L
it _ A An ©)
12724 129z 4
One can think of these parameters as the offered-load aCthaihder different arrival and service rate
dynamics, i.e. when admission and/or speedup control iaysimever used. Note that by assumption, the

following relationship holds:

LH LL _HH

"< gt " <"t

We start by analyzing the long-term behavior of the fluid mqatesented in Equatioh](4). The main
challenge is the discontinuities & = N, and@Q = N, . As expected, the long-term behavior is highly
dependent on system parameters for arrival and service tiasewell as the control variable for when to
begin speedup and admission cont(dV,,, N,). Speedup and admission control may begin before a queue

forms, if the thresholds are less than or after, if they are greater thav. The proof of this result can be

found in the Appendix and utilizes Lyapunov techniques urtkde! Filippov (1988) and di Bernardo et al.

(2008) approach for differential equations with discontins RHS. This approach uses a smoothing tech-
nique for the ODE around the points of discontinuity, whielsults in a probabilistic version of the fluid

model.

Theorem 3Under Assumptiof] 1, the long-term behavior of the fluid qureusystem ir{d)) is broken into

the following cases:

1. Case 1—Admission Control First (ACF)N, < N.,):
1.1 ¢"* is a globally stable equilibrium i§’Z < N,,.
1.2 N, is a globally stable equilibrium i§“L < N, < ¢#L.
1.3 ¢ is a globally stable equilibrium ifv, < ¢ < N,.
1.4 N, is a globally stable equilibrium if“? < N, < ¢*~.
1.5 ¢ is a globally stable equilibrium ifv, < ¢~

2. Case 2—Speedup Control First (SCFM, < N,):
2.1 ¢"% is a globally stable equilibrium i§#L < N,.
2.2 N, is a globally stable equilibrium i§## < N, < ¢*L.
2.3 ¢"* is a globally stable equilibrium ifv, < ¢# < N,.
2.4 N, is a globally stable equilibrium if“? < N, < ¢H.

2.5 ¢ is a globally stable equilibrium ifV, < ¢*#.
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3. Case 3—Simultaneous Admission and Speedup Control (SASC)-£ N,):
3.1 ¢'" is a globally stable equilibrium i’ < N, = N,,.
3.2 N, = N, is a globally stable equilibrium i§“ < N, = N, < ¢"£.

3.3 ¢ is a globally stable equilibrium ifV, = N, < ¢*#.

Figure[2 summarizes the equilibria of Theoldm 3, demonsgréts behavior as a function of the thresholds
N, andN;,.

qLH qLL

qHH

Figure 2 Equilibrium for various admission control and spee dup threshold values, N, and N;.

4.1. Admission Control and Speedup Approximations
While the equilibrium values of the fluid model are interegtin their own right and provide some insight
into the behavior of the stochastic model, this does not y@tige insight into the performance metrics of

interest or, ultimately, the cost function we are interédsteminimizing. Fortunately, as a byproduct of our

fluid analysis via Filippavl (1988) techniques, we can dedpproximations for the probability of speedup

and admission control of the original stochastic model.
As a corollary to Theorern 3, we establish the proportionmgtihe fluid content is above the speedup

threshold, and hence, using speedup:

T—o0

1 T
lim /O Liowzn,ydt (6)
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and admission control threshold, and hence, using admissiatrol:

T—o0

1 T
hm f /; 1{Q(t)2Na}dt (7)

We formally provide the statement for the ACF cadé  N,) and note that the other two cases follow

similarly and will be summarized later in Talble 1.

Corollary 1 Under Assumptionl1 and ACF cad€(< N,), the proportion of time the fluid process is above

the admission control threshold is given by:

0, g < Ng;
17 AL CRNe) ghh < N, < M,
lim —/ Lowznagdt =4 1, N, <¢"" < N; (8)
T~>ooT 0 LH.
1, N, <q™7;
1, q"" <N, <q"".

Similarly, the proportion of time the fluid process is abdwve $peedup control threshold is given by:

0, q"t < N;
LT 0, q“élzfzéq’“;
lim —/ 1{Q(t)>N}dt: 07 NaSq §N51 (9)
T—oo T = A —pr (NANS) LH LL
0 m> q"7" <N, <q"".
1, N, <q"H.

Consequently, these values can provide approximationthé&probability that speedup and admission
control are used in our original stochastic system fromiSe& In particular, we approximate the following

probabilities of our original stochastic model as:

17
P(Speedup) = P(Q> N,) = Thm T / Ligw>n,ydt (10)
—00 0
1T
P(Admission Control) = P(Q> N,) ~ Tlim T / Ligw>n,ydt (11)
— 00 0

Table [ summarizes the approximations for the performanegrice P(Admission Control) and
P(Speedup) in each subcase. In Sedtion 5, we will use siiomitat examine the accuracy of these approx-
imations and see that they can be quite accurate. Recalbtinairiginal optimization model considered
the use of admission control, speedup control, and waitingd for new patients. We have just established
closed-form expressions to approximate the probabilityiadion and speedup control will be used. What

remains is to understand how the thresholdsand NV, impact the queue length.

4.2. Queue Length Approximation
In our fluid model, the queue lengtld) — N)* is always 0. As such, fluid analysis does not appear to
provide much insight into the behavior of the queue. So, We tadifferent approach, which accounts for

the stochasticity in the queue length process, but alsaegithe results of our fluid analysis.
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Case | P(Admission Control) P(Speedup)
1.1 0 0
LL A —pp (NANg)
<13 1 0
\a) AL =L (NANs)
14 1 (g —nL)(NANs)
15 1
2.1 0 0
LL Ag—pp (NANs)
8 2.2 0 (i —nr) (NANS)
P23 0
& 2.4 /\H—)\MH(JIANa) 1
H AL
R 25 1 1
B31 0 0
< 3.2 Mg —ir (NANa) Ag—pr (NANa)
N2 C | Xg=AL—(ur—pa)(NANG) | Xg—AL—(up—1p) (NANG)
™ 3.3
Table 1 Performance level approximations for the probabili ty of speedup and admission control in each
subcase. The approximations come from the derived proporti on of time the fluid content is about

the speedup and/or admission control thresholds.

We start by considering the extreme cases where the fluigginaluggests that speedup and/or admission
control is always or never used. In such a scenario, it is €wable that very limited information is lost
by ignoring the change in dynamics due to the thresholds.rAsxample, consider the ACF case where
q"t < N, (case 1.1). In this case, the fluid analysis suggests thttemeipeedup or admission control is
ever used. If this were truly the case, the system would eva$van M/M/N queue with arrival rafe= \
and service ratg = 1. Using standard approaches, we can then get an approximfatithe queue length
given by the analysis of this M/M/N queue. Via a similar argam we could do the same in case 1.3 with
A=Ay andi = uy.

When the equilibrium is on a control threshold (eith€éy or N,), it is certain that the dynamics are
changing due to the threshold. In fact, they are changingragidly, so that the fluid content remains on the
threshold boundary. In these cases (1.2, 1.4, 2.2, 2.4, 2)da& still use an M/M/N queue to approximate
the dynamics; however, the statelependenarrival and departure rates will be given by the averagearri
and departure rates as approximated by the fluid analysigd;léor all cases we will consider the following
arrival and departure rates:= P(Admission Controlx A, + (1 — P(Admission Control) x Ay and i =
P(Speedup .y + (1 — P(Speedup)x ur, where P(Admission Control) and P(Speedup) are given by our
fluid analysis as summarized in Table 1.

Using the analysis of an M/IM/N queue, with arrival ratand departure ratg, can provide very reason-
able estimates of the simulated queue length of our stagierdkent queueing system when whénand N,
are smaller thav. However, when both of the thresholds are larger tNamve find that the approximation

via the M/M/N queue overestimates the queue length. Thaeéabse the change in arrival and service
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rates “push” the derivative) down and decrease the queue length. To capture this stushg we instead
use an M/M/N/K queue (a loss model), wheke= min{N,, N,}, whenmin{N,, N,} > N andK = N,
otherwise. The loss model queue length is derived by solWiadocal balance equations:

1 ~ —1

i\ U\

N ~ %

N!' \ Nj
=4 —1
N —i K N v
1/ NY [ A
n=a(5) 2 W(z\m) - (12
1=0 i=N-+1
Finally, we have that
K
E[[Q— N*] = E[Queuennyn/x) = Y _(i—N)m;.
i=N

In Sectior(b, we will see that this approximation works vemllwTo provide some intuition as to why
this seems to provide a very accurate approximation, weidenthe impact of the finite buffer in the loss
model. When there ar® jobs in an M/IM/N/K queue, the loss of any new job ‘forces’ tiggtem away from
this boundary. The speedup and/or admission control tbtdsthave a similar effect. When the number
of patients in the system crosses one of these thresholishinge in dynamics due to increased service
rate and/or decreased arrival rate also ‘forces’ the sydtmmm and away from that threshold. When these
thresholds are less tha¥j, this strong push is active prior to a queue forming (i.e. nde< N). Since we
are interested in examining the queue lend@ihy N, ignoring the change in dynamics before the queue
forms does not degrade our approximation. If we were intedeis approximating the precise distribution
of patients in the system, it is likely the M/M/N/K approxiti@n is too coarse; however, it seems to work

quite well in approximating the mean queue length.

Remark 3 One can utilize the derived approximations for the mean guength and the probability of
admission control and speedup to do performance analysisngihresholdsV, and N,. Moreover, it is
possible to determine a feasible set\gf and N, such that various constraints on these performance mea-
sures are satisfied. For example, if hospital managemeiat ls@it on the proportion of time that admission

control is utilized, our approximations would provide a séthresholds to satisfy such a constraint.

4.3. Cost Minimization
Now that we have derived approximations for the differenffggenance metrics, we are in position to
consider our original optimization problem frofd (1). Besauve've established the optimality of threshold

policies in Sectiofl3, our optimization problem can be reduo:

min {A(E [[Q - N*]) + P(Q> No)é(Ar) + P(Q< Na)(An)
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+ P(Q= No)§(pn) + P(Q < N)&(ur)}- (13)

With our approximations from Sectiohs #.1 dnd 4.2, we novwetdused form expressions for approxima-
tions to the optimization problem in_(IL3). Without loss ofngeality, we setp(Ay) =0 and&(ur) = 0,
so there is no cost associated with the nominal system baidhservice rates. We also consider a linear

function for the queue length costs. Hence, our optimiratimdel is:
min {c, E [[Q = N|] + ¢, P(Q= N,) +¢.P(Q > N,)} (14)

wherec,, is the per-patient waiting cost rate, = ¢(\;) is the cost rate for admission control, and=

&(uy) is the cost rate for speedup.

Observation 1 Using the approximations in Sectibn 4.1 dnd 4.2 we find regiimevhich our approxima-
tions suggest the cost {fL14) to be zero. In particular, this occurs in cases 1.1, 2.1 arid 3hus, the cost
(@4)is zero when:

¢"" < N,AN,<N.

This implies that it always ‘optimal’ to use at least one foofrcongestion contrabeforea queue builds

regardles®f the exact system parameters; a zero cost solution wikmnleave bothv,, N, > N.

There has been some evidence that hospitals do use speetiapadmission contrddeforereaching full

capacity (e.g. Kim et al. (2014) and Kc and Terwiesch (2012pwever, in other cases, such as ambulance

diversion, admission control is not used until a queue kuidlion et al! 2013).

As we will see in Section 512, one must be prudent with how lectéetween these seemingly zero-cost

solutions.

4.3.1. A Greedy Heuristic We suggest the followin@Greedyheuristic to select the\,,, N,) amongst
the potentially numerous solutions with the minimal appmated cost as indicated in Observatidn 1. In
general, this heuristic prioritizes the use of the speedupaamission control in decreasing order of the
cost measure. In order to ensure the costs are comparahlsgvermalized costs. While, P(Speedup) and
P(Admission Control) are naturally normalized to the rajige], the range ofs[Queue s n/n/ k] CaN vary
dramatically. Hence, we normalize the waiting costs bydiing them by the maximum expected queue
length, denoted b¥p......, which is obtained when speedup or admission control aremesed.

The Greedy heuristic then selects among the potentiallyemons solutions with approximated zero
costs. For example, if speedup has the highest cosis thaximal) thenV, should be as large as possible.
This implies that only admission control is used; additigpan light of Observatiofi L, we know that?* <

N, < N. The value ofN, will then be selected based on the relative costs betweersaim control and
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waiting. Under a similar argument, if admission control isshexpensived, is maximal) thenV, should
be as large as possible agfdl* < N, < N. Finally, if waiting is most costlyd,, / Q... is maximal), thenV,,
and N, should be as small as possible. The Greedy heuristic is defitoee formally by the pseudo-code

in Algorithm[l. In Section 5J2, we will use simulation to exia@how well such an approach performs.

5. Numerical Results

In this section we examine the accuracy of our approximati@ubsection 5l1 presents the accuracy of
the fluid approximations foP (Speedup), P(AdmissionControl) and the M/M/N/K model approxima-
tion for E[Queue]. Assuming these are reasonably accurate, the next steg@ngider the performance
of decisions which are optimized over these approximatietings is presented in Subsectionl5.2. In our
numeric analysis, we consider two system sizes: a smakkystpresenting an ICU setting and a large
system representing the entire hospital. As our approxamsiare based on fluid analysis, we expect that

they will be more accurate for the larger system.

5.1. Numerical Results: Performance Measure

We calibrate the parameters of our model according to typiealthcare environments. We used publicly

available data fro tate of California Office of Statewi h Planning & Developm nL (2010-2011)
which keeps track of all hospitals in California. We only s@tered short-term, acute hospitals with 24
hour emergency care coverage, trauma designation, and Figise[3 shows the empirical distribution of

the number of licensed (a) hospital beds and (b) adult ICL lrethese hospitals. The median number of
licensed hospitals beds is 377 and the median number ofkckadult ICU beds is 38.5; as such, we will

consider a hospital wittv = 400 beds and an ICU witliv = 40 beds for our simulations.

Figure 3 Empirical distribution of the number of licensed be ds in California hospitals, as reported in
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In calibrating the remaining parameters of our model, we Staconsidering the Length-of-stay (LOS)

of a patient. A typical average LOS varies between 2 to 9 dadggending on the hospital unit considered

Algorithm 1 (N¢, N9)= Greedy Heuristia(;, c,, ¢,,)
1. NMIN_FLUID <« all (N,, N,) pairs with fluid cost approximation equal to the minimumueli.e.

CflUld(N_M[N_FLUID) = min{NmNs} Cfluid(Naa NS)

2: if max(c,,cq,c,) = c, then
3 NY< max(N_MIN_FLUID{N,})
4  N_MAX_NS < all (N,N,=N?) e N.MIN_FLUID

5: if max(c,,c,)=rc, then

6: N9+ max(N_-MAX _NS{N,})
7: else

8: N9+ min(N_-MAX_NS{N,})
o: end if

10: else ifmax(c,, cq, ¢, ) = ¢, then
11: N9« max(N_MIN_FLUID{N,})
122 N_MAX_NA<+ all (N,=N¢ N,)e NMIN_FLUID

13: if max(cy,c,) = c,s then

14; N9 < max(N_MAX_NA{N,})
15: else

16: N9 < min(N_MAX_NA{N,})
17: end if

18: else (max(cy, ¢y, Co) = Cu)

19: if max(cs,c,) = ¢, then

20: N9 < min(N_MIN_FLUID{N,})

21; N_MIN_NA+ all (N,=N¢,N,)e N.MIN_FLUID
22: N9 < min(N_MIN_NA{N,})

23: else

24; N9 « max(N_MIN_FLUID{N,})

25, N_MIN_NS « all (N,,N, = N¢) € N_MIN_FLUID
26: N9 < min(N_MIN_NS{N,})

27: end if

28: end if




19

(see, for example, Table 3 in_de Bruin et al. (2010)). Henae chwose a lower value of 3 hospital days
as the LOS under speedup and 5 days as the LOS under ‘undtressminal conditions. The arrival
rates are chosen in order to have approximately 20% beduermer day under high arrival rates and
10% under low arrival rates. For our simulations, we use tfiewing parameters for an 'ICU’ (i.e. small
system)\;, =4, Ay =7.5, u, = 0.2, uy = 0.286, N = 40. For an average sized hospital (i.e. large system),
we use:\;, =50, \y =78, ur = 0.2, uy = 0.286, N = 400. Note that the parameters chosen here satisfy
Assumptiori 1L, so that the system is stable irrespective ethr or not speedup and/or admission control
are used.

Figure[4 presents the performance metrics given by our appations and simulation results for the
large system (left column) and small system (right colunmva vary the threshold¥, and N,!. These
figures are meant to illustrate the typical behavior andcetié the control thresholds. The results are very
similar across all combinations of the thresholifs,and V.

As expected, the approximations are more accurate for the &ystem. Still, they can be quite accurate
for the small system as well. We observe that the approxamatare very good in most cases. Some gaps
can be observed when speedup and/or admission controld§arssome (but small) proportion of the time
(e.g. 5-10%) or when it is used most (but not all) of the timg.(80—-95%). This is more pronounced in the
small system. In such situations, the fluid approximatiand*{Speedup) and/or P(Admission Control) are
not very accurate. This can result in degradation in the guength approximation. For example, in Fig-
ure[5(d), the approximation for the probability of admissamntrol is 0, while the simulation suggests the
true probability is around 10%. Because our queue lengthoxppation uses the probability of admission
control to derive an ‘effective’ arrival rate,, poor estimates for P(Admission Control) also result infpoo
estimates fo[Q]. This is not always the case. In Figlire 5(f), the approxioratif P(speedup) under esti-
mates the simulated value. However, in this case, the especieue length is effectively O in the simulation

and via our approximation.

5.2. Numerical Results: Approximation-Based Cost Minimiation

As the performance metric approximations appear to be @iteirate, the next step is to consider the
performance of policies resulting from solving an optintiza problem based on them. The normalization
factor@..., in our examples are: in the large systém., = 19.7, and in the small syste®,,.., = 8.9. Here
we find N, and N, which minimize the approximated costs and use simulati@otopare the resulting cost
to the minimum cost achieved via exhaustive search over mgrgnd /N, combinations. We also consider

a number of benchmarks for comparison:

! Note that, due to numeric issues, in order to calculate tpeard queue length for large systems we used Stirlingfadtx

(i! ~ (&) \/27ri) (Hazewinké[ 20d1) to calculatB[Queue].
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Figure 4  Approximation vs. simulation results as a function of the Speedup threshold (N;) for some fixed

Admission threshold (N, ) values
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e Always use speedup or admission contd]; = N, =0

We derive the optimal performance via exhaustive searchhélarge system we checked integer thresh-
olds between 0 to 700 in jumps of,5and for the small systems we search all combinations ofarte
thresholds between 0 to 100. The fluid approximation is éerivy solving the optimization problem in
(I4) using the approximations for P(Speedup), P(Admis§lontrol) and E[Queue] as given in Sections
4.1 and4.p.

Figure 5 Distribution of simulation costs when approximate d costs equal O (large system, scenario 11).
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As noted in Sectiofi 413, when considering the fluid approt@m@osts, there may be many solutions
with zero cost. For example, in the large system there ares8k&fions as such. Hence, our first question
is are they all “practically” equivalent? As an exampleslassume that, = 100, ¢, = 1, and¢,, = 10
(cw/Qmax = -51). Figureld shows the actual costs (via simulation) for eathti®n that has approximated
cost equal 0. We observe that although many of the solutiame simulated cost very close to 0, in others
it is very different; nevertheless, about half of the sang are indeed very close the optimal performance

of 0.09.

Observation 2 While the approximated costs (@4) are 0 for a (potentially large) set a¥, and N, pairs,
theactualcost associated with these solutions can differ signifigakiowever, we find that almost half of

the solutions are indeed very close to optimal.

Hence, the question of how to select between the minfitaal solutions is highly pertinent. Choosing
randomly amongst the 369 solutions with zero fluid cost woekllt in an average cost of 3.53, which

is far from optimal. The solution with the minimum cost withthe set has cost of 0.09 which is exactly

2 The exhaustive search was computationally intensive jiegunearly two weeks to complete on an Intel Xeon E5-2478Ghz,
16 core CPU. Thus, providing more granularity was compaoitatiy limiting.
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equal to the optimal value. Yet, finding this solution regaisimulating all 369 zero fluid cost solutions.
Although this is not as extensive as the run that is requoedr exhaustive search, it is still computationally
intensive. With this in mind, we consider the Greedy heitristesented in Sectidn 4.3. We next examine
its performance for different cost scenarios.

Table[2 summarizes the cost scenarios we consider. We diese $cenarios in order to examine what
happens where the costs have the same order of magnitudeliesel1-6), but still different order of
importance; or when they are of different orders of magmt(gtenarios 7—12), highly emphasizing one

measure in particular.

Cost Scenarig Speedup Contral, | Admission Controk,, | Waiting Cost (before normalizatiom),
1 1 2 3
2 1 3 2
3 2 1 3
4 2 3 1
5 3 1 2
6 3 2 1
7 1 10 100
8 1 100 10
9 10 1 100
10 10 100 1
11 100 1 10
12 100 10 1

Table 2  Cost parameters for different cost minimization sce narios.

Tabled B andl4 present the performance of the differenegiies, for the various cost scenarios. The first
thing we note is theéobustnes®f the optimal solution. The left columneptimal—presents the minimal
solution found using exhaustive search for each cost siceramalyzing this solution, we note that the
minimal cost is robust. For example, for the large systemetlage between 8-14 solutions within 5% of
the minimal one, and 57-105 solutions within 10% of it. (Thenbers for the small systems are 6—-176
solutions within 5% and 15-477 within 10% of the optimal pemiance). Note also that the “optimal”
value was found by simulation; hence, numerical errors malcate that one of the close solutions is
indeed the optimal one. Under thia Fluid Approximatiorcolumn we present the minimal simulated cost
within the set of zero-value fluid solutions (Min), the awgggerformance of these solutions (Avg), and the
performance of the solution selected by the Greedy heu(iStieedy). We make the following observations:
1. In most cases, the optimal value is within the set of zeiid iast solutions.

2. The difference between the minimal performance of the #aid cost solution set and the optimal one

is very small (often times it is 0).
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3. The average cost of the zero fluid cost solution set may lbe faw from optimal; hence, it is important
to choose wisely within this range.

4. The Greedy heuristic is very close to optimal, achievingibst cases the minimal performance. Thus,
prioritizing admission control and/or speedup based aatiked costs can be very cost-effective.

The last three columns show the performance of the benchpdities: Never, Always, and All beds

filled. We see that the simple benchmarks fail dramaticallgli scenarios; the only reasonable one is the

“All beds filled” policy. Still, while the Greedy heuristiafled only in one scenario (in scenario 9 of the

small system), the “All beds filled” performs well only forrtge systems where costs are close in magnitude

(Scenarios 1-6); even then, it never achieves the optinsl ¥de surmise that using the combination of

the fluid approximation with the Greedy heuristic is a verpdovay to find a solution with near optimal

performance.
Policy
Cost | Optimal via Fluid Never: Always: | All beds filled:
Scenarig Approximations |N,=N,=c |N,=N,=0| N,=N,=N
Min | Avg | Greedy

1 0.07 ]10.07*]0.12| 0.07* 3.06 3.00 0.09

2 0.06 ]0.06"|0.16 | 0.06" 2.04 4.00 0.12

3 0.08 ]0.08"|0.12| 0.08* 3.06 3.00 0.09

4 0.10 0.11 |0.19| 0.11 1.02 5.00 0.15

5 0.07 ]10.07*|0.15| 0.07* 2.04 4.00 0.12

6 0.12 0.13 |0.19| 0.13 1.02 5.00 0.15

7 0.10 ]0.10*|0.66 | 0.10* 101.84 11.00 0.45

8 0.07 |0.07*|4.17| 0.11 10.18 101.00 3.03

9 0.10 ]0.10*]0.60| 0.11 101.84 11.00 0.45

10 0.35 0.51 | 446 | 0.52 1.02 110.00 3.29

11 0.09 ]0.09*|3.53| 0.11 10.18 101.00 3.03

12 0.40 0.61 |3.88| 0.61 1.02 110.00 3.29

Bold font indicates the method that got the minimal cost vatuagicates optimal costs
Table 3  Large system: Performance of different strategies f or cost scenarios 1-12.

5.3. Cost Misspecification: Robustness of Proposed GreedpliRy

We also consider the robustness of our proposed greedystietwio miss-estimates in the cost parameters:

cw, Cq ande,. Certainly, if the optimization is done over costs which m@rrectly specified, the resulting

policy will be suboptimal. The question is how much worsd Wié performance be. Additionally, since we

know the greedy heuristic is suboptimal, how will its penfilamnce be impacted by such misspecification?
To examine this, we consider the thresholds andV,, selected under the Greedy Heuristic and Optimal

Policy when the costs are misspecified by plus or minus 10%4, 80%, 40%, and 50%. The thresholds
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Policy
Cost | Optimal via Fluid Never: Always: | All beds filled:
Scenarid Approximations |N,=N,=c | N,=N,=0| N,=N,=N
Min | Avg | Greedy

1 0.24 10.247]0.32| 0.26 2.76 3.00 0.29
2 0.22 ]0.22*(0.40| 0.22* 1.84 4.00 0.37
3 0.20 ]0.207]0.32| 0.20* 2.76 3.00 0.29
4 0.29 0.34 |10.47| 0.35 0.92 5.00 0.45
5 0.18 10.187|0.40( 0.19 1.84 4.00 0.37
6 0.27 0.32 |0.47| 0.32 0.92 5.00 0.45
7 0.62 0.97 | 2.73| 1.42 91.80 11.00 1.54
8 0.38 0.39 {9.29| 0.40 9.27 101.00 9.12
9 0.37 0.56 | 2.73| 1.42 91.80 11.00 1.54
10 0.69 1.56 | 9.95| 1.59 1.01 110.00 9.87
11 0.26 ]0.26"|9.30| 0.26" 9.27 101.00 9.12
12 0.67 1.53 {9.96| 1.54 1.01 110.00 9.87

Bold font indicates the method that got the minimal cost vatuegicates optimal costs
Table 4  Small system: Performance of different strategies f or cost scenarios 1-12.

of the Optimal Policy under cost misspecification are deieech via exhaustive search over the incorrect
cost parameters. The performance of these policies areetlamated using simulation over the correct cost
parameters. The worse case performance over all possibpatifications is reported.

TabldB summarizes the robustness results for our 12 castsos in terms of a relative ratio between the
average cost of the polices under misspecified costs toubeptimal solution (without misspecification).
We can see that for up to 20% (and often 30+%) errors in coshatgs, the performance of the Greedy
Heuristic is very robust. If the initial performance of thee®dy Heuristic, under perfect cost information,
was reasonable, then this will still be the case, even if istschave moderate misspecification. Of course, if
the performance is poor under perfect cost information@rttle cost misspecification is very high, then the
performance of the Greedy Heuristic can degrade subdignliderestingly, the Greedy Heuristic is much
more robust than the optimal policy. In some instances, émpnance of the Greedy Heuristic under cost
misspecification is better than that of the Optimal Policdemcost misspecification. For example, under
cost scenario 3, the Greedy Heuristic achieves the minimashwith errors up to 30% and it outperforms
the misspecified Optimal Policy for up to 50% errors. Thisusthess feature, along with the simplicity of

the heuristic, is another desirable property of the propdsairistic.

6. A System with Returns to Service
Thus far, we have only accounted for the undesirability ddgle admission control and speedup via a cost
function, which can capture clinical and/or monetary codtswvever, it is known that these dynamics can

reduce quality of service and that the deterioration of @&p#s$ physiologic state may require a return to
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Relative performance of Relative performance of
‘Optimal Policy’ Greedy Heuristic
Cost with cost misspecifications with cost misspecifications

Scenarid 0% | 10 %] 20 %] 30 %] 40 %] 50 %| 0% | 10 %] 20 %] 30 %] 40 %] 50 %
1.000[ 1.001] 1.001] 1.399] 1.399] 2.055] 1.019] 1.019] 1.019] 1.019] 2.055] 2.055
1.000| 1.000| 1.000| 1.074| 1.074| 1.074| 1.018| 1.018| 1.018| 1.018| 1.018| 3.147
1.000| 1.000| 1.225| 1.539| 1.716| 1.716| 1.000| 1.000| 1.000| 1.000| 1.565| 1.565
1.000| 1.027 1.027| 1.633| 1.815| 1.815| 1.043| 1.043| 1.043 1.815| 1.815| 1.815
1.000| 1.000| 1.000| 1.000| 1.717| 2.282| 1.000| 1.000| 1.000| 1.000| 1.000| 1.000
1.000| 1.102] 1.180] 1.292| 1.292| 1.346 1.046| 1.046| 1.046 1.312| 1.312] 1.312

1.000( 1.007| 1.048| 1.066| 1.066| 1.402| 1.045| 1.045| 1.045| 1.045| 5.615| 5.615
1.000( 1.000{ 1.000| 1.000| 1.000| 1.150| 1.456| 1.456| 1.456| 1.456| 1.456| 1.456
1.000{ 1.002| 1.007| 1.025| 1.199| 1.297| 1.041| 1.041| 1.041| 1.041| 5.352| 5.352
1.000{ 1.000] 1.085| 1.140| 1.269|1.343| 1.479| 1.479| 1.479| 1.479| 1.479| 1.479
1.000{ 1.000/ 1.000| 1.000| 1.003| 1.309| 1.309| 1.309| 1.309| 1.309| 1.309| 1.309
1.000( 1.016| 1.045| 1.045| 1.215| 1.257| 1.535| 1.535| 1.535| 1.535| 1.535| 1.535
Table 5  Large system: Robustness of greedy policy—Relative performance of Optimal Policy and Greedy

e
REBowoNjounsrwnr

Heuristic when cost parameters are misspecified to the true m inimum cost.

service. A common quality measure used in practice is resslan rates. Using simulation, we examine
an extended model that incorporates patients’ readmisgrplicitly, and use our original model (without
readmissions) to determine policies which minimize thelneiasion rate for the extended model.

To incorporate readmissions, we assume that waiting fariceand/or using speedup or admission
control increases the likelihood of readmission. Withassl of generality, we assume the readmission risk
to be 0 if neither speedup or admission control are useddkeu;,, A = \y) and the new patient does not
have to wait to begin servic€) < N wheret is the patient’s arrival time). If a patient would have agdv
under the nominal arrival raté\;, but was blocked due to admission control, this patient nedyrn to
service with probability? after some time which is exponentially distributed with méas, . Similarly, if
a patient is discharged under speedup, his probability efiam to service increases p§; he returns after
1/4, units of time (on average). If the patient arrives to the exystvith Q patients waiting in front of him
for service, his probability of return to service increalses’ x (Q — N)*, wherep? x (Q.. — N)T < 1.
Thus, if a patient arrives with patients in the system and then is discharged under speleidyppbability
of return to service i$fj +pf x (¢ — N)*. On the other hand, if the same patient is discharged under th
nominal service rate, his probability of return to servisg/f x (¢ — N)*. We simulate such a model for
eachN, and N, combination with 40 iterations of 100 days edcWe then use exhaustive search to find
the thresholds)V, andV,, which minimize the readmission rate.

8 Given the computational complexity of this simulation-wesinkeep track of the number of customers in the system upivalar
for each customer—the number of repetitions was limitedito 4
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As a comparison, we use the analysis of our original modeh f@ection Pwithout readmission, to
determine thresholdsy, and N,. We will then use these thresholds in the model with readomissand
simulate the resulting readmission rate of this policy. dahis, we need to appropriately define our cost

parameters for our original model to capture therease in readmission ratdue to admission control,

speedup and waiting. Doing so results:in= pY, c, = p[f, c,, = pl.

For illustrative purposes, we lgf = 0.05, pf = 0.0667, p,} = 0.001 (see, for example, Kim et al. (2014),
Q_hﬂn_e_t_ah. (2014)). Tabld 6 compares the simulated retdes & an exhaustive search over the systems

with and without readmissions. We observe very small diffiees in performance; for the small system, the
difference is not even statistically significant. As seeRigure[6, poor selection of thresholds can result in
increases in readmission rates of up to 8%. Additionallyfingtthat the structure of the readmission rate as
a function of NV, and NV, is very similar to that of the cost function in our original de without returns. In
particular, the optimal regime @fV,, Ns) which minimizes readmission rates for the system with retur
is practically identically to the optimal regime which minizes costs for the original model presented in
Section 2. Additionally, we find that the minimum readmissiates are quite robust, as in Section 5.3.
Hence, incorporating readmissions into our original makelugh appropriately defined cost factors seems

to work quite effectively and avoids that complexity asated with explicitly including returns to service

in the model.
Original Model | Extended Mode
(without returns) (with returns)
ICU setting (V = 40) 0.23% 0.18%
95% confidence interval [0.16,0.31] [0.11,0.24]
Hospital setting {V = 400) 0.138% 0.085%
95% confidence interval [0.12,0.16] [0.07,0.1]
Table 6 A system with returns to service: Comparison of retur n rates for solution which ignores returns
to service but has appropriately define cost measures (Origi nal Model) to solution established via
exhaustive search over a model which explicitly incorporat es readmissions.

7. Conclusion

In this paper, we examined the trade-off between delayirggotners, blocking them via an admission
control policy and speeding up services. We showed thaeittdst function is either linear or concave the
optimal policy has a distinct structure of a threshold polit/e then investigate the dynamics of a service
system with such threshold policy using fluid approximagioand retrieve approximations for the main
performance measures of the system: the proportion of timession control is used, the proportion of time

speedup is used, and the expected queue length. Using 8amulae found that these approximations can
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Figure 6  Small System: Readmission rates as a function of N and N,.

Return Probability

be very accurate. We then used these approximations initiaarcost minimization problem, identified a
set of solutions with seemingly zero costs, and developediggtic that achieves near optimal performance.
Our results can be utilized in two ways: 1) to estimate théogperance of a specific admission control and
speedup policy, or 2) to find a reasonable admission conticbspeedup policy. Our proposed heuristic is
based on fluid estimates and seems very robust to cost mifspians.

One potential future direction for further explorationasconsider what happens when Assumptibn 1 is
relaxed. We believe that many of the structural results shioeid for anyN > Ay /.. However, we expect
that the performance measure approximations (espedidBucue]) and the optimal solution are very
different from what we showed here. Different techniqueslikely necessary to develop an understanding
of such systems. Still, it is highly undesirable to operasgstem which is unstable under nominal control,
thus, we believe that understanding the behavior of ouesysinder the assumption th&t< Ay /p is an
important first step.

While we did not explicitly consider returns to service irr @analytic model, we find that, with appro-
priately defined cost parameters, our model-without ressioms—can perform reasonably well. It would

be interesting to explore a model which explicitly incorpias readmissions. We note that this is done in

Q_han_e_t_ah. (2014yithoutadmission control and absent of an optimization framewarkigis not obvious

how those techniques (which are also used here) can be extémthis more complex flow model.

Finally, we note that time-varying arrival rates can arishaspital settings. As seenin Chan etlal. (2014)

and - m_(2014), when the time scale datian is short compared to the service
time (LOS), then ignoring the time-variation can result erywreasonable performance. This is likely to
be the case in our settings where the average LOS in the ICW@spltal are on the order of days, while
the time-variation is on the order of hours. Of course, in ameEency Department setting, where both
the service time and time-variation are on the order of hoaarsounting for the time-variability may be

essential.
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Appendix

A. Miscellaneous Proofs

PrRoOF OFTHEOREMI: The proof of this theorem requires an intermediate resuthe differential discounted cost,
A.

Proposition 2[Differential Monotonicity] The differential discountezbst function A(Q), is non-decreasing in the
number of jobsQ. That is, LetQ > Q, then:

A(Q) <AQ).
PrROOF. The proofis via the value iteration method and inductioe. §énerate a sequence of functiofysstarting

with Jo(Q) =0 for all Q@ > 0. Then for eactk > 0 we have:

Ji+1(0) min{¢(A) + (v —A)Ji (0) + AJi(1)}

:—/8+v N
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Additionally, for Q > 0, we have:

Je1(@) = o min{h(Q) + () + () + M(@-+ 1) + @AN(Q - 1)+ (0= A= (@A N K (@)}

Fork >0andQ > 0, let
Ak(@) = Jk(Q) - Jk(@ - 1)

with A, (0) = 0. Using value iteration, we have th&tQ) = lim,_, ., J,(Q). It follows thatA(Q) = limy_,., A (Q).
If we can show that\,(Q) is non-decreasing i@ for everyk, then the proposition is true. To do this, we use induction.
The base case is trivially true fér= 0, whereA,(Q) = 0 for all Q.

We will assume that the assertion is true foand will show that it is also true fot + 1. We denote, (Q+ 1) =
(Ae(Q+1), e (Q+1)) = argmin, ,{¢(\) +AA(Q+1)+&(p) — (QAN)uAL(Q)} as the strategy used in iteration
k+1.

A1 (Q+1) = Jiwlrl(@ +1) = J1(Q) (15)
= m[h(Q)+¢(Ak(Q+1))+§(uk(<@+1))+v,]k(@+1)
+A(Q+1) (S(Q+2) = Je(Q+ 1)) = (QAN)u(Q+1) (Jx(Q+1) = Ju(Q)) = Jis1(Q)]
L h(@+1)~ h(@) + M@+ 1)ALQ +2)

>
T B4+
+0=MQ+1) = (QAN)u(Q+1)A(Q+1) + (QAN)u(Q+1)Ak(Q)]

where the last inequality comes from the fact that we canhes@olicyu, (Q + 1) at iterationk + 1 in stateQ and
incur cost which is no less thah..; (Q). Similarly, we can use the poliay,(Q — 1) in stateQ at iterationk + 1 and

incur cost no less tha#, ;1 (Q):

Ben(@) = Jir (@) ~ S (@ 1) (16)
< 5@ = h@=1)+ M@= DA@+1)
=M@= 1)~ (@ D@ 1)Au(@) + (@ Dias(@— DA(Q - 1)

Combining equation§ (15) and {16), f@r> 1 we have that:

(B+0)(Ar+1(Q+1) = Ap+1(Q)) > R(Q+1) - h(Q-1)
v = (QAN)p(Q+1) = M(Q+ 1)](Ax(Q+1) — Ak(Q))
A (Q+1)(Ax(Q+2) — Ar(Q+1))
+(@Q—-1Du(Q-1)(Ax(Q) — Ax(Q—-1))
> 0 by the induction hypothesis

For the differential function whe) = 1, we will use a suboptimal policy in state 0 so that the arraral service rates

are the same as those used in statg, (1) andu, (1), so that:

Ay (1) = Jlerl(l) — Ji+1(0)
[ (1)) + (v — (1)) Ak (1) + A (1) (A (2) — Ax(1))]

>
- 1

=)
+
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> 0=2441(0)

where the first inequality follows from the induction hypesiis. This completes the proof that for &l and &,

Api1(Q+1) > Art1(Q), and so is also true in the limit ds— oo. O
Now, we consider the Bellman equation, where the arrival aaid service rate decisions can be separated:
1 . .
J(Q)= Fro WQ) +vJ(Q) +min{$(A) + AA(Q+1)} + min{¢(u) — (QAN)LA(Q)}) -

e Admission Control: We first consider the optimization of the arrival rate. Oualgs to find\*(Q) such that:
A" (Q) =argmin{p(\) + AA(Q+1)}.
A
By Propositioi 2, we have thdt(Q) is non-decreasing if). By assumptiong(\) is non-increasing i.. Hence \*
is also non-increasing iQ.
e Speedup: We now consider the optimization of the service rate. Out go@ find *(Q) such that:

1" (Q) = argmin{¢(n) — (QAN)HA(Q)}.

“w

By Propositio 2, we have thatA(Q) is non-decreasing if0. By assumptioné(u) is non-decreasing ip. Hence,

1* is also non-decreasing Q.

PROOF OFTHEOREM[Z: We again turn back to Bellman’s equation:

1
- B+w

e Admission Control: We first consider the optimization of the arrival rate. Oualgs to find \*(Q) such that:

J(Q) WQ) +vJ(Q) + min{$(A) + AA(Q+1)} + min{¢(u) — (QAN)LA(Q)}) -

A (Q) = argmin {¢(\) + AMA(Q+1)}.

AE[AL,AH]
Consider a fixed. ThenA(Q + 1) is some non-negative constant. By assumpt@n) is concave; hence, the portion

of the cost function associated with the arrival rate:
#(A) +AA(Q+ 1) is concave

Since we are minimizing a concave function over a finite vakthe optimal admission rate must be at the boundary.
Therefore, we must have that(Q) = A, or \*(Q) = \y.
e Speedup: We now consider the optimization of the service rate. Out o find *(Q) such that:

1" (Q) = argmin{¢(n) — (QAN)HA(Q)}.

"

Consider a fixed). Then(Q A N)A(Q) is some non-negative constant. By assumpt{@p) is concave; hence, the

portion of the cost function associated with the arrivagrat

E(p) — (QAN)uA(Q) is concave

Again, since we are minimizing a concave function over adimiterval, the optimal service rate must be at the

boundary. Therefore, we must have thatQ) =y, or u*(Q) = pa.
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O
PROOF OFPRoPOSITIONT]: This is a direct result of Proposition 4.3.@@) on Blackwell Optimal
policies. Note that the results of Theoréin 2 (and Propas@pare independent of the exact value of the discount
factor, 3. Because there exists a Blackwell optimal policy, it musisbathe structural properties derived in Theorem
[2. Additionally, because a Blackwell optimal policy is alsptimal for the average cost problem, the properties hold
for the average cost problem. |
ProoF OF THEOREM[3: Our system is a piecewise-smooth set of ordinary diffesmerquations. We will take
a similar approach to that MOM); however,system has two regions of discontinui€y,= N, and
@ = N,, and is one-dimensional. Still, we can utilize generaligapgunov techniques for discontinuous differen-

tial equations outlines iIJ_Ei.U.D_DJ)\L_(_l_QI88) ale_dLB_e_maLd_Q& iZQ_OJS). The main idea behind t@@%&

approach is to use a ‘smoothed’ version of the ODE at the paifidliscontinuity, by using a convex combination of

the surrounding smooth ODEs.
To show globally asymptotic stability, we need to identifiyepunov function and prove that for &l > 0, Q # g,

the derivative of the Lyaponov function is strictly negatiWe use the following Lyapunov function:

V(Q)=1Q -4 (17)

whereg is the specified equilibrium. The main challenge here istthaODE [[(4) is discontinuous. Hence, we need to

use a generalized Lyapunov theory which utilizes Filippolutons as done in Shevitz and PJ en (1994). We use the

Filippov methodology, which redefines the ODE at the poiritdigcontinuity, N, and N, as the set-valued function
which is now equal to the convex combination of the surrongdimooth ODEs i {4). In order to establish global
asymptotic stability, we need to show that the set value raapur generalized Lyapunov derivative is negative for all

states not equal to the equilibriuln_(_S_h_eALilz_a.n_d_E&.d_e_d 1994)

First, we introduce some notation to help as we define thergéne Lyapunov derivative. We consider the differen-

tial equations under policies which either 1) never use asdiom control or speedup 2) always use admission control
and speedup 3) always use admission control, but never eselsp, and, finally 4) never use admission control, but
always use speedup:

1. [Never use admission control or speeddp” () £ Ay — . (Q(t) A N).
2. [Always use admission control and speeddp-T (t) 2 \p — pg (Q(t) A N).
3. [Always use admission control. Never use speed@p4(t) £ A, — 1. (Q(t) A N).

4. [Never use admission control. Always use speed@f- (t) £ Ay — pu (Q(t) A N).
We can now define our set value map, generalized Lyapunovatieg. This requires considering a number of cases
depending on the whethéris on a point of discontinuity.

1.[Q # N., NJ).

vQ={%, 20 (18)
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2.[Q = N, # N,]. In this case, the flow is on a point of discontinuily,; thus, the set value map is defined as the

convex combination of the surrounding smooth ODEs.

QT+ (1-9)Q .4 €0,1], Q>gandQ > N,;
Q™+ (1-9)Q" Y e0,1],  Q>gandQ <N,;
Q" — (1=¢)Q"" p €0,1], Q <gandQ > N.;
Q" = (1-¢)Q" ¢y €(0,1], Q <gandQ <N..

3.[@Q = N, # N,]. In this case, the flow is on a different point of discontiguiy,. We take a similar approach to

V(Q) = (19)

what we did before;

PRI 4+ (1 —)Q v €0,1], Q>gandQ > N,;
@ (0@ e 0,1], Q> gandQ < N,
V=9 _iorn —(1— )0t pe 0,1, Q<gandQ> N, (20)

—pQHH — (1—)Q"* 4 €[0,1], @ <gandQ < N,.
4.(Q = N,=N,(]. In this case, the flow is on the (only) point of discontinuity, = N..

Q) = { QM +(1—9)Q"E 4 e[0,1], Q>
PR — (1-9)Q"", v €[0,1], Q <q.

1 is simply a parameter to generate the convex combinatiomobsh ODESs. In order to prove global asymptotic

(21)

stability, we must hav&(Q) <O0forall @ >0,Q #gandally € [0, 1]. Due to the amount of algebra involved in this
proof, we only include here the proof for Case 1, AC¥, (< NV,), while noting the proofs for Case 2, SCF, and Case
3, SASC, will follow similarly. In this proof, it will be helful to recall that by Assumptio] 1V > ¢%* = Ay /jur.
Also, we do not need to consider the fourth cage; N, = N,, because we are currently examining the case where
N, < N,.
Case 1.1y < N,: In this case, the equilibrium ig= ¢L. We need to examine the three caseg iZ N,, N, ii
Q = N,, andiii. Q = N,. There are a number of subcases to consider within each case:
i [Q# No, N,]

@) Q@>q=q""

V(Q) = Q=1igenay M + LigsnaAr — (Ligenaytie + Ligznaptia) (QAN)
<Ag—pr(QAN) <Ay —prd= g —prg"" =0

(b) @ <g=q"*
V(Q) = —Q=-Au+pu(QAN) < Ay + prd = Ay + prg™ =0

ii. [@=N,# N,]We want to show that for alp € [0, 1], 17(@) <0:
(a) @ > gand@ > N,. This case cannot occur becadge- N, < N,.
(b) Q@ >gand@ < N..

V(Q) = vQ ™ + (1= ) Q" = A, — pr(QAN)] + (1= )iy — p(Q A N)]
<Ag—pL(QAN) <Ay —prg=Ag —prg™ =0, V¢ € [0,1]

(c) Q@ <gand@ > N,. This case cannot occur becadge- N, < N,.
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(d) @ <gand@ < N.. This case cannot occur becadge: = ¢"* < N,,.

iii. [@=N,# N,] We want to show that for atp € [0,1], V(Q) < 0:
(@) Q >gand@ > N,.

V(Q) = vQ"" + (1 =)Q" = ¢[Ap — pr(Q AN+ (1 =) [Ar — ur(QAN)]
<AL —pL(QAN) <Ag —pL(QAN) <Ay — g™ =0, Yy € 10,1]
(b) @ > gand@ < N,. This case cannot occur becadge- N, > N,.
(c) Q < gand@ > N,. This case cannot occur becage: g = ¢"* < N,.
(d) Q@ <gand@ < N,. This case cannot occur becadge- N, > N,.

Case 1.%L < N, < ¢™E: In this case, the equilibrium is= V,,. We need to examine the two casgst N,, N, and

Q = N,*. There are a number of subcases to consider within each dfvouwrases:
i [Q# Na, Ny
(@ Q>q=N,.

V(Q) =Q=\— (Ligenapr + Ligsnagpn) (QAN) <Ap — pr(QAN) <Ay —prg™™ =0

(b) @ <g=N, < N,.

V(Q) =—Q=-Au+u(Q@AN) <=\ +p.q < —Au + prg”* =0

ii. [Q=N,# N,|]We want to show that for ath € [0, 1], IL/(Q) <0
(@) Q >gand@ > N,.

V(Q) = vQ" + (1 =)Q" = ¢[Ap — pr(Q AN+ (1 =) [Ar — i (QAN)]
<AL —pL(QAN) <Ap —prg < Ap—prg™" =0, Yo €[0,1]
(b) @ > gandQ@ < N,. This case cannot occur becagse N,,.
(c) Q <gand@ > N,. This case cannot occur becaygse N,.

(d) Q@ <gand@ < N,. This case cannot occur becadge- N, > N,.

Case 1.3V, < ¢*F < N,: In this case, the equilibrium ig= ¢"“*. We need to examine the three case&3 i N,, N,

ii. Q= N,,and iii. @ = N,. There are a number of subcases to consider within each case:
i‘ [Q # Na7 NS]
(a) Q>q:qLL > N,.

V(Q) = Q=X — (Ligenytiz + Ligsnaypa) (QAN) <AL —pur(QAN) < Ap — g™t =0
(b) Q<g=q"" <N..

V(Q) =-Q=—1genarn — LigonaAr + (@ AN) < =M+ pr(QAN) < =Ap + prg =0

4We do not need to consider the second case bedsuseour equilibrium and our Lyapunov function is equal to 0 wiig= N,.
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ii. [Q=N,# N,]We want to show that for atl € [0,1], V(Q) < 0:
(a) @ > gand@ > N,. This case cannot occur becadge- N, < N,.
(b) @ > g and@ < N,. This case cannot occur becadge- N, < ¢“* = q.
(c) Q@ <gand@ > N,. This case cannot occur becadge- N, < N,.
(d) @ <gand@ < N..

V(Q) = —$QP — (1 - )QH* = —p[Ap — i (Q AN)] = (1— ) [Ast — pe(Q AN)]

S —)\L+,LLL(Q/\N) <—)\L+uL(j:—/\L+quLL:O, V’I/JE [0,1]

iii. [@=N,# N,] We want to show that for atp € [0, 1], 17(@) <0:
(d) Q >gand@ > N,.

V(Q) = ¥Q™ + (1 —)Q" = v[\r — pu(Q AN + (1= ¥)[As — i (Q A N)]
<AL —pup(QAN) <AL —prg™™ =0, V¢ €[0,1]

(b) @ > gand@ < N,. This case cannot occur becadge- N, > N,.
(c) Q@ <gandQ > N,. This case cannot occur becadge- N, > ¢"“* =g.

(d) @ <gand@ < N,. This case cannot occur becadge- N, > N,.

Case 1.4 < N, < ¢**: In this case, the equilibrium ig= N,. We need to examine the two caseQi# N,, N,

and ii. Q = N,5. There are a number of subcases to consider within each tfvowrases:

i. [Q# Na, N
(@ Q@>qg=N,>N,.

‘7(@) = Q:)\L—,LLH(Q/\N)<)\L—MHC7§)\L—,UHQLH:0
(b) @ <g=N..

V(Q) = —Q=—1(gen A — Liosna A + pn(QAN)
< A+ pp(QAN) < =Ap+prg< =M +prg™" =0

ii. [@=N,# N,]We wantto show that foratp € [0, 1], V(Q) < 0:
(a) @ > gand@ > N,. This case cannot occur becadge- N, < N,.
(b) @ > gand@ < N,. This case cannot occur becadge- g = N..
(c) Q <gand@ > N,. This case cannot occur becadge- N, < N,.
(d) Q@ <gand@ < N..

V(Q) = —yQ" — (1 —)Q"F = =\, — i (QAN)] — (1 =) [Aer — i (Q A N)]

<AL+ pL(QAN) < =Ap+pg < —Ap+prg"t =0, Vi €0,1]

Case 1.5V, < ¢*: In this case, the equilibrium ig= ¢“#. We need to examine the three cased iz N,, Ny, ii.

Q= N,, andiii. Q = N,. There are a number of subcases to consider within each case:

5 We do not need to consider the third case becalsis our equilibrium and our Lyapunov function is equal to 0 widg@= ..
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i' [Q#N(L?Né]
(@ Q@>q>N,>N.,.

V(Q) = Q= —pua(QAN) <AL= prd=Ap — prg™" =0
(b) @ <q.

V(Q) = —Q=—Ligena A — Ligsna A + (Ligenay i + Ligsnay i) (Q AN)
< A+ pa(QAN) < AL +pugd=Ap — puq"" =0

ii. [@=N,# N,]We wantto show that foratp € [0,1], V(Q) <0:
(a) @ > gand@ > N,. This case cannot occur becadge- N, < N,.
(b) Q@ > gandQ@ < N,. This case cannot occur becadge- N, < N, < ¢*# =¢.
(c) Q <gand@ > N,. This case cannot occur becadge- N, < N,.
(d) @ <gand@ < N..

V(Q) = —pQ" = (1=9)Q"" = ¢\ — pr(QAN)] = (1= 9)Ae — pr(Q A N))]
S —)\L+,LLL(Q/\N) < —)\L—l-quLH < —AL—F/LL(]LL:O, VU)E [0,1]

iii. [Q=N,+#N,] We want to show that for alp € [0,1], V(Q) < 0:
(@) Q >gand@ > N,.

V(Q) = vQM + (1 - )Q " = A, — pr(QAN)] + (1= ) [\s — p(Q A N))]
<AL —pup(QAN) <AL —prg™* =0, V¢ €[0,1]

(b) Q@ > gandQ@ < N,. This case cannot occur becagse ¢“ > N, > N,.
(c) Q < gand@ > N,. This case cannot occur becagse ¢*% > N, = Q.
(d) Q <gandQ@ < N,. This case cannot occur becaygse ¢“ > N, = Q.

This concludes the proof for the global stability of Case 1.
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