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Many service systems have servers with different capabilities and customers with varying needs. One common way this

occurs is when servers are hierarchical in their skills or inthe level of service they can provide. Much of the literature

studying such systems relies on an understanding of the relative costs and benefits associated with serving different

customer types by the different levels of service. In this work, we focus on estimating these costs and benefits in a complex

healthcare setting where the major differentiation among server types is the intensity of service provided. Step Down

Units (SDUs) were initially introduced in hospitals to provide an intermediate level of care for semi-critically ill patients

who are not sick enough to require intensive care but not stable enough to be treated in the general medical/surgical

ward. One complicating factor is that the needs of customersis sometimes uncertain – specifically, it is difficult to know

a priori which level of care a particular patient needs. Using data from 10 hospitals from a single hospital network, we

take a data-driven approach to classify patients based on severity and empirically estimate the clinical and operational

outcomes associated with routing these patients to the SDU.Our findings suggest that an SDU may be a cost-effective

way to treat patients when used for patients who are post-ICU. However, the impact of SDU care is more nuanced for

patients admitted from the emergency department (ED) and may result in increased mortality risk and hospital LOS for

patients who should be treated in the ICU. Our results imply that more study is needed when using SDU care this way.

Key words: healthcare, empirical operations management, congestion, quality of service

1. Introduction
Hospitals are responsible for the largest component of national health care expenditures and are therefore

under pressure from government and private payers to becomemore cost efficient (Centers for Medicare

& Medicaid Services 2016). Traditionally, inpatient care at hospitals had been defined by two levels of

care: Intensive care units (ICUs) and general medical/surgical wards (wards). With one nurse per one or

two patients, ICUs provide the highest level of care and are very costly to operate, with annual costs in the
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U.S. between $121 and $263 billion (i.e., 17.4%-39% of totalhospital costs (Coopersmith et al. 2012)).

In an effort to mitigate critical care costs, Step-down units (SDUs), sometimes called transitional care or

intermediate care units, have been used to provide an intermediate, third level of care for semi-critically

ill patients who are not severe enough to require intensive care but not stable enough to be treated in the

ward. SDUs typically have one nurse per three to four patients and are generally less expensive to operate

than ICUs primarily due to lower nurse-to-patient ratios. On the other hand, SDUs are more expensive than

general wards where there are, generally, about 6 patients per nurse. With the use of SDUs becoming more

widespread, it is of growing importance for hospital administrators and healthcare providers to have a better

understanding of the benefits and best practices associatedwith using this intermediate level of care.

At a conceptual level, the hospital and ICU/SDU/ward systemcan be thought of as a general service

system with three levels of service and heterogenous customers. The levels are nested, in the sense that the

lowest level (ward) has the least capabilities and can only provide service to a subset of customers (patients);

the second level (SDU) can provide service to the lowest level customers plus additional customers with

greater needs; and the highest level (ICU) can provide service (theoretically) toall customers. Due to higher

staffing levels as well as specialized equipment, higher levels of care are more costly to provide. It is of

interest to understand whether such a structure is beneficial and, if so, how to best utilize the different

levels of service. This is more challenging when there is uncertainty concerning which customers are best

served at each level, making it very difficult to evaluate thecost-benefit tradeoffs. The ultimate goal is to

understand effective management of such a service system, including capacity management of each level of

service, when and how to route customers, as well as how to classify customers and identify their needs for

the different levels of service.

There has been a considerable amount of research into capacity management of service systems and the

development of routing policies to different service types(e.g.Wallace and Whitt(2005), Gurvich et al.

(2008) among many others). Such issues have been studied in various service settings including call-centers

(e.g.Gans et al.(2003)), hospitals (e.g.Armony et al.(2017), Best et al.(2015)), cloud-computing (e.g.

Maguluri et al.(2012)), among many others. A common assumption in these works is ageneral understand-

ing of the relative costs and benefits associated with different customer groups receiving service from the

various server types. Yet, in some contexts these relative costs and benefits may not be known. Specifi-

cally, the needs of customers may be uncertain prior to starting service. In this work, our goal is to gain

an understanding of how best to use different levels of service to serve customers with uncertain needs by

empirically examining how different customer groups are impacted by being served at differing levels. We

examine this question in a healthcare context–the SDU.

There is a lack of consensus in the medical community surrounding the use of SDUs as well as a lack of

substantive evidence concerning their effectiveness. Still, many hospitals have SDUs and others are consid-

ering introducing these units. Even within a single hospital, the use of SDUs is generally not standardized.



3

Therefore, it is very important to understand their value and how they can best be used. This paper examines

whether or not SDUs are associated with improved operational and/or clinical outcomes for different types

of patients. In this context, the aforementioned costs and benefits are not necessarily financial in nature. For

instance, they can correspond to deteriorations or improvements in patient outcomes. Such analysis can pro-

vide insights into how the nested levels of care structure could be used to treat patients with differentiated

service requirements and potentially lower hospital operating costs without sacrificing patient outcomes.

Given the increasing pressures for hospitals to reduce costs and improve quality, such insights can be very

valuable to hospital administrators. More broadly, this analysis may also provide insights into the analysis

and management of other service systems with different levels of care (e.g., call-centers).

To the best of our knowledge, our work is the first to conduct a multi-hospital study to empirically

examine the role of an SDU for patients who are discharged from the ICU as well as those who are admitted

from the Emergency Department (ED). Our analyses are based on recent data from Kaiser Permanente

Northern California, an integrated health care delivery system serving 3.6 million members that operates 21

hospitals, some of which do and some of which do not have SDUs.The cohort and type of data we employ

have been described in previous studies (seeEscobar et al.(2013), Kim et al. (2015) among others). Our

data source is based on nearly 170,000 hospitalizations in atotal of 10 hospitals over a course of one and

half years. Each of the 10 hospitals in our study has an ICU andSDU, though the number of beds in each

of the units varies across hospitals.

There are a number of challenges which arise when trying to understand the impact of SDU care on

patient outcomes. One challenge is that there are limited studies regarding its efficacy and, more specifically,

which patients can be safely admitted to the SDU (Nasraway et al. 1998). While there is some evidence

that some ICU patients who are at low risk of needing life support could be given less intensive care in an

SDU with no impact on outcomes (e.g.Zimmerman et al.(1995)), there is also evidence that some critical

care patients who are treated in SDUs or general wards instead of the ICU are worse off (e.g.Simchen et al.

(2004)). As such, it seems that there are patients who may benefit from being cared for in an SDU rather

than in a general ward, while others who are treated in an SDU rather than an ICU may suffer adverse

consequences. An important empirical challenge is to be able to classify patients in order to accurately

assess the impact of SDU admission on patient outcomes. To that end, we initially segregate patients who

are candidates for SDU care into two broad groups: those who are discharged from the ICU and those who

are admitted to an inpatient unit from the ED. Taking a data-driven approach, we then stratify patients from

the ED into high and low severity groups.

In developing an understanding of SDUs, we face an importantestimation challenge. The SDU admission

decision may be affected by health factors which are known tothe physician at the time of the decision,

but are unobservable in the data. For instance, a patient’s physical appearance (i.e. whether he/she appears

ashen or pale) may provide evidence of early shock. Thus, a physician may determine that, despite relatively
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stable vital signs and lab scores, a patient who is pale and sweating will benefit from SDU care relative

to being sent to the general medical ward. But because the patient is more critical than the average ward

patient, he/she is also more likely to have worse outcomes. Similarly, it may be more appropriate to admit

a patient to the ICU if he is cognitively impaired and not lucid. Thus, patients who are admitted to the SDU

instead of the ICU may be healthier by unobservable measures. Ignoring this potential endogeneity could

result in biased estimates. To address this challenge, we utilize an instrumental variable approach to identify

the desired effects.

Our empirical findings suggest that SDU care is associated with substantial improvements in various

patient outcomes for patients discharged from the ICU as well as low severity patients being admitted from

the ED. However, we find that SDU admission is associated withworse outcomes for high severity patients

coming from the ED. Our results suggest that when SDUs are used as originally intended, as intermediary

units for post-ICU care, they may result in improved outcomes relative to ward care. However, if hospital

administrators wish to expand the use of SDUs beyond post-ICU care, it is important to be able to classify

which patients should or should not be treated in the SDU. More generally, our findings highlight the

importance of being able to accurately classify customers and to quantify the (dis)utility associated with

different service capabilities when considering routing decisions.

The rest of the paper is organized as follows. We conclude this section with a brief summary of related

papers in the literature. In Section2, we introduce our study setting and describe our data, including the two

patient cohorts we study. In Section3, we describe our econometric model for our first cohort of patients–

those being discharged from the ICU. The estimation resultsfor this cohort is provided in Section4. Section

5 describes how we partition patients who are admitted from the ED into high and low severity patients and

then discusses the econometric model we use for these patients. Results for these patient types are provided

in Section6. Section7 provides concluding remarks as well as discussions for future research.

1.1. Literature Review

Our work is related to existing literature in both the operations management and medical communities.

Within the operations literature, our work is related to three streams of research: 1) management of general

service systems, 2) management of healthcare operations, and 3) empirical analysis of healthcare operations.

There has been a large body of literature examining how to route customers to servers with different

skill sets (see the survey articleGans et al.(2003) and the references therein). Research in this area has

considered customer prioritization (e.g.,Mandelbaum and Stolyar(2004) andGurvich and Whitt(2009)),

customer routing (e.g.,Bell and Williams(2001) andTezcan and Dai(2010)), and staffing (e.g.,Wallace

and Whitt(2005) andGurvich and Whitt(2010)). Additionally, there have been a number of works studying

service settings with different levels of service. In call-centers, one can consider human servers as providing

more intense and costly service than chat-room or automatedresponse systems (e.g.Gans et al.(2003),
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Tezcan and Behzad(2012), Luo and Zhang(2013), Tezcan and Zhang(2014)). Maglaras and Zeevi(2005)

considers pricing, admission control, and the design of a mechanism to relay congestion information in a

system where servers can provide either a guaranteed service rate or a best-effort service rate. In call center

settings, VIP customers often require a higher level of service than the typical customer, raising questions

on how to route customers to various servers (e.g.Gans et al.(2003)). Such features also arise in healthcare

settings including the SDU we study in this paper.Chan et al.(2013) considers how to prioritize burn-

injured patients for treatment in hospitals with burn-units which provide the specialized, intense therapies

(e.g. skin grafting surgeries) required for severely burned patients versus other hospitals with less intense

treatment capabilities.

The nested structure of the different levels of care we examine in the hospital setting bears similarities

to the gate-keeper literature (e.g.Shumsky and Pinker(2003), Hasija et al.(2005), Lee et al.(2012)) where

the specialist is able to provide services the gate-keeper is not able to. However, in contrast to this literature,

in our setting, the lowest level of service does not make the decision to route customers to higher levels of

service as in the gate-keeper literature. The nested structure is also related to the classic toll-booth problem

considered inEdie(1954) as certain lanes can serve all types of vehicles, while others can only serve a subset

of them (e.g.Green(1985)). Rather than having a central planner making routing decisions for customers

whose needs may be unknown to him/her, in the toll-booth problem, the customers know their needs and

self-direct to servers.

There are a number of papers which utilize stochastic modeling and queueing approaches to study

resource allocation in hospital settings (e.g.Mandelbaum et al.(2012), Shi et al.(2014), Huang et al.(2015),

Huh et al.(2013), Barz and Rajaram(2015)). In all of these works, the focus is on admitting patients with

heterogeneous needs to different unitswithin the same level of care. That is, servers are interchangeable. In

contrast, our work considers the impact of admitting patients todifferent levels of care. In doing so, we are

able to capture heterogeneous service requirements of customers (patients) as well as the various levels of

service (care).

There has been a growing body of work in healthcare operations management using mathematical models

to manage heterogeneous patients in systems with differentiated server types.Best et al.(2015) examines

how to determine the amount of flexibility allowed in hospital wings in order to minimize costs associated

with lack of access to care.Dai and Shi(2017) uses an approximate dynamic programming approach to

determine how to allocate patients to primary and non-primary units.Armony et al.(2017) uses fluid and

diffusion models to determine allocation among expensive resources (ICU beds) that can be used to treat all

patient types rather than cheaper resources (SDU beds) thatcan only treat a subset of patients. An underlying

assumption in all of these works is that, in addition to a patient’s type, the relative costs (i.e. degradation

of patient outcomes) to treat that patient in different types of units are known. Our aim is to provide a
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framework to classify patients as well as to provide rigorous, quantitative estimates of the outcomes for

patients treated in an SDU.

As we take an empirical approach to quantify the costs/benefits of treating patients in the SDU, our work

is closely related to papers in the empirical operations management literature, especially those focused on

healthcare settings.Jerath et al.(2015) empirically estimates how customers’ service needs impact their

preferences to use different types of service channels wheninteracting with a health insurance call center.

In hospital settings,Stowell et al.(2013), Kim et al. (2015), Kuntz et al.(2016) take an empirical approach

to explore the impact of admitting patients to different types of hospital units on patient outcomes. While

these works highlight the undesirability of ‘off-placement’, Wang et al.(2016) explicitly considers how

information on hospital (server) quality needs to be patient-specific. As such, while hospitals are capable

of treating all different types of patients, which is similar to the SDU, the costs/benefits associated with

being treated at a specific hospital are quite varied. Unfortunately, it is not always possible to treat patients

at the most appropriate hospital or hospital unit. Congestion is a common reason for this lack of access to

care. There have been a number of studies examining the impact of congestion and lack of access to care

on patient outcomes (e.g.Kc and Terwiesch(2012), Kuntz et al.(2015), Berry Jaeker and Tucker(2016),

among others).Batt and Terwiesch(2017) andFreeman et al.(2016) empirically examine how less or more

skilled servers can be used to treat some patients during congested periods. In a similar vein, we examine

how treating different patient types in an SDU, which is a higher level of care than the ward, but lower than

the ICU, impacts their outcomes.

There is a lack of consensus within the medical community about the role of the SDU. Those who

advocate the use of SDUs see them as an alternative to either maintaining larger ICUs or jeopardizing patient

care due to premature, demand-driven, discharge of patients from ICUs to general care units. As the name

suggests, the initial role of SDUs was to serve as a transition for patients after being discharged from the

ICU. In practice, SDUs are often used to treat other patients, for example, those who might have gone to an

ICU but were blocked because the ICU was full. In general, theuse of SDUs has evolved without substantial

evidence as to their benefits and what their role should be. Onone hand, some studies argue that SDUs are

a cost-effective approach to treat patients by providing a safe and less expensive environment for patients

who are not quite sick enough to require treatment in the ICU,but not quite stable enough to be treated in

the ward. Without an SDU, most of these patients end up being cared for in the ICU.Byrick et al. (1986)

suggests that the use of the SDU could alleviate ICU congestion by reducing ICU length-of-stay (LOS)

without increasing mortality rates. This reduction is possible because patients do not have to reach as high

a level of stability to be discharged to an SDU rather than to ageneral medical-surgical ward. Other studies

that have shown the cost-effectiveness of an SDU includeHarding(2009), Stacy(2011), andTosteson et al.

(1996). On the other hand, a survey of studies on SDUs raises doubtsabout these benefits and argues that

there is not enough evidence of cost-effectiveness (Keenan et al. 1998). While we do not explicitly consider
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the cost-effectiveness of SDUs (due to lack of detailed financial data), our study provides some insight

into these questions by providing rigorous and robust estimates to the effectiveness of SDUs for patients of

varying types. At a high-level, one can project ordinal costestimates due to the lower (higher) staffing levels

in the SDU versus the ICU (ward). From a methodological standpoint, our study differentiates itself in that

the majority of these studies are conducted exclusively within a single hospital, whereas our study utilizes

data from 10 different hospitals. Additionally, rather than conducting a before-and-after study, which may

be limited by the inability to control for temporal changes such as staffing changes or closures of nearby

hospitals, we utilize an instrumental variable approach toidentify the impact of different care pathways

(going to the SDU versus ward following ICU discharge as wellas going to the SDU versus ward or ICU

upon hospital admission from the ED). Our multi-center study provides compelling evidence that there are

some patients for whom SDU care is associated with improved clinical outcomes, while there are others for

whom SDU care is associated with worse clinical outcomes. Assuch, our results suggest that it would be of

value for the medical community to focus more attention on developing an understanding of which patients

would or would not benefit from SDU care at hospitals of varying patient mix and resource availability.

More broadly, our results suggest that one must be prudent when introducing multiple levels of service in

service systems with highly heterogeneous customers as there can be substantial variation in the costs and

benefits associated with (incorrectly) routing customers to these servers.

Our estimation approach utilizes an instrumental variablewhich is based on an operational measure–

congestion in an inpatient unit–as has been done inKim et al. (2015) andKc and Terwiesch(2012), among

others. While the general methodology is similar, the question we are considering is wholly different. The

aforementioned works focus on the ICU, while our focus is on the SDU. From an operational standpoint,

it is of value to develop an understanding of how servers withlower costs due to lower staffing levels

(SDUs) may be used to serve heterogeneous customers. Additionally, from the viewpoint of clinicians and

hospital administrators, these units are fundamentally different in their use and role. As a customer’s type

and, subsequently, his service requirements are not alwaysobservable to managers of the service system,

it can be challenging to estimate the costs and benefits associated with being served by particular server

types. This challenge arises in the SDU setting because theyserve as the site of intermediate care between

the ICU and the ward; that is, there are risks of adverse consequences in admitting a patient to the SDU who

actually needs ICU care, as well as benefits to admitting patients who might be too sick for the ward. As

such, we first take a data-driven approach to help classify customers (patients) before estimating the impact

of SDU care on patient outcomes.
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2. Setting and Data

We utilize patient data from 10 hospitals from Kaiser Permanente Northern California1, containing 165,948

hospitalizations over a course of one and a half years. We note that even within the Kaiser Permanente

Northern California system, there is no consensus on how to use SDUs. Thus, some hospitals have SDUs,

while others do not.

Our data contains operational and patient level information. Operational level information includes every

unit to which a patient is admitted during his hospital stay along with the date and time of admission

and discharge for each unit. Our objective in this work is to understand the impact of service by flexible

servers (SDU care) on heterogeneous customer (patient) types. Table1 summarizes the distribution of where

patients come from immediately preceding their SDU visit. Over 78% of patients in the SDU come from the

ED or ICU. As such, our analysis will focus on these two patient cohorts. Specifically, we will focus on how

transfer to the SDU impacts patients who are admitted to an inpatient unit from the ED as well as patients

who are discharged from the ICU to lower levels of care. Figure 1 depicts these two transfer decisions that

will be the heart of our empirical investigation. Given the contrasting routes to the SDU of these patients, it

is reasonable to assume the impact of SDU care may differ substantially and our objective is to rigorously

estimate the treatment effect of SDU care for these heterogeneous patient types.

Table 1 Distribution of Units Preceding the SDU

Unit Preceding SDU Percentage
ED 60.93%
ICU 17.11%
Ward 13.88%

Post-Anesthesia Recovery Unit (PAR) 4.25%
Operating Room (OR) 3.58%

Other/Unknown 0.25%

For each inpatient unit in each hospital, we use these patient flow data to derive hourly occupancy levels

and we define its capacity as the maximum occupancy level overthe time horizon of our study. Table2

summarizes the capacity for each of the different levels of inpatient care in each hospital. While each level

of care may have further divisions based on specific services, e.g. medical versus surgical ICU, clinicians

and administrators at the study hospitals indicate that it is widely accepted practice at their hospitals to

consider the boundaries as somewhat fluid in the sense that ifa medical service patient requires ICU care,

but there are no medical ICU beds available, he will likely becared for in the surgical ICU. We observe

substantial heterogeneity across these hospitals; the SDUcapacity varies from 11 to 32 beds and the number

of ICU beds in a given hospital ranges from one half to twice the number in the SDU.

1 This project was approved by the Kaiser Permanente NorthernCalifornia Institutional Review Board for the Protection of Human
Subjects, which has jurisdiction over all study hospitals,and the Columbia University Institutional Review Board forthe Protection
of Human Subjects.
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Figure 1 Types of Admission Decisions
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Table 2 Capacity of Various Inpatient Units in terms of numbe r of beds

Hosp ICU SDU Ward
1 11 24 61
2 11 25 76
3 16 14 77
4 16 19 76
5 16 24 78
6 23 19 124
7 24 20 145
8 26 27 110
9 31 11 188
10 32 32 100

Our dataset also contains information about patient characteristics such as age, gender, admitting diagno-

sis and three different severity scores. One score (LAPS2) is based on lab results taken 72 hours preceding

hospital admission and the second (COPS2) is based on comorbidities, such as diabetes, that may compli-

cate patient recovery. These severity scores are assigned at hospital admission and are not updated during

the hospital stay (more details on these scores can be found in Escobar et al.(2008, 2013)). The third

severity score is the simplified acute physiology score 3 (SAPS3), which is a common severity score used

exclusively for ICU patients (see, e.g,Strand and Flaatte(2008), Mbongo et al.(2009), Christensen et al.

(2011)).

2.1. Data Selection

Since we study two different transfer decisions (from the EDand from the ICU), we form two separate

patient cohorts: an ICU Cohort and an ED Cohort. Our data selection process is depicted in Figure2.

Because we use the patient flow data to determine the occupancy level (and capacity) for each unit, we

first restrict both of our cohorts to the 12 months in the center of the 1.5 year time period in order to avoid

censored estimates. A patient’s admission category is defined as a combination of whether or not they were

admitted through the ED, and whether they were admitted to a medical or surgical service resulting in 4

categories: ED-medical, ED-surgical, non-ED-medical, ornon-ED-surgical. We primarily focus on patients
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who are admitted via the ED to a medical service for two major reasons. First, this group is the largest,

consisting of about 60% of the patients treated in these hospitals, and is similar to the cohort considered

in Kim et al. (2015). Second, the care pathways of surgical patients tend to be fairly standardized (e.g.

Gustafsson et al.(2011), Lassen et al.(2013), Miller et al. (2014), Thiele et al.(2015) among many other),

especially for non-ED-surgical patients, which is the larger of the two surgical groups. In contrast, the care

pathways of ED-medical patients are more variable. It is this variability we will leverage in our identification

strategy (see Sections3 and5).

Figure 2 Data Selection

Total hospitalizations: 

165,948*

Admitted during the 1-year 

period: 130,698

Admitted as ED-Medical: 

77,418

Admitted to 

ICU/SDU/Ward after 

1st ED: 74,085**

Out-of-hospital or non-

ICU/SDU/Ward units: 

3,333 (4.30%)

Admitted as Surgical or non-

ED patients: 53,280 

(40.77%)

Admitted outside the study 

period: 35,250 (21.24%)

Admitted to ICU at 

least once: 14,996

Admitted to 

Ward/SDU after

1st ICU : 11,058**

Never admitted to ICU:

62,422 (80.63%)

Out of hospital or non

Ward/SDU units :

3,938(26.26%)

* to determine capacity and occupancy

** patient cohorts used in our econometric model

ICU Cohort

ED Cohort

2.1.1. ICU Cohort Many SDUs are designed as true ‘step-down units’, where patients can only be

admitted following ICU discharges (e.g.Eachempati et al.(2004)). Moreover, the ICU is the second most

frequent unit from which SDU patients are transferred. Thus, our first cohort considers patients discharged

from the ICU to either the SDU or ward. To form the ICU Cohort, we consider patients who are admitted

to the ICU at least once during their hospital stay. For each patient, we focus on the initial ICU admission
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within each hospitalization. We exclude patients who die inthe ICU or are discharged directly home from

the ICU, since there is no decision about whether to route these patients to the SDU or ward following ICU

discharge2.

2.1.2. ED Cohort Over 60% of SDU patients are admitted from the ED. For these patients, we consider

the ED to inpatient unit admission decision. The three possible units a patient can be admitted to are the

ICU, the SDU, or the Ward. We exclude the less than 5% of ED-medical patients who go directly to the

Operating Room (OR) or Post-Anesthesia Recovery unit (PAR)from the ED.

Table3 provides some summary statistics of these two cohorts. The SDU introduces a third level of care

that, ideally, will be used to treat moderate to low severitypatients, but not high severity patients. Our goal

is to understand how service in this unit impacts quality of service, as measured by patient outcomes across

different patient types. In doing so, we can gain a better understanding of the costs and benefits associated

with utilizing a three levels of care structure to provide service to heterogenous customers.

Table 3 Summary Statistics of Patient Demographics

ED Cohort ICU Cohort
Variable mean std min max mean std min max
Age 67.68 17.53 18 111 68.13 15.91 18 105
Male 0.47 0.50 0 1 0.55 0.50 0 1
LAPS2 74.70 37.35 0 272 75.13 49.10 0 262
COPS2 46.18 44.21 0 290 46.63 44.61 0 267
SAPS3 N/A 45.41 11.79 15 100
ED LOS (hrs) 1.46 2.20 0.02 118.68 1.57 2.73 0.02 118.68
Total LOS (hrs) 108.89 162.71 0.90 13138.50235.53 362.38 6.20 13138.50
ICU LOS (hrs) N/A 61.87 84.75 0.02 2279.17
LOS before ICU (hrs) N/A 32.99 108.88 0 4877.58
Note: LAPS2 is a severity score based on lab results taken 72 hours preceding hospital admission.
COPS2 is a severity score based on comorbidities. SAPS3 is a severity score used for ICU patients.

2.2. Patient Outcomes

We consider four patient outcomes: (1) in-hospital death (Mortality), (2) remaining hospital length-of-stay

(HospRemLOS), (3) hospital readmission (HospReadm), and (4) ICU readmission (ICUReadm) for

ICU patients.

The outcomeHospRemLOS is defined as the remaining time spent in the hospital following the transfer

decision. Thus, for patients in the ED Cohort, this will be their total inpatient LOS; for patients in the ICU

Cohort, this will be the remaining time spent in the hospitalfollowing ICU discharge.

HospReadm2w is defined as hospital readmission within two weeks after leaving the hospital (e.g., see

Doran et al.(2013) andOuanes et al.(2012) which use these durations). In calculating hospital readmission

2 We consider analysis including these patients in our robustness checks.
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rates, we exclude patients with in-hospital death. We also do robustness checks for different time windows

for hospital readmission.

Following Brown et al.(2013) which aims to define reasonable time windows for ICU readmission, we

considerICUReadm2d (ICUReadm5d) which indicate ICU readmission within two (five) days following

ICU discharge. This measure is studied only for the ICU Cohort. We also do robustness checks for different

time windows for ICU readmission.

Table4 summarizes these patient outcomes for the two cohorts.

Table 4 Summary Statistics of Patient Outcomes: Mean (Numbe r of observations or standard deviation for

continuous variables)

ED Cohort ICU Cohort
ICU SDU Ward SDU Ward

Outcome mean (N/std) mean (N/std) mean (N/std)mean (N/std) mean (N/std)
Mortality 0.12 (8,630) 0.04 (14,832) 0.03 (50,623)0.06 (3,832) 0.07 (7,226)

HospRemLOS (days) 6.67 (11.51) 4.23 (5.89) 4.05 (5.79) 7.24 (14.76) 5.13 (10.91)
HospReadm - 2 weeks0.12 (7,629) 0.11 (14,269) 0.10 (49,206)0.14 (3,585) 0.13 (6,685)
ICUReadm - 2 days N/A 0.04 (3,832) 0.05 (7,226)
ICUReadm - 5 days N/A 0.08 (3,832) 0.06 (7,226)

2.3. Hypotheses

As there are various flows of patients into the SDU, we expect the impact of admission to the SDU to

vary across different patient types. In particular, there is evidence that SDU care may improve or degrade

patient outcomes (e.g.Zimmerman et al.(1995), Simchen et al.(2004)). Thus, we hypothesize that the SDU

is beneficial or detrimental depending on patient type and severity–it will help moderate to low severity

patients, but hurt high severity patients. More formally, we outline our hypotheses below.

As SDUs were initially developed with the intent to provide a‘step-down’ from the ICU, we expect that

ICU clinicians use SDUs appropriately so that:

Hypothesis 1 (ICU patients) Patients discharged from the ICU will have better outcomes (lower mortality

and readmission rates and shorter LOS) if admitted to the SDU rather than the ward.

For patients admitted from the ED, the impact of SDU care is likely to be more nuanced. Specifically,

this is a highly heterogenous group. We will describe how we partition patients into low, medium, and high

severity groups in Section5. The majority of patients admitted to the hospital from the ED do not go to the

ICU (Kim et al. 2015). Thus, we expect that for most patients (i.e. low and mediumseverity patients), being

treated in the SDU will either improve or have no impact on their outcomes. On the other hand, the sickest

patients should be admitted to the highest level of care, so being admitted to the SDU is likely to result in

worse outcomes. Note that in the following, we assume that low severity patients are rarely admitted to the

ICU while high severity patients are rarely admitted to the ward.



13

Hypothesis 2 (Low Severity ED patients)Low severity patients admitted from the ED will have no worse,

and possibly better outcomes (lower mortality and readmission rates and shorter LOS), if admitted to the

SDU rather than the ward.

Hypothesis 3 (Medium Severity ED patients)Medium severity patients admitted from the ED will have

no worse, and possibly better outcomes (lower mortality and readmission rates and shorter LOS), if admit-

ted to the SDU rather than the ward. On the other hand, they will have have no better, and possibly worse

outcomes, if admitted to the SDU rather than the ICU.

Hypothesis 4 (High Severity ED patients)High severity patients admitted from the ED will have worse

outcomes (higher mortality and readmission rates and long LOS) if admitted to the SDU rather than the

ICU.

3. ICU Cohort: Econometric Approach
We begin by explicitly stating our fundamental research question for the ICU cohort: Following ICU dis-

charge, is SDU care associated with better patient outcomesthan those for patients receiving ward care

and, if so, what is the magnitude of the improvement? By exploring these questions, we will develop some

insight into the value of differentiated levels of service (i.e. SDU versus ward) for one customer type (ICU

patients). In Section5, we expand our analysis to understand the impact of this level of service on additional

patient types, providing insights into the role of customerdifferentiation.

3.1. Econometric Challenge: Endogeneity

Our objective is to utilize retrospective patient data to determine if ICU patients who are transferred to the

SDU have better outcomes than those transferred to the ward.Because we are using retrospective data,

an estimation challenge arises due to the fact that the routing decision following ICU discharge is likely

correlated with patient outcomes. To highlight this challenge, we start with the following reduced form

model for hospital LOS:

log(HospRemLOSi) = βXi+ γADMITSDUi + νh(i) + ǫi (1)

whereXi is a vector of control variables including patient characteristics (e.g. age) and seasonal factors

(e.g, admission time of day),ADMITSDUi is an indicator variable that equals 1 if patienti is transferred

directly to the SDU following ICU discharge,h(i) is the hospital where patienti is treated,νh(i) is the

hospital fixed effect andǫi denotes the error term. See Table14 in AppendixA for more details on control

variables. While we include controls for patient severity,unobservable patient severity measures may be

correlated with bothHospRemLOS andADMITSDU . That is, sicker patients are more likely to be

transferred to the SDU than the ward, but are also more likelyto have bad outcomes. As such, our estimates

for γ may be biased and we may erroneously conclude that going to the SDU hurts patients. To overcome

this potential endogeneity bias, we utilize an identification strategy using Instrumental Variables (IVs).
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3.1.1. Instrumental Variable A valid instrument should be 1) correlated with the endogenous variable,

ADMITSDUi, and 2) unrelated to the unobservable factors captured inǫi which affect patient outcomes.

We propose to use congestion in the SDU one hour before the ICUdischarge as an IV. In particular, we

defineSDUBusyi as an indicator variable that equals one when the number of available beds in the SDU

one hour prior to patienti’s discharge from the ICU is less than or equal to two, and zerootherwise3. On

average, about 11% patients are discharged from the ICU whenthe SDU is busy (SDUBusy= 1), though

this varies quite a bit across hospitals (see Table15).

When controlling for various patient characteristics in a Probit regression model, we also find at the 0.1%

significance level that when the SDU is busy, patients are less likely to go to the SDU. In particular, we

estimate that, on average, 21.14% percent of patients are routed to the SDU ifSDUBusy = 1 and this

percentage increases to 35.91% ifSDUBusy = 0. Namely, a congested SDU is predicted to result in a

47% reduction in the likelihood of the SDU admission. Hence,condition 1 is satisfied.

We now consider Condition 2 and consider whetherSDUBusyi is uncorrelated with unobservable fac-

tors in patient outcomes captured inǫi. Since we cannot examine unobservable measures, we use patient

severity,SAPS3, as a proxy for those unobservable factors. In particular, we perform a two-sample

Kolmogorov-Smirnov test (seeGibbons and Chakraborti 2011for details) to test the hypothesis that the

distribution of SAPS3 for patients who are discharged from ICU whenSDUBusy = 1 is not statistically

different to that whenSDUBusy = 0. The p-value for the combined Kolmogorov-Smirnov test is 0.136.

Thus, we cannot reject the null hypothesis and believe that patients who are discharged from the ICU when

SDUBusy= 1 are statistically similar to patients who are discharged from the ICU whenSDUBusy= 0.

For completeness, we also check this for the LAPS2 score, which is assigned at the time of hospital admis-

sion. The p-value of the combined Kolmogorov-Smirnov test is 0.334.

Kc and Terwiesch 2012demonstrates that ICU congestion could result in early discharge, which could, in

turn, affect the routing decision of ICU patients. While ICUcongestion has been used as an IV in a number

of hospital studies (e.g.Kc and Terwiesch 2012, Kim et al. 2015), we find that ICU congestion is not a

valid IV. This is because the impact of ICU congestion does not exhibit a consistent effect on routing post-

ICU patients, i.e., a congested ICU could result in both a higher and a lower percentage of patients being

admitted to the SDU depending on a patient’s severity score.Moreover, we find that the ICU congestion is

correlated with a patient’s SAPS3 and LAPS2 score.

We also considered using a number of additional instrumental variables. Specifically, we considered a

measure of the average severity of other patients in the ICU,a measure of how the discharged patient

compares to the severity of other patients in the ICU, and a measure of severity for the most recently

discharged ICU patient. We find that all of these measures arecorrelated with the SAPS3 and LAPS2 scores,

suggesting they may also be correlated with unobservable measures of severity, thereby invalidating these

variables as potential instruments.

3 We also do a number of robustness checks by considering different specifications ofSDUBusyi.
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3.2. Econometric Model

3.2.1. Continuous outcome modelsWe now present our estimation model for our continuous out-

come,HospRemLOS. Since the ICU to SDU routing decision,ADMITSDUi, is a binary variable, we

model the ICU discharge decision via a latent variable model.

ADMITSDU∗

i = Xiθ+αSDUBusyi +ωh(i) + ξi,

ADMITSDUi = 1{ADMITSDU∗

i > 0} ,

log(HospRemLOSi) = Xiβ+ γ ·ADMITSDUi + δ ·AvgOccV isitedi + νh(i) + εi, (2)

whereADMITSDU∗

i is a latent variable which represents the propensity towards SDU admission;Xi

is a vector of control variables for patient information;ωh(i) is the hospital fixed effect; and,ξi represents

unobservable factors that affect the routing at ICU discharge. For the outcome equation,νh(i) is the hospital

fixed effect; andεi captures unobservable factors that affect patient outcomes.

Because congestion during a patient’s hospital stay could impact the patient’s outcomes (seeKuntz et al.

(2015) andKc and Terwiesch(2012)), we also control for the daily average occupancy level, denoted as

AvgOccV isitedi, patienti experiences for all inpatient units s/he is admitted toafter leaving the ICU and

before leaving hospital. We also conduct robustness checks for different specifications of occupancy during

the stay, as well as with such a control excluded.Kim et al.(2015) provides additional discussion regarding

the necessity of such a control.

The error terms(ξi, εi) in (2) may be correlated to model the endogeneity between the routing decision

at ICU discharge and the patient outcome. We assume that(ξi, εi) follows a Standard Bivariate Normal

distribution with correlation coefficientρ. This model can be jointly estimated using a treatment effect

model via Full Maximum Likelihood Estimation (FMLE) (Greene 2012). A likelihood ratio test of null

ρ= 0 can be used to test the presence of endogeneity.

3.2.2. Discrete outcome modelsFor the binary outcomes (Mortality,HospReadm,ICUReadm),

we modify Eq. (2) by replacing the continuous patient outcome with a probit model. Specifically, we have:

ADMITSDU∗

i = Xiθ+αSDUBusyi +ωh(i) + ξi,

ADMITSDUi = 1{ADMITSDU∗

i > 0} ,

y∗i = Xiβ+ γ ·ADMITSDUi + δ ·AvgOccV isitedi + νh(i) + εi,

yi = 1{y∗i > 0} (3)

wherey∗i is a latent variable which represents the propensity for theoutcome. Similar to before, we assume

that (ξi, εi) follows a Standard Bivariate Normal distribution with correlation coefficientρ. This Bivari-

ate Probit model can be jointly estimated via FMLE (seeCameron and Trivedi 1998, Greene 2012). The

presence of endogeneity can be tested through a likelihood ratio test of nullρ= 0.

For ICU readmission, we modifiedAvgOccV isitedi to be the daily average occupancy level that patient

i experiences in all inpatient units s/he is admitted tobetween two consecutive ICU admissions.
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3.3. Impact of Congestion on ICU LOS

Kc and Terwiesch(2012) found evidence that when ICUs are highly congested, current ICU patients may be

demand-driven discharged, in order to accommodate incoming demand of more severe patients.Kim et al.

(2015) found that patients admitted to a medical service from the ED do not seem to be susceptible to such

demand-driven discharges. While we look at a similar group of patients toKim et al. (2015), one potential

concern is that we only consider patients treated in hospitals with SDUs, whileKim et al. (2015) includes

hospitals with SDUs as well as those without. Thus, it is possible that the presence of an SDU makes it

more likely for medical patients who were admitted to the hospital via the ED and are being treated in the

ICU to be demand-driven discharged; thus, making it possible that these types of discharges occur in our

dataset. A patient who is demand-driven discharged is by definition, discharged earlier than under ordinary

circumstances and therefore more critical than if he were discharged later at a more appropriate time. So

such a patient is more likely to be admitted to the SDU, but also more likely to have bad outcomes. If this

were the case, this could cause a downward bias of our results.

To check this, we estimated the following reduced form model:

log(ICULOSi) = ηXi +κICUBUSYi + υi (4)

to explore whether ICU LOS is reduced when the ICU is busy. We estimateκ to be−0.05 with standard

error0.04. Thus, consistent withKeenan et al.(1998) andKim et al. (2015), we do not find evidence that

patients are demand-driven discharged. To dig a little deeper, we examined whether the SDU congestion

had an impact on whether patients are demand-driven discharged. To do this, we enhance our regression

model to include a measure of SDU congestion:

log(ICULOSi) = ηXi +κICUBUSYi +φSDUBUSYi +ψ (ICUBUSYi ×SDUBUSYi)+ υi (5)

In particular, we would expect demand-driven discharges tobe most common when the ICU is busy and

the SDU is not. Table5 summarizes these results with the base case of both the ICU and SDU not being

busy (81.5% of time). We find that the coefficients have very large standard errors and are not statistically

significant. While it is possible that lack of statistical power is the reason we do not find evidence to support

the hypothesis that a busy ICU may result in demand-driven discharges, we find that our sample size would

need to be larger than 350,000 for the estimated coefficientsto be statistically significant when using the

approach inGelman and Hill(2006).

Our IV analysis is based on the evidence that a busy SDU decreases the likelihood of SDU admission.

However, it is also possible that patients may stay longer inthe ICU when the SDU is busy, making them

more stable upon discharge from the ICU and potentially biasing our results. To test this hypothesis, we

ran the reduced form model in Equation (4), but withSDUbusyi as an explanatory variable. We find the
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Table 5 Effect of ICUBusy and SDUBusy on ICU LOS

Parameter ICU Busy SDU Busy Estimate (SE) # Observations: Total = 11,058
κ 1 0 -0.057 (0.040) 855
φ 0 1 -0.039 (0.039) 1,056
ψ 1 1 -0.034 (0.096) 136
Note. Standard error in parentheses.+(p < 10%),∗ (p < 5%),∗∗ (p < 1%),∗∗∗ (p < 0.1%).

coefficient forSDUBusyi to be -0.02 with standard error 0.03. This is consistent withthe results in Table

5, which suggests that the relationship between a busy SDU andICU LOS is not statistically significant. As

an additional check, we ran a hazard rate model to examine theimpact ofSDUBusy after controlling for

patient characteristics, seasonality, and hospital fixed effects. Again, we see that a busy SDU does not have

a statistically significant effect on the likelihood of ICU discharge. Thus, we do not find evidence to support

that the busy-ness of the SDU impacts ICU LOS.

4. ICU Cohort: Results

We start by exploring the impact of SDU care on patients beingdischarged from the ICU. Because we

jointly estimate the SDU admission decision and patient outcomes, using FMLE, the impact ofSDUBusyi

may vary slightly for different outcomes. That said, we observe that the differences are very minor. For

illustrative purposes, we note that the coefficient for the impact ofSDUBusyi in the Mortality model is

−0.5110 with standard error0.0503 and p-value< 0.1%.

Table 6 Estimated Effect of SDU Admission Following ICU disc harge ( γ) on Patient Outcomes and

Correlation between error terms ( ρ) for the admission decision and patient outcomes: N = 11,058

With IV Without IV

Outcome γ (SE)
Predicted Outcome

ρ (SE)
Test

γ (SE)
P̂SDUBusy=0 P̂SDUBusy=1 ρ= 0

Mortality -0.60∗∗ (0.22) 8.24% 9.93% 0.26+ (0.14) 0.07 -0.18∗∗∗ (0.05)
log(HospRemLOS) -0.35∗∗∗ (0.10) 3.77 4.05 0.44∗∗∗ (0.05) 0.00 0.38∗∗∗ (0.02)

ICUReadm2d -0.51∗∗ (0.20) 5.22% 6.38% 0.32∗ (0.12) 0.02 0.01 (0.05)
ICUReadm5d -0.51∗∗ (0.18) 8.18% 9.83% 0.36∗∗ (0.11) 0.05 0.09∗ (0.04)
HospReadm2w -0.43∗ (0.21) 14.02% 15.26% 0.21+ (0.12) 0.09 0.05 (0.04)

Note. Standard error in parentheses.+(p < 10%),∗ (p < 5%),∗∗ (p < 1%),∗∗∗ (p < 0.1%).
Predicted outcome:̂PSDUBusy=0 - Average predicted outcome if the SDU was never busy

P̂SDUBusy=1 - Average predicted outcome if the SDU was always busy.
PredictedHospRemLOS (days) is shown instead oflog(HospRemLOS)

As we are primarily interested in estimating the causal effects of SDU admission on patient outcomes,

we report only the coefficient of SDU admission on the patientoutcomes, i.e.,γ in (2) and (3). Table

6 summarizes the relationship between SDU admission right after ICU discharge and patient outcomes.

The sign of SDU admission is negative and statistically significant in all outcome measures, suggesting

that routing an ICU discharge to the SDU is associated with improved patient outcomes. To get a rough
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estimate of the magnitude of the effects we’ve estimated, wealso use our estimation results to predict patient

outcomes under two extreme scenarios: (i) the SDU has ample capacity and is never busy (referred to as

P̂SDUBUSY =0) versus (ii) the SDU is always busy (P̂SDUBusy=1). There are some patients who are stable

enough that even if there were ample capacity in the SDU, theywould not be admitted to the SDU. Instead

they would be sent to the ward, irrespective of the SDU bed availability. Using the first stage of our models,

we estimate the likelihood of SDU admission depending on whether the SDU is busy or not, and then use

our second stage results to estimate the likely patient outcome. We find that, on average, availability of

SDU care is associated with significant improvements in patient outcomes: the relative reduction is 17%

in the likelihood of in-hospital death, 0.28 fewer remaining hospital days, 18% (17%) in the likelihood of

ICU readmission within 2 (5) days, and 8% in the likelihood ofhospital readmission within 2 weeks. Based

on the size of our cohort, we estimate eliminating SDU busy-ness would translate into annual savings of

187 lives, 3,096 hospital days, 128 (182) ICU readmissions in 2 (5) days, and 137 hospital readmissions

in 2 weeks (weekly savings of 3.6 lives, 59.5 hospital days, 2.5 (3.5) ICU readmissions, and 2.6 hospital

readmissions) aggregated across the 10 hospitals.

Our empirical findings also suggest strong evidence of an endogeneity bias between the routing following

ICU discharge and patient outcomes. The p-value of the likelihood ratio test with null hypothesis that the

correlation between the two error terms in our modelρ= 0 is small, as seen in Table6, implying a strong

correlation between the routing at ICU discharge and patient outcomes. Ignoring this endogeneity tends to

result in underestimates of the benefit of SDU care and could result in a qualitatively different insight; see

the column titled with “Without IV”.

4.1. Robustness Checks

We now describe a number of robustness checks for our main results. First, we tried different specifications

of control variables. Recall that, some of our control variables – age, severity scores (LAPS2, COPS2,

SAPS3), length-of-stay at ICU, and length-of-stay before ICU admission – are modeled as spline variables

to account for their possible non-linear effects on the ICU to SDU routings and patient outcomes. We

repeated the analysis with different specifications, including changing the number of cutoffs and values of

these cutoffs. Our results are qualitatively similar to these changes.

The second robustness check we did is with respect to specifications for the congestion experienced by

a patient during the hospital visit (AvgOccV isited in Equations (2) and (3)). We considered specifications

which exclude this control as well as ones that examine the maximum occupancy in any unit during a

patient’s hospital stay. All specifications yield similar results to those reported in Table6.

Another factor which could be impacting our results is “do not resuscitate (DNR)” orders, which are

patients’ end-of life wishes not to undergo Cardiopulmonary resuscitation (CPR) or advanced cardiac life

support if their heart were to stop or they were to stop breathing. In speaking with intensivists, we learned
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it is possible that patients with DNRs are more likely to be sent to the ward, but also may be more likely to

die, resulting in an overestimate of the effect of SDU care. Unfortunately, we do not have access to patients’

DNR status, so cannot control for this. That said, DNR ordersonly represent 9% of ICU patients (Jayes

et al. 1993), so this is likely to affect only a small percentage of patients. Additionally, there is evidence that

DNR orders do not change the quality of care (Baker et al. 2003). We do not expect DNR orders to impact

our results for hospital readmission since we exclude patients who died in hospital in this model. For the

LOS models, we also considered the robustness of our resultsto including patients with in-hospital death.

We find that our results are very robust.

We also considered alternative specifications for the length of time window for readmission. For ICU

readmission, we varied the time window of the ICU readmission from time of ICU discharge from 2 to 7

days and also during any time frame during the same hospital stay. Only the results for ICU readmission

within 2 days were statistically significant, though the sign of the coefficient was negative in all models. For

hospital readmission, we consider hospital readmission within 1 week, 2 weeks, and 30 days after a patient

is discharged from the hospital. We found that while SDU admission is associated with lower hospital

readmission risk, the effect isweaker when the elapsed time between two consecutive hospital stays is

longer.

4.1.1. Definition of our IV We also consider various definitions of a busy SDU. First, we considered

different cutoffs for the number of available beds, rangingfrom one bed to four. On average, the percentage

of patients, who are discharged from the ICU when the SDU is congested, varies from 34% to 3% when the

cutoff is decreased from four beds to one (Table15). The capacity of the SDU was defined as the maximum

occupancy level over the 12-month time horizon in our study.While capacity changes in the hospitals we

study are very rare, we also allow for the bed capacity (defined as the maximum occupancy level) to change

over time. Specifically, we define a time-varying capacity asthe maximum occupancy level over three non-

overlapping 4-month periods during the total 12-month timehorizon.

Note that while we find our IV to be statistically significant based on various definitions of bed capacity,

it can be very challenging to accurately determine the number of beds available in a unit. This is because

capacity depends on multiple factors including the number of physical beds, but also the number of nurses

and physicians available to staff them. As such, we also considered alternative measures of SDU congestion

based on percentiles of the SDU occupancy level. We did this using a binary variable indicating whether

the occupancy level exceeds a threshold percentile as well as a piece-wise linear spline to potentially model

non-linear effects of SDU congestion on the SDU admission decision. Next, we considered different time

lines for when SDU congestion was measured: 1 hour (main specification), 2 hours and 6 hours before ICU

discharge.

We find that the results for the mortality and LOS models to be very robust to the various specifications

with the coefficients all negative and all with the same orderof magnitude. All coefficient estimates have
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a p-value< 0.05, with most having a p-valuep < 0.001. Interestingly, the coefficient estimates for the

ICU and hospital readmission models are all negative; however, the statistical significance of the coefficient

estimates varies substantially, with some specifications indicating a p-value< 0.001 and others not being

significant, even at the level of p-value< .1. Thus, while our mortality and LOS results are quite robust,the

readmission results do not seem to be.

4.1.2. Patients discharged out of the hospitalIn all of our analysis for the ICU cohort, we focused on

patients who were discharged from the ICU to the SDU or ward. While the majority of patients (83.82%) go

to one of these units, a number of patients are actually discharged directly out of the hospital from the ICU

(see Table16 in the Appendix). Not surprisingly, patients who are discharged out of the hospital directly

from the ICU appear to be healthier (lower severity scores and younger) than those admitted to an inpatient

unit following ICU discharge. We find that if we include all patients who are discharged alive from the

ICU (to the SDU, ward or out of the hospital) instead of just those discharged to the SDU or ward, the

busy-ness of the SDU still has a statistically significant effect on the likelihood of SDU admission following

ICU discharge. In this analysis, we found evidence that patients are 1.77% more likely to be discharged

home alive when the SDU is busy (p < 0.05). As such, excluding these patients from our analysis may bias

our estimates to make the SDU seem more beneficial than it is because the patients who end up staying

in the hospital are sicker and SDU treatment likely benefits them more. With this in mind, we re-ran our

ICU and hospital readmission models including patients discharged out of the hospital alive. Note that

we do not examine our mortality and LOS models as these are inpatient outcomes, and a patient who is

discharged out of the hospital alive will, by definition, havedeathi = 0 andHospRemLOS = 0. We find

that the coefficient estimates for our readmission models are negative, but not statistically significant. This

is consistent with our other specifications which suggest that the readmission results are not very robust.

5. ED Cohort: Econometric Approach

In this section, we study the routing decision regarding theED Cohort. We aim to empirically estimate

how SDU admission immediately following transfer from the ED affects patient outcomes, comparing to

ED patients who are transferred to the ICU or ward. Here, a similar estimation challenge arises. Routing

decisions are associated with patient severity and, thus, with patient outcomes.

Kim et al. (2015) examined this problem in the context of admitting patientsto the ICU from the ED.

In that paper, the goal was to estimate the impact of admitting a patient to the highest level of care, i.e.

the ICU versus elsewhere. In contrast, our objective is to understand the impact of admitting patients to

an intermediary level of care, the SDU. In contrast to the ICUcase, it is possible that the impact of SDU

care could be positive, neutral or even negative. For instance, high severity patients who should be admitted

to the ICU, but are instead admitted to the SDU may experienceworse outcomes as a result. On the other

hand, SDU care may have no impact or even benefit low severity patients who would traditionally be cared
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for in the ward. There are limited objective standards for who should be treated in the ICU (seeTask Force

of the American College of Critical Care Medicine, Society of Critical Care Medicine(1999) andKim et al.

(2015)), let alone for the SDU (Nasraway et al. 1998). Thus, such categorizations of patients are likely to be

highly varied across different physicians. As such, we takea data-driven approach to stratifying patients by

severity. Such an approach could be useful in other service settings where precisely defining a customer’s

type is a challenging, but necessary, step toward determining the costs and benefits associated with service

by different server types.

5.1. Severity Categorization

In order to estimate the impact of SDU care for patients admitted from the ED, we categorize patients based

on their severity and study each severity group separately.Specifically, we aim to identify a ‘low severity’

cohort, for which the decision is to admit patients to eitherthe ward or SDU, and a ‘high severity’ cohort

for which the decision is to admit to either the SDU or ICU. Onecan also consider a ‘medium severity’

cohort whose patients can be admitted to any one of the three levels of care. Certainly, it seems reasonable

to expect the decision to admit a patient to the SDU will have adifferent impact on patients of varying

severity.

We begin by considering how patient level characteristics influence whether a patient is admitted to the

ICU, SDU or ward from the ED. Specifically, we use our data to estimate an Ordered Probit regression

model using only patient characteristics.

Txi =




Ward, if Tx∗

i 6 t1
SDU, if t1 <Tx

∗

i 6 t2
ICU, if t2 <Tx

∗

i

and Tx∗

i =X ′

iθ+ ξi, (6)

whereX ′

i is a vector of control variables for patient characteristics andξi represents unobservable factors.

We use the observed latent variablêTx
∗

i = X ′

iθ to define each patient’s severity. Intuitively,̂Tx
∗

i is a

linear transformation of patient characteristics into a single continuous variable which can be interpreted as

a measure for the desired amount of care for the patient. The larger the value of̂Tx
∗

, the more likely the

patient will be routed to higher level units, e.g., the ICU; the lower the value, the more likely a patient will

be routed to the ward.

We differentiate patient severity groups by partitioning the T̂ x
∗

i space with thresholds. In theory,t1 and

t2 from (6) partition theTx∗

i space into patients who will be routed to the Ward, SDU, and ICU, so that

patients withTx∗

i ≤ t1 could be classified as low-severity patients and patients with Tx∗

i > t2 could be

classified as high-severity patients. However, because we do not observeξi, we are only able to observe an

estimateT̂ x
∗

i , instead ofTx∗

i . Thus, some patients witĥTx
∗

i ≤ t1 will be routed to the SDU, or even the

ICU. Similarly, patients withT̂ x
∗

i > t2 may be routed to the SDU or ward. Increasingt2 will increase the

proportion of patients witĥTx
∗

i > t2 who are routed to the ICU and simultaneously decrease the proportion

who are routed to the ward. Similarly, decreasingt1 will increase the proportion of patients witĥTx
∗

i ≤ t1
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being admitted to the ward and decrease the proportion beingadmitted to the ICU. Of course, this also

comes at the cost of reducing the number of patients which satisfy these two criteria. Thus, we define the

cutoffs to balance increasing the proportion of patients inthe high (low) severity group who are routed to

the ICU (ward) versus maintaining large enough patient cohorts to allow for meaningful statistical analysis.

The tradeoff we are concerned with is close thresholds lead to increases in patient spill-over into the high

or low severity groups, resulting in patients who do not comply with our instrument, versus far thresholds

which reduce sample sizes, resulting in less statistical power. We use a data-driven approach and find that

setting thresholds at the95th and60th percentiles of the distribution of̂Tx
∗

i seen in the data achieve this

delicate balance. In Section6, we discuss robustness checks using different thresholds.

We expect that when the SDU is congested, patients will be less likely to be admitted (e.g. see Section3).

Thus, we examine where patients are admitted when the SDU is busy, defined as done in Section3. Figure3

shows the proportion of high and low severity patients admitted to each unit, while Table7 summarizes these

results. Note that the ICU and SDU congestion have a correlation coefficient of 0.08, so the busyness of the

ICU does not factor substantially into these results. Specifically, we ran t-tests comparing the proportion

of patients admitted to each level of inpatient unit when theSDU is busy versus not busy. As we can see,

when the SDU is busy, low severity patients will be rerouted to the ward (p < 0.001), rather than the ICU

(p= 0.327). Conversely, when the SDU is busy, high severity patients tend to be rerouted to the ICU (p=

0.002), rather than the ward (p= 0.212). These results are suggestive that these severity categorizations are

reasonable for our purposes.

Note that one can also define a ‘medium severity’ group as patients witht2 ≤ T̂ x
∗

i < t1. While a busy

SDU does decrease the likelihood of SDU admission (Figure3(b) and Table7), the challenge with this

cohort is that some patients who are discouraged from being admitted to the SDU will be admitted to the

ICU, while others will be admitted to the general ward. Certainly, being bumped to a higher versus lower

level of care will have a substantial impact on patient outcomes. As seen in Figure3(b) and Table7, there

is a heterogenous effect ofSDUBusy on these patients, whereas high-severity patients are consistently

bumped up to the ICU and low-severity patients are consistently bumped to the ward. This suggests that

within the medium severity group a mix of high and low severity patients are being admitted to the SDU,

so SDU admission can be beneficial or detrimental. By grouping these patients together into a medium

severity classification, we cannot tease out the true impactof SDU admission. Still, for completeness, we

will include results for this group of patients.

As summarized in Table8, for the high severity group, 54.9% are admitted to the ICU, 20.76% to the

SDU, and 24.35% to the ward. For low severity patients 4.65%,14.73% and 80.62% are admitted to the

ICU, SDU, and ward, respectively. We can see that even with our classifications, some high (low) severity

patients will still be admitted to the ward (ICU). In order tofocus on the impact of SDU admissions on

patient outcomes, we exclude high (low) severity patients who are routed to the ward (ICU). For the medium
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(c) Low-severity Patients

Figure 3 Proportions of ED patients who are routed to the ICU, SDU, and ward when SDUBusy = 1 vs

SDUBusy = 0. Severity thresholds, t1 and t2, defined by 95
th and 60

th percentiles of T̂ x
∗

i .

Table 7 Proportions of ED patients who are routed to the ICU, S DU, and ward when SDUBusy = 1 vs

SDUBusy = 0 and results of t-tests which compare the difference in routi ng proportions.

SDUBusy = 0 SDUBusy = 1 p-value of t-test
ICU SDU Ward ICU SDU Ward ICU SDU Ward

Low Severity 4.62% 15.97% 79.14% 4.94% 5.23% 89.93% 0.327 < 0.001 < 0.001
Medium Severity 16.90% 31.05% 52.04% 21.84% 12.64% 65.51% 0.013 < 0.001 0.001
High Severity 53.60% 22.39% 24.01% 63.38% 10.06% 26.56% 0.002 < 0.001 0.212
Note. Severity thresholds,t1 andt2, defined by95th and60th percentiles of̂Tx

∗

i .

severity group, we consider patients admitted to all three levels of care as it is not clear whether the ICU or

ward is the ‘more desirable’ unit if the SDU is not available.Tables9 and10 report summary statistics of

patient demographics and outcomes for each severity group.

Table 8 Routing Statistics of Patients for Different Severi ty Groups

Low-Severity Patients Med-Severity Patients High-Severity Patients
Unit following the ED Frequency PercentageFrequency PercentageFrequency Percentage

ICU 2,067 4.65 4,529 17.47 2,034 54.90
SDU 6,549 14.73 7,514 28.98 769 20.76
Ward 35,836 80.62 13,885 53.55 902 24.35

Note. Severity thresholds,t1 andt2, defined by95th and60th percentiles of̂Tx
∗

i .

5.2. IV Justification

We are again faced with the econometric challenge of endogeneity bias. Our econometric model is very

similar to that of (2) and (3). The main difference is that for low (high) severity patients,ADMITSDUi

is equal to 1 if the patient is admitted to the SDU and 0 if to theward (ICU). For medium severity
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Table 9 Summary Statistics of Patient Demographics for ED Co hort by severity classification

Low Severity Medium Severity High Severity
Variable mean std min max mean std min max mean std min max
Age 67.48 18.57 18 107 67.63 15.96 18 111 70.36 14.74 18 102
Male 0.43 0.49 0 1 0.54 0.50 0 1 0.57 0.50 0 1
LAPS2 59.48 26.89 0 158 89.22 32.53 0 200 155.57 31.85 16 272
COPS2 41.96 41.21 0 285 50.86 46.53 0 290 64.13 53.64 0 278
ED LOS (hrs) 1.38 1.99 0.02 62.73 1.56 2.41 0.02 118.68 1.66 2.92 0.02 113.50
Note: LAPS2 is a severity score based on lab results taken 72 hours preceding hospital admission.
COPS2 is a severity score based on comorbidities. SAPS3 is a severity score used for ICU patients.

Severity thresholds,t1 andt2, defined by95th and60th percentiles of̂Tx
∗

i .

Table 10 Summary Statistics of Patient Outcomes for ED Cohor t by severity classification: Mean (Number

of observations or standard deviation for continuous varia bles)

Low Severity High Severity
SDU Ward SDU ICU

Outcome mean (N/std) mean (N/std) mean (N/std) mean (N/std)
Mortality 0.02 (6,549) 0.02 (35,836) 0.17 (769) 0.27 (2,034)

HospRemLOS (days) 3.97 (5.85) 3.95 (5.21) 6.68 (10.54) 9.35 (14.22)
HospReadm - 2 weeks0.10 (6,431) 0.10 (35,258) 0.17 (636) 0.16 (1,483)

Medium Severity
SDU Ward ICU

Outcome mean (N/std) mean (N/std) mean (N/std)
Mortality 0.04 (7,514) 0.04 (13,885) 0.08 (4,529)

HospRemLOS (days) 4.20 (5.15) 4.22 (6.67) 6.11 (11.77)
HospReadm - 2 weeks0.12 (7,202) 0.11 (13,310) 0.12 (4,156)
Severity thresholds,t1 andt2, defined by95th and60th percentiles of̂Tx

∗

i .

patients,ADMITSDUi is equal to 1 if the patient is admitted to the SDU and 0 if to theward or ICU.

Detailed descriptions of the covariates are shown in Table14in the Appendix. Similarly, we also control for

AvgOccV isitedi, i.e., the daily average occupancy level patienti experiences for all inpatient units s/he is

admitted toafter leaving the ED and before leaving hospital.

Similar to our models for the ICU Cohort, we consider usingSDUBusyi as an instrumental variable.

Additionally, we consider usingICUBusyi as an instrument asKim et al. (2015) found that it is a good

instrument when studying patients who are or are not admitted to the ICU, which is similar to our High

severity group. Specifically, we defineSDUBusyi (ICUBusyi) as an indicator variable that equals one

when the number of available beds in the SDU (ICU) one hour prior to patienti’s transfer from the ED is

less than or equal to two, and zero otherwise. On average, theproportions of patients who are transferred

from the ED when the SDU is busy and the ICU is busy are approximately 12% and 6%, respectively.

As discussed previously, in order for a variable to be a validinstrument, it has to be 1) correlated with

the endogenous variable,ADMITSDUi, and 2) unrelated to the unobservable factors which affect patient

outcomes. As seen in Table7, when the SDU is busy, patients are less likely to be admittedto the SDU.
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However, we find that ICU congestion does not appear to have a monotonic effect on SDU admission

for low or medium severity patients. Specifically, we observe in Figure4 that when we partition the (a)

low or (b) medium severity patients into deciles of̂Tx
∗

i , ICU congestion increases the percentage of SDU

admissions for some patients, while it has no effect or evendecreases the percentage of SDU admissions for

other patients. Therefore, we conclude thatICUBusyi is not a valid instrument for low or medium severity

patients. We see these effects more concretely when we analyze a Probit regression model, which controls

for various patient characteristics and operational controls. We find with 0.1% significance level that SDU

congestion reduces the likelihood of SDU admission for bothlow, medium and high severity patients, and

that ICU congestion increases the chance of SDU admission for only high severity patients. The impact of

ICU congestion for low and medium severity patients is not statistically significant.

Deciles of T̂ x
∗

i
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Figure 4 Percentage of (a) low or (b) medium severity patient s admitted to the SDU from the ED when the

ICU is busy ( ICUBusy = 1) or not ( ICUBusy = 0) for varying levels of severity as measured by

deciles of T̂ x
∗

i , given patients are classified as low severity: T̂ x
∗

i ≤ t1. Low/Medium/High severity

thresholds, t1 and t2, defined by 95
th and 60

th percentiles of T̂ x
∗

i .

We next examine whether our instruments are correlated withobservable measures of severity. We again

perform a two-sample Kolmogorov-Smirnov test to test the hypothesis that the distribution of LAPS2

is not statistically different whenSDUBusy = 1 (ICUBusy = 1) from that whenSDUBusy = 0

(ICUBusy = 0). For low severity patients, the p-value for the Kolmogorov-Smirnov test is 0.135, thus,

we conclude that patients who leave the ED whenSDUBusy = 1 are statistically similar to those who

leave the ED whenSDUBusy= 0. For medium severity patients, the p-value for the Kolmogorov-Smirnov

test is 0.120. For high severity patients, the p-values are 0.141 and 0.358 forSDUBusy andICUBusy,

respectively. Therefore, our models for low and medium severity patients useSDUBusyi as an instrument,

while bothSDUBusyi andICUBusyi are used in the models for high severity patients.
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5.2.1. Additional Instruments Apart from the congestion in the ICU and the SDU, we also consider

other potential behavioral IVs discussed inKim et al. (2015). The first factor isRecentDischargeSDU
i ,

which accounts for the number of all SDU discharges in the 3-hr window before patient is admission to

the first inpatient unit. The second behavioral factor,RecentAdmissionSDU
i , accounts for the number

of SDU admissions in the 3-hr window before patient is admission to the first inpatient unit. To define

RecentDischargeSDU
i andRecentAdmissionSDU

i , we normalize the number of discharges or admis-

sions by the SDU capacity of each hospital. The third factor,LastAdmitSeveritySDU
i , measures the

severity of the last patient admitted to the SDU from the ED. We also considerRecentDischargeICU
i ,

RecentAdmissionICU
i , LastAdmitSeverityICU

i , which are defined the same way but instead involve the

ICU. Most of these variables demonstrate a heterogeneous impact on the SDU admission decision; for

instance, amongst low severity patients,RecentAdmissionSDU
i will increase the likelihood of SDU admis-

sion, while it will decrease likelihood for other patients.We find that onlyRecentAdmissionICU
i is a valid

instrument and is valid only for high-severity patients. However, we do not include this as a third IV for

high-severity patients in our main specifications because the results are similar.

6. ED Cohort: Results

We now present our main results for our ED cohort on the impactof SDU admission on patients being

admitted to an inpatient unit from the ED. We start with the two patient cohorts for which the routing

decision is more straight-forward (low and high severity patients). Then, for completeness, we include the

results for the medium severity patients.

6.1. Low Severity

For low severity patients, a busy SDU is associated with a decrease in likelihood of SDU admission. For the

mortality model, the coefficient onSDUBusyi is −0.5117 with standard error0.0376 and p-value< .1%.

The results are similar for the other patient outcome models.

Table11 summarizes our results. We find that SDU care may benefit low severity patients. Specifically,

we find that SDU care is associated with lower mortality rate and shorter hospital remaining length-of-stay,

as seen in the negative sign of SDU admission coefficient. We also present the predicted patient outcomes

under two extreme scenarios: (i) the SDU is never busy (P̂SDUBusy=0) and (ii) the SDU is always busy

(P̂SDUBusy=1). Our results indicate that, on average, availability of SDU care is associated with a reduc-

tion in mortality by 3.2% and 29 minutes of hospital remaining length-of-stay. We note that the estimated

marginal effects are quite small as there is a substantial proportion (83%) of low severity patients who will

not be admitted to the SDU even when the SDU is not busy. As such, the outcomes for these patients will be

agnostic to whether the SDU is busy, since they will be admitted to the ward either way. Thus, our estimates

are only for the remaining 17% of low severity patients whoserouting from the ED is dictated by the state

of the SDU. We do not find a statistically significant relationship between SDU care and the likelihood of
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hospital readmission within 2 weeks. Based on the size of thelow severity cohort, we estimate eliminating

SDU busy-ness would translate into annual savings of 34 lives and 979 hospital days (weekly savings of

0.65 lives and 18.8 hospital days) aggregated across the 10 hospitals.

Table 11 Estimated Effect of SDU Admission Following the ED ( γ) on Patient Outcomes for Low Severity

Patients and Correlation between error terms ( ρ) for the admission decision and patient outcomes: N =42,385.

With IV Without IV

Outcome γ (SE)
Predicted Outcome

ρ (SE)
Test

γ (SE)
P̂SDUBusy=0 P̂SDUBusy=1 ρ= 0

Mortality -0.55∗∗ (0.28) 2.16% 2.23% 0.33+ (0.17) 0.07 0.06 (0.06)
log(HospRemLOS) -0.20∗∗∗ (0.04) 2.92 2.94 0.18∗∗∗ (0.03) 0.00 0.03∗ (0.01)
HospReadm2w -0.13 (0.12) - - 0.09 (0.07) 0.21 0.02 (0.03)

Note. Standard error in parentheses.+(p < 10%),∗ (p < 5%),∗∗ (p < 1%),∗∗∗ (p < 0.1%).

Low severity threshold,t1, defined by60th percentile ofT̂ x
∗

i .
Predicted outcome:̂PSDUBusy=0 - Average predicted outcome if the SDU was never busy

P̂SDUBusy=1 - Average predicted outcome if the SDU was always busy.
PredictedHospRemLOS (days) is shown instead oflog(HospRemLOS)

6.2. High Severity

We find that a busy SDU is associated with a decrease in likelihood of SDU admission for high severity

patients, while a busy ICU is associated with an increase in likelihood of SDU admission. For the mortal-

ity model, the coefficient onSDUBusyi is −0.6325 with standard error0.1043 and p-value< .1%; for

ICUBusyi, the coefficient is0.4072 with standard error0.1352 and p-value< .1%. The results are similar

for the other patient outcome models. Table12summarizes the impact of SDU admission after ED transfer

on the various patient outcomes for these patients.

Table 12 Estimated Effect of SDU Admission Following the ED ( γ) on Patient Outcomes for High Severity

Patients and Correlation between error terms ( ρ) for the admission decision and patient outcomes: N =2,803.

With IV Without IV

Outcome γ (SE)
Predicted Outcome

ρ (SE)
Test

γ (SE)
P̂SDUBusy=0 P̂SDUBusy=1 ρ= 0

Mortality 0.75∗ (0.33) 23.64% 21.09% -0.48∗ (0.18) 0.03 -0.05 (0.07)
log(HospRemLOS) 0.45∗∗∗ (0.12) 6.22 5.87 -0.57∗∗∗ (0.07) 0.00 -0.32∗∗∗ (0.04)
HospReadm2w 1.27∗∗ (0.40) 18.28% 12.12% -0.78∗ (0.20) 0.04 -0.08 (0.08)

Note. Standard error in parentheses.+(p < 10%),∗ (p < 5%),∗∗ (p < 1%),∗∗∗ (p < 0.1%).

High severity thresholds,t2, defined by95th percentile ofT̂ x
∗

i .
Predicted outcome:̂PSDUBusy=0 - Average predicted outcome if the SDU was never busy

P̂SDUBusy=1 - Average predicted outcome if the SDU was always busy.
PredictedHospRemLOS (days) is shown instead oflog(HospRemLOS)

For high severity patents, being admitted to the SDU appearsto be associated with worse outcomes, as

seen in the sign of SDU admission coefficient, which is positive and statistically significant in all outcome
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measures. We again use our estimation results to predict thepatients outcomes under two cases: (i) the SDU

is never busy and (ii) the SDU is always busy. Our results suggest that being admitted to the hospital when

the SDU is busy is associated with substantial degradation in patient outcomes. SDU bed availability is, on

average, associated with an increase of 12.1% in in-hospital deaths, a 50.8% increase in hospital readmis-

sions within 2 weeks, and .35 additional days in the hospital. As with the ICU cohort, the marginal effects

estimates are based on the estimated treatment effect, which is averaged across all patients who comply with

the instruments. Thus, one should interpret our results as demonstrating substantive and rigorous evidence

to the statistical significance and direction of the treatment effect. Again, we see evidence of a correlation

between the SDU admission decision and patient outcomes with the estimated correlation coefficientρ

being statistically different than 0. Based on the size of this cohort, we estimate eliminating SDU busy-ness

would translate into annual increases of 71 deaths, 981 morehospital days, and 173 additional hospital

readmissions within 2 weeks (weekly increases of 1.37 deaths, 18.9 hospital days, and 3.33 readmissions)

aggregated across the 10 hospitals.

The results for LOS and hospital readmissions are consistent with Kim et al. (2015). Interestingly, we

find that being admitted to the SDU is associated with an increase in mortality risk, whileKim et al. (2015)

did not find an impact of non-ICU care on mortality. One potential explanation is thatKim et al. (2015)

considered all patients admitted from the ED to a medical service, while we stratify our analysis to focus on

only the high severity patients. As such, the results ofKim et al. (2015) may be distorted as SDU care may

improve mortality risk for some patients within their cohort while also degrading mortality risk for other

patients, thereby cancelling each other out. In contrast, since we focus on patients who are more likely to be

admitted to the ICU (i.e. 54.90% compared to 11% inKim et al. (2015)), we are able to provide a cleaner

estimate.

6.3. Medium Severity

We now consider the impact of SDU admission on medium severity patients. For these patients, a busy SDU

is associated with a decrease in likelihood of SDU admission. For the mortality model (when comparing

admission to the SDU versus ICU or ward), the coefficient onSDUBusyi is −0.5503 with standard error

0.0377 and p-value< 0.1%. The results are similar for the other patient outcome models.

Because of the aforementioned substantial heterogeneity within the medium severity cohort, when we

run our models on this population, the results are not statistically significant and our instruments do not

seem to be able to address potential endogeneity biases (seeTable13). The only result that is statistically

significant is the remaining hospital LOS when considering whether a patient is admitted to the SDU versus

ICU or ward. We’re not sure what to make of this result due to the substantial heterogeneity of this group,

as discussed before. We find that when the SDU is busy, patients are more likely to be rerouted – lower

severity patients tend to go to the ward, while higher severity patients tend to go to the ICU. One possible
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explanation for the statistically significant effect on hospital LOS is that the high severity patients who are

admitted to the SDU are less sick that those who are not (and instead are sent to the ICU). Combining

this with the lower severity patients who benefit from SDU care results in a statistically significant effect.

Unfortunately, because of limitations in our data and the presence of unobservable factors, it is difficult to

accurately assess the severity of the patients in this particular cohort, so we cannot be sure what is driving

this result.

Table 13 Estimated Effect of SDU Admission Following the ED ( γ) on Patient Outcomes for Medium

Severity Patients and Correlation between error terms ( ρ) for the admission decision and patient outcomes.

With IV Without IV
Outcome γ (SE) ρ (SE) Testρ= 0 γ (SE)

SDU vs. Ward:N = 21,399
Mortality -0.19 (0.25) 0.13 (0.15) 0.38 0.02 (0.04)

log(HospRemLOS) -0.02 (0.13) 0.10 (0.07) 0.14 0.08∗∗∗ (0.01)
HospReadm2w 0.32 (0.25) -0.16 (0.15) 0.28 0.05+ (0.03)

SDU vs. ICU:N = 12,043
Mortality 0.07 (0.20) -0.18 (0.13) 0.15 -0.22∗∗ (0.07)

log(HospRemLOS) -0.26 (0.08) 0.10 (0.06) 0.11 -0.18∗∗ (0.03)
HospReadm2w -0.15 (0.19) 0.09 (0.12) 0.46 -0.01 (0.04)

SDU vs. ICU or Ward: N =25,928
Mortality -0.23 (0.19) 0.10 (0.11) 0.37 -0.06+ (0.04)

log(HospRemLOS) -0.21∗∗ (0.07) 0.17∗∗ (0.05) 0.01 0.00 (0.01)
HospReadm2w -0.01 (0.25) 0.03 (0.15) 0.86 0.03 (0.03)

Note. Standard error in parentheses.+(p < 10%),∗ (p < 5%),∗∗ (p < 1%),∗∗∗ (p < 0.1%).

Medium severity thresholds,t1 andt2, defined by95th and60th percentiles of̂Tx
∗

i .

While it is challenging to consider this medium severity group and to interpret the results of our esti-

mations for these patients, we highlight that this does not change the fundamental result of our work. In

particular, we find that sending high severity patients fromthe ED to the SDU when the ICU is busy can

have substantial adverse consequences. On the other hand, for some low severity patients care in the SDU

may be beneficial with regard to some patient outcomes. Theseresults indicate the need for further study of

the use of the SDU for patients originating in the ED.

6.4. Robustness Checks

We now describe a number of robustness checks for our ED cohort. Due to the challenges associated with

the medium severity patients, we focus our attention on the robustness of our results for the low and high

severity patients. Our initial robustness checks are very similar to those we did with the ICU cohort. We

tried different specifications of control variables, different time-lines for hospital readmission (within 1

week, 2 weeks, and 30 days after a patient is discharged from the hospital), and different ways to control

for congestion during a patient’s stay (max occupancy and nocontrol). We also varied the definition of
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our instrument(s) by varying the number of available beds from one to four, using indicator variables for

whether the percentile occupancy level was above a threshold, a spline variable for the percentile occupancy

level, as well as a time-varying capacity measure based on three 4-month periods. For our LOS models, we

also considered specifications including patients with in-hospital death.

6.4.1. Low Severity PatientsFor the low severity patients, we found the results for LOS were very

robust in sign, magnitude and statistical significance for all of these different specifications, including when

we include patients with in-hospital death. The sign and magnitude for the in-hospital mortality results were

also very robust. When the IV of SDU busy was based on very limited bed availability (i.e.,≤ 1 free beds

or occupancy above the 95th percentile), the coefficient estimates were not statistically significant. In these

instances, we cannot reject the null hypothesis that the correlation between the two error terms in our model

is 0, i.e.ρ = 0. This suggests that in these instances, the instrument is not able to adequately address the

endogeneity biases in our data. We consistently found no statistically significant association between SDU

admission and hospital readmissions within 1 week, 2 weeks,or 30 days.

6.4.2. High Severity PatientsFor the high severity patients, we found the results forHospRemLOS

were very robust in sign, magnitude and statistical significance for all of these different specifications.

The mortality results were also quite robust. However, whendefiningICUBusy or SDUBusy with a

relatively low occupancy level (e.g.80th percentile), the statistical significance of the coefficients can drop

to p-value< 10% or in some rare instances, is no longer statistically significant even at the 10% level. In

these instances, we cannot reject the null hypothesis that the correlation between the two error terms in our

model is 0, i.e.ρ= 0. This suggests that in these instances, the instrument is not able to adequately address

the endogeneity biases in our data. Similarly, the hospitalreadmission results are always consistent in terms

of sign and magnitude for these different specification. However, there are some instances when the results

are not statistically significant. These instances correspond to when we cannot reject the null hypothesis

thatρ= 0. This happens most frequently with the 1 week time to hospital readmission. We also found that

all of our results were robust to including an additional instrumental variable based on the number of recent

admissions to the ICU (RecentAdmissionICU
i ).

For the LOS models, we also considered the robustness of our results to including patients with in-

hospital death. When including patients with in-hospital mortality in the high-severity ED Cohort, the sign

of γ is negative (−1.83) and statistically significant at the p-value< .01 level. This raises questions as

to the robustness of our LOS results for the high-severity group. However, we believe the main results as

reported are more likely to be aligned with the true effect direction and size of SDU admission as it has

been well established in the medical literature to exclude patients with in-hospital death for LOS models

(e.g.Rapoport et al.(1996), Norton et al.(2007)).
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6.4.3. Severity categorizationsIn our severity categorizations for the ED Cohort, we took a data-

driven approach and used thresholds on̂Tx
∗

i to partition the patients into Low and High Severity groups.

We varied the thresholds for these categorizations from the45th to 85th percentile for low severity patients

and from the90th to 97th percentile for high severity patients. We then examined therobustness of our

estimation results to these different thresholds.

6.4.4. Low Severity PatientsAs with our main specification, we do not find statistically significant

results for the hospital readmission models. We find that theresults forHospRemLOS is very robust in

magnitude and statistical significance to all of the different specifications of the low severity threshold.

While the mortality results are robust to lowering the threshold, which reduces the sample size, we lose

statistical significance when increasing the threshold above the60th percentile. This may be because as

the sample size is increased, there are (moderately) high severity patients whose mortality risk may suffer

with SDU admission are included in the cohort. When examining the LOS results more closely, we see that

as the threshold is increased, the magnitude of the coefficient decreases, suggesting that the low severity

cohort is including more patients for which SDU care is detrimental. Moreover, we cannot reject the null

hypothesis that the correlation between our error terms is 0(ρ = 0), which suggests that as the threshold

increases, there are more non-compliers included in the cohort, making the instrument ineffective to address

the endogeneity issues.

6.4.5. High Severity PatientsIn our readmission models, increasing the threshold for high severity

patients above the95th percentile results in the regressions not converging. Thisis likely because the size

of the cohort is being made smaller and smaller, and there arenot enough samples to solve the FMLE

optimization. These results suggest that the hospital readmission results are not very robust.

On the other hand, theHospRemLOS results are quite robust to changes in the threshold. Similar

to our observations for the low severity patients, we see that as the threshold decreases, the magnitude

of the coefficient decreases. This may be because low severity patients who benefit from SDU care are

entering into the high severity cohort as the threshold is decreased. A similar argument can be made for the

mortality results. We find that when the threshold for high severity patients is less than the93rd percentile,

the mortality and LOS results are no longer statistically significant. About 10% of the ED-medical patients

are admitted to the ICU from the ED. Additionally, our admission model in Equation (6) incorporates an

unobservable termξi, such that if the observed latent variablêTx
∗

i plusξi is above the threshold, the patient

will be routed to the ICU. As the threshold gets closer to the90th percentile, there will be more spill over

of patients for which SDU care is beneficial (instead of detrimental).

7. Conclusions and Managerial Insights
This paper studies the role of different levels of service for customers with uncertain needs. We examine

this in a hospital setting where step-down units (SDUs) can be used to treat a variety of patients with very
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different repercussions. We consider fundamental questions regarding the SDU: Does admitting a patient to

the SDU improve or degrade patient outcomes? What is the magnitude of these effects? And, how does it

vary across different types of patients? Our work represents an important first step towards answering these

questions. We find that while the answer for patients discharged from the ICU (its original purpose) is fairly

clear, for those admitted from the ED, it is quite nuanced – some patients will benefit, while others will not.

Moreover, the impact of SDU care can be substantial, so it is essential to be able to carefully identify which

patients are appropriate for SDU care. These findings suggest that while different levels of service may be

used to serve multiple customer types, the costs and benefitsassociated with each level of service can be

highly heterogeneous due to the different and sometimes uncertain needs of customers.

There are a number of opportunities for future work. Our empirical analysis relies on the variation in

patient routings following ICU discharge or following admission from the ED due to SDU and/or ICU

capacity constraints. Consequently, our estimates fundamentally apply to patients whose SDU admission

comply with our instrumental variables. As such, it is not possible to make any statements about the impact

of SDU care for patients whose care pathway is invariant to SDU (or ICU) bed availability. While it is

difficult to extrapolate our results to make inferences on the precise magnitude of the effect of the SDU on

individual patients, our results demonstrate strong evidence as to the directional impact of an SDU. Because

SDUs go in and out of favor at individual hospitals, there maybe opportunities for natural experiments to

make such inferences without requiring an instrumental variable analysis. Alternatively, at a hospital system

such as Kaiser Permanente, it might be possible to conduct a controlled randomized trial by randomizing

which hospitals have SDUs. Of course, such a study would require substantial buy-in from hospital admin-

istrators and staff. Our empirical setting focuses on patients admitted to the hospital via the ED to a medical

service. A number of studies in the medical literature consider the impact of SDUs on surgical patients (e.g.

Eachempati et al.(2004)). The impact of SDU congestion is likely very different forsurgical patients, where

surgical procedures and schedules often dictate the precise care pathway for these patients. Hence, an alter-

native identification strategy is likely needed. In other service settings where experimentation is less costly

(e.g. call-centers), randomized experiments may be a feasible approach to providing unbiased estimates

of costs and benefits for different customers. That said, as routing of customers to servers in call-centers

is often done by computers, the likelihood of biases due to unobservable factors may be lower, so an IV

approach or randomized experiment may not be necessary in these settings.

Our approach to classifying patients could be used in other service settings where customers’ needs are

uncertain. For instance, in an increasing number of healthcare settings–including EDs, critical care, primary

care and oncology, among others–Physician Assistants (PAs) and Nurse Practitioners (NPs) are used as

lower cost alternatives to physicians (e.g.Hooker and McCaig(2001), Naylor and Kurtzman(2010), Hinkel

et al.(2010), Doan et al.(2011), Gershengorn et al.(2011), Green et al.(2013), Gershengorn et al.(2016),

etc.). PAs and NPs are trained in some, but not all, of the skills of physicians, raising important questions
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as to which patient types and tasks can be safely and effectively handled by these healthcare professionals

rather than by a physician. In such instances, a data-drivenapproach, such as the one taken in this paper,

could be utilized to classify patients. It could also be useful in other service settings in which servers have

different skill levels, such as call-centers or repair facilities, where customers are heterogeneous, but their

needs are not known a priori. With the growing availability of customer information (e.g. demographics,

spending habits, etc.), a data-driven approach to customersegmentation may be useful.

From a stochastic modeling point of view, there are a number of directions that could build upon this

work. From the healthcare operations management standpoint, it would be interesting to study optimal con-

trol policies regarding where to transfer patients from theED or following ICU discharge in the presence

of an SDU. This would provide a system-level view that would capture the potential benefits of an SDU,

including externalities on other patients, beyond the estimates of individual patients estimated in this work.

This would complement the growing body of work which examines how to make patient transfer deci-

sions from the ED as well as inpatient units (e.g.Mandelbaum et al.(2012), Barz and Rajaram(2015),

Samiedaluie et al.(2017), Dai and Shi(2017), Kilinc et al. (2016), etc.). Additionally, one could consider

how to determine the capacity of the SDU relative to the ICU and general ward given patient mix and arrival

rates. One factor which would significantly impact this decision is whether to restrict use of the SDU to

be a true step-down versus allowing admission of patients from non-ICU units, such as the ED. This work

quantifies the impact of lack of access to care for various patient types and could be used to set performance

benchmarks or to calibrate a cost minimization framework when determining bed capacity (e.gYankovic

and Green(2011), Yom-Tov and Mandelbaum(2014), Best et al.(2015), Armony et al.(2017), etc.). Anal-

ysis of these questions can also provide insights into how toutilize nested levels of service and routing

policies in other types of service settings with heterogeneous customers (e.g. call-centers (Gans et al. 2003),

retail stores, restaurants, etc.). For instance, it would be interesting to understand what factors such as num-

ber of customer types, differences in customer demand, service times, and costs impact the optimal number

of levels of service and the optimal capacity to allocate to each level.

In understanding the benefits of the nested structure, an interesting tradeoff arises where increasing the

number of levels reduces pooling benefits and may increase delays or reroutings. On the other hand, increas-

ing the number of levels of care allows for more specialization that may result in efficiencies that reduce

service times and improve outcomes. In many nested service systems, including the hospital situation stud-

ied here, it would be interesting to examine the potential tradeoffs between pooling and efficiency, similar

in spirit to the work inSong et al.(2015) and how this would impact the allocation of servers (e.g. beds) to

different levels of care (e.g.Best et al.(2015)).
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Table 14 Control variables for patient characteristics and hospital care

Variable Description ICU Cohort ED Cohort
Gender Dummy variable: Males were coded 1 and females 0 X X

Age Continuous variable: Coded as piecewise linear spline variables
with knots at its50th and80th percentiles (65 and 81)

X X

LAPS2 Laboratory-based Acute Physiology Score; measures physio-
logic derangement at admission and is mapped from 14 labora-
tory test results, such as arterial pH and white blood cell count,
obtained 72 hours preceding hospitalization to an integer value
that ranges from 0 to 262 in our data set(higher scores indi-
cate poorer condition); coded as piecewise linear spline variables
with knot at its50th and80th percentiles (94 and 134)

X X

COPS2 Comorbidity Point Score; measures the chronic illness burden
and is based on 41 comorbidities, such as diabetes, to which
patients are categorized using outpatient and inpatient data from
the 12 months preceding hospitalization. It ranges from 0 to267
in our data set, a higher score indicates a higher comorbid illness
burden, it was coded as piecewise linear spline variables with
knot at its50th and80th percentiles (33 and 87)

X X

SAPS3 Simplified Acute Physiology Score; measures the severity ofill-
ness and predict vital status at hospital discharge based onICU
admission data. SAPS3 score is associated with each ICU admis-
sion and is calculated based on data obtained within on hour of
ICU admission. SAPS3 ranges from 14 to 100 in our data set;
coded as piecewise linear spline variables with knot at its50th

and80th percentiles (52 and 61)

X

Admitting
diagnosis

A way of classifying ICD9 codes. This clinical classification sys-
tem was developed by HCUP and buckets ICD9’s into about 200
groups. A further grouping of the variable HCUP developed by
Gabriel Escobar to condense the HCUP grouping into 38 groups
so it could be used in a similar fashion as PRIMCOND3.

X X

Seasonality Month/day-of-week/time-of-day; Category variable for each
month and day-of-week. For time-of-day, we use category vari-
ables for nurse shifts happening three times a day at 7am, 15pm,
and 23pm.

X X

Previous
unit

Category variable to track inpatient unit a patient is admitted to
immediately before ICU admission.

X

LOS
before
ICU

Continuous variable that is the total length-of-stay (hrs)prior to
the ICU admission. It measures how long a patient has been in
hospital before being admitted to the ICU, coded as piecewise
linear spline variables with knot at its50th and80th percentiles
(2 and 31).

X

ICU LOS Continuous variable that is the length-of-stay (hrs) at thefirst
ICU. It measures how long a patient has been taking care of at
ICU, coded as piecewise linear spline variables with knot atits
50th and80th percentiles (38 and 83).

X

ED LOS Continuous variable that is the length-of-stay (hrs) at thefirst
ED. It measures how long a patient has been taking care of at
ED.

X

NOTE: To account for potential non-linear effects of some ofthe variables used to control for patient
severity, we code them as piecewise linear spline variables.
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Table 15 ICU Cohort: Percentage of patients who are discharg ed from ICU when SDU is busy

% when number of available SDU beds
Hosp SDU Size ≤ 1 ≤ 2 ≤ 3 ≤ 4

1 24 0.93 3.57 7.80 12.17
2 25 0.66 2.95 7.54 12.46
3 14 0.56 7.94 24.29 45.63
4 19 3.17 12.68 27.07 41.59
5 24 0.28 1.54 3.93 7.87
6 19 0.82 3.34 6.76 15.37
7 20 0.00 2.84 16.74 36.77
8 27 2.81 9.34 18.80 31.74
9 11 9.76 37.72 63.94 80.34
10 32 0.34 2.66 6.19 12.71

All hosp 2.52 10.64 21.70 34.00

Table 16 Post-ICU location

Unit Frequency Percent

Ward 7,226 54.77
SDU 3,832 29.05
Death in ICU 985 7.47
Out of hospital (alive) 1,150 8.72
Total 13,193 100

Table 17 Effect of SDU Admission Following the ED ( γ) on HospRemLOS When Including Patients with

In-Hospital Death

Cohort γ (SE)
Predicted Outcome

ρ (SE)
Test

P̂SDU P̂ICU /P̂Ward ρ=0

ED Cohort - High Severity -1.83∗∗ (0.07) 1.33% 8.31% (̂PICU ) 0.81∗∗∗ (0.02) 0.00
ED Cohort - Low Severity -0.20∗∗∗ (0.04) 2.38 2.92 (̂PWard) 0.18∗∗∗ (0.03) 0.00
Note. Standard error in parentheses.+(p < 10%),∗ (p < 5%),∗∗ (p < 1%),∗∗∗ (p < 0.1%).
Predicted outcome:̂PSDU - Average predicted outcome if all patients could be routed to the SDU

andP̂ICU (P̂Ward) if no SDU and everyone is routed to the ICU (Ward).
PredictedHospRemLOS (days) is shown instead oflog(HospRemLOS)
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