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The Centers for Medicare & Medicaid Services (CMS) and the National Quality Forum have endorsed the 30-day mor-

tality rate as an important indicator of hospital quality. Concerns have been raised, however, as to whetherpost-discharge

mortality rates are reasonable measures of hospital quality as they consider the frequency of an event that occurs after

a patient is discharged and no longer under the watch and careof hospital staff. Estimating thecausal effectof length-

of-stay (LOS) on post-discharge mortality from retrospective data introduces a number of econometric challenges. We

describe three potential sources of (endogeneity and censoring) biases and propose an approach that provides conserva-

tive estimates of the true treatment effect. Using a large dataset comprised of all hospital encounters of every Medicare

Fee-for-Service patient with acute myocardial infarctionfrom 2000 to 2011, we find evidence that an increase in LOS is

associated with a decrease in 30-day mortality rates. An additional day in the hospital could decrease 30-day mortality

rates by over 6%. Moreover, we find that, from a social planner’s perspective, the gains achieved in reducing mortality

rates likely exceed the cost of keeping the patients in the hospital for an additional day.
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1. Introduction

The National Quality Forum (NQF), a non-profit organizationthat conducts research on hospital quality

measures, and the Centers for Medicare and Medicaid Services (CMS) provide various publicly accessible

measures of hospital quality. Both of these organizations publish their measures of hospital quality for two

main purposes: (1) to provide information to potential patients regarding the quality of care at different

hospitals and (2) to encourage hospitals to improve their quality of care. When CMS first launched the

Hospital Compare website (www.medicare.gov/hospitalcompare/) in 2005, only process-of-care measures,

such as the percentage of pneumonia patients given the most appropriate initial antibiotic(s), were reported.

By 2008, CMS began reporting outcome measures such as 30-daymortality for acute myocardial infarction

(AMI), heart failure (HF), and pneumonia (PNE) on its website (Centers for Medicare & Medicaid Services
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2015). CMS’s perspective that 30-day mortality rates are an important measure of quality is made clear

under the Hospital Value Based Purchasing plan, which beganin fiscal year 2013. Under this plan, hospital

reimbursements are adjusted based on a Total Performance Score, which includes 30-day mortality rates for

AMI, HF, and PNE (Centers for Medicare & Medicaid Services 2016). NQF also endorses 30-day mortality

as a hospital quality measure because “it allows for a broad view of quality of care that encompasses more

than what can be captured by individual process-of-care measures” (National Quality Forum 2009).

Although both CMS and NQF report 30-day mortality rates as a measure of hospital quality, there are

conflicting views as to whether the reported 30-day mortality measure is a fair measure of quality. Indeed,

there is an “ongoing debate about Hospital Compare, whose measures, critics say, do not necessarily reflect

quality of care provided at hospitals” (Fleming 2012). One argument is that this 30-day mortality measure,

which captures deaths which occur following hospital discharge, is likely to be strongly influenced by what

happensafter hospital discharge. Some people have raised questions as to whether it is fair toattribute post-

discharge outcomes to hospitals whose focus is oninpatientcare delivery. With this in mind, in-hospital

mortality (rather than post-discharge mortality) is oftenconsidered as a measure of quality (e.g.Clark and

Huckman(2012), Kc et al. (2013), Kuntz et al.(2015)). On the other hand, hospitals play a large role in

what happens to patients after hospital discharge in that they typically arrange for follow-up appointments

as well as communicate with follow-up care providers such asthe primary care and specialist physicians.

In this respect, “[i]t’s reasonable to say that hospitals have some responsibility for what happens when the

patient leaves” (Clark 2012).

Our study contributes to this debate by exploring whether there are factors related toinpatient carewhich

can impact thepost-discharge outcomeof 30-day mortality, which, in this paper, is defined as whether a

patient dies within 30 days of hospital discharge. Studies of process-of-care measures and their impact on

mortality have led to mixed conclusions. For example,Jha et al.(2007) found that better process-of-care

measures reported on Hospital Compare are related to lower risk-adjusted inpatient mortality, whileRyan

et al. (2009) found that when controlling for hospital fixed effects, theprocess-of-care performance mea-

sures are not associated with 30-day mortality. The authorsconclude that “this suggests that the relationship

between hospital-level process-of-care performance and [30-day] mortality is not causal.”

In contrast, our paper considers the impact of increasing a patient’s hospital length-of-stay (LOS), with

the idea that an extra day in the hospital may provide benefitssuch as allowing a patient to reach a higher

level of stability as well as providing more time for patients to be educated about expectations with respect

to their post-discharge behavior, thereby resulting in a reduction in the risk of mortality. Prior studies have

shown that early discharges are associated with worse outcomes such as increased 30-day hospital readmis-

sions for AMI patients (Carey 2015) and increased intensive care unit (ICU) readmissions (Kc and Terwi-

esch 2012). We hypothesize that a similar effect exists between LOS and mortality. A number of articles
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have studied the relationship between LOS and mortality. Focusing on Medicare fee-for-service patients

hospitalized for HF during the time period 1993-2006,Bueno et al.(2010) documented a decrease in hospi-

tal LOS and found that mortality rates had either stayed the same or increased, but they were unable to show

a causal relationship between these trends.Chan et al.(2012) found no association between shorter ICU

LOS and in-hospital mortality andAlmond and Doyle(2011) found no effect of shorter postpartum hospital

LOS on mortality or readmissions of mother and new-born. Other papers found that an increase in LOS was

associated with an increase in the risk of post-discharge mortality (e.g.Williams et al.(2010), Nichols et al.

(2014), Reynolds et al.(2015)). Looking at patients with similar ailments to those we study, Kaboli et al.

(2012) examined Veterans Hospitals and found that reductions in LOS from 1997 to 2010 did not come at

the expense of higher mortality.Clark (2012) argued that some hospitals may be ‘cherry-picking’ health-

ier patients who have shorter LOS and lower mortality rates or they may even be discharging/transferring

patients with poor prognoses, so that “they look better whentheir death rates are compared with hospitals

that keep patients longer.” While these papers considered the relationship between LOS and mortality, none

of them – other thanAlmond and Doyle(2011) –conducted a rigorous study of thecausaleffect.Note that

the setting considered inAlmond and Doyle(2011) is very different; moreover, their identification relies on

a regression discontinuity design that cannot be used in oursetting.

Our objective is to measure thecausaleffect of an increase in hospital LOS on post-discharge mortality,

using a dataset from CMS that consists of all Medicare Fee-for-Service inpatient hospital visits between

2000 and 2011. Estimating the impact of LOS on the probability of post-discharge mortality is complicated

for a number of reasons. First, it is not possible to perfectly measure a patient’s severity level and unob-

servable severity factors might be positively correlated with both LOS and mortality risk. To address the

possible endogeneity of LOS, we use an instrumental variable (IV) approach that is based on a patient’s

admission day-of-week. To circumvent the concerns that patient severity might differ by day-of-week, our

analysis focuses on non-elective patients whose admissiondiagnosis is AMI because this diagnosis can be

considered to be “non-deferrable” (Card et al. 2009), i.e. admissions are equally likely on the weekdays and

weekend. In our data, we find that the residuals from a LOS equation for AMI patients admitted on Mon-

day or Tuesday are negative, suggesting that they are ‘prematurely’ discharged. The average LOS for AMI

patients is 5.3 days, which implies that patients admitted early in the week would be ready for discharge on

the weekend. However, because hospitals prefer to discharge patients before the weekend (seeVarnava et al.

(2002) andWong et al.(2009)), these patients end up with a shorter than normal LOS. Thisvariation in LOS

based on admission day-of-week helps us capture the impact of shorter LOS on increased mortality risk.

To mitigate concerns about variation in hospital resource availability by day-of-week, we exclude weekend

admits.
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Our identification strategy relies on the non-deferrable nature of AMI along with our finding that observed

patient-level covariates for those admitted on IV days (Monday or Tuesday) are not significantly differ-

ent from the covariates of patients admitted on non-IV days (Wednesday, Thursday, or Friday). To address

any concerns that admission day-of-week might be correlated with the unobserved severity of the patient’s

condition, we also conduct a sensitivity analysis that examines how an unobservable covariate could poten-

tially affect our results. We find that in order for there to bean unobserved confounder that would explain

away our results, the effect size of this unobserved confounder (or aggregation of multiple unobserved con-

founders) would have to be much larger than that of any observed confounder. Although the sensitivity

analysis provides some support for the robustness of our results to violations in the exclusion criteria, we

also use two alternative instrumental variables that may beless susceptible to the limitations of our Mon-

day/Tuesday instrument. The alternative instrumental variables are (1) instruments for each admission day

of the week, and (2) an indicator for whether a patient is predicted to be discharged on a Saturday. For both

of these alternative instruments, we find that longer LOS is associated with a reduction in 30-day post dis-

charge mortality risk, providing additional evidence to support the results found with the Monday/Tuesday

instrument.

The second empirical challenge that results from using retrospective data is the potential for censoring

biases in our outcome variable, 30-day post-discharge mortality. There are two types of censoring bias. First,

since patients who die in the hospital cannot also die post-discharge, the post-discharge mortality outcome is

censored for these patients. That is, in-hospital mortality and post-discharge mortality are competing risks,

which can lead to biased estimates of the causal effect of LOSon post-discharge mortality. We address

this concern by coding patients with in-hospital death as survivors, i.e. they do not experience 30-day post-

discharge death.

The second source of censoring bias results from the fact that the risk of death is decreasing over time for

patients with AMI. Thus, patients discharged later willnecessarilyhave lower post-discharge mortality risk

due solely to the fact that the window of time for the event to take place is later. To address this concern,

we utilize an adjusted time-window for mortality, so that weconsider whether patients die between 2 to 31

days after discharge if they may be discharged early, compared to a window of 1 to 30 days for patients who

are not prematurely discharged. The two adjustments for censoring biases should result in a conservative

estimate of the true treatment effect because we are using a reduced mortality rate by considering all patient

with in-hospital death as surviving and we are using a shifted time window with lower mortality risk for all

patients who are ‘encouraged’ to be discharged early, even though some will not be. We use simulation to

demonstrate that, indeed, the adjustments for the two censoring biases result in conservative estimates of
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the true treatment effect. That is, while the estimates are still biased, they are biased in the direction that

makes it more difficult to detect an effect of shorter LOS increasing post-discharge mortality risk.

Our results show that keeping patients in the hospital for one more day could decrease 30-day mortality

rates by over 6%. Using hospital cost estimates and value of life estimates, we calculate that keeping an

AMI patient admitted on a Monday or Tuesday one more day in thehospital is likely to be cost-effective

from a social welfare perspective. Moreover, we find that ourresults are very robust to a range of estimates

of hospital costs and the value of life. One interpretation of our findings is that hospitals should consider

moving to a 7-day discharge cycle, thereby reducing the likelihood of premature discharge prior to the onset

of the weekend.

The remainder of the paper is structured as follows: Section2 describes the dataset and the sample we

use for our analyses. Section3 describes the econometric challenges of our setting and oureconometric

approach to address them. In Section4 we present our main results, including a number of robustness

checks. In Section5, we conduct a cost-benefit analysis and discuss the implications of our findings from a

social planner’s as well as a hospital administrator’s perspective. We conclude in Section6.

2. Setting
2.1. Data

We utilize data on all inpatient hospitalizations from 2000to 2011 for Medicare Fee-For-Service (FFS)

beneficiaries. Medicare FFS is the typical version of Medicare under which 70-80% of beneficiaries are

covered. These data are drawn from the 100% sample in the Medicare Provider Analysis and Review (Med-

PAR) inpatient file1. Note that this does not include patients treated at the samehospitals, but not covered

by Medicare. As a result, we do not have information about thecongestion at each hospital. Although our

dataset does not include operational metrics, it has huge value for a study of the determinants of post-

discharge mortality. By virtue of it being a national dataset that covers more than 3500 hospitals in all

states in the U.S. and includes all Medicare FFS patients hospitalized for AMI, it enables us to provide an

extremely comprehensive analysis for the U.S.

Our observations are at the patient-visit level. For each hospitalization, we have the patient’s demo-

graphic information including age, gender, race, coveragechoice, and hospitalization characteristics includ-

ing admission and discharge dates (which enable us to compute the patient’s LOS and account for potential

seasonal variations), the primary condition or other coexisting conditions identified by up to 10 International

Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes, the Medicare Severity

adjusted Diagnosis Related Group (MS-DRG) classification (indicating the DRG to which the claims that

1 See http://www.resdac.org/cms-data/files/medpar-rif for a description of this dataset.
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comprise the stay belong for payment purposes), hospital, and admission type (e.g., elective or emergency

basis). We also generate a severity of illness measure, the Elixhauser index (Elixhauser et al. 1998), using

the ICD-9-CM codes and the MS-DRG classification. The patient outcome variable, 30-day post-discharge

mortality, is defined as death within 30 days of discharge from a hospitalization.

2.2. Selection of Patient Sample

Our analysis is restricted to patients with AMI. AMI was one of the first three diagnoses for which mortal-

ity rates were reported on Hospital Compare and incorporated into the Value Based Purchasing Program.

Moreover, as we will describe later, patients with AMI embody a number of desirable properties from an

econometric standpoint. We use the primary ICD-9 codes to identify patients with AMI.

Appendix TableA.3 describes our sample selection process. We only consider hospital stays with admis-

sion and discharge that occur between January 1, 2000 and November 30, 2011. Because we study 30-day

mortality, an event which occurs within 30 days of discharge, we exclude admissions and discharges that

occur during December 2011 to avoid potential censoring of our outcome variable. Due to data fidelity

concerns, we exclude visits with overlapping admissions (i.e., admissions that occur prior to discharge of

the previous hospital stay). Following CMS (Grady et al. 2013), we focus on acute care stays. Stays that

involve hospital transfers are excluded as it is difficult tocontrol for what happens in two different hospitals

and during the transfer time. Furthermore, we do not know whypatients were transferred; e.g., they needed

specialized treatment or wanted to be closer to home.

We exclude stays that are not paid under the current DRG code based prospective payment system (PPS)

which Medicare switched to in 1983; after this significant payment change, patient care also began to change

since payments were no longer based on the amount of time patients spent in the hospital, but rather based

on the average cost to treat the particular DRG. Because we use DRG codes to control for patient severity,

it is important these codes are used in a similar manner across hospitals.

We then keep the patients with AMI. Following CMS (Grady et al. 2013), we exclude admissions within

30 days of a prior hospitalization’s discharge as it is unclear whether the first or second hospital stay impacts

patient outcomes most. Since the hospitals with fewer than 25 visits for each corresponding condition

do not have their performance publicly reported because of concerns regarding statistical power to assess

performance with so few observations, we exclude hospitalsthat have less than 25 visits for AMI. Patients

who are discharged to destinations that provide inpatient related services are excluded as we do not know

the reason for transferring the patient between services, e.g., requirements of specialty services available at

specific institutions versus requests due to personal preferences. In Section 4.3 we run robustness checks

including these patients. We only include patients 65 yearsand older, which is the primary indication for
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Medicare eligibility. Patients who left against medical advice, who do not have their race reported, or who

do not reside in the U.S. are also excluded.

We focus on emergency and urgent (i.e., non-elective) patients to leverage therandomvariation in admis-

sion day-of-week to construct an instrumental variable (see Section3.2 for details). Such an identification

strategy is not possible for elective patients whose admissions are mostly scheduled. Following CMS, we

exclude patients who are discharged on the same day they are admitted as they are unlikely to have been

admitted for a true AMI. Next we exclude LOS outliers (greater than the 99th percentile value) and cost

outliers (as identified in the MedPAR inpatient file). Note that we include patients with in-hospital death in

our sample. As discussed in detail in Section3.3, we include them as survivors (of 30-day post-discharge

mortality) to address the in-hospital death bias.

2.3. Summary Statistics

Table1 presents means and standard deviations for our patient sample as well as for the subset of patients

who survive to hospital discharge. The 30-day post-discharge mortality rate is 6.4%. The average LOS for

these patients is 5.3 days. Moreover, there is considerablevariation in length of stay depending on the day

of admission with a more than 7% gap between the shortest LOS for Monday admits and the longest LOS

for Friday admits; in Section3, we discuss how this variation enables us to construct an instrument to deal

with the bias attributable to unobservable patient severity characteristics.

Note that the sample size given in Table1 may not be exactly equivalent to the sample sizes in our

regressions in Section4. This is because some samples are dropped because they are perfect predictors of

30-day post-discharge mortality2.

3. Econometric Model and Approach

Our goal is to estimate the impact of hospital LOS on 30-day post-discharge mortality. We start with the

following reduced form equation:

y∗i = βXi+ θ log(LOSi)+ ξMi +ψY Ri + ηHi + ǫi (1)

yi = 1{y∗
i
>0} (2)

whereyi is the binary outcome with 1 indicating the patient died within 30-days following discharge from

the hospital. Thus,y∗i can be interpreted as the latent risk of death occurring in the 30 days post-discharge.

In equation (1), Xi is a vector of patient characteristics: age, gender, race, Elixhauser co-morbidities3,

DRG code, a dummy variable for having one or more surgical procedures (any minor/major diagnostic or

2 For example, if all patients in hospitali die within 30 days of discharge, then a hospital fixed effect for hospitali would be a
perfect predictor of mortality and all patients treated in hospitali would be dropped from the mortality regression.
3 Elixhauser et al.(1998) defines 30 comorbid conditions using the ICD-9-CM and MS-DRG codes. Equation (1) includes 30
dummy variables, one for each of the 30 conditions.
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Table 1 Summary statistics

Including weekend admits Excluding weekend admits
All Excluding patients All Excluding patients

with in-hospital death with in-hospital death
N 1,808,889 1,609,866 1,317,944 1,174,353
Age 78.8 (8.3) 78.4 (8.3) 78.7 (8.3) 78.4 (8.3)
Elixhauser Score 2.9 (1.5) 2.9 (1.5) 2.9 (1.5) 2.9 (1.5)
Female 0.50 0.50 0.50 0.50
Race

White 0.89 0.89 0.89 0.89
Black 0.08 0.08 0.08 0.08
Hispanic 0.02 0.02 0.02 0.02
Other 0.02 0.02 0.02 0.02

Had surgical procedure(s) 0.71 0.71 0.71 0.71
Intensive care use

No 0.49 0.50 0.49 0.50
General 0.26 0.24 0.25 0.24
Surgical 0.02 0.02 0.02 0.02
Medical 0.03 0.03 0.03 0.03
Intermediate 0.19 0.20 0.19 0.20
Other 0.02 0.02 0.02 0.02

Average LOS (days) 5.3 (3.4) 5.4 (3.4) 5.3 (3.4) 5.4 (3.4)
Sunday 5.2 (3.4) 5.4 (3.4)
Monday 5.1 (3.5) 5.2 (3.4) 5.1 (3.5) 5.2 (3.4)
Tuesday 5.1 (3.4) 5.3 (3.4) 5.1 (3.4) 5.3 (3.4)
Wednesday 5.2 (3.4) 5.4 (3.4) 5.2 (3.4) 5.4 (3.4)
Thursday 5.4 (3.4) 5.5 (3.4) 5.4 (3.4) 5.5 (3.4)
Friday 5.5 (3.4) 5.6 (3.3) 5.5 (3.4) 5.6 (3.3)
Saturday 5.4 (3.4) 5.5 (3.3)

Post-Discharge Death in 30 days 0.064 0.072 0.064 0.071
Note. Mean and standard deviation (in parentheses) shown.

therapeutic procedures)4, and intensive care use indicators.Mi, Y Ri andHi are all vectors:Mi is the month

of hospital admission;Y Ri is the year of hospital admission; and,Hi is the hospital in which patienti

is treated. Hence, we include month and year dummies as well as hospital fixed effects; the inclusion of

the hospital fixed effects controls for the potential impactof unobservable attributes of the more than 3500

hospitals in our study. As is standard practice, we take the logarithm of the patient’s LOS in order to account

for the heavy tail in the distribution. We assume that the error termǫi is a standard normal random variable

to fit the Probit model.

4 While we do not have any data on the socio-economic status of the patients, we believe this is of minimal concern. Althoughwe
expect patients with lower socio-economic status to be morelikely to die, we also expect them to be less likely to be prematurely
discharged as hospitals are hesitant to send patients home without a solid support system to help manage their recovery.If there
were a positive correlation between premature discharge and socio-economic status, this could result in us erroneously concluding
that premature discharge increases the likelihood of mortality when the true effect may be due to socio-economic status.
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3.1. Empirical Challenges

While our retrospective patient dataset is quite rich, we are faced with a number of estimation challenges

which we describe next. In Sections3.2 and 3.3, we describe in detail how we address these potential

sources of bias.

3.1.1. EndogeneityAlthough the Elixhauser co-morbidity conditions have beenwidely used in pre-

vious research, these measures are not a perfect control forpatient severity. Unobservable severity factors

might be positively correlated with both LOS and the dependent variable in equation (1). Since sicker

patients tend to stay longer in the hospital and are also morelikely to die, we might draw an erroneous con-

clusion that longer LOS leads to higher mortality risks. To address this concern, we utilize an instrumental

variable approach.

3.1.2. Censoring due to in-hospital deathsWe focus on post-discharge mortality for two primary

reasons. First, this is a measure of quality that is commonlyused to compare performance across different

hospitals. Second, since we want to estimate the effect of LOS on mortality, post-discharge mortality is more

appropriate than alternative mortality measures such as in-hospital mortality or post-admission mortality. If

one examinesin-hospital mortality, it is not clear how to interpret the coefficient of LOS as it does not make

sense to keep a patient in the hospital an extra day if s/he hasalready died. In the case of post-admission

mortality, other factors, such as care in the first 24 hours ofhospital stay, may be more likely to have an

impact than a patient’s LOS.

However, by focusing on post-discharge mortality, we must recognize a potential bias introduced by

patients with in-hospital death. In particular, in-hospital death is a competing risk to post-discharge death;

a patient with in-hospital death cannot also have post-discharge death. As such, excluding patients who

died in hospital from the sample could bias our results. To address this problem, we include patients with

in-hospital death in our cohort, but code them as survivors of 30-day post-discharge mortality.

3.1.3. Censoring due to decreasing mortality hazardStudies have shown that for patients with AMI,

the likelihood of death decreases with time following the AMI event (Dharmarajan et al. 2015). This is true

in our data, as shown in Figure1. Because of the decreasing hazard rate for mortality, when considering any

single patient, if one looks at a later time window (e.g. for apatient discharged 1 day later), the mortality

risk will necessarily be lower even if there is no effect of LOS on mortality. Ignoring this could lead one

to conclude that shorter LOS increases mortality risk,even if no effect exists. To account for this potential

bias, we propose a shifted time-window over which we define post-discharge mortality.
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Figure 1 Mortality hazard rate of AMI patients in our data.

3.2. Addressing Endogeneity Bias

A valid instrumental variable (IV) is correlated with the endogenous variable (log(LOS)) and uncorrelated

with the unobservable noise (Wooldridge 2010). We propose an IV that is based on a patient’s admission

day-of-week and evaluate whether it satisfies these two properties. A number of studies in other healthcare

settings have used time-of-day or day-of-week as an IV as thetiming of admission has been shown to have

an impact on the type of care patients receive (e.g.Ho et al.(2000), Hamilton et al.(2000), Ryan et al.

(2005), Bhattacharya et al.(2008), Goyal et al.(2013), Baiocchi et al.(2014a)).

Relationship Between Admission Day-of-Week and LOS:We start by examining whether admission

day-of-week is correlated with our endogenous variable, LOS. Table1 shows that the average LOS for

patients differs based on admission day-of-week. We estimated a separate regression of the logarithm of

LOS on patient observables (age, gender, race, Elixhauser,DRG, had surgical procedure(s) or not), time

dummies (month and year of hospital admission) and hospitalfixed effects. Figure2(a)shows the average

residual from this regression plotted against the admission day-of-week for our patient cohort. We can see

that patients admitted on Monday or Tuesday have negative average residuals, suggesting that they are

‘prematurely’ discharged.

The average LOS for AMI patients in our sample is 5.3 days. As such, patients admitted on Sunday,

Monday or Tuesday are likely to be ready for discharge on the weekend. There is substantial evidence

(e.g.Varnava et al.(2002), Wong et al.(2009)) that hospitals prefer to discharge patients just prior tothe

weekend rather than keeping the patients over the weekend when many services are not available; this is

also consistent with patients’ preferences to be discharged, if possible, prior to the weekend5. Indeed, there

5 In discussions with administrators at a major medical center, we were informed that on the weekend social workers are generally
not available and it is difficult to arrange for home health aides.
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Figure 2 Day-of-week effect

seems to be evidence of this preference in our data where discharge rates peak on Friday and fall sharply

on Saturday and Sunday (see Figure2(b)). This suggests that we may be able to leverage the variation

in LOS due to this “discharge before the weekend effect” as anidentification strategy and isolate a valid

instrumental variable based on admission day of week. Note that what we are considering a weekend effect

is different than that seen inRinne et al.(2014), which examines the impact of a weekend discharge on

hospital readmissions and finds no effect. In contrast, we consider the effect of being discharged ‘early’ due

to the hospitals’ practice to discharge before the weekend.We start by using Monday/Tuesday admissions

as our instrument, which allows us to conduct a sensitivity analysis in Section4.1. Later, we use multiple

instruments defined by admission on each day of the week.

Unobserved Severity by Admission Day-of-Week:For an IV to be valid, it must be uncorrelated with

the unobservable noise; in our case, the admission day-of-week must be uncorrelated with the unobserved

severity of the patient condition. We follow the approach used by Card et al.(2009) who define non-

deferrable diagnoses as those for which admissions are equally likely on the weekend and weekdays. The

rationale behind this approach is that patients will only goto the hospital on the weekend “for a relatively

severe set of conditions that require immediate hospitalization”, i.e. their condition is ‘non-deferrable’ (Card

et al. 2009). Card et al.(2009) relies on non-deferrability to argue that hospitalized patients with these types

of conditions who are just under age 65 are no different than those admitted who are just over age 65 (and,

hence, Medicare eligible), while we use it to argue that unobserved patient severity measures are unlikely

to be correlated with admission day of week. Specifically, for each ICD9 code, we calculate t-statistics to

see if the proportion of patients admitted on the weekend is significantly different from 2/7 of the total
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weekly admissions6. Recall that our analysis is restricted to patients admitted on an emergency or urgent

basis and for these patients we find that 77% of ICD9s for AMI satisfy this criterion for non-deferrability.

These results are consistent withCard et al.(2009), which finds that AMI satisfies the criterion for non-

deferrability, implying that patient severity for these conditions does not differ by admission day-of-week.

A number of studies (e.g.Hamilton et al.(2000), Bhattacharya et al.(2008), Kc and Terwiesch(2012))

examine the exclusion criteria by comparing their IV to observable measures of severity. We do this as

well and compare observed patient-level covariates for those admitted on Monday/Tuesday versus Wednes-

day/Thursday/Friday: age, gender, Elixhauser score, race, number of procedures a patient experiences dur-

ing the hospital stay, intensive care use indicators, and the five most prevalent DRG codes (Table2). Due

to our large sample size, we focus on standardized differences, which is the mean difference divided by the

average standard deviation (Flury and Riedwyl 1986). We find that the standardized differences of these

covariates are well below the 0.2 rule-of-thumb (Rosenbaum and Rubin 1985). By this measure, there is no

evidence that patients admitted on the IV days are differentthan those admitted on other days. Note, we

also compared standardized differences between all pairs of weekdays and found no evidence of differences

between any of the pairs.

Table 2 Standardized Differences
MTu admissions WThF Admissions Std. Diff.

Age 78.69 78.78 -0.01
Female 0.50 0.50 -0.01
Race

White 0.89 0.89 0.00
Black 0.08 0.08 0.00
Hispanic 0.02 0.02 0.00
Other 0.02 0.02 0.00

Elixhauser 2.93 2.93 0.00
# Procedures 3.13 3.10 0.01
Intensive care use

No 0.49 0.49 0.00
General 0.25 0.25 0.00
Surgical 0.02 0.02 0.00
Medical 0.03 0.03 0.00
Intermediate 0.19 0.19 0.00
Other 0.02 0.02 0.00

Top 5 DRGs
121 (before 2007) 0.27 0.27 0.00
122 (before 2007) 0.09 0.09 0.00
280 (after 2007) 0.08 0.08 0.00
123 (before 2007) 0.07 0.07 0.00
516 (before 2007) 0.06 0.06 0.00

Note. N=1,317,944. For patients admitted on weekdays only.

In sum, our identification strategy relies on the non-deferrable nature of AMI, the fact that observed

6 To account for potential differences across states, we run each t-test by state.
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covariates of AMI patients admitted on IV and non-IV days aresimilar, and that admission on an IV day

does not directly affect a patient’s mortality risk. However, as it is impossible to completely rule out the

existence of an unobservable variable violating the exclusion criteria, we conduct a sensitivity analysis in

Section4.1 to examine the impact of potential violations of the assumption that our instrument is indepen-

dent of unmeasured confounders.

Resource Availability on IV days: The motivation for using day of admission as an instrument isthat

patients have shorter LOS when admitted earlier in the week because of the desire to discharge patients

before the weekend. However, there might be concerns that the type of care provided to patients on week-

ends is different than other days of the week. For instance, with less staffing and resources available on

weekends, one may question if patients admitted on weekendshave worse outcomes because of lack of

access to care and not because of their LOS.Ryan et al.(2005) found that while cardiac patients admitted

on the weekend have longer delays to catheterization, theredoes not seem to be any difference in outcomes.

On the other hand,Dobkin(2003) found that weekend admission is associated with higher risk of mortality.

In our main analysis, we exclude weekend admits to address any concerns regarding differences in care

provided on the weekend and provide a robustness check in Section 4.3that includes weekend admits.

It is common for many surgeries, especially the more complexones, to be scheduled on Mondays. Thus,

while we focus on emergency and urgent patients, the availability of surgical staff may be reduced for

patients admitted to a surgical service on Monday. As 71% of AMI patients have some sort of surgical pro-

cedure, this may have an impact on their care. However, surgical schedules are unlikely to have a significant

impact on care for patients admitted to a medical service. InSection4.3, we will provide a robustness check

which excludes patients who have a surgical procedure during their hospital stay. In addition, one could

argue that patients admitted on Fridays may be more likely todie compared to patients who are admitted

on Monday to Thursday because Friday admits will not get the same level of service during the critical first

few days that overlap with the weekend. In Section4.3, we will provide a robustness check which excludes

patients admitted on Fridays.

3.3. Addressing Censoring Biases

In Sections3.1.2and3.1.3we described two potential censoring biases that can impactour study of post-

discharge mortality: in-hospital deaths and decreasing mortality risks. To address these biases we propose

two ‘adjustments’ to our outcome variable: 1) patients within-hospital death will be included and coded as

survivors and 2) patients who are discharged early will havea shifted time-window to define post-discharge

mortality. In this section, we describe these adjustments.

In-hospital Death:To address the potential bias introduced by patients with in-hospital death, we incor-

porate the competing risk approach within the Probit model by setting 30-day post-discharge mortality to 0



14

for those who died in hospital. That is, setting 30-day mortality to 0 for those with in-hospital death assumes

that everyone who died in the hospital would have otherwise survived 30 days, which would give us a

conservative estimate of the effect of LOS on 30-day mortality. This idea is similar to the method used in

Kuntz et al.(2015) to address the competing risk of hospital discharge when studying the impact of hospital

occupancy on hospital mortality.

Decreasing Failure Rate:To address the potential bias introduced by the fact that therisk of death for

patients with AMI has a decreasing failure rate, we propose to shift the window for which mortality is

considered based on whether a patient may have been discharged early.

Consider a patient who is discharged (alive) on dayt. Whether the patient dies on any day in the interval

[t+1, t+30] determines his 30-day post-discharge mortality. If, instead, the patient is discharged (alive) on

dayt−1, 30-day post-discharge mortality would be death on any day in the interval[t, t+29]. However, we

need to consider the same time interval for death[t+1, t+30] in order to avoid potential biases introduced

by the decreasing failure rate. Thus, for any patient discharged early (on dayt− 1), we should consider the

interval [t+1, t+30] to define 30-day post-discharge mortality. If the patient dies on dayt, we will count

that as an in-hospital death.

These two adjustments together will bias our estimates for the treatment effect in the positive direction.

This is because we are 1) using a lower mortality rate by including those with in-hospital deaths as surviving

and 2) using a shifted time window with lower mortality risk for all patients who are ‘encouraged’ (by

the IV) to be discharged early, even though some may not be. Simulation experiments in the Appendix

demonstrate that this approach will result in conservativeestimates of the true treatment effect.

3.4. Estimation Approach

As explained above, we use an instrumental variable approach as well as adjustments to the outcome vari-

able of interest. In the first stage, we fit a linear model forlog(LOS):

log(LOSi) = β̂Xi+ ξ̂Mi+ ψ̂Y Ri + η̂Hi + λ̂Zi + νi (3)

In the second stage, a Probit model is estimated:

y∗i = βXi+ θ log(LOSi)+ ξMi +ψY Ri + ηHi + ǫi (4)

yi = 1{y∗
i
>0} (5)

Thus, the first stage usesZi as an instrument forlog(LOS) in the second stage. We letZi be an indicator

that equals 1 if the patient is admitted on Monday or Tuesday,and 0 otherwise. These equations are esti-

mated jointly via Maximum Likelihood Estimation (Wooldridge 2010). We estimate robust standard errors,

clustered by admission day-of-week, month, and year. As part of our robustness checks in Section4.3, we
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use alternative clusters: DRG code; hospital; DRG code and year; hospital and year; DRG code, hospital,

and year.

Considering the admission day-of-week effect in Equation (3), we expect the coefficient for our Mon-

day/Tuesday admission day instrument (Zi), λ̂, to be negative. Finally, we hypothesize that these ‘prema-

ture’ discharges due to hospitals’ desire to discharge patients before the weekend will increase the risk of

mortality, so thatθ is negative.

We use the data with adjustments made to the outcome variableyi as described in Section3.3. Specifi-

cally, any patient with in-hospital death is included in thesample with post-discharge mortality set to 0, i.e.

yi = 07. A challenge that arises in considering the shifted time-window is that, unlike in a simulation, we

cannot know for sure which patients are discharged early. Wecan only know that patients admitted on Mon-

day or Tuesday are more likely to have shortened LOS. It is unreasonable to expect thatall patients admitted

on Monday/Tuesday were discharged early. We calculated theLOS residual among patients admitted on IV

days and discharged from the hospital alive; patients with residual near -1 are likely to have been discharged

1 day early. We used the modified time-window for the mortality outcome (days[2,31] post-discharge,

instead of days[1,30]) for the5% of patients with residual around -1. In our robustness checks, we consider

larger groups of patients who may have been discharged earlyand require the adjusted outcome variable.

4. Results

Columns (1) and (2) of Table3 show that when we do not instrumentlog(LOS), the coefficient of

log(LOS) on the probability of mortality is positive and statistically significant at the .1% level. This bias

is likely due to less sick patients (by unobservable measures of severity) being more likely to have shorter

LOS and lower mortality risk.

In columns (3) and (4) we use Monday/Tuesday admission to instrumentlog(LOS), and find that the

coefficient on log(LOS) is negative and significant at the .1%level. The F statistic for the significance of the

instrument in the first-stage regression is 913.66 (adjusted for the day-month-year clusters), which indicates

our instrument is quite strong. The average marginal effectof a one-day increase in LOS among patients

who survived hospital discharge is a reduction in the 30-daymortality risk from .0612 to .0572, which

is about a 6.5% decrease. We will use these estimates of the marginal effects when considering different

patient care strategies in Section5.

The results of the Waldχ2 test suggest that our instrument is able to control for a substantial portion of

the endogeneity bias in our sample. This, along with the non-deferrability results (Card et al. 2009) and

7 Note that in doing so, some DRGs of patients with in-hospitaldeath (e.g., DRG code 123: “Circulatory disorders with AMI,
expired”) become perfect predictors ofyi = 0. We replace such DRGs by their counterparts for survivors ofin-hospital death, e.g.,
DRG code 123 is replaced by DRG code 121 “Circulatory disorders with AMI & major complication, discharged alive”.
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Table 3 30-Day Mortality Model Results

Model (1) (2) (3) (4)
Probit Probit IV Probit IV Probit

(excluding patients w/ (including patients w/ (excluding patients w/ (including patients w/
in-hospital death) in-hospital death in-hospital death) in-hospital death

as survivors and as survivors and
w/ adjustments to w/ adjustments to
mortality measure) mortality measure)

Second Stage (Mortality)
log(LOS) 0.14∗∗∗ 0.28∗∗∗ -0.19∗∗ -0.17∗

(0.00) (0.00) (0.07) (0.07)
p=0.000 p=0.000 p=0.006 p=0.015

Age, Gender, Race Yes Yes Yes Yes
Elixhauser Vars Yes Yes Yes Yes
Had surgical procedure(s) Yes Yes Yes Yes
Month, Year Dummies Yes Yes Yes Yes
Hospital FE Yes Yes Yes Yes
First Stage (log(LOS))
IV -0.06∗∗∗ -0.05∗∗∗

(0.00) (0.00)
p=0.000 p=0.000

Age, Gender, Race Yes Yes
Elixhauser Vars Yes Yes
Had surgical procedure(s) Yes Yes
Month, Year Dummies Yes Yes
Hospital FE Yes Yes
Num. of obs. 1171148 1314136 1171148 1314136
Waldχ2 test 22.71 39.31
Wald p-value 0.00 0.00
Note. Robust standard errors clustered by admission day-of-week, month, and year in parentheses.+ p< 0.1, ∗ p< 0.05, ∗∗ p< 0.01, ∗∗∗ p< 0.001.
TableA.4 in the appendix provides the coefficients, robust standard errors, and p-values for all control variables for the model in column 4.

the results of our standardized differences comparing the observed patient-level covariates of AMI patients

admitted on Monday/Tuesday versus other days, supports thereliability of the IV estimates. In results not

reported here we found that the instrument is statisticallysignificant and of the same magnitude even when

stratifying by different levels of patient severity, as measured by the Elixhauser score, and by different

patient conditions as measured by ICD9 codes, suggesting that the admission day of week effect is present

across a large group of patients in our data. As such, it is reasonable to conclude that the population which

complies with our instrument is broadly spread across heterogeneous patients. Thus, the IV results in Table

3 provide estimates for the local average treatment effect ofLOS across heterogeneous patients. Finally,

comparing columns (3) and (4), we see that, as expected by ouranalysis in the Appendix, the adjustments

to the mortality measure bias the coefficient on LOS more positive.

4.1. Sensitivity Analysis

In order to mitigate the possibility that unobservable patient characteristics may be correlated with admis-

sion day of week, we study AMI patients who are admitted on an emergency or urgent basis and therefore
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do not choose which day to be admitted to the hospital. One potential concern is that we observe a slightly

higher admission rate on Monday compared to other days of theweek: see Figure3. This is in line with

the literature that has found a Monday preference for AMI andstroke onset8 (Spielberg et al. 1996, Man-

fredini et al. 2001, Arntz et al. 2000, Kinjo et al. 2003). The proposed factors for such a preference include

stress from returning to work after the weekend and difference in family life and leisure patterns during the

weekend versus weekdays. That said, one could argue that thehigher admission rates of AMI patients on

Mondays may be due to patients waiting until Monday to go to the hospital. This would only be possible for

patients with ‘deferrable’ AMI, which we believe is likely to be a very small portion of the AMI population,

if it exists at all. Patients who wait to go to the hospital maybe sicker due to delays in getting treatment,

which would bias our estimates more negative. On the other hand, patients who can afford to wait (instead

of going immediately to the hospital over the weekend) may beless severe, which would bias our estimates

more positive. Thus, if patients admitted on Monday are unobservably different than those admitted on other

days of the week, it is not clear in which direction this wouldbias the results.

While we do not find evidence that AMI patients presenting to the hospital on Monday versus other

days of the week are different (e.g., Table2 shows that observed covariates for Monday/Tuesday admits

versus Wednesday/Thursday/Friday admits are similar), wecannot completely rule out the possibility of an

unobservable variable being correlated with admission day-of-week. For instance, we do not have data on

congestion in the hospitals which, if correlated with day-of-week, could potentially bias our results9. We

therefore use the methodology fromBaiocchi et al.(2014b) to conduct a sensitivity analysis to see if our

results could be explained away by an unobserved confounderthat is correlated with our instrument.

Following Baiocchi et al.(2014b), suppose there exists an unobserved confounder,ui, with mean 0 and

variance 1 that is independent of the measured confounders,Xi,Mi, Y Ri,Hi, but is correlated with the

outcome (30-day mortality) and whether a patient is admitted on an IV day or not. We assume the following

model:

yi = βXi+ θ log(LOSi)+ ξMi+ψY Ri + ηHi + δui + ǫi

ui = φZi + vi

8 In the literature, the day of AMI and stroke onset is defined asthe time of onset of the first symptoms, usually reported by the
patient, and not the day of hospital admission.
9 There is some evidence that hospital occupancy is increasesfrom Monday and Tuesday (e.g.Kanter and Moran(2007), Fieldston
et al. (2011)). These findings suggest thatif high occupancy rates increase mortality risks, this would disproportionately impact
patients admitted on Wednesday to Friday (recall that we focus on weekday admissions in our analysis). Based on our hypothesis
that shorter LOS will increase mortality risk and that Monday and Tuesday admits (our instrument) have shorter LOS, having high
occupancy rates on Wednesday to Friday could result in conservative estimates of the true effect of LOS on mortality. That is, while
the estimates may be biased, they are likely to be biased in the direction that makes it more difficult to detect an effect ofshorter
LOS increasing post-discharge mortality risk.
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Figure 3 Percentage of AMI admissions by day-of-week.

E(vi|Xi,Mi, Y Ri,Hi,Zi) = 0

E(ǫi|Xi,Mi, Y Ri,Hi,Zi) = 0

We are interested in establishing a consistent estimate forθ. δ andφ are sensitivity parameters, whereδ

measures the effect of a one standard deviation increase in the unmeasured confounder on 30-day mortality

under no treatment andφ measures how much higher the mean of the unobservable,ui, is in standard

deviation units of being admitted on the instrument days (Monday/Tuesday),Zi. Under this model,Zi

would be a valid instrument if we could control forui. Thus, we can provide a consistent estimate forθ

using 2SLS withyi− δφZi as the outcome variable andZi as the IV:

yi − δφZi = βXi+ θ log(LOSi)+ ξMi +ψY Ri + ηHi + δvi + ǫi

Note that the noise term,δvi + ǫi, is zero-mean conditional onXi,Mi, Y Ri,Hi andZi. We can run regres-

sions for different values ofδ andφ to determine parameter regimes where the estimate ofθ is i) negative

and statistically significant at the 5% level, ii) positive and statistically significant at the 5% level, or iii)

statistically not different than 0 at the 5% level. If the regime where i) holds is large, we can conclude that

our estimates forθ are reasonably robust to potential violations in the exclusion criteria of the IV being

independent of unobserved confounders. This methodology requires that we use the 2SLS estimator, and

hence we use a linear probability model for the 30-day mortality instead of a Probit model.

Figure4 summarizes our sensitivity analysis for the 30-day mortality model. In particular, we see that the

white region, where the estimates forθ are negative and statistically significant at the 5% level, is quite large.

The gray (black) regime depicts where the estimates forθ are statistically not different than zero (are positive

and statistically significant at the 5% level.) We note that the magnitude of the coefficients does not change

(though the standard errors do) in the white region. Moreover, the(δ,φ)-values for all observed covariates

(as indicated by x’s) are well within the white region. That is, in order for there to be an unobserved
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confounder that would explain away our LOS result, the effect size of this unobserved confounder would

have to be much larger than that of any observed confounder. Specifically, unobserved patient severity

factors must have a larger effect size than observable measures of health such as the MS-DRG codes or

Elixhauser comorbidity conditions. Though it may be unlikely that any single unobserved confounder would

have larger predictive power, it is possible that the cumulative effect of many unobservable factors together

could impact the significance of our results.

Figure 4 Sensitivity Analysis for the 30-day mortality mode l. (1) White area represents regime for δ and φ

where the estimates for θ are negative and statistically significant at the 5% level. ( 2) Gray area

represents regime for δ and φ where the estimates for θ are statistically not different than 0 at the

5% level. (3) Black area represents regime for δ and φ where the estimates for θ are positive and

statistically significant at the 5% level. x’s represent δ and φ values for observed covariates.

4.2. Alternative Instruments

In order to provide more evidence to support our conclusion that shorter LOS is associated with an increase

in 30-day post-discharge mortality, we consider alternative instrumental variables that may be less suscep-

tible to the potential limitations of the Monday/Tuesday instrument.

Indicators for all Admission Days-of-WeekThe rationale for using a single indicator for admissions on

Monday or Tuesday as the instrument was that patients admitted earlier in the week are more likely to be

discharged early. Using a single indicator also allowed us to conduct the sensitivity analysis of Section4.1.

However, Figure2(a)shows that LOS varies across all admission days of the week. We therefore consider a

specification with multiple instruments: four indicator variables, one for each admission day of week, with

one day (Friday) being the base case.

Column (1) of Table4 shows the results of this alternative specification. In the first stage, we see that

patients admitted earlier in the week have shorter LOS than those admitted later in the week. We saw this

previously when we first introduced the idea of using admission day of week as an IV. In addition, we
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see that the coefficient on log(LOS) is negative and statistically significant in the second stage, providing

additional support for the hypothesis that longer LOS is associated with a reduction in 30-day post discharge

mortality risk.

Table 4 Alternative Instruments

Excluding patients with in-hospital deathIncluding patients with in-hospital death
as survivors and with adjustments to

mortality measure
(1) (2) (3) (4) (5) (6)
All Cohort 1 Cohort 2 All Cohort 1 Cohort 2

Second Stage (Mortality)
log(LOS) -0.15∗∗ -0.78∗ -1.13∗∗∗ -0.13∗ -0.96∗∗ -1.10∗∗∗

(0.06) (0.33) (0.34) (0.06) (0.29) (0.30)
First Stage (log(LOS))
Instrument(s)

Mon admit -0.10∗∗∗ -0.09∗∗∗

(0.00) (0.00)

Tues admit -0.09∗∗∗ -0.08∗∗∗

(0.00) (0.00)

Wed admit -0.07∗∗∗ -0.06∗∗∗

(0.00) (0.00)

Thurs admit -0.04∗∗∗ -0.04∗∗∗

(0.00) (0.00)

Fri admit (base) (base)

Predicted Sat Discharge 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.02∗∗∗

(0.00) (0.00) (0.00) (0.00)

Num. of obs. 1171148 399713 309617 1314136 420377 322419
Waldχ2 test 26.40 5.99 7.82 47.43 9.74 9.81
Wald p-value 0.00 0.01 0.01 0.00 0.00 0.00
Note. Robust standard errors clustered by admission day-of-week, month, and year in parentheses.+ p< 0.1, ∗ p < 0.05, ∗∗ p< 0.01, ∗∗∗

p< 0.001.

Predicated Saturday DischargeWe consider another alternative instrument which is also based on

the idea that patients are less likely to be discharged on theweekend, thereby impacting LOS for some

patients. Rather than examining this phenomenon by admission day-of-week, we consider the predicted

day of discharge. Specifically, we define our instrumental variable as an indicator for whether a patient is

predicted to be discharged on a Saturday.

In order to predict a patient’s day of discharge, we start by predicting a patient’s LOS. First, for all

patients who were admitted on a weekday and survived to hospital discharge, we fit a length of stay regres-

sion including the following covariates: DRGs, Elixhauserdummies, age, gender, race, whether or not had
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surgery, admission month, admission year, and hospital. Next, we use the results of this regression to predict

a patient’s LOS. A patient’s predicted day of discharge is then determined by adding the predicted LOS to

the patient’s admission day. If it falls on a Saturday, then the patient is classified as having a predicted Satur-

day discharge; otherwise, he is classified as not having a predicted Saturday discharge. We use the indicator

variable for whether a patient is predicted to be dischargedon Saturday as our alternative IV. Because the

predicted Saturday discharge IV is constructed using observed covariates, we believe it is reasonable to

assume that there does not exist an unobservable variable that is correlated with both the predicted Saturday

discharge and mortality, and hence satisfying the exclusion restriction.

We restrict our analysis to patients who are predicted to be discharged before the first Sunday following

admission. In other words, we exclude patients admitted on Monday, Tuesday, Wednesday, Thursday, or

Friday if their predicted LOS is greater than 5, 4, 3, 2, 1 days, respectively. We do this because these

patients are more likely to stay in the hospital over the weekend, when fewer services are available and the

type of care provided may be different than that available onweekdays. We define this group of patients

as Cohort 1. Next, in order to better balance patient covariates, we conduct a four-to-one matching with

replacement based on predicted LOS to generate the second cohort. Specifically, using the initial cohort of

patients predicted to stay in the hospital only on weekdays,we match four patients with the same predicted

LOS who are not predicted to have a Saturday discharge to one with the same predicted LOS but who is

predicted to have a Saturday discharge. Table5 shows the standardized differences between those with and

without predicted Saturday discharge for these two cohorts. We can see that prior to matching (Cohort 1),

the predicted Saturday discharge patients are different than those who are not. However, after matching, the

standardized differences are well below the 0.2 rule-of-thumb.

Columns (2), (3), (5), and (6) of Table4 show the results with this alternative IV based on predicted

Saturday discharge for Cohort 1 (without matching) and Cohort 2 (with matching). We can see in the

first stage that patients with predicted Saturday dischargehavelonger LOS than those without predicted

Saturday discharge. Because both cohorts consider patients with relatively short predicted LOS (≤ 5), it

seems that the reluctance to discharge patients on the weekend manifests itself by having patients stay

longer, being discharged on Monday instead of Friday. Moreover, in the second stage, we see that the

coefficient on log(LOS) is negative and statistically significant for both cohorts.

Because of the non-linearities introduced by the Probit model and the differences in the cohorts for the

predicted Saturday discharge IV and our main specification in Table3, it is difficult to directly compare

the magnitude of the coefficients. For Cohort 1, the -0.96 coefficient in column (5) signifies an average

treatment effect which reduces the mortality rate from 8.16% to 4.77% with an additional day in the hospital.

For Cohort 2, the -1.10 coefficient in column (6) signifies a reduction in the mortality rate from 9.96% to
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Table 5 Standardized Differences: Cohort 1 and Cohort 2
Cohort 1 Cohort 2

Predicted Sat discharge? No Yes Std. Diff. No Yes Std. Diff.
N 250677 180642 202707 133979
Age 76.50 78.22 -0.21 77.30 77.32 0.00
Female 0.43 0.49 -0.11 0.46 0.46 0.00
Race

White 0.91 0.90 0.05 0.91 0.91 0.00
Black 0.05 0.06 -0.05 0.06 0.06 0.00
Hispanic 0.01 0.01 -0.02 0.01 0.01 0.00
Other 0.02 0.02 0.00 0.02 0.02 -0.01

Elixhauser 2.28 2.64 -0.26 2.41 2.41 0.00
# Procedures 3.69 3.08 0.23 3.42 3.40 0.01
Intensive care use

No 0.61 0.56 0.09 0.59 0.59 0.00
General 0.16 0.20 -0.08 0.18 0.18 0.00
Surgical 0.01 0.01 -0.01 0.01 0.01 0.01
Medical 0.02 0.02 -0.04 0.02 0.02 -0.01
Intermediate 0.19 0.19 0.00 0.19 0.19 0.00
Other 0.01 0.01 -0.02 0.01 0.01 0.00

Top 5 DRGs
121 (before 2007) 0.10 0.22 -0.33 0.15 0.15 0.00
122 (before 2007) 0.15 0.13 0.04 0.15 0.15 -0.01
247 (after 2007) 0.14 0.07 0.23 0.10 0.09 0.00
516 (before 2007) 0.08 0.08 0.01 0.09 0.09 -0.01
281 (after 2007) 0.08 0.06 0.05 0.08 0.08 0.01

Note. For Cohort 2, means and variances are adjusted by observation weights resulting from the
four-to-one matching with replacement.

5.45%. Cohort 2 is better balanced on observed covariates, suggesting it is less likely to be unbalanced by

unobservable factors than Cohort 1. This suggests the results for Cohort 2 are likely to be more reliable.

However, it is a slightly different subset of the patients, so the estimation results fundamentally only apply

to the matched cohort rather than the full population.

Note that the compliers with respect to the predicted Saturday discharge IV are different from the com-

pliers with respect to our original IV, Monday/Tuesday admission, and that each IV identifies the average

treatment effect for its group of compliers. The compliers with respect to the predicted Saturday discharge

IV are patients who would stay longer in the hospital if predicted to be discharged on the first Saturday after

admission compared to other days while the compliers with respect to the Monday/Tuesday admission IV

are patients who would stay shorter in the hospital if admitted on Monday or Tuesday compared to Wednes-

day, Thursday, or Friday. Thus, it is not surprising that themagnitude of the effect of LOS on mortality is

different when different IVs, which capture different types of variation, are used. We emphasize, however,

that getting similar directional results from two IVs that rely on two different groups of compliers increases

our confidence in our finding that an increase in LOS is associated with a decrease in 30-day mortality rates.

As we also cannot rule out the possibility of confounding factors in these results with the new IV, we also

conduct a sensitivity analysis similar to that done in Section4.1for the predicted Saturday discharge IV. This

is possible since it is a single instrument. FigureA.2 in the Appendix summarizes the sensitivity analysis for
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this IV for Cohort 2. The white region, where the estimates for θ are negative and statistically significant at

the 5% level, is quite large. The gray regime depicts where the estimates forθ are statistically not different

than zero. A number of observed covariates (x’s) are close tothe gray region suggesting that these results

may be more sensitive to violations in the exclusion criteria than the Monday/Tuesday IV. However, because

Cohort 2 was created through matching, it is less likely thatthere are substantial differences in unobservable

factors.

4.3. Robustness Checks

This section presents a number of robustness checks for the primary specification that uses Monday/Tuesday

admission as the instrument. We start by considering different ways of computing standard errors. In Table

3 we clustered standard errors by admission day-of-week, month, and year. Since there may be correlations

between patient characteristics and care within a hospitalor a DRG group, we also tried a number of

alternative clustering approaches: by DRG code; hospital;DRG code and year; hospital and year; DRG

code, hospital, and year. For our main model presented in column 4 in Table3, IV Probit (w/ adjustments

to mortality measure), the estimated robust standard errors from these alternative clusters are 0.08, 0.07,

0.08, 0.07, and 0.07, respectively, which gives p-values 0.030, 0.011, 0.023, 0.009, and 0.010, respectively.

In addition, the robust standard errors reported in Table3 are computed through closed-form equations. If

we compute standard errors through bootstrapping, the bootstrap standard error is 0.06 with p-value 0.004

based on 100 replications.

Next, we consider different groups of patients for which we use a shifted time-window to define the post-

discharge mortality outcome. Recall that since we cannot know for sure which patients were discharged

early, we adjusted the time-window for the 5% of patients admitted on Monday or Tuesday whose LOS

residuals were around -1. In Table6, we use the adjusted time-window for a larger group of patients (10%,

15%, and 20%). We see that the coefficient on LOS is negative for all models, though it is not statistically

significant (even at thep < .10 level) when using 20% of patients admitted on Monday/Tuesday. Recall

from our simulation results that our coefficients are conservative estimates for the true effect, so the negative

coefficients are suggestive that shorter LOS is associated with increased mortality risk.

Table7 presents a number of additional robustness checks. The firstissue that we address is the potential

that the ICD9 and DRG codes (used to indicate the patients’ conditions and severity) are inaccurate due to

potential upcoding hospitals may utilize to increase Medicare payments which are provided on a fee-for-

service basis. To address this, we restrict our analysis to non-profit hospitals because the prior literature has

found that these hospitals have lower rates of upcoding thanfor-profits (seeSilverman and Skinner(2004),

Dafny (2005), andPowell et al.(2012)). The results in Column (1) show that while the coefficient on LOS

is negative, it is no longer significant. If the DRG and ICD9 codes at non-profit hospitals are more accurate
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Table 6 Robustness Checks - Varying % Monday and Tuesday admi ts for whom the 30-day mortality window

is shifted by 1 day

10% 15% 20%
log(LOS) -0.16∗ -0.14+ -0.12

(0.07) (0.07) (0.07)
IV -0.05∗∗∗ -0.05∗∗∗ -0.05∗∗∗

(0.00) (0.00) (0.00)
Num. of obs. 1314136 1314136 1314155
Waldχ2 test 36.25 33.16 29.81
Wald p-value 0.00 0.00 0.00
Note. Robust standard errors clustered by admission day-
of-week, month, and year in parentheses.+ p< 0.1, ∗ p<

0.05, ∗∗ p< 0.01, ∗∗∗ p < 0.001.

due to lower rates of upcoding, then these results may be morereliable than those which include for-profit

hospitals. Since our results are conservative estimates for the true treatment effect, it is possible that there is

still a significant effect. Alternatively, it may be the casethat for-profit hospitals are indeed doing more early

discharges.Bueno et al.(2010) found that when hospitals switched to a Fee-for-Service payment model,

LOS steadily decreased, likely with the intent to generate more revenue.

In Column (2), we restrict the analysis to hospitals that arein the top quartile for number of patients as

one might anticipate that the effects of LOS on mortality could be different for these hospitals that are more

likely to treat complex cases. We see that the coefficient is still negative and statistically significant as well

as being very slightly larger in magnitude.

In Column (3), we exclude patients with a surgical procedureduring their hospital stay as an increase in

complex scheduled surgeries on Mondays may reduce the availability of staff to treat the emergency and

urgent patients who are admitted to a surgical service. The coefficient on LOS is still negative and statis-

tically significant as well as being larger in magnitude. Additionally, the coefficient for the IV is slightly

larger in magnitude. As patients with surgeries may be subject to strict protocols which dictate their LOS

(e.g.Gustafsson et al.(2011), Lassen et al.(2013), Miller et al. (2014), Thiele et al.(2015) among many

other), there may be more discretion to discharge patients before the weekend for patients without surgical

procedures.

In Column (4), we exclude patients admitted on Fridays because there may be fewer resources available

for these patients during the critical first few days of hospitalization which coincides with the weekend. The

coefficient on LOS is negative and statistically significant. Moreover, the effect size is quite a bit larger.

In Column (5), we include patients who are admitted on the weekends. While the coefficient is still

negative, it is no longer statistically significant. Since our adjustments result in conservative estimates of

the true treatment effect, it is possible that despite the lack of statistical significance in Column (5), there is

still an effect of shorter LOS on increasing post-dischargemortality in these cohorts.
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In Column (6), we randomly select one hospital encounter perpatient so that we have a single hospi-

talization per patient. This is because an individual patient may have multiple admissions, which are each

counted as a separate observation. In our sample, about 30% of our observations are from patients with

multiple visits during our study period. Again, the resultsare consistent with that of Table3.

In Column (7), we include patients who are discharged to destinations that provide inpatient related

services. Recall that we initially excluded these patientsfrom our analysis as we cannot control for the

reason for such transfers. However, this might introduce a sample selection bias if the transferred patients

are more likely to die. Indeed, the 30-day post-discharge mortality of patients sent to inpatient services is

13.5% and that of patients not sent to inpatient services is 6.7%. Still, when we include these patients in

our analysis, the treatment effect estimate is still negative, statistically significant, with similar magnitude

as our main specification.

Table 7 Robustness Checks - Different Subsets (In-hospital mortality included as survivors; 30 day mortality

time window is shifted for 5% of Mon and Tues admits)

(1) (2) (3) (4) (5) (6) (7)
Non-profit Big w/o Surgical w/o Friday w/ Weekend Random Include dis. to

Procedures Admits Admits Episode inpat. service
log(LOS) -0.09 -0.20∗ -0.22∗ -0.27∗ -0.06 -0.19∗ -0.19∗∗

(0.09) (0.08) (0.10) (0.11) (0.07) (0.08) (0.07)
IV -0.05∗∗∗ -0.05∗∗∗ -0.06∗∗∗ -0.04∗∗∗ -0.05∗∗∗ -0.05∗∗∗ -0.05∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
Num. of obs. 926980 1028584 380333 1053176 1805879 1198312 1356838
Waldχ2 test 19.05 30.56 17.96 22.70 27.66 38.03 44.29
Wald p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Note. Robust standard errors clustered by admission day-of-week, month, and year in parentheses.+ p < 0.1, ∗ p < 0.05, ∗∗

p< 0.01, ∗∗∗ p< 0.001.

In all seven columns of Tables7, the coefficient onlog(LOS) is negative and the results of the Waldχ2

test show that our instrument is able to control for some of the endogeneity. In five out of seven cases, the

coefficient estimate is statistically significant, suggesting our results are reasonably robust.

5. Cost-Benefit Analysis and Implications

In this section, we utilize our results from Section4 to estimate the impact of a specific intervention that

hospitals can implement or CMS can impose to reduce post-discharge deaths. In our analysis, we take the

perspective of the social planner who aims to reduce adverseoutcomes and overall costs. Having observed

that keeping a patient in the hospital for one more day is an effective intervention to reduce 30-day mortality,

we compare the following two policies: (1)Keep the status quoor (2) Increase LOS by one day. This

allows us to compare the effect of inpatient care on post-discharge mortality.
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To compare the cost-effectiveness of these two policies, wefirst discuss the cost estimates we will use.

Taheri et al.(2000) estimate thecost of an additional day in the hospitalto be $420 in 1998, which is $635

in 2017 when adjusted for inflation. Importantly,Taheri et al.(2000) show that the direct cost of the last

day represents only 2.4% of the total hospitalization cost.The Henry J. Kaiser Family Foundation(2014)

provides an alternative measure and reports that the average hospital expenses for a day of inpatient care

in the U.S. was $1,960 in 2011, or $2,156 in 2017 dollars. However, this measure includes an adjustment

for outpatient care and is therefore likely to be an overestimate of the actual costs of inpatient care. Based

on these two references, we assume that the cost of keeping a patient in the hospital one more day is $635

or $2,156, depending on whether one uses themarginalor averagecost estimate. We note that the cost of

a hospital day may also change over time according to other factors besides inflation; an example is the

introduction of more costly procedures and tests. This change could be more or less than overall inflation,

so we will also consider the robustness of our results to various rates of increase between 1998 and 2017

for theTaheri et al.(2000) cost estimates and between 2011 and 2017 for theThe Henry J. Kaiser Family

Foundation(2014) cost estimates.

Next, we use the estimates provided inMurphy and Topel(2006) for the benefits of reduced mortal-

ity. They calculated the value of a life-year for an average 80 year-old (the approximate mean age of the

patients in our sample) to be $150,000 per person in 1999, which translates to $221,926 per year or $18,494

per month in 2017 dollars. Recognizing this may be an overestimate for individuals with serious medical

conditions, we also consider how robust our calculations are to alternative value of life estimates.

Using the results from our IV Probit models summarized in Tables3 and4, we can compute the average

estimated mortality rate under the aforementioned two policies. First consider our main model in Column

4 of Table3 where Monday or Tuesday admission is the IV. We note that our identification strategy relies

on the increased likelihood that patients are discharged early if admitted on Monday or Tuesday due to the

‘discharge before the weekend effect.’ Thus, while we find evidence that longer LOS is associated with

a reduction in mortality risk for patients admitted on Monday or Tuesday, we cannot make projections

for the effect on other patients. As such, we focus our intervention on keeping those patients admitted

on a Monday or Tuesday one more day. To be conservative, we restrict our sample to patients who are

discharged on the first Friday after admission and had LOS shorter than the predicted LOS (i.e., it is likely

that these patients experienced the ‘discharge before the weekend effect’). In our dataset, there are 46,504

such patients admitted over 11.91 years, so we estimate there are approximately 3,905 such patients per

year.

When there is no change, the average estimated mortality percentage for such patients predicted by the

model is 9.60%. If we increase their LOS by 1 day, the average estimated mortality rate decreases by 0.67

percentage points (a 7% decrease).
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Table 8 Estimated annual mortality rates for keeping patien ts in the hospital an extra day.

Mortality Rate
IV # of affected Baseline Intervention # Lives

patients/year LOS LOS + 1 saved
Mon/Tue admit (Table3 Col 4) 3,905 9.60 8.93 (-7%) 26
All days of week (Table4 Col 4) 7,241 8.21 7.45 (-9%) 55
Predicted Sat discharge (Table4 Col 5) 5,575 14.93 7.61 (-49%) 408
Note.Only patients who are ‘encouraged’ by the IV to have shorter LOS and whose LOS is shorter than their predicted LOS are kept an additional
day in the hospital.

We explore whether keeping these patients in the hospital anextra day is cost-effective over the baseline

of doing nothing. As summarized in Table8, this intervention would result in savings of3,905× 0.0067=

26 lives per year. The total value of these saved lives is$18,494× 26 = $480,839 for each month these

patients live when we useMurphy and Topel(2006) to estimate the value of an additional month. If hospitals

kept all 3,905 patients for one more day, the extra costs would range from$635× 3,905 = $2.48m (using

Taheri’s estimate of the marginal cost of an extra day) to$2,156,905= $8.42m (using Kaiser’s estimate of

the average cost of a hospital day). This means that the patients would need to live$2,480,00/$480,839=

5.16 months (using the marginal cost estimate) or 17.51 months (using the average cost estimate) in order

for the inpatient intervention to be cost-effective over the baseline of doing nothing.

Note our results refer to the likelihood that a patient will live for 30 days post-discharge, but they do

not provide insight into how long patients will survive after 30 days. Our cost-benefit analysis suggests

that patients will need to survive for 5.16 or 17.51 months under the marginal or average cost estimates,

respectively. If all patients died on day 31, then it would certainly not be cost-effective to keep all patients

an extra day. On the other hand, if we believe that the patients who survive to 30 days due to the extra day in

the hospital are similar to the patients who survive up to 30 days, then keeping patients an extra day is likely

to be cost-effective. This is because on average, among the patients we consider, those who survive 30 days

post-discharge live another 5.8 years10. In fact, when considering the distribution of the number ofmonths

survived after 30 days post-discharge for AMI patients, about 85% (72%) of patients survive beyond the

cost-benefit break-even life-spans of 5.16 (17.51) months.

We next consider the robustness of the cost-effectiveness of our proposed intervention. In particular,

since the average survival of AMI patients is 5.8 years, we consider the range of rates of increase in cost

and the range in reductions in the value of living an additional month for which it is still cost-effective to

keep patients an additional day. That is, if the percentage increase in cost isx, then the marginal cost of an

additional day in 2017 would be$420× (1 + x)19. The area under the curve in Figure5(a)demonstrates

10 Note that our estimates for average survival are conservative as our data are truncated with the last recorded date of death being
December 26, 2012; for any patient missing a date of death (i.e., they did not die before 12/26/2012) we assigned a death date of
December 26, 2012.
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the regime where it is cost-effective to keep patients an additional day in the hospital when costs are given

by the marginal cost fromTaheri et al.(2000). The circle indicates the case where the cost of a hospital

day is adjusted by inflation only (to $635 in 2017 dollars). Wecan see in this case the cost-effectiveness of

keeping a patient an additional day is robust to reductions in the value of living an additional month of up

to 92.58% of the estimates fromMurphy and Topel(2006). It is also robust to increases in annual cost of up

to 17.19% . Further reductions in the benefits of living an additional month and/or larger annual increases

in cost would render the baseline as more cost-effective. Figure5(b) shows the same for when the average

cost estimate of an additional hospital day is used. We see that the cost-effectiveness of keeping patients in

the hospital an additional day is very robust.
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Figure 5 Robustness of cost-effectiveness for keeping pati ents in the hospital an additional day, when treat-

ment effect is based on the Monday/Tuesday IV (Table 3 Col 4). Baseline benefits are given by the

value of living an additional month as estimated in Murphy and Topel (2006).

We conducted a similar analysis using the results based on the alternative instruments described in Section

4.2. For the specification with multiple instruments, one for each weekday admission, we consider keeping

one more day those patients who were discharged on their firstFriday in the hospital and had shorter LOS

than predicted LOS. As summarized in Table8, we estimate there to be 7,241 such patients per year and

55 lives saved per year. Table9 summarizes the cost-effectiveness of such an interventionwhen using the

Taheri et al.(2000) andThe Henry J. Kaiser Family Foundation(2014) estimates for the cost of a hospital

day. The results are very similar to the results based on the Monday/Tuesday admission IV.

Next, we used the results for the predicted Saturday discharge. Because we found that patients who

were predicted to be discharged on Saturday had longer LOS, we considered the intervention of keeping

all patients with predicted non-Saturday discharge who were discharged before the weekend and had LOS
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shorter than predicted LOS one more day. We note that the 14.93% predicted baseline mortality rate for

these patients is substantially higher than the observed mortality rate of 3.88%. The estimated treatment

effect is much larger than our other IV analysis suggests; assuch, the cost-effectiveness (summarized in

Table9) is very robust to reductions in the value of life and to increases in the cost of a hospital day. Figures

A.3 andA.4 in the Appendix summarize the cost effectiveness of the intervention based on the treatment

effect estimated by our alternative instruments.

Table 9 Cost-effectiveness of keeping patients in the hospi tal an extra day.

Taheri costs Kaiser Costs
IV Cost of Months Cost Val. of life Cost of Months Cost Val. of life

int. to live robustness robustness int. to live robustness robustness
Mon/Tue admit $2.48m 5.16 17.19% 92.58% $8.42m 17.51 27.85% 74.81%

All days of week $4.60m 4.52 18.01% 93.50% $15.61m 15.35 30.38% 77.92%
Pred. Sat dis. $3.54m 0.47 32.95% 99.32% $12.02m 1.59 90.63% 97.71%

5.1. Managerial and Operational Implications

Our cost-benefit analysis suggests that keeping AMI patients who are discharged early due to the preference

to avoid discharges over the weekend in the hospital one moreday is cost-effective from a social planner’s

perspective. Over the past few years, the U.S. government and CMS have taken steps through legislation,

e.g. the Affordable Care Act, to provide incentives to healthcare providers to improve quality of care.

Therefore, it is useful to consider the operational changesthat hospitals would need to introduce if CMS

were to require them to keep patients in the hospital a day longer.

Since we have documented that premature discharges occur right before the start of the weekend, our

analysis suggests that one way to reduce the number of patients who are discharged too early is for hospitals

to discharge patients 7-days a week rather than preferentially discharging Monday through Friday. In fact,

this is an approach that the United Kingdom government is intending to implement by 2020 for the National

Health Services11. In order to move to a 7-day-a-week discharge cycle, hospital managers would need to

provide sufficient staff on the weekends, notably social workers and others who facilitate the discharge

process. This would enable patients to avoid premature discharges due to hospitals’ desire to discharge

before the weekend. Doing so would introduce a number of operational decisions such as: how many staff

are needed; what types of staff (e.g. physician assistants,social workers, nurses, etc.) are needed; and

when staff should be scheduled. If the additional costs required to provide these resources are substantial

and exceed our cost estimates for an extra hospital day, the robustness of our cost-benefit analysis will be

reduced.

11 https://www.gov.uk/government/collections/nhs-7-day-services, Accessed 12/15/2017.
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Premature discharges may arise for other reasons (e.g. congestion in inpatient beds (Kc and Terwiesch

2012, 2009), family/patient preferences, etc.) and our results suggest that hospitals should also take steps to

avoid these types of discharges whenever possible. For instance, hospital administrators should consider the

potential benefits of increasing bed capacity if congestionin inpatient beds appears to be a frequent initiator

for early discharges. Separately, when faced with pressureto discharge a patient early, physicians and social

workers should educate patients and family members and emphasize the potential benefits of remaining in

the hospital an extra day.

We note that though our analysis does not enable identification of the mechanism by which the extra

hospital day helps reduce mortality risk, being able to do sois an important next step as it could provide

insights into the operational implications of these findings. For instance, if the extra day serves to educate

patients about post-discharge behavior, then it might be possible to achieve reductions in mortality risk by

hiring more social workers and discharge nurses to begin theeducation process earlier. Alternatively, if the

extra day helps patients reach a higher level of stability, this might imply that some hospitals will need to

increase their bed capacity to accommodate the patients whowill need to stay in the hospital longer. As

such, our work suggests there are important resource allocation questions that must be studied to understand

how to tactically reduce 30-day post-discharge mortality rates.

6. Conclusions

This paper examines the potential reductions in post-discharge mortality due to keeping heart attack (AMI)

patients in the hospital longer. We identify and address three econometric challenges that researchers have

faced in studying this question: (1) Endogeneity bias relating to the possibility of unobservable severity

factors being correlated with length of stay and post-discharge mortality; (2) Censoring bias if patients

who died in-hospital are excluded from the analysis; and (3)Censoring bias resulting from the decreasing

mortality hazard that characterizes AMI. We use a very comprehensive data set from CMS that consists of

all Medicare FFS in-hospital AMI patient visits between 2000 and 2011. AMI patients admitted on Monday

or Tuesday are at risk of being discharged prematurely and wefind that keeping these patients in the hospital

for one more day saves an additional 26 lives per year and the value of these saved lives exceeds the cost

of the extra hospital day under reasonable assumptions. These results are supported by additional evidence

based on analysis with alternative instruments.

The fact that we find compelling evidence that keeping certain AMI patients in the hospital for one more

day significantly decreases their mortality rates shows that there are factors within a hospital’s control, i.e.

LOS, that impact post-discharge mortality. This finding hassignificant implications in that it indicates that

the 30-day mortality measures reported by Hospital Compareare indeed reasonable indicators of hospital



31

quality and the government should explore how to more widelydisseminate the information available on the

Hospital Compare website. Additionally, hospitals may need to revisit staffing and bed allocation decisions

in order to be able to keep some patients in the hospital for anextra day.

Although we use a very comprehensive database, we excluded elective patients from our analysis because

our instrument for LOS, day-of-week on which the patient wasadmitted, is most valid for patients admitted

on an emergency or urgent basis. Hence, one limitation of ourstudy is that the results may not apply to

elective patients. A second limitation is that although we provide a number of important tests that support the

validity of our instrument, we cannot completely rule out the possibility of an unobservable variable being

correlated with admission day of week. It is important to note that such unobservable variables could have

biased our results. While our results are consistent when using alternative instruments that utilize the impact

of the weekend on early/later discharges, it would be interesting to study a setting where an instrument

based on operational metrics or a randomized policy change might be available. A third limitation is that

because we do not have information in our data about non-Medicare patients, we are not able to control for

congestion, which has been shown to impact patient outcomes(e.g.Kc and Terwiesch(2012), Kuntz et al.

(2015)). While it may be possible to get such detailed data at the level of individual hospital systems, to

the best of our knowledge, unlike our MedPAR dataset, such a comprehensive data set does not exist at the

national level. A fourth limitation of our work is that, while we provide evidence that an extra day in the

hospital significantly reduces mortality risk for heart attack patients admitted on Monday or Tuesday we

do not know exactly why the extra day is beneficial. An extra day may provide more time for patients to

be educated about their post-discharge behavior and/or it may enable the patient to reach a higher level of

stability. In addition, studies have shown that longer hospital stays are associated with high risks of adverse

events such as adverse drug reactions, infections, and ulcers (Hauck and Zhao 2011). To assess the true

benefit of an extra day, the findings of this paper need to be evaluated against such risks. Future research

should explore the underlying causes of the relationship between hospital LOS and post-discharge mortality

and also evaluate the benefit of increased hospital LOS against potential risks, which can help hospitals to

improve their quality of care.
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Appendix

A. Addressing Censoring Biases - Details

In Section3.3, we proposed an adjustment to our outcome variable to address censoring biases caused by decreasing

mortality risks. In this section, we use simulation models to demonstrate that our approach will result in conservative

estimates of the true treatment effect.

A.1. Simulation Setup

We now describe our simulation setup, which we use to explorethe impact of our adjustments on our estimates. We

simulate 1,000,000 hospital stays. For each hospital stay we use a beta distribution to simulatetime to death, tdeath, and

a negative binomial distribution to simulatetime to discharge, tdischarge. These two random variables are independent

of each other. The distributions and parameters have been carefully chosen to best represent what we observe in the

data.12 Length of stay, los, is defined as the minimum oftdeath andtdischarge. If tdischarge ≥ tdeath, patients die during

hospital stay and do not experience their simulated time of discharge. Iftdischarge < tdeath < los+ 30, patients die

within 30 days of discharge.

Increasinglos has no effect on mortality in the current setup; it only affects whether the patient dies in hospital or

after discharge. In order to introduce the effect of length of stay, we randomly selectp% of the patients13 and modify

their length of stay and 30-day post-discharge mortality according to the following procedure:

los′ = los− 1,

1(30-day post-discharge mortality) = 1(min(Pr(30-day post-discharge mortality| los)×α,1)>Usurvive)

where Pr(30-day post-discharge mortality| los) are empirically derived (see FigureA.1),Usurvive is a uniform random

number between0 and1, andα≥ 1 is a design parameter which dictates the impact of shorter LOS. That is, for the

p% of the patients that are randomly selected, theirlos is reduced by 1 day. Multiplying Pr(30-day post-discharge

mortality | los) by α introduces the increase in mortality risk due to being discharged a day early.14 If α = 1, the

decreased length of stay has no effect. Forα> 1, the decreased length of stay increases mortality risk. We use a Probit

model to estimate the impact oflos on1(30-day post-discharge mortality).

Above, we proposed two ‘adjustments’ to our outcome variable to address two potential sources of biases. We apply

them to our simulation to examine their effectiveness. Specifically, we 1) let1(30-day post-discharge mortality) = 0

for patients who die during hospital stay and 2) use Pr(30-day post-discharge mortality| los) instead of Pr(30-day

post-discharge mortality| los′) to define1(30-day post-discharge mortality) for the randomly selected patients, which

ensures that we consider the same time window for mortality as the patients whose length of stay did not change.

Note that in this simulation setup, we are able to avoid any unobservable confounders. Thus, while our original

setting has three potential sources of bias, our simulationsetup here focuses only on the two censoring biases.

12 We choose the distributions and parameters so that the mortality risk declines over time (see Figure1) and the average length
of stay, the in-hospital mortality rate and the 30-day post-discharge mortality rate are similar to what we observe in the data. See
Appendix FigureA.1 for details.
13 In the simulated data, about 0.3% of the patients haslos = 0. Because we cannot reduce theirlos, we do our patient selection
only among the patients withlos > 0.
14 If a selected patient haslos− 1= los′ = tdeath, we treat the patient as an in-hospital death.
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Figure A.1 Simulation Setup: A beta distribution with shape parameters a = 0.4 and b = 1 is used to sim-

ulate time to death ( STATA command ceil(rbeta(0.4,1)*1000) and a negative normal dis-

tribution with n = 20 and p = 20/27 is used to simulate time to discharge ( STATA command

rnbinomial(20,20/27)). Length of stay is defined as the minimum of time to death and t ime

to discharge. Histograms of time to death, time to discharge and length of stay and the graph of

Pr(30-day post-discharge mortality | length of stay) are shown. All based on 1,000,000 simulated

observations.

A.2. Simulation Results

The first table in TableA.1 presents the regression results when none of our proposed adjustments are made; that is,

both the in-hospital death bias and decreasing mortality hazard bias are present. The coefficient oflos is negative and

statistically significant even when there is no effect of LOSon 30-day post-discharge mortality,α=1, which suggests

that without addressing the two biases, we might be capturing a spurious effect of length of stay on mortality.

The second table in TableA.1 presents the regression results when both of our proposed adjustments are made. Now

the coefficient oflos is positive and statistically significant when there is no effect of LOS on 30-day post-discharge

mortality, i.e.α = 1. This suggests that our two proposed adjustments are likelyto over-adjust for the two potential

biases. Thus, if we apply our two adjustments and still find a negative coefficient for length of stay, it is likely a

conservative estimate for the true magnitude of the treatment effect. When there is an effect (α> 1) and as the effect

size increases, the coefficient estimates move in the negative direction, capturing the increasing treatment effect. It also

shows that there exists parameter regimes where the estimated coefficient is negative (p=20% andα= 3), suggesting

that our proposed adjustments are not so large as to always completely mask a treatment effect when it exists.
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Table A.1 Simulation Results: 30-Day Mortality

In-hospital death bias present& Decreasing mortality hazard bias present
p 5% 5% 5% 10% 10% 10% 20% 20% 20%
α 1 2 3 1 2 3 1 2 3
los -0.024∗∗∗ -0.028∗∗∗ -0.032∗∗∗ -0.026∗∗∗ -0.033∗∗∗ -0.040∗∗∗ -0.032∗∗∗ -0.043∗∗∗ -0.053∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000)

Constant -0.834∗∗∗ -0.773∗∗∗ -0.716∗∗∗ -0.814∗∗∗ -0.701∗∗∗ -0.596∗∗∗ -0.764∗∗∗ -0.565∗∗∗ -0.383∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Num. of obs. 866284 866284 866284 865871 865871 865871 864990 864990 864990
PseudoR2 0.003 0.004 0.005 0.003 0.005 0.007 0.005 0.008 0.013

In-hospital death bias addressed by coding these patientsyi = 0 & Decreasing mortality hazard bias addressed by
using an adjusted time-window
p 5% 5% 5% 10% 10% 10% 20% 20% 20%
α 1 2 3 1 2 3 1 2 3
los 0.013∗∗∗ 0.010∗∗∗ 0.008∗∗∗ 0.012∗∗∗ 0.007∗∗∗ 0.003∗∗∗ 0.009∗∗∗ 0.002∗∗∗ -0.004∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant -1.169∗∗∗ -1.123∗∗∗ -1.078∗∗∗ -1.163∗∗∗ -1.072∗∗∗ -0.989∗∗∗ -1.141∗∗∗ -0.975∗∗∗ -0.830∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Num. of obs. 1000000 1000000 10000001000000 1000000 10000001000000 1000000 1000000
PseudoR2 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000
Note. Probit model where the dependent variable is1(30-day post-discharge mortality). Standard errors in parentheses.+ p < 0.1, ∗ p< 0.05, ∗∗

p< 0.01, ∗∗∗ p< 0.001.

In TableA.2, we provide additional regression results where we apply each of the two adjustments separately. We

find that both adjustments make the coefficient estimates more positive, but the over-adjustment comes from addressing

the in-hospital death bias.

From these simulation results, we conclude that while thereare still biases in our coefficient estimates when intro-

ducing these adjustments, they are now in the direction which makes it more difficult to estimate the treatment effect

we are interested in. That is, the coefficients are biased in the positive direction, while we hypothesize that the treatment

effect will result in a negative coefficient estimate.
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Table A.2 Simulation Results 2: 30-Day Mortality

In-hospital death bias addressed by coding these patientsyi = 0 & Decreasing mortality hazard bias present
p 5% 5% 5% 10% 10% 10% 20% 20% 20%
α 1 2 3 1 2 3 1 2 3
los 0.012∗∗∗ 0.009∗∗∗ 0.007∗∗∗ 0.010∗∗∗ 0.005∗∗∗ 0.001∗ 0.004∗∗∗ -0.002∗∗∗ -0.008∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant -1.165∗∗∗ -1.116∗∗∗ -1.069∗∗∗ -1.145∗∗∗ -1.052∗∗∗ -0.967∗∗∗ -1.096∗∗∗ -0.933∗∗∗ -0.788∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Num. of obs. 1000000 1000000 10000001000000 1000000 10000001000000 1000000 1000000
PseudoR2 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

In-hospital death bias present& Decreasing mortality hazard bias addressed by using an adjusted time-window
p 5% 5% 5% 10% 10% 10% 20% 20% 20%
α 1 2 3 1 2 3 1 2 3
los -0.023∗∗∗ -0.027∗∗∗ -0.031∗∗∗ -0.024∗∗∗ -0.031∗∗∗ -0.037∗∗∗ -0.026∗∗∗ -0.038∗∗∗ -0.048∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000)

Constant -0.838∗∗∗ -0.782∗∗∗ -0.728∗∗∗ -0.835∗∗∗ -0.725∗∗∗ -0.623∗∗∗ -0.818∗∗∗ -0.617∗∗∗ -0.437∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Num. of obs. 866284 866284 866284 865871 865871 865871 864990 864990 864990
PseudoR2 0.003 0.003 0.004 0.003 0.004 0.006 0.003 0.006 0.010
Note. Probit model where the dependent variable is1(30-day post-discharge mortality). Standard errors in parentheses.+ p < 0.1, ∗ p< 0.05, ∗∗

p< 0.01, ∗∗∗ p< 0.001.

B. Additional Tables and Figures

Table A.3 Data Selection

Sample Observations % prior % initial
All Admissions in 2000-2011, except for Dec 2011 admits/discharges 186,472,400 NA 100.0%
Excluding overlapping admissions 159,674,712 85.6% 85.6%
Excluding post-acute care 133,056,603 83.3% 71.4%
Excluding stays with hospital transfers 118,681,435 89.2% 63.6%
Excluding those in facilities not paid under PPS 112,949,185 95.2% 60.6%
Excluding stays that are not FFS 111,499,586 98.7% 59.8%
Excluding non-AMI patients 2,457,542 2.2% 1.3%
Excluding those admitted within 30 days of prior admission’s discharge 2,365,168 96.2% 1.3%
Excluding hospitals with less than 25 visits 2,357,080 99.7% 1.3%
Excluding patients with inpatient service related discharge destinations 2,272,453 96.4% 1.2%
Excluding non-elderly admissions 2,033,282 89.5% 1.1%
Excluding those that left against medical advice 2,025,086 99.6% 1.1%
Excluding those with unknown race or not residing in the US 2,018,185 99.7% 1.1%
Excluding elective patients (including unknown elective status) 1,899,920 94.1% 1.0%
Excluding same day discharge 1,899,914 100.0% 1.0%
Excluding cost outliers 1,828,145 96.2% 1.0%
Excluding length of stays≥ the 99th percentile (20 days) 1,808,889 98.9% 1.0%
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Figure A.2 Sensitivity Analysis for the 30-day mortality mo del using predicted Saturday discharge as an IV.

(1) White area represents regime for δ and φ where the estimates for θ are negative and statisti-

cally significant at the 5% level. (2) Gray area represents re gime for δ and φ where the estimates

for θ are statistically not different than 0 at the 5% level. (3) Bl ack area represents regime for

δ and φ where the estimates for θ are positive and statistically significant at the 5% level. x ’s

represent δ and φ values for observed covariates.
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Figure A.3 Robustness of cost-effectiveness for keeping pa tients in the hospital an additional day, when

treatment effect is based on the all days of the week IV (Table 4 Col 4). Baseline benefits are

given by the value of living an additional month as estimated in Murphy and Topel (2006).
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Figure A.4 Robustness of cost-effectiveness for keeping pa tients in the hospital an additional day, when

treatment effect is based on the predicted Saturday dischar ge IV (Table 4 Col 4). Baseline benefits

are given by the value of living an additional month as estima ted in Murphy and Topel (2006).
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Table A.4: Full results for column 4 in Table 3

Coef. Robust Std. Err. p-value Coef. Robust Std. Err. p-value
Second stage First stage
log(los) -0.17 0.07 0.015 MonTue admit -0.05 0.00 0.000
DRG (before 2007) DRG (before 2007)

105 -0.05 0.27 0.844 105 -0.04 0.04 0.267
106 0.09 0.08 0.252 106 0.06 0.01 0.000
107 0.09 0.06 0.134 107 0.03 0.01 0.005
108 0.09 0.10 0.357 108 -0.06 0.02 0.001
109 0.10 0.12 0.412 109 -0.07 0.01 0.000
110 0.25 0.07 0.000 110 -0.60 0.01 0.000
111 0.04 0.14 0.772 111 -0.58 0.02 0.000
112 0.11 0.09 0.190 112 -0.74 0.01 0.000
113 1.16 0.12 0.000 113 0.03 0.04 0.425
114 0.77 0.18 0.000 114 -0.05 0.05 0.236
115 0.49 0.07 0.000 115 -0.35 0.01 0.000
116 0.06 0.08 0.447 116 -0.75 0.01 0.000
117 0.63 0.28 0.023 117 -0.63 0.09 0.000
118 0.46 0.16 0.005 118 -0.49 0.04 0.000
119 0.92 0.42 0.026 119 -0.45 0.18 0.014
120 0.85 0.07 0.000 120 -0.26 0.02 0.000
121 0.54 0.08 0.000 121 -0.72 0.01 0.000
122 0.40 0.08 0.000 122 -0.73 0.01 0.000
124 0.53 0.21 0.012 124 -0.68 0.05 0.000
125 0.04 0.28 0.885 125 -0.81 0.04 0.000
144 0.49 0.10 0.000 144 -0.84 0.02 0.000
145 0.50 0.15 0.001 145 -0.90 0.04 0.000
468 0.71 0.07 0.000 468 -0.14 0.02 0.000
476 0.47 0.20 0.022 476 0.05 0.04 0.285
477 0.52 0.09 0.000 477 -0.37 0.02 0.000
478 0.63 0.08 0.000 478 -0.31 0.02 0.000
479 0.10 0.38 0.794 479 -0.54 0.06 0.000
483 0.84 0.12 0.000 483 0.12 0.03 0.000
514 0.27 0.11 0.015 514 -0.18 0.02 0.000
515 0.51 0.12 0.000 515 -0.25 0.03 0.000
516 0.06 0.08 0.444 516 -0.76 0.01 0.000
517 -0.11 0.38 0.778 517 -0.79 0.04 0.000
518 0.47 0.45 0.289 518 -0.52 0.15 0.001
525 -0.06 0.38 0.879 525 -0.49 0.08 0.000
526 -0.05 0.08 0.502 526 -0.80 0.01 0.000
527 0.25 0.41 0.536 527 -0.79 0.04 0.000
535 0.13 0.08 0.101 535 -0.18 0.01 0.000
541 0.63 0.24 0.009 541 0.31 0.07 0.000
542 0.79 0.22 0.000 542 0.12 0.08 0.116
547 -0.07 0.07 0.361 547 0.09 0.01 0.000
551 0.34 0.08 0.000 551 -0.33 0.01 0.000
553 0.67 0.08 0.000 553 -0.29 0.02 0.000
555 0.06 0.08 0.458 555 -0.77 0.01 0.000
557 -0.10 0.08 0.235 557 -0.81 0.01 0.000

DRG ( after 2007) DRG ( after 2007)
3 0.41 0.20 0.045 3 0.25 0.07 0.001
4 1.20 0.20 0.000 4 0.28 0.09 0.002
216 0.15 0.10 0.112 216 0.19 0.02 0.000
217 0.11 0.16 0.501 217 0.24 0.03 0.000
219 0.04 0.38 0.919 219 0.14 0.08 0.099
220 0.74 0.45 0.102 220 0.12 0.12 0.326
222 0.36 0.09 0.000 222 -0.02 0.02 0.380
223 -0.34 0.21 0.103 223 -0.29 0.02 0.000
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226 0.57 0.16 0.000 226 -0.12 0.03 0.000
227 -0.05 0.41 0.902 227 -0.44 0.06 0.000
228 -0.49 0.34 0.145 228 0.22 0.03 0.000
229 -0.29 0.35 0.408 229 0.15 0.03 0.000
231 0.16 0.13 0.215 231 0.21 0.02 0.000
232 -0.07 0.16 0.658 232 0.20 0.02 0.000
233 0.08 0.08 0.270 233 0.28 0.02 0.000
234 -0.04 0.08 0.587 234 0.20 0.02 0.000
235 0.37 0.16 0.022 235 0.22 0.03 0.000
236 -0.07 0.25 0.792 236 0.12 0.02 0.000
237 0.47 0.07 0.000 237 -0.41 0.02 0.000
238 0.28 0.09 0.002 238 -0.59 0.02 0.000
239 1.08 0.25 0.000 239 0.38 0.06 0.000
242 0.54 0.08 0.000 242 -0.18 0.02 0.000
243 0.32 0.10 0.001 243 -0.31 0.02 0.000
244 0.29 0.15 0.054 244 -0.43 0.03 0.000
245 0.99 0.27 0.000 245 -0.38 0.08 0.000
246 0.25 0.07 0.001 246 -0.54 0.02 0.000
247 -0.20 0.09 0.018 247 -0.88 0.02 0.000
248 0.36 0.07 0.000 248 -0.49 0.02 0.000
249 -0.04 0.08 0.607 249 -0.83 0.02 0.000
250 0.51 0.08 0.000 250 -0.46 0.02 0.000
251 0.04 0.09 0.636 251 -0.81 0.02 0.000
252 0.69 0.08 0.000 252 -0.16 0.02 0.000
253 0.42 0.14 0.003 253 -0.40 0.04 0.000
254 0.19 0.41 0.645 254 -0.67 0.07 0.000
255 0.89 0.36 0.014 255 0.24 0.09 0.006
256 1.00 0.54 0.064 256 -0.02 0.29 0.950
258 0.58 0.28 0.040 258 -0.31 0.08 0.000
260 1.09 0.42 0.010 260 -0.14 0.15 0.376
261 0.92 0.55 0.093 261 -0.27 0.18 0.122
264 0.85 0.09 0.000 264 -0.16 0.03 0.000
280 0.73 0.07 0.000 280 -0.56 0.02 0.000
281 0.43 0.08 0.000 281 -0.75 0.02 0.000
282 0.26 0.09 0.004 282 -0.90 0.02 0.000
286 0.35 0.29 0.236 286 -0.45 0.08 0.000
314 0.72 0.11 0.000 314 -0.63 0.04 0.000
315 0.59 0.14 0.000 315 -0.80 0.04 0.000
316 0.55 0.16 0.001 316 -0.87 0.05 0.000
981 0.77 0.10 0.000 981 0.06 0.03 0.040
982 0.69 0.21 0.001 982 -0.15 0.06 0.015
983 0.84 0.37 0.023 983 -0.68 0.12 0.000
984 0.88 0.33 0.008 984 0.18 0.09 0.055
987 0.76 0.12 0.000 987 -0.08 0.04 0.042
988 0.16 0.23 0.491 988 -0.26 0.06 0.000

Elixhauser 1 0.23 0.01 0.000 Elixhauser 1 0.22 0.00 0.000
Elixhauser 2 0.04 0.01 0.000 Elixhauser 2 0.07 0.00 0.000
Elixhauser 3 0.04 0.01 0.000 Elixhauser 3 0.05 0.00 0.000
Elixhauser 4 -0.01 0.01 0.495 Elixhauser 4 0.02 0.00 0.000
Elixhauser 5 0.05 0.01 0.000 Elixhauser 5 -0.01 0.00 0.004
Elixhauser 6 -0.13 0.00 0.000 Elixhauser 6 -0.04 0.00 0.000
Elixhauser 7 0.57 0.02 0.000 Elixhauser 7 0.23 0.01 0.000
Elixhauser 8 0.17 0.01 0.000 Elixhauser 8 -0.01 0.00 0.000
Elixhauser 9 0.08 0.01 0.000 Elixhauser 9 0.09 0.00 0.000
Elixhauser 10 0.03 0.00 0.000 Elixhauser 10 0.01 0.00 0.000
Elixhauser 11 0.07 0.01 0.000 Elixhauser 11 0.12 0.00 0.000
Elixhauser 12 -0.06 0.01 0.000 Elixhauser 12 -0.02 0.00 0.000
Elixhauser 13 0.19 0.01 0.000 Elixhauser 13 0.05 0.00 0.000
Elixhauser 14 0.13 0.02 0.000 Elixhauser 14 -0.03 0.01 0.000
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Elixhauser 15 -0.05 0.02 0.047 Elixhauser 15 0.06 0.01 0.000
Elixhauser 16 0.23 0.13 0.073 Elixhauser 16 0.07 0.04 0.055
Elixhauser 17 0.25 0.02 0.000 Elixhauser 17 0.04 0.01 0.000
Elixhauser 18 0.57 0.01 0.000 Elixhauser 18 0.05 0.01 0.000
Elixhauser 19 0.32 0.01 0.000 Elixhauser 19 0.03 0.00 0.000
Elixhauser 20 0.03 0.01 0.036 Elixhauser 20 0.03 0.00 0.000
Elixhauser 21 0.08 0.01 0.000 Elixhauser 21 0.11 0.00 0.000
Elixhauser 22 -0.13 0.01 0.000 Elixhauser 22 0.00 0.00 0.088
Elixhauser 23 0.45 0.01 0.000 Elixhauser 23 0.21 0.00 0.000
Elixhauser 24 0.20 0.01 0.000 Elixhauser 24 0.13 0.00 0.000
Elixhauser 25 0.05 0.02 0.028 Elixhauser 25 0.23 0.00 0.000
Elixhauser 26 -0.04 0.02 0.013 Elixhauser 26 0.11 0.00 0.000
Elixhauser 27 0.00 0.02 0.999 Elixhauser 27 0.09 0.01 0.000
Elixhauser 28 0.06 0.03 0.066 Elixhauser 28 0.22 0.01 0.000
Elixhauser 29 0.17 0.02 0.000 Elixhauser 29 0.15 0.01 0.000
Elixhauser 30 0.10 0.01 0.000 Elixhauser 30 0.04 0.00 0.000
Elixhauser 31 -0.10 0.01 0.000 Elixhauser 31 0.02 0.00 0.000
Age spline 1 0.02 0.00 0.000 Age spline 1 0.01 0.00 0.000
Age spline 2 0.03 0.00 0.000 Age spline 2 0.01 0.00 0.000
Age spline 3 0.03 0.00 0.000 Age spline 3 0.00 0.00 0.000
Age spline 4 0.02 0.00 0.000 Age spline 4 -0.01 0.00 0.000
Female -0.01 0.01 0.064 Female 0.05 0.00 0.000
Race Race

Black -0.04 0.01 0.000 Black 0.06 0.00 0.000
Hispanic -0.03 0.02 0.082 Hispanic 0.02 0.00 0.000
Other -0.10 0.01 0.000 Other 0.02 0.00 0.000

Surgery -0.12 0.01 0.000 Surgery 0.12 0.00 0.000
Intensive care use Intensive care use

No 0.02 0.02 0.379 No -0.16 0.01 0.000
General 0.02 0.02 0.428 General -0.02 0.01 0.001
Surgery 0.03 0.03 0.177 Surgery -0.03 0.01 0.000
Medical 0.02 0.02 0.372 Medical -0.01 0.01 0.338
Intermediate 0.02 0.02 0.416 Intermediate 0.03 0.01 0.000

Adm month Adm month
2 0.00 0.01 0.807 2 0.00 0.00 0.939
3 -0.02 0.01 0.050 3 -0.01 0.00 0.003
4 -0.03 0.01 0.001 4 -0.03 0.00 0.000
5 -0.03 0.01 0.001 5 -0.04 0.00 0.000
6 -0.03 0.01 0.000 6 -0.04 0.00 0.000
7 -0.02 0.01 0.024 7 -0.04 0.00 0.000
8 -0.03 0.01 0.001 8 -0.04 0.00 0.000
9 -0.02 0.01 0.030 9 -0.04 0.00 0.000
10 -0.01 0.01 0.188 10 -0.03 0.00 0.000
11 -0.03 0.01 0.014 11 -0.03 0.00 0.000
12 -0.02 0.01 0.092 12 -0.04 0.00 0.000

Adm year Adm year
2001 0.02 0.01 0.071 2001 -0.02 0.00 0.000
2002 0.04 0.01 0.000 2002 -0.03 0.00 0.000
2003 0.06 0.01 0.000 2003 -0.04 0.00 0.000
2004 0.07 0.01 0.000 2004 -0.06 0.00 0.000
2005 0.08 0.01 0.000 2005 -0.08 0.00 0.000
2006 0.08 0.01 0.000 2006 -0.11 0.00 0.000
2007 0.06 0.02 0.000 2007 -0.15 0.01 0.000
2008 0.04 0.02 0.100 2008 -0.18 0.01 0.000
2009 0.03 0.03 0.183 2009 -0.22 0.01 0.000
2010 0.01 0.03 0.635 2010 -0.26 0.01 0.000
2011 -0.02 0.03 0.533 2011 -0.33 0.01 0.000

Hospital FE (over 3000) Hospital FE (over 3000)
smallest coef -0.99 0.35 0.005 smallest coef -0.74 0.22 0.001
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largest coef 1.21 0.38 0.002 largest coef 0.52 0.06 0.000
Constant -2.28 0.19 0.000 Constant 2.04 0.02 0.000
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