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Many service systems are staffed by workers who work in shifts. In this work, we study the dynamic assign-

ment of servers to different areas of a service system at the beginning of discrete time-intervals, i.e., shifts.

The ability to reassign servers at discrete intervals, rather than continuously, introduces a partial flexibility

that provides an opportunity for reducing the expected waiting time of customers. The problem is primarily

motivated by an application to nurse staffing in emergency departments (EDs) where nurses can work in

different areas of the ED, but their assignment can only be changed at the beginning of their shifts (typically

8-12 hours). To investigate the reassignment decision and its potential benefits, we consider a multiclass

queueing system, where customers of each class differ in terms of their average service requirements and the

holding cost incurred as they wait in the queues. We study a discrete-time fluid control problem to minimize

transient holding costs over a finite horizon and show that an appropriate “translation” of the solution to

the fluid control problem is asymptotically optimal for the original stochastic system. Through analysis of

the fluid control problem we further obtain insights on the structure of “good” policies in the presence of the

shift constraint. Leveraging these insights, we develop heuristic policies and use simulation to demonstrate

their effectiveness in systems with dynamics often observed in EDs. We find that in a parameter regime rel-

evant to our motivating application, the partial flexibility introduced by reassigning servers at the beginning

of shifts can substantially reduce the expected cost of the system – by 10–50% in some parameter regimes

– compared to the status-quo, dedicated staffing.
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1. Introduction

In many service settings, servers (staff) are assigned to specific tasks (or classes of tasks) for fixed,

finite intervals – shifts. Much of the prior literature has focused on optimizing the number and

type of servers allocated to each shift as well as optimizing the timing of the shifts (e.g., Brusco

et al. 1995, Ingolfsson et al. 2002, Atlason et al. 2008). In contrast, we assume that the schedule
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and number of servers per shift is given and focus on the dynamic assignment of servers to different

areas of a service system at the beginning of each shift.

In the simplest setup, which we refer to as dedicated staffing, the system manager assigns a

fixed number of servers to each area which remains static across all shifts. Due to fluctuations in

customer arrivals and service times, there are likely to be times when one area is congested while

there are servers idling in other areas. Ideally, one could assign the servers dynamically as soon as

imbalances in the congestion warrant it. Unfortunately, this full flexibility (in terms of reassignment

of servers to areas) is not always possible. This may be because the tasks are highly specialized

and/or the areas are far apart, making the switch from one area (or task) to another during a

shift impractical. However, because staff tend to rotate in and out at the beginning of each shift,

it may be possible to reassign servers at these discrete intervals. In this work, we investigate the

potential benefits of a partially flexible design that allows for adjusting the server assignments at

the beginning of shifts. In this setting, the total number of servers per shift is known in advance,

but the number assigned to each area may change when the servers arrive for their shift.

Our main motivation comes from Emergency Department (ED) nurse staffing, and was initiated

as part of a collaboration with a large academic hospital in New York City. Overcrowding and long

delays for patients is prevalent in EDs with potentially serious ramifications in quality of care. As

pointed out by Green (2010), nurses are the primary managers and caretakers of patients in the

ED. Hence, their unavailability can be a major contributor to delays experienced by patients. With

nursing costs that comprise a significant fraction of hospital budgets, it is of growing interest to

explore innovative ways to effectively utilize nursing resources with the goal of reducing patient

waiting times.

In our partner hospital, the ED is partitioned into 4 areas that are physically separated from

each other. New patients are assigned to different areas primarily based on their medical needs and

Emergency Severity Index (ESI) level, which is a coarse assessment of their severity determined

at triage. Nurses work in 12-hour shifts and are assigned to a certain area weeks in advance.

Additionally, the number of nurses assigned to different areas remains fixed throughout time. This

structure is convenient for nurses as they know in advance which shift and area they are assigned

to. Although nurses can work in any of the areas (and are actively rotated across different shifts),

they typically cannot be reassigned mid-shift since they have to setup their workspace and due to

concerns with continuity of care. Nevertheless, from time-to-time when imbalances among areas

occur, the nursing director may reassign a nurse from a less congested area to a heavily loaded one

at the beginning of a new shift. This happens very infrequently. In this work, we investigate this

reassignment decision and its potential benefits. We note that although our partner ED may be



Chan, Huang, and Sarhangian: Dynamic Server Assignment in Multiclass Queues with Shifts
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 3

among the few with 4 areas, many EDs (e.g., that in Song et al. 2015) have 2 areas, with one area

dedicated to lower acuity patients often referred to as the “Fast Track”1.

Although our work is primarily motivated by the nurse staffing application described above,

our model and analysis can provide insights for other service systems with a similar structure.

Examples include checkout-lines in large department stores and security checkpoints at airports.

See Martonosi (2011) for a discussion of an application in airport security check-lines. Additionally,

the partially flexible design could be beneficial for services where there are diseconomies associated

with full flexibility (pooling) of servers. For instance, Jouini et al. (2008) illustrates how migrating

from a pooled system to a dedicated system where a team of servers in a call center is assigned

to each customer class could increase throughput by allowing better workforce management and

enabling efficiency gains due to the specialization. In such cases, the partially flexible design allows

the servers to focus on one customer class or task during each shift, while still potentially achieving

some of the benefits of pooling.

A queueing system with partial flexibility: To investigate the benefits of the partially

flexible design, we consider a multiclass queueing system with multiple server pools. Each customer

class is associated with a queue and server pool. Customer classes differ in terms of their average

service requirement and the waiting cost incurred as they wait in the queues. The objective is to

dynamically assign servers to the server pools in order to minimize the expected waiting cost of the

system over a finite horizon, but under the restriction that the assignments can only be changed

at the beginning of discrete intervals; i.e., at the start of each shift. We refer to this restriction as

the shift constraint.

The underlying model is fairly standard in the queueing literature and can be viewed as a parallel

server system (see, e.g., Dai and Tezcan 2011) with multiple server pools that are each capable of

serving a subset of customer classes. Accordingly, the dynamic scheduling decision is to choose the

next customer class to serve, each time a server becomes idle. The key feature differentiating our

work from the literature is the presence of the shift constraint. We assume that servers are cross-

trained and are capable of serving all customer classes, but can only serve a single customer class

during each shift. We note that the discrete-time structure of control in our work bears similarities

to the literature on discrete-review scheduling policies for single-server queues (e.g., Harrison 1998,

Maglaras 2000) where the scheduling decision is made at the beginning of discrete intervals of

chosen length due to a design choice selected by the system controller. In contrast, the restriction

in our problem is due to the underlying primitive constraints of the service system and the length

of the review period (shift length in our problem) cannot be “fine-tuned”. As a result, our goal is to

find policies that perform well for a given shift length, and to understand the benefits of dynamic

control for different parameter regimes and shift lengths.
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The shift constraint introduces a partial flexibility into our system, which is in contrast to two

well known designs: dedicated and fully flexible staffing. Under dedicated staffing, the number

of servers in each pool remains fixed in time. Hence, the (static) staffing problem is to find the

number of servers for each pool that minimizes the total cost of the system. Under full flexibility,

the assignment of servers can be adjusted at any point in time. In this case, the server assignment

problem reduces to a well-known scheduling problem that is (assuming non-preemption) equivalent

to choosing the next customer to serve from the set of customers waiting, each time a server becomes

available. In this case, the myopic cµ policy that chooses the class with the highest cµ−index (i.e.,

holding cost rate × service rate) is known to be optimal even under more general conditions and

different cost-criteria (e.g. Van Mieghem 1995 and Mandelbaum and Stolyar 2004).

The control problem under the partially flexible design introduces new complexities. Even assum-

ing a Markovian setting, the typical approach of exploiting a Markov Decision Process (MDP)

formulation is both computationally and analytically hard. This is in large part due to more com-

plex transition probabilities compared to the fully flexible design. Unlike the control problem under

full flexibility where one can apply uniformization to obtain a discrete-time MDP with simple

transition probabilities, under the partially flexible design the transition probabilities are dictated

by the transient distributions of independent multiserver queues which are not available in closed

form.

In addition to the above technical complexities, we note that the simple myopic cµ policy under

the fully flexible design does not easily “translate” into useful policies for the problem under the

partially flexible design. We find that myopic assignments could lead to “excessive” idleness due

to the inability to reallocate over the duration of a shift, ultimately resulting in worse performance

compared to dedicated staffing. However, when the tradeoff between myopic cost reduction and mid-

shift idleness is properly taken into account, partial flexibility could result in significant reduction

of expected waiting costs in practically relevant parameter regimes. Our main contributions can

be summarized as follows:

• Queueing model with shift constraint. We propose a multiclass and multiserver queueing

model which allows for dynamic server assignment at discrete intervals. The key component we

consider is the dynamic assignment of servers under a new staffing constraint – the shift constraint

– that arises in a number of service settings. We develop an understanding of which features drive

the reassignment decision as well as the potential benefits associated with the introduction of

partial flexibility.

• Fluid analysis and an asymptotically optimal policy. We propose an associated discrete-

time fluid control problem and exploit a dynamic programming formulation to show structural

properties of the optimal policy that provides insights on the structure of “good” policies under the



Chan, Huang, and Sarhangian: Dynamic Server Assignment in Multiclass Queues with Shifts
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 5

partially flexible design. We propose a “translation” of the solution to the fluid control problem

for the original stochastic system and prove its fluid-scale asymptotic optimality. Using simulation,

we observe that the benefit of partial flexibility can be substantial compared to dedicated staffing

when starting from large and/or imbalanced initial states. In addition, as long as the system does

not quickly reach its steady-state during the shifts (i.e., the shift length is not “too long” compared

to the time between service completions) there can also be significant benefits with respect to the

long-run average cost of the system.

• Model extensions and heuristics. We consider extensions to our model to include time-

varying arrivals and customer abandonment. We then leverage insights from the analysis of the

fluid control problem to develop simple heuristic policies and demonstrate their effectiveness and

investigate the impact of customer abandonment using simulation experiments. Further, and as a

“proof of concept”, we apply our heuristics to a simulation model of the system calibrated using

data from our partner ED. These results suggest that the insights generated from our original

model are robust and can be useful when facing more complex system dynamics.

1.1. Related Literature

There is a large literature on shift scheduling (or rostering) for service systems; see Burke et al.

(2004) for a review devoted to the nurse scheduling problem. This body of literature typically does

not explicitly consider queueing dynamics. Accounting for queueing dynamics introduces complex

stochastic interdependencies across shifts. Kolesar et al. (1975) and Green and Kolesar 1989 derive

shift schedules for police patrol cars by assuming the system reaches stationarity in each shift.

For the same application, Ingolfsson et al. (2002) directly take into account time-varying queueing

dynamics in scheduling workforce. Batt et al. (2019) empirically studies the effect of discrete work

shifts on service rates and investigates the impact of hand-offs (from one provider to another) at

the end of shifts. While we do not incorporate the end of shift effects in our model, we do consider

how staffing decisions in one shift can impact the dynamics in future shifts. This is also done in

Anderson and Gamarnik (2015) which uses a fluid approximation of a single-class queueing model

to compare two intern scheduling policies in order to determine the length of the shifts and number

of interns that work during each shift. In contrast to these prior works, we assume that the shifts

and the number of staff available for each shift is given and use a queueing model to investigate

their dynamic assignment to different areas of the service system at the beginning of each shift.

Additionally, we take a different methodological approach in order to derive asymptotically optimal

policies.

The queueing model considered in this paper consists of parallel server pools and multiple classes

of customers. Parallel server queueing systems have been extensively used in the literature to model
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service processing networks such as call centers (e.g., Bassamboo et al. 2006) or healthcare systems

(e.g., Dai and Shi 2019). When it comes to dynamic control, previous literature has focused on

continuous-time routing or scheduling decisions. In our work, since the control is restricted to the

beginning of shifts, the scheduling problem turns into a server assignment problem where servers in

each pool can only serve customers in the corresponding queue but the number of servers assigned

to the pools can be adjusted at the beginning of discrete time-intervals. There appear to be only a

few examples in the literature considering discrete-time control of queueing systems. One example

is Tirdad et al. (2016) which considers a hysteretic policy in discrete-time for controlling service

capacity of a single-class time-varying multiserver loss system. Another example is a closely related

study by Martonosi (2011) which considers a similar model to ours with two customer classes

and identical holding costs, including a constant switching time for moving servers. The problem

there is motivated by the possibility of moving servers among airport security check lines to reduce

overall congestion. The author exploits an MDP formulation and proposes heuristic policies, but

finds that using intuitive heuristics could hurt the performance of the system. In contrast, we study

the problem using an asymptotic approach that allows us to design effective and robust policies,

leads to insights on the structure of good policies, and identifies the parameter regimes where the

dynamic server assignment leads to significant savings.

Due to the complexity of the control problems for parallel server systems, many papers have

exploited asymptotic parameter regimes (e.g., Harrison 1998 or Harrison and Zeevi 2004, Gurvich

and Whitt 2010). In this work we exploit a fluid asymptotic regime that is suitable for our problem

as the fluid models (approximately) capture the transient dynamics of the system during the

shifts. The asymptotic regime is closely related to one commonly used in the study of networks

of multiclass single-server queues (e.g., Meyn 1997, Chen and Meyn 1999, Maglaras 2000 and

Bäuerle 2000). The closest to our methodological approach is Maglaras (2000) which proposes a

general discrete-review policy for dynamic scheduling in a network of single-server queues and uses

a Functional Strong Law of Large Numbers (FSLL) type scaling to establish asymptotic optimality

in the fluid asymptotic regime formalized in Dai (1995). Under the discrete-review policy, the

controller reviews the state of the system at the beginning of review periods of chosen length

and prescribes a scheduling plan (number of customers in each class to be served) for that review

period.

To adapt the approach of Maglaras (2000) to our multiserver setting, we use a many-server

fluid regime similar to e.g., Mandelbaum et al. (1998) and Atar et al. (2010) that involves uniform

acceleration of the arrival rates and the number of servers. The key feature in our asymptotic

regime is that we leave the shift length unscaled. This stands in contrast to Maglaras (2000) and

other discrete-review policies in the literature (e.g., Harrison 1996, 1998, Bassamboo et al. 2006)
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where the length of the review period is chosen by the controller and becomes negligible in the

limit. By keeping the shift length unscaled, we preserve the discrete-time structure in the limit

and obtain a discrete-time fluid control problem. This leads to a tighter asymptotic lower bound

for our problem (compared to the case where the shift length vanishes in the limit). Further, by

analyzing the limiting fluid control problem, we gain insights into the structure of good policies

under discrete-time control.

Another related (fluid) asymptotic regime is the one proposed by Bassamboo et al. (2006) (see

also Harrison and Zeevi 2005 and Bassamboo et al. 2005). The asymptotic regime there is charac-

terized by a large number of arrivals and servers but short service times and impatient customers

such that in the limit the system “equilibrates instantly”. This regime is not relevant for our

dynamic server assignment problem as it corresponds to a setting where the transient effects are

negligible. In our setting, the service times are on the same order of magnitude of the shift lengths

(e.g. 3-4 hours versus 8-12 hours), so the transient dynamics play an important role. As we discuss

and show numerically, the benefits of a partially flexible design are small when the queue length

processes quickly reach their steady-state distribution during the shifts.

Finally, our study relates to the growing literature on queueing models of patient flow in hospitals;

see Armony et al. (2015) for a recent literature review. Closer to our work are models in support

of staffing (e.g., Green et al. 2006, Yom-Tov and Mandelbaum 2014, Yankovic and Green 2011,

Véricourt and Jennings 2011) which focus on determining the required number of providers. Other

papers in the literature have studied dynamic scheduling or control of patient flows in the ED (e.g.,

Saghafian et al. 2012, Huang et al. 2015). To the best of our knowledge, dynamic assignment of

providers, the main focus of our work, has not been previously considered in the literature.

1.2. Notation

We denote the nonnegative real line [0,∞) by R+, the set of nonnegative integers by Z+, and

the I−dimensional Euclidean space by RI . For x ∈RI we denote the L1 norm by ‖x‖=
∑

i∈I |xi|.

For two vectors a and b in RI , a≥ b means that a− b belongs to the nonnegative orthant RI+. In

particular, a≥ b iff ai ≥ bi for all i. A vector valued function f :RI+→RI+ is monotone iff each entry

fi is monotonic. Similarly, f is convex iff each real-valued entry fi is convex. The I−dimensional

vector with all values equal to 1 is denoted by e.

All stochastic processes in this paper are defined on a common probability space (Ω,F ,P) with

expectation with respect to P denoted by E. Further, all processes have sample paths in the

d−dimensional Skorohod space Dd[0,∞) for some positive integer d≥ 1. For f :R+→R let |f |T =

sup0≤t≤T |f(t)| and for f : R+→ RI define ‖f‖T = sup0≤t≤T ‖f(t)‖. A sequence of functions {fn}

in Dd[0,∞) converges uniformly on compact sets, denoted fn(t)→ f(t) u.o.c., if ‖fn− f‖T → 0 as
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n→∞ for any T > 0. RCLL stands for right-continuous with left limits, a.e. for almost everywhere,

and a.s. for almost surely.

All proofs are provided in the E-Companion.

2. Model Description and Formulation of the Control Problem

To study the impact of the shift constraint, we begin with a parsimonious queueing system with

I customer classes, I parallel queues, and I server pools. Class i ∈ I ≡ {1, . . . , I} customers arrive

to the system according to a Poisson process with intensity λi and have service requirements

that are exponentially distributed with rate µi. There are a total of n servers available. Servers

are cross-trained and capable of serving all customer classes. However, a server can only attend

to a class if it is assigned to the server pool associated with that class. Under the fully flexible

design, the assignment of servers to pools can be adjusted at any point in time. However, under

the partially flexible design, the assignments can be adjusted only at the beginning of shifts of

constant length τ > 0. Customers who find all servers assigned to their pool busy upon arrival are

placed in an infinite capacity queue dedicated to their class. Each server can only be assigned to a

single pool at any point in time. Servers of each pool serve customers of their class in a First-Come,

First-Served (FCFS) and work conserving manner. That is, an assigned server to pool i is idle iff

queue i is empty. We assume a preemptive service discipline so that if the assignment of a server is

changed while the server is busy, the service can be interrupted, with the customer whose service

is interrupted returning to the queue.

A dynamic control policy in our formulation takes the form of a stochastic assignment process

U(t) = (U1(t), . . . ,UI(t)) taking values in ZI+ and with RCLL sample paths. Denote by Ai(t) and

Si(t), i ∈ I a set of 2I mutually independent standard (unit rate) Poisson processes and let X(0)

denote a random variable representing the initial number of customers in system (at time t= 0) and

taking values in ZI+. An assignment process is said to be admissible under the fully flexible design

if there exist (unique up to a set with measure zero) processes X(t) = (X1(t), . . . ,XI(t)), Q(t) =

(Q1(t), . . . ,QI(t)) and Z(t) = (Z1(t), . . . ,ZI(t)) taking values in ZI+ and satisfying the following for

t≥ 0:

Xi(t) =Xi(0) +Ai(λit)−Si
(
µi

∫ t

0

Zi(s)ds

)
≥ 0, for all i∈ I, (1)

Q(t) =X(t)−Z(t)≥ 0, (2)

U(t)−Z(t)≥ 0 (3)

Qi(t)(Ui(t)−Zi(t)) = 0, for all i∈ I, (4)

U(t) · e≤ n. (5)
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Processes X, Q and Z are interpreted as the headcount, queue-length and the number of busy

servers, respectively. That is, Xi(t) is the total number of class i customers in the system; Qi(t) is

the number of class i customers waiting in queue i; and Zi(t) is the number of busy servers in pool

i (serving class i customers) at time t≥ 0. Equations (1)–(5) describe the system dynamics for any

admissible control policy U . The first two equations describe the dynamics of the headcount and

the queue-length processes. Equation (3) requires the number of busy servers in each pool to be less

than or equal to the number of servers assigned to that pool. Note that (3) also implies U(t)≥ 0

since Z(t)≥ 0. Equation (4) is the work-conserving condition. Note that although the policies are

required to be work-conserving within each class, they are not necessarily work conserving with

respect to the total work in system, i.e., there may be idle servers assigned to class i ∈ I, while

there are customers waiting in the queue of another class i′ ∈ I. In addition, it is easy to verify

that (2)–(4) imply,

Zi(t) =Xi(t)∧Ui(t), for all i∈ I. (6)

Intuitively, (4) ensures that servers are always busy serving customers of the class they are assigned

to. Hence, the number of busy servers in each pool must be the minimum of customers in the

corresponding class and the number of servers assigned to it. Finally, (5) ensures that the total

number of assigned servers is bounded by n. We assume that at time t= 0 the servers are unassigned

and, given X(0), the policy in effect determines the value of Z(0) according to (6) and the value

of Q(0) according to (3).

Under the partially flexible design, we need to further limit the set of admissible policies to those

that remain unchanged during shifts of length τ > 0. Let tk denote the starting time of shift k+ 1

with tk+1 − tk = τ , k ∈ N and t0 = 0. Then a dynamic control policy U is said to be admissible

under the partially flexible design, or discrete-review, if for all sample paths and k ∈N,

U(t) =U(tk)≡U [k], t∈ [tk, tk+1). (7)

That is, a discrete-review policy U has piecewise-constant sample paths that remain constant during

intervals of length τ . This requirement captures the shift constraint, distinguishing our formulation

from that of the more commonly studied continuous-time control problems. When U is not limited

to the set of discrete-review policies, its control is equivalent to controlling the number of busy

servers in each class subject to the queue-length being nonnegative (such as that in Bassamboo

et al. 2006 and Atar et al. 2010). For discrete-review policies, U provides an indirect control on Z.

Finally, we express the objective of the system manager. Let h= (h1, . . . , hI) denote the holding

cost rate vector where hi denotes the holding cost associated with class i customers waiting in the
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queue. The objective is to choose an admissible discrete-review policy that minimizes the expected

total holding cost of customers in queue over a finite horizon of length T > 0, i.e.,

E
[∫ T

0

h ·Q(s)ds

]
, (8)

starting from the initial state X(0). We are particularly interested in the setting where the initial

state is large and imbalanced, and aim to find a cost effective policy to reduce the queue lengths

to a desirable state over a sufficiently long, but finite horizon.

3. Fluid Control Problems and Asymptotic Lower Bounds

3.1. Fluid Control Problems

We start by proposing two deterministic fluid control problems associated with the original prob-

lems described in Section 2. In the fluid counterparts, the arrival rate is denoted by the vector

λ̄ ∈RI+ and the total capacity is normalized to 1. The objective is to find an admissible capacity

allocation function {u(t)∈RI+; 0≤ t≤ T} that minimizes the total transient cost of the system over

a finite horizon T starting from the initial condition x0 ∈RI+.

Problem 1. The first problem is a continuous-time control problem stated as follows.

JT (x0)≡ min
u(·)

∫ T

0

h · q(s)ds (9)

s.t. q(t) = (x(t)−u(t))+ ∀t∈ [0, T ], (10)

ẋ(t) = λ̄− µ̂ · (x(t)∧u(t)) , ∀t∈ [0, T ], (11)

x(0) = x0, (12)

u(t) · e≤ 1, ∀t∈ [0, T ], (13)

u(t)≥ 0, ∀t∈ [0, T ], (14)

where µ̂ ≡ diag(µ) and (x(t), u(t)) ∈ RI+ × RI+ is admissible if x(t) is absolutely continuous and

they jointly satisfy (11)–(14). We denote the optimal value of the above problem, which allows

for continuous reassignment, over all admissible policies by JT (x0). We also refer to the headcount

trajectory x(t) under an optimal control as the optimal trajectory.

Next, we define a discrete-time optimal control problem by limiting the set of admissible policies

u(t) to piecewise-constant (right-continuous) functions. For simplicity assume that T = Nτ for

some N ∈N. For all t∈ [0, T ] we require that u(t) = u(τk)≡ u[k] for k= bt/τc. The problem is then

to find the sequence of controls {u[k];k ∈ K ≡ {0, . . . ,N − 1}} that minimizes the corresponding

cost function in (9).

We use x[k] ≡ x(τk) for k ∈ K to denote the state of the system at the beginning of stage

k+ 1. Note that under a piecewise-constant control the trajectory satisfies the ODE in (11) with
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a constant allocation u(t) = u[k] during stage (shift) k + 1. Since the RHS of (11) is Lipschitz

in x(t) and continuous in the allocation u[k], there exists a unique solution that is continuous in

t, allocation u[k] and the initial condition x[k]. Denote this solution by fk(x[k], u[k], t) ∈ RI+, t ∈
[kτ, (k + 1)τ). Then, during each stage, the trajectory x(t) evolves according to fk(x[k], u[k], ·).
Note that by continuity of the trajectory x(t) we have x[k + 1] = fk(x[k], u[k], (k + 1)τ). Finally,

the stage cost function for period k+ 1 under control u and starting from x can be written as

gk(x,u) =

∫ τ(k+1)

τk

h · q(s)ds=

∫ τ(k+1)

τk

h ·
(
fk(x,u, s)−u

)+
ds. (15)

Problem 2. The discrete-time control problem can be stated as,

JT,τ (x
0)≡ min

{u[k];k∈K}

N−1∑
k=0

gk(x[k], u[k]) (16)

s.t. x[k+ 1] = fk(x[k], u[k], (k+ 1)τ), ∀k ∈K, (17)

x[0] = x0, (18)

u[k] · e≤ 1, ∀k ∈K, (19)

u[k]≥ 0, ∀k ∈K. (20)

We denote the optimal value of the above problem over all admissible policies by JT,τ (x
0). Note

that the existence of JT (x0) and JT,τ (x
0) follow from the compactness of the set of all feasible

trajectories.

3.2. Asymptotic Lower Bounds

Using fairly standard techniques, one can show that the dynamics used in the description of the fluid

control problems are justified through a FSLLN for a properly scaled sequence of the associated

processes in the original stochastic system operating under any admissible control policy (see

Proposition EC.1). More specifically, we consider a sequence of systems as described in Section

2, indexed by n. The nth system has n servers, arrival rate λn = (λn1 , . . . , λ
n
I ), service rates µn =

(µn1 , . . . , µ
n
I ), shift-length τn, and is initiated with Xn(0) customers in the system.

We assume that as n→∞ the arrival rates and initial conditions scale up linearly while the

service rates and shift length remain fixed, i.e, µn = (µ1, . . . , µI) and τn = τ for all n∈N. Formally,

we make the following assumptions regarding the sequence of arrival rates and initial number of

customers in the system.

Assumption 1. The sequence of random variables {n−1Xn(0)} is uniformly bounded, that is, for

some constant M > 0 and for all n we have ‖n−1Xn(0)‖ ≤M. Furthermore, as n→∞,

n−1Xn(0)→ X̄(0), (21)

a.s. for some random variable X̄(0) taking values in RI+.
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Assumption 2. For each i∈ I there exists a λ̄i > 0 such that as n→∞,

λ̄ni ≡ n−1λni → λ̄i. (22)

Denote the stochastic processes associated with the nth system with Xn, Qn, Zn and the control

process by Un. A sequence of control policies {Un} is said to be admissible if Un is an admissible

policy for the nth system for all n. We denote the set of all admissible policies under the fully

flexible design by Πn, and the set of discrete-review policies with shift length τ by Πn
τ . Clearly,

Πn
τ ⊂Πn.

Associated with each sequence of dynamic control policies {Un} and a finite horizon T > 0 is a

sequence of total costs denoted by {Cn
T (Un)}, where the total cost of the nth system is given by,

Cn
T (Un) =

∫ T

0

h ·Qn(s)ds. (23)

Our goal is to find a sequence of discrete-review controls that approximately minimizes the

expected fluid-scaled total cost of the system when n is large. We formalize the notation of asymp-

totic optimality for our problem in the following definition.

Definition 1 (Fluid-Scale Asymptotic Optimality). We say a sequence of discrete-review

policies {Un
∗ } is asymptotically optimal if,

limsup
n→∞

E[n−1CT (Un
∗ )]≤ lim inf

n→∞
E[n−1CT (Un)], (24)

for any sequence of admissible policies {Un} such that Un ∈Πn
τ for all n.

The following theorem presents two asymptotic lower bounds for the expected (scaled) cost of

the system; one using the solution to Problem 1 for all admissible policies, and a tighter bound for

discrete-review policies using the solution to Problem 2.

Theorem 1. For any sequence of admissible control policies {Un}, i.e., with Un ∈ Πn for all n,

we have

lim inf
n→∞

E[n−1Cn
T (Un)]≥E[JT (X̄(0))]. (25)

Furthermore, for any sequence of discrete-review control policies, i.e., with Un ∈Πn
τ for all n, we

have

lim inf
n→∞

E[n−1Cn
T (Un)]≥E[JT,τ (X̄(0))], (26)

and

E[JT,τ (X̄(0))]≥E[JT (X̄(0))]. (27)
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4. Analysis of the Fluid Control Problems

Before presenting the analysis of the fluid control problems, we first discuss a simple feasible

solution for them, namely, the dedicated allocation. Dedicated allocation is a fixed allocation vector

ud that is feasible and remains unchanged in time, i.e., u(t) = ud ≥ 0 for all t ≥ 0 and ud · e ≤ 1.

Under dedicated allocation, each class i ∈ I behaves as an independent multiserver fluid queue.

Define the vector ρ̄ ∈ RI+ with ρ̄i = λ̄i/µi, i ∈ I. It is well-know that for each class i ∈ I with any

initial state x0
i if ρ̄i <u

d
i then xi(t)→ ρ̄i as t→∞ (see, e.g., Atar et al. 2010). Therefore, assuming

ρ̄i < udi for all i ∈ I, if T is large enough the queues eventually vanish (since udi > ρ̄i) and, hence,

the total cost of the system remains finite as T →∞. In this case, we say that a stable dedicated

allocation exists.

4.1. Continuous–Time Control (Problem 1)

When the allocation can be controlled continuously in time, the problem reduces to a standard

scheduling problem. In this case, a cµ−type policy is known to be optimal at least in the single

server setting (see, e.g., Avram et al. 1995) and under some more general conditions – including the

traditional heavy-traffic regime (e.g., Van Mieghem 1995). Here we discuss the policy and present

some numerical examples to later contrast its structure to that of the optimal solution of Problem

2.

The cµ policy for the fluid model myopically allocates capacity in order of the cµ−index which

only depends on the service and holding cost rates. Without loss of generality, assume that the I

classes are ordered such that h1µ1 ≥ . . .≥ hIµI . The allocation vector under the cµ policy, denoted

by û(t), is given by

ûi(t) = xi(t)∧

[
1−

i−1∑
j=1

xi(t)

]+

, i∈ I, t∈ [0, T ], (28)

with the optimal trajectory satisfying the system of ODEs in (11). If there is enough capacity in

the system, i.e.,
∑

i∈I ρ̄i < 1, the trajectory xi(t) converges to ρ̄i for each class i ∈ I as t→∞,

regardless of the initial condition x0.

The system of ODEs can be solved numerically. Figure 1 presents the cµ trajectories and allo-

cations for a 2-class system with parameters λ̄ = (0.23,0.20), µ = (0.5,0.5), h = (4,2), and initial

condition x0 = (1.6,0.9). Observe that, at any point in time, the allocation for class 1 (with the

higher cµ index) is the minimum of class 1 fluid and the available capacity, while for class 2 it is

the minimum of class 2 fluid and the left over capacity from class 1. That is, at any point in time,

the allocation for class 1 is the maximum capacity such that no idleness is incurred in that class.
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Figure 1 cµ trajectories (top) and allocations (bottom) for a I = 2 class system with λ̄= (0.23,0.20), µ= (0.5,0.5),

and initial conditions x0 = (1.6,0.9).

4.2. Discrete-Time Control (Problem 2)

4.2.1. Preliminaries Before studying Problem 2 in detail, we explicitly characterize the

dynamics and the cost incurred over each stage, both of which can be obtained using fk(x,u, t),

i.e., the solution to the Initial Value Problem (IVP),

ẋi(t) = λ̄i−µi (xi(t)∧ui) , i∈ I and t≥ kτ, (29)

given the vector of initial condition x= x(kτ) and allocation u= u(kτ). Without loss of generality,

we consider the evolution over a single stage for t= kτ = 0. Denote the dynamics over the stage

by f(x,u, t), t∈ [0, τ), then we have fk(x,u, t) = f(x,u, t− τk), t∈ [kτ, (k+ 1)τ) for all k ∈K. Note

that since each class evolves independently, it suffices to characterize the solution for a given class

i∈ I. The solution is found by solving the ODE in (29) under the two possible cases xi(t)>ui and

xi(t)≤ ui, and using the continuity of the solution in t to obtain,

fi(x,u, t) =


xi + (λ̄i−µiui)t, ui <xi and ui ≤ ûi(x, t), (Case 1)

ρ̄i + e−µi(t−σi)(ui− ρ̄i), ui <xi and ui > ûi(x, t), (Case 2)

ui + (λ̄i−uiµi)(t− νi), ui ≥ xi and ui < ǔi(x, t), (Case 3)

ρ̄i + e−µit(xi− ρ̄i), ui ≥ xi and ui ≥ ǔi(x, t), (Case 4)

(30)

where

ûi(x, t) =
xi + tλ̄i
1 + tµi

, ǔi(x, t) = ρ̄i + e−µit(xi− ρ̄i), (31)

and

σi(xi, ui) =
1

µi

xi−ui
ui− ρ̄i

, νi(xi, ui) =
1

µi
log

(
ρ̄i−xi
ρ̄i−ui

)
. (32)
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Figure 2 Possible trajectories of xi(t) during a stage under different allocations and initial conditions. (The

horizontal lines correspond to the allocations.)

Note that for ease of notation we have suppressed the dependence of σi and νi on xi and ui in (30);

we will do the same in the rest of the paper unless the dependence needs to be emphasized. We

also refer to the four cases in (30) as Case 1, 2, 3, and 4, respectively.

Note that ûi(x, t) and σi < t are, respectively, the minimum allocation required to empty the class

i queue before time t starting from xi >ui, and the time (with respect to the beginning of the stage)

when the queue empties. Further, ǔi(x, t) and νi < t are, respectively, the maximum allocation such

that the queue starts building up before time t and the time at which the queue starts building

up. Then, given a fixed allocation u and starting from x, xi(t) has monotone trajectories in time

during each stage that take one of the following forms illustrated in Figure 2. When xi > ui we

start with a fluid queue of size xi − ui that drains linearly and empties during the stage at time

σi < τ if ui > ûi(x, τ) and stays positive otherwise. When xi ≤ ui we start with an empty queue

that could start building up during the period at time νi < τ if ui < ǔi(x, τ), and otherwise stays

empty throughout the period.

Next, using (15) we can obtain the stage cost function gk(x,u) as the weighted sum of costs

incurred for all classes during the stage. Since the stage cost is also independent of the stage k, we

drop the superscript k and write

g(x,u) = h · c(x,u), (33)

where ci(x,u) is the class i stage cost given initial condition x and allocation u, and can be computed

using (30) and (15):

ci(x,u) =


(xi−ui)τ − (µiui−λi)τ 2/2, ui <xi and ui ≤ ûi(x, τ),

(xi−ui)2/(2(µiui−λi)), ui <xi and ui > ûi(x, τ),

(λi−uiµi)(τ − νi)2/2 ui ≥ xi and ui < ǔi(x, τ),

0, ui ≥ xi and ui ≥ ǔi(x, τ).

(34)

Note that the four cases in (34) are the same as those in (30) with fixed t= τ . Further, it is easy

to verify using (34) that ci and hence g are continuous in (x,u).
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4.2.2. Dynamic Programming (DP) Formulation Problem 2 can be formulated as a DP.

Denote the value function by V k : RI+ → R+ for each k ∈ K ≡ {0, . . . ,N − 1}, then V k(x) is the

minimum cost-to-go starting from x at stage k + 1 (time kτ) and the optimal cost is given by

V 0(x0). The value function satisfies the Bellman equation,

V k(x) = min
u∈U

[
g(x,u) +V k+1(f(x,u, τ))

]
, (35)

with V N ≡ 0 and U ≡ {u;u≥ 0, u · e≤ 1} which allows us to recursively compute the minimum cost.

An optimal policy is then characterized by

φk(x) = {u∈ U ;V k(x) = Ṽ k(x,u)}, k ∈K, (36)

where,

Ṽ k(x,u)≡ g(x,u) +V k+1(f(x,u, τ)). (37)

The following result establishes the continuity of the value function V k(·) and the existence of

an optimal (possibly non-unique) solution φk(·) to Problem 2. The upper hemicontinuity of the

correspondence φk(·) will be key in establishing the asymptotic optimality of the proposed policy

in Section 5.

Proposition 1. The value function V k(·) is continuous and φk(·) is a non-empty, compact-valued,

and upper hemicontinuous correspondence for all k ∈K.

In the next result, we establish the monotonicity and convexity of the value function V k. In

particular, we show that Ṽ k(x,u) defined in (37) is convex in (x,u) and hence the optimal policy

can be obtained by solving a convex optimization problem.

Theorem 2. Let V k(x) denote the minimum cost starting from x at time kτ . Then, V k(·) is

convex and nondecreasing for all k ∈K.

In Figure 3, we plot the optimal trajectories for a system with the same parameters as the

experiments in Figure 1, but now with control restricted to the beginning of stages of length τ = 10.

Observe that the optimal policy initially allocates a larger fraction of capacity to class 1, but not

all capacity as in continuous-time control. As a result, the queue is emptied close to the end of

the shift and only a small amount of idleness is incurred. The optimal amount of idleness depends

on the cost and system parameters and involves a tradeoff between cost reduction in the high-

priority class, and building a low-priority queue that needs to be emptied in future stages. As we

formally show in the next section, in the absence of idleness, similar to continuous-time control,

the value of allocating more capacity to the high-priority class is the highest. However, the value

starts diminishing as idleness is incurred during the stage, making the optimal allocation take the

form of a non-trivial solution of a convex optimization problem.
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Figure 3 Optimal class 1 (solid) and class 2 (dashed) trajectories for Problem 2 with λ̄= (0.23,0.20), µ= (0.5,0.5),

x0 = (1.6,0.9), h= (4,2) and τ = 10. The dotted horizontal lines correspond to optimal class 1 allocations

for each stage.

4.2.3. Structural Results and Insights In this section, we discuss an important property

of the optimal solutions to Problem 2. The main result provides insights into the structure of

the optimal policy in the case of discrete-time control, and in particular on how it differs from

continuous-time control. We will later leverage this result in design of the asymptotically optimal

policy, as well as high-performing heuristics for an extension of the problem with time-varying

arrivals and customer abandonment.

Before presenting the main result, we first present an intermediary result that establishes the

existence of a non-wasteful optimal policy that allocates all capacity in all stages. Note that this

does not imply that the policy is non-idling. In fact, we will find that the amount of idleness

incurred during a stage is a critical component in the performance of an optimal policy.

Proposition 2. For any initial condition x0, there exists an optimal policy {u[k];k ∈K} such that

u[k] · e = 1 for all k ∈K.

We now provide a characterization of the optimal solution to Problem 2 as follows:

Theorem 3. Consider a two-class system (I = 2) and assume that the initial condition x0 satisfies

(i) x0 > ρ̄, and the cost parameters and service rates satisfy (ii) h1µ1 ≥ h2µ2, and (iii) h1µ1τ
2/2 +

h1τ ≥ h2µ2τ
2/2 + h2τ. Then, there exists an optimal policy for Problem 2 that for all k ∈ K uses

an allocation φ̂k(x[k])∈ φk(x[k]) satisfying φ̂k1(x[k])≥ û1(x[k], τ)∧ 1.

Theorem 3 provides a (state-dependent) lower-bound on the amount of capacity allocated to the

“high-priority” class in each stage under assumptions (i)− (iii). This lower bound is the minimum

of total available capacity and the amount required to empty the queue exactly τ time units into

the stage, i.e., at the end of the stage. The result implies that there exists an optimal policy

that empties the class 1 queue in each stage if possible, and otherwise allocates all capacity to it.
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Therefore, if assigning all capacity to the higher-priority class in any stage does not lead to idleness

during that stage, the optimal policy is myopic similar to the continuous-time case. As we further

discuss below, in the presence of idleness, the optimal allocation requires carefully balancing the

myopic cost-reduction in the current shift, with the future cost of emptying the low-priority queue.

To further illustrate the result, we now examine its conditions more closely. Condition (ii) is

the same cµ−index order assumed in the continuous-time problem. To understand condition (iii)

note that hiµiτ
2/2 +hiτ is the marginal rate of decrease for the class i stage-cost, when allocating

more capacity to it in the absence of idleness (see (EC.43) in the proof). Condition (iii) ensures

that for the single-stage problem, as long as no idleness is incurred in class 1, the marginal value

of allocating capacity to class 1 is greater than or equal to that of allocating to class 2. In fact, the

proof relies on showing that this key property continues to hold for the multi-stage problem. For

the single-stage problem, the property holds regardless of the initial condition x0. In order to prove

the extension of the property to the multi-stage problem, we require the assumption in condition

(i) that the initial condition of both classes are above the stationary point ρ̄. Nevertheless, we

conjecture that the property holds for the multi-stage problem regardless of the initial conditions:

allocating more capacity to class 1 is optimal as long as no idleness is incurred. (See Section EC.4.1

for details and an example.) In the presence of idleness, the marginal value of adding more capacity

to class 1 starts diminishing, prohibiting the optimal policy from incurring “excessive” idleness.

We note that condition (iii) is slightly stronger than the cµ ordering of condition (ii). Although,

in relevant parameter regimes the conditions are aligned (e.g., if h1 ≥ h2 or the shift-length τ is

sufficiently large) in general the statement of the theorem may not hold if only condition (ii) is

satisfied. Condition (iii) is necessary (and sufficient) for the statement of the theorem to hold for

the single-stage problem. For the single-stage problem, we numerically observe that emptying class

1 queue at the end of the stage (i.e., incurring no idleness) can perform arbitrarily bad when (iii)

is not satisfied. This is however not the case for the multistage problem. In fact, we numerically

observe that as long as there are enough stages in the horizon for the queues to empty, condition

(ii) is sufficient for the statement of the theorem to hold and emptying the class 1 queue at the end

of the stage is very close to optimal. (See Section EC.4.2 for more details.) As our interest in the

transient control problem is primarily motivated by finding cost effective ways to recover back to

“normal” after “shocks” (e.g. epidemics) to the system, we are mainly interested in the multi-stage

problem with enough time in the horizon to drain the queues. Thus, condition (iii) is unlikely to

be restrictive in practice.
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5. An Asymptotically Optimal Discrete-Review (DR) Policy

In this section, we present an asymptotically optimal discrete-review policy. The DR policy is based

on a translation of the solution to Problem 2 for the original stochastic system with a finite number

of servers and is derived from two main elements that we describe next.

First, the policy requires a solution of Problem 2, given initial condition, x, and the number of

stages to go, N − k. Recall from Section 4.2.2 that the solution to Problem 2 may not be unique.

For instance, if the initial condition satisfies x < ρ̄ and ρ̄ · e < 1, using any allocation satisfying

u[k]≥ ρ̄ for all k ∈K leads to an empty queue that remains empty during all stages and results in

zero total cost. As in the statement of Theorem 3, in the description of the policy below we use

φ̂k(x) to denote an arbitrary optimal allocation from the set of optimal allocations starting at x

and with N − k stages to go; that is, φ̂k(x)∈ φk(x) for all x and k ∈K.

Recall that our results hold in the limit as n→∞. As such, problems may occur when stochastic

fluctuations cause system dynamics to deviate substantially from mean behavior. In particular,

this can lead to suboptimal or excessive idleness in the higher-priority classes, which as seen in the

discussion of Theorem 3 needs to be carefully accounted for. To address this issue, we introduce

a safety parameter to protect lower-priority classes in “small” systems while still maintaining

asymptotic optimality. The safety parameter is implemented by carefully modifying the observed

state of high-priority classes to shift resources towards the low-priority ones in order to avoid

excessive idleness. Specifically, we introduce a safety parameter to the formulation of the DR policy

denoted by βn = [βn1 , β
n
2 , . . . , β

n
I ] satisfying βn = o(n) that is subtracted from the system state so

that the server allocation decision is determined based on a modified state of the system observed

at the beginning of each shift. The use of safety parameters (or safety stocks) for translation of

fluid solutions has been previously proposed in the literature; see, e.g., Maglaras (2000) and Dai

and Weiss (2002), although the implementation there is different. In our numerical experiments,

we find that although using a safety parameter is necessary for obtaining good policies for small

systems, the performance is quite robust to the choice of parameters (we simply use zero for the

lowest priority class and the same safety for all other classes). We discuss this further in Section 7.

The DR policy. We are now ready to present the policy for the nth system. Under the DR

policy the state of the system is reviewed at times {tk;k ∈K} with t0 = 0 and tk+1− tk = τ . Starting

at t0 = 0 with X̄n
∗ (0) = X̄n(0), at each time instance tk and given the observed state of the system

Xn
∗ (tk), an allocation decision for that shift Un

∗ [k]≡ Un
∗ (t), t ∈ [tk, tk+1) is made according to the

following plan:

1. First a fluid-scale solution Ũn
∗ [k] is constructed using the normalized state X̄n

∗ (tk) =Xn
∗ (tk)/n

and safety vector β̄n = βn/n using

Ũn
∗ [k]≡ φ̂k

(
(X̄n
∗ (tk)− β̄n)+

)
. (38)
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2. The fluid-scale solution is then translated to a feasible assignment for the original n server sys-

tem. This involves multiplying the assignment by n and then appropriately rounding the solution.

For simplicity, we use

Un
∗ [k] =

⌊
nŨn
∗ [k]

⌋
, (39)

where b·c is the floor function applied element-wise.

We note that the rounding in (39) can be carried out more carefully, e.g., using the largest remainder

method, to avoid wasting capacity (see Section 7). However, it is easy to see that since the rounding

error remains bounded and hence negligible under fluid-scaling, the asymptotic optimality of the

policy is unaffected. (See the proof of Theorem 4.)

Theorem 4. If Assumptions 1 and 2 hold, then the sequence of control policies {Un
∗ } is asymp-

totically optimal, that is, it achieves the asymptotic lower-bound (26) in Theorem 1:

limsup
n→∞

n−1E[Cn
T (Un

∗ )]≤E[JT,τ (X̄(0))]. (40)

As our result holds in the limit as n→∞, we wish to examine the performance of the DR policy

when n is finite. We consider an example corresponding to a two-class system. The service and

arrival rates of the system are respectively µ= (0.5,0.5) and λn = nλ̄, with λ̄= (0.23,0.20) and the

shift-length is τ = 10. The initial condition is set to Xn
i (0) = nx0

i for i∈ {1,2}, with x0 = (1.6,0.9).

The holding cost rate is assumed to be h = (4,2). Note that the scaled parameters (i.e., λ̄ and

x0) as well as the holding cost rate and shift length are the same as those in Figure 3. In this

example, we set the safety parameter to βn = (0,0). Figure 4 plots the same (optimal) trajectories

from Figure 3 with a (scaled) sample path of the stochastic n= 80 server system overlaid on it.

Starting from the initial condition, the DR policy solves for the optimal fluid allocations over a

horizon of length T = 30 (N = 3). Since, due to stochastic fluctuations, the predicted state by the

fluid model is different than the realized state of the stochastic system, the policy re-solves for

the optimal allocations at the beginning of each stage. As formalized in Theorem 4, as n grows

large, the fluid models become more accurate and the (scaled) sample paths and the resulting

expected cost becomes closer to that under the optimal fluid trajectories and the lower-bound is

(asymptotically) achieved.

We estimate the expected cost of the system under the DR policy by simulating 300 sample

paths and for different system sizes. Table 1 presents the estimated costs as well as the asymptotic

lower-bounds of Section 4. The first (tighter) lower-bound JT,τ (x
0) corresponds to the optimal

solution of the discrete-time fluid control problem (Problem 2) and the second lower-bound JT (x0)

corresponds to the optimal solution of the continuous-time control problem (Problem 1). The gap

between JT,τ (x
0) and E [n−1Cn

T (Un
∗ )] is due to stochastic fluctuations of o(n), while the larger gap

between E [n−1Cn
T (Un

∗ )] and JT (x0) also includes the effect of restricting control to the beginning

of shifts of length τ = 10.
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Figure 4 A sample path of X̄n(t) under the DR policy overlaid on corresponding optimal trajectories for I = 2

and system parameters n= 80, µ= (0.5,0.5), λn = (0.23n,0.20n), Xn(0) = (1.6n,0.9n) and τ = 10.

Estimated cost E[n−1Cn
T (Un

∗ )] Lower bounds
n= 20 n= 80 n= 300 JT,τ (x

0) JT (x0)
61.22± 3.5 52.20± 1.8 46.29± 1.0 42.02 33.48

Table 1 Performance of the DR policy Un∗ in terms of the expected (scaled) finite-horizon cost for different

system sizes and in contrast to asymptotic lower-bounds of Theorem 1. The values after ± correspond to the %95

confidence intervals.

6. Extensions and Heuristic Policies

To focus on the impact of the shift constraint, we began with a parsimonious model. That said,

many real world problems exhibit more complex dynamics. In this section, we consider extensions

of our model to include time-varying arrivals and customer abandonment and we leverage insights

from the base model to develop heuristic policies for these more complex systems.

6.1. Time-Varying Arrivals

In many applications, including our motivating ED setting, the arrival process is non-stationary

and exhibits significant temporal variation. Thus, we consider the case where the arrivals are driven

by non-homogeneous Poisson processes with periodic time-varying rates (see, e.g., Kim and Whitt

2014 and Armony et al. 2015). We impose the following assumption on the arrival process of the

nth system.

Assumption 3. The instantaneous arrival rate for the nth system is given by a piecewise-

continuous function λn(·)∈RI+. Further, λn(t)/n→ λ̄(t) u.o.c. as n→∞, where λ̄(t) is a bounded

periodic piecewise-continuous function with period p, that is

λ̄(t+ p) = λ̄(t), for all t≥ 0,

and the period p satisfies p=Lτ for some integer L≥ 1.
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For example, in the ED setting, the period is a day (p= 24 hours) and the shift lengths are typically

8 or 12 hours (L= 3 or 2).

Under Assumption 3, the FSLLN for non-homogeneous Poisson processes implies that Theorem

1 directly extends to the case with time-varying arrivals on compact intervals. Further, solving

Problem 2 with time-dependent dynamics, one can obtain the optimal fluid allocations and use it

in the DR policy described in Section 5 to obtain an assignment for the original stochastic problem.

(We discuss this approach further in Section 6.3.)

The challenge in the case of time-varying arrivals is in solving the fluid control problem. While

this can be done numerically, characterizing the optimal policy in general is very hard. In fact,

proving convexity of the value function itself is difficult. This is in part because closed-form expres-

sions for the single-stage function cannot be obtained, even assuming a parametric family of arrival

rate functions (e.g., sinusoidal or piecewise-constant). That said, numerical examples suggest the

total cost is convex in the allocation as formally shown in the stationary case. For an intuitive

argument, consider the cost-to-go function Ṽ k(x,u) defined in (37) with a fixed initial condition x

and stage k. The definition of convexity requires that,

Ṽ k(x, δu1 + (1− δ)u2)≤ Ṽ k(x, δu1) + Ṽ k(x, (1− δ)u2), δ ∈ [0,1]. (41)

This implies that convexity in u is equivalent to having a lower optimal cost for a system with

pooled capacity, compared to the sum of the optimal costs for two dedicated systems, under any

allocation of capacity for the dedicated systems. Indeed, this should hold regardless of the arrival

function.

Finally, we note that despite the more complicated dynamics introduced by time-varying arrivals,

the underlying tradeoff between myopic cost reduction and idleness is the same as in the stationary

case. The inclusion of time-varying arrivals can lead to non-monotone trajectories which change

when idleness may occur during a stage – it no longer is always at the end or beginning2 of the stage

as in the case with stationary arrivals. Regardless of when the idleness is incurred, the optimal

allocation involves balancing the amount of idleness incurred in higher-priority classes during the

stage with the future cost of clearing the queue that builds up in low-priority classes. When excess

capacity is scarce, avoiding “excessive” idleness becomes extremely important. We leverage this

insight in design of the heuristic policies.

6.2. Customer Abandonment

Customer abandonment is also prevalent in many service systems and could significantly affect the

system performance. With respect to our main motivating application, abandonment corresponds

to patients Leaving the ED Without Being Seen (LWBS) (e.g. Batt and Terwiesch 2015). For
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other applications, e.g., the airport security application discussed in Martonosi (2011), customer

abandonment is less relevant.

In the presence of abandonment, we consider a modified version of the cost function in (8),

E
[∫ T

0

h ·Q(s)ds+ γ ·M(s)

]
, (42)

where γ = (γ1, . . . , γI) is the vector of abandonment cost with γi denoting the per customer aban-

donment cost for class i customers and M(t) = (M1(t), . . . ,MI(t)) is the counting process associated

with abandoning customers with Mi(t) denoting the number of class i customers who have aban-

doned by time t. The modified cost function measures the expected total holding and abandonment

costs over a finite horizon of length T . We assume that customers wait an exponentially distributed

amount of time in queue before abandoning the system, and denote by θ = (θ1, . . . , θI) the vector

of abandonment rates with θi denoting the rate of abandonment for class i customers. In this case,

(42) simplifies to

E

[∫ T

0

I∑
i=1

(hi + γiθi)Qi(s)ds

]
=E

[∫ T

0

h̃ ·Q(s)ds

]
, (43)

where h̃= (h̃1, . . . , h̃I) with h̃i = hi+γiθi can be viewed as a modified holding cost rate vector that

also captures the abandonment cost. Indeed, the headcount and queue processes are also affected

by abandonment. We present the updated fluid dynamics in Section 6.3.

The scheduling problem with abandonment under continuous control has been the subject of

recent research in the literature (see, e.g., Atar et al. 2010, Down et al. 2011, Larranaga et al.

2013). In general, the optimal policy may be state-dependent and as discussed in Down et al. (2011)

involves managing a tradeoff between myopic cost reduction and avoiding future idleness due to

abandonment. Characterizing the optimal policy becomes even more challenging under the shift

constraint since, as highlighted by our base model, the inability to reallocate capacity continuously

in time can lead to additional idleness. Given these challenges, we focus on understanding the

impact of abandonment on the benefits of partial flexibility using heuristic policies.

6.3. Heuristic Policies

We now propose heuristic policies for the extended model involving both time-varying arrivals and

customer abandonment. Our analysis of the base model highlighted the importance of balancing

myopic cost reduction versus excessive idleness introduced by the shift constraint. Our heuristics

will capture various levels of these competing factors and can be categorized as balancing both,

focusing primarily on myopic cost reduction, or focusing on minimizing excessive idleness.
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6.3.1. The Generalized DR (GDR) Policy The GDR policy heuristically extends the DR

policy presented in Section 5 to the case with time-varying arrivals and abandonment. The policy

is identical to that described for the base model except that the fluid allocation φk∗(·) is obtained

by solving a modified version of Problem 2 where the map fk(x[k], u[k], t), describing the dynamics

during stage (k+ 1), is the solution to the following IVP:

ẋ(t) = λ̄(t)− µ̂ · (x(t)∧u[k])− θ̂ · (x(t)−u[k])+, t∈ [τk, τ(k+ 1)) (44)

x(τk) = x[k],

where θ̂≡ diag(θ). Note that in addition to a time-varying input λ̄(t), the fluid abandons the queue

at rate θ̂ · (x(t)− u[k])+. Assuming stationary arrivals, the IVP can be solved analytically to find

the transition and single-stage cost functions (see Section EC.2 in the E-Companion). In general,

the IVP can be solved numerically. This carefully balances myopic cost reduction and idleness, but

is computationally the most demanding.

6.3.2. Tracking Policies We now introduce policies that focus on cost reduction without

explicitly accounting for the idleness introduced with the shift constraint. The main idea behind

a tracking policy is to make allocation decisions in discrete-time with the goal of tracking trajec-

tories known to be optimal for the continuous-time control problem (see, e.g., Maglaras 2000 and

Bassamboo et al. 2006). More formally and within the context of our problem, one attempts to find

a discrete-review policy for the nth system such that the fluid-scaled headcount process converges

to the optimal continuous-time trajectory as n→∞, provided that the shift lengths are negligible

in the limit. Therefore, intuitively one expects the policy to perform well if the system is large and

the shift lengths are relatively small. For the base model, the above argument can be formalized

by showing that the tracking policy described below achieves the asymptotic lower bound (25) in

Theorem 1, assuming that in the sequence of systems described in Section 3 the shift length is

also scaled and τn = o(1). We omit a formal proof here and instead use the idea to heuristically

construct a policy for the extended model.

Consider an extended version of Problem 1 where the stage dynamics (11) are instead governed

by the following ODE:

ẋ(t) = λ̄(t)− µ̂ · (x(t)∧u(t))− θ̂ · (x(t)−u(t))+, (45)

i.e., with a time-varying input and allowing for abandonment from the queues. Denote the opti-

mal solution of the modified problem by u∗(t). A natural way to translate this solution for the

corresponding discrete-time control problem (Problem 2) is to use,

ui[k] =
1

τ

∫ τ(k+1)

τk

u∗i (t)dt, i∈ I, (46)
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in stage (k+ 1), i.e., the average continuous allocation during that stage. In the following, we use

this approach to construct a fluid-scale periodic allocation map, that takes the shift of the day

and the initial state at the beginning of each shift, and returns an allocation for the shift. The

allocation can then be translated to an integer assignment for the stochastic system using the same

procedure described for the DR policy.

Without abandonment, i.e., with θ̂ = 0, we use the cµ policy discussed in Section 4 as the

continuous solution. Denote by {tl; l ∈ {0, . . . ,L−1}} the time-instances corresponding to the hour

of the day when a shift starts. The fluid-scale allocation map, denoted by ϕ(x, l), where x∈RI+ is

the state and l+ 1∈ {1, . . . ,L} is the shift of the day, can be obtained using,

ϕi(x, l) =
1

τ

∫ tl+1

tl

ûi(t)dt=

(
xi +

∫ tl+1

tl

λ̄i(t)dt−xi(tl+1)

)
/(τµi), i∈ I, (47)

where û(t) is the cµ allocation satisfying (28), and x(tl+1)∈RI+ is the state of the trajectory at the

end of the shift under the cµ allocation, which can be obtained by numerically solving the ODE

in (45) with allocation û(t) and starting from x.

With abandonment, the optimal continuous policy is unknown in general and may be state-

dependent, although prioritizing according to the cµ and the cµ/θ policy (prioritizing in the order

of h̃iµi/θi indexes) is optimal in some problem instances (Atar et al. 2010, Larranaga et al. 2013).

Given these complexities, we consider the static cµ and cµ/θ policies as candidate continuous

solutions. While the allocation does not admit an explicit form as in the case without abandonment,

it can be obtained numerically using a similar approach as described above.

We refer to the policies that track the cµ trajectories (with or without abandonment) as

cµ-tracking (CMUT) policies, and the policy that tracks cµ/θ trajectories as the cµ/θ-tracking

(CMUθT) policy. We find that a naive implementation of these policies performs poorly, as they

are obtained under the assumption of a negligible shift length. One issue is that the allocation

does not necessarily add up to one (i.e., use all capacity) regardless of the initial condition. To

deal with this issue, we equally divide the unused capacity among the classes. More importantly,

since the allocations are computed assuming a negligible shift length, they ignore the potential

idleness incurred during the shifts and tend to over-allocate capacity to higher-priority classes. To

prevent excessive idleness during the shifts, we modify the normalized initial state using a safety

parameter similar to that in the DR policy. As we demonstrate numerically in Section 7 the refined

tracking policies, i.e., after the above modifications, perform well and comparable to the DR and

GRD policies.
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6.3.3. The Balancing Heuristic (BH) Policy In contrast to the tracking heuristics, which

focus on cost reduction, the BH policy is designed to prevent excessive idleness. The BH is based on

the insights regarding the importance of minimizing excessive idleness discussed in Section 4.2.3.

Unlike the tracking policies, the BH ignores the cost parameters and instead aims to reallocate

capacity to different classes in a way that none of them incur excessive idleness during the shift. As

such, it could be far from optimal with respect to the cost function defined in (23). However, as we

numerically illustrate in Section 7, by reallocating capacity when there are significant imbalances

among different classes in terms of their congestion levels at the beginning of the shifts, it can

achieve a significant reduction in the total expected queue length.

Similar to the tracking policies, the output of BH is a fluid-scale periodic allocation map, denoted

by ψ(x, l), which can then be translated back to the stochastic n server system using a similar

procedure described for the DR policy. Recall that {tl; l ∈ {0, . . . ,L−1}} denotes the time-instances

corresponding to the hour of the day when a shift starts. Then, given a vector of initial condi-

tions x(tl) and a piecewise-constant allocation vector u(t) ≥ 0 satisfying u(t) · e ≤ 1, the (fluid)

dynamics of the system during shift l+ 1 are governed by the ODE in (45). In the following, we

use f l(x,u, t), t ∈ [tl, tl+1) to describe the dynamics of the system during shift l+ 1 given a fixed

allocation u(t) = u, t∈ [tl, tl+1) and starting from x at time tl. Note that f l can be computed using

the IVP in (45).

The allocation map ψ(x, l) is constructed in two steps. First, for each class an allocation vector

ψ̃(x, l) is computed using f l(x,u, t), t∈ [tl, tl+1), where ψ̃i(x, l) is the maximum allocation for class

i such that no idleness is incurred for that class during shift l. The final allocation ψ(x, l) is then

constructed according to the following procedure:

• If ψ̃(x, l) · e < 1, i.e., there is enough capacity such that at least one class must incur some

idleness; then any remaining capacity is distributed equally among all I classes. This is achieved

by setting

ψ(x, l)← ψ̃(x, l) + (1− ψ̃(x, l) · e)/I. (48)

• If ψ̃(x, l) · e≥ 1, i.e., there is not enough capacity such that there exists an allocation where

no class will have any idleness; then the allocation for each class is obtained by re-normalizing for

each i∈ I using

ψi(x, l) = ψ̃i(x, l)/ψ̃(x, l) · e. (49)

We conclude this section with two remarks. First, note that the BH does not require a safety

parameter and as we show numerically in Section 7, is robust and performs well for a variety

of system parameters. Second, we note that the only computational burden of the heuristic is

computing the intermediary allocation vector ψ̃(x, l) using f l(x,u, t), t∈ [tl, tl+1). This step can be
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carried out efficiently using a simple bi-section algorithm that searches for the target allocation

by numerically computing the trajectory f l(x,u, t), t ∈ [tl, tl+1) and checking whether idleness is

incurred or not.

7. Numerical Study

In this section, we use numerical experiments to develop an understanding of the magnitude of the

potential benefits gained by introducing partial flexibility as well as to examine the performance

of our heuristics as we relax a number of assumptions of our base model. In doing so, we consider

both transient and steady-state performance. The transient performance is useful when considering

external shocks to the system, such as disease outbreaks or disasters, which can push the number of

customers in system far from its steady-state distribution. The steady-state performance measures

the benefits of partial flexibility in alleviating imbalances in congestion caused by temporal and

stochastic fluctuations in arrival and service processes. Though our theoretical analysis focuses on

transient control, as we discuss further below, it allows for obtaining stationary or periodic (in

the case of time-varying arrivals) policies. Through simulation experiments we examine how the

developed insights and heuristics extend to steady-state performance.

In Section 7.1, we start by considering our base model from Section 2. Next, we consider relax-

ations of modeling assumptions in Section 7.2. In Section 7.3 we provide guidelines on choosing a

heuristic policy using the results of our numerical experiments. Finally, in Section 7.4 we report the

results of a case study where we evaluate the performance of the proposed policies for a simulation

model of the system in which we allow both non-stationary arrivals and abandonment, relax other

assumptions of the queueing model, and calibrate the inputs using data from our partner hospital.

In all experiments, we implement a non-preemptive version of the policies so that the current

service must be completed before reassigning a busy server to another pool. We note that the obser-

vations made in this section continue to hold under preemption. Further, although our theoretical

results are obtained assuming preemption, one would expect the difference between non-preemption

and preemption to be negligible in the limit under fluid-scaling.

Before turning to the examples, we comment on two numerical methods used in our examples.

First, given a vector of (non-integer) assignment U ≥ 0 such that U · e = n we use the largest

remainder method to obtain an integer assignment. That is, we first apply the floor function to

the assignment and then sequentially assign the remaining servers in order of the largest difference

between the floored assignment and the original one until an integer assignment is obtained. Second,

stationary policies for the discrete-time fluid control problem are obtained by solving Problem 2

for a finite number of stages (to be specified later) using an implementation of the BFGS convex

solver in Python.
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Figure 5 Performance of the policies in terms of estimated expected cost over a horizon of length T = 48 and for

system parameters µ= (0.5,0.5), r= (1/2,1/2), ρ= 0.92, n= 48 (left) and n= 20 (right).

7.1. Base Model

We consider a two-class system. Denote the offered load of class i ∈ I = {1,2} by Ri = λi/µi. We

fix the service rate vector µ and total utilization ρ of the system and change λ to obtain different

load-ratios. That is, given a load-ratio r we have ri = Ri/
∑

i∈IRi with
∑

i∈IRi = nρ. For both

the DR and CMUT policies we set the safety parameter to βn1 = a log(n) and βn2 = 0 and vary the

safety factor a∈ {0,1,2,3,4,5}, unless otherwise stated. The reported cost reductions are the best

amongst all safety factors considered.

Note that, in general, the solution of the DR policy is time-dependent. However, for a sufficiently

large horizon T and a total cost that remains finite, we obtain a stationary (time-independent)

policy (see, e.g., Maglaras 2000). In the case of base model, the existence of a stable dedicated allo-

cation is sufficient for the optimal cost function to remain finite as T →∞. To obtain a stationary

DR policy we solve Problem 2 with N = 6 stages at the beginning of each shift, which is typically

enough for the solution to become stationary.

7.1.1. Value of partial flexibility. We investigate the benefits of introducing partial flexibil-

ity in terms of the relative cost reduction compared to dedicated staffing. We focus on cases where

a stable dedicated staffing exists and find the optimal dedicated staffing and the corresponding

(exact) expected cost numerically using the Erlang-C formula.

Transient experiments. To examine the transient performance, we evaluate the expected cost

of the DR and CMUT policies over a finite horizon, and for different system parameters and initial

conditions. The initial headcount for each class is randomly selected from either a low-congestion

set L= {0, . . . ,0.5× n} or a high-congestion set H = {n, . . . ,1.5× n}. The results for two sets of

experiments are summarized in Figure 5. The plots present the average (estimated) relative cost

reduction with respect to dedicated staffing over 30 randomly generated initial conditions in 3
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different regions, namely “HH”, “HL”, and “LH”, and for different shift-lengths. For instance,

region “HL” indicates that the initial headcount for class 1 and 2 belongs to set H and L, respec-

tively. The system parameters are µ = (0.5,0.5), r = (1/2,1/2), and ρ = 0.92. The holding cost

rate is h= (4,2) and the horizon length is fixed at T = 48, which is typically long enough for the

queues to empty by the end of the horizon. The left and right plots correspond to systems with

n= 20 and n= 48 servers, respectively. In both examples, there are significant cost reductions (on

average) over dedicated staffing (which splits the servers equally between the two classes) even

when the shift-length is large. The benefits are higher when the system is initiated farther from

the steady-state, and with a larger imbalance between the initial congestion of the two classes. The

benefits are also higher when the system parameters are such that it takes longer for the system to

reach its steady-state. The DR and CMUT policies achieve comparable performance. However, the

performance of the CMUT policy is more sensitive to the choice of safety parameter. We further

elaborate on the impact of system and safety parameters on the performance of the policies in the

context of the steady-state experiments which we present next.

Steady-state experiments. The results for two sets of steady-state experiments are summa-

rized in Figures 6 and 7. We plot the estimated percentage of cost reduction achieved over dedicated

staffing for both policies and under different shift-lengths and system sizes. The service rate is

µ= (0.5,0.5) and the holding cost rate is h= (4,2). The left plot corresponds to utilization ρ= 0.92

and the right plot to utilization ρ = 0.96. The first example has equal load for each class, i.e.,

r = (1/2,1/2) and in the second example r = (1/4,3/4). In both examples, we observe significant

benefits compared to dedicated staffing (ranging between 18% to 47% for τ = 12). While the cost

savings are not as large as the maximum reduction achieved under the continuous cµ policy (i.e.,

fully flexible design), which ranges between 68% to 78%, there are still substantial gains under the

discrete-time control introduced by the shift constraint.

The results also illustrate the parameter regimes in which discrete-time control is more beneficial.

Note that the percentage of the cost reduction for each policy increases in utilization, but decreases

in the size of the system and shift length. The former can be understood by noting that the

benefits of dynamic scheduling are larger when the system is more congested. The latter can be

explained by noting that as the rate of service completion, nµ, or shift-length, τ , increases, the

queue-length processes reach steady-state earlier in the shift and the average cost incurred over the

shift approaches the long-run average cost achieved under the staffing used in that shift, regardless

of the initial condition. Therefore, the benefits become smaller in comparison to using the best

dedicated staffing during all shifts. Similar to the transient experiments, the CMUT policy performs

comparable to and, in some cases, even better than the DR policy. As we discuss next, however,

the CMUT policy is more sensitive to the choice of safety parameter and can perform very poorly

if it is not calibrated well.
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Figure 6 Performance of the policies in terms of estimated expected long-run average cost for system parameters

µ= (0.5,0.5), r= (1/2,1/2), ρ= 0.92 (left) and ρ= 0.96 (right).
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Figure 7 Performance of the policies in terms of estimated expected long-run average cost for system parameters

µ= (0.5,0.5), r= (1/4,3/4), ρ= 0.92 (left) and ρ= 0.96 (right).
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Figure 8 Performance of the policies in terms of estimated expected long-run average cost for different safety

factors and parameters µ= (0.5,0.5), r= (2,2), ρ= 0.96, and τ = 12.
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7.1.2. Sensitivity to safety parameter. We find that the safety parameter is required for

achieving good performance by both policies when the system size is “small” and the utilization

is close to 1, especially with respect to the steady-state performance. However, the performance of

the DR policy is much more robust with respect to the choice of the safety parameter. We illustrate

this by plotting the percentage of cost reduction for each policy under different safety factors in the

steady-state example with r = (1/2,1/2) and ρ= 0.96 in Figure 8. Using a non-zero safety factor

improves the performance of both policies but improvement is much larger under CMUT. Further,

without use of the safety parameters the DR policy is stable in all examples. That said, when the

system is small, i.e. n= 20, the DR policy performs 110.5% worse than dedicated. On the other

hand, the CMUT becomes unstable without use of the safety parameters when n= 20. The poor

performance for small systems can be attributed to two sources, namely the sub-optimality of the

allocations at the fluid-scale3 and the stochastic fluctuations of o(n) not considered in the fluid

control problems. The sub-optimality of the CMUT allocation is due to using average allocations

during a shift computed using the solution to Problem 1, which may be far from the optimal

allocation when the shift length is not sufficiently small. Further, for small systems under high

utilization where the stochastic fluctuations have a significant effect, the predictive power of the

fluid models decreases. Since the policies favor the high-priority classes, this could lead to under-

assignment of servers to the lower-priority classes over time. If the under-assignment persists long

enough, the system becomes unstable. Using a safety parameter ensures that the under-assignment

does not persist.

For larger systems with lower utilization, the role of the safety parameter becomes less important

for both policies. Especially under the DR policy, the performance is fairly robust with respect to

the safety parameter and typically using a safety factor equal to 1 for all classes except the lowest

priority leads to significant improvements as demonstrated in Figure 8.

7.2. Model Extensions

We now consider the impact of the modeling extensions considered in Section 6, namely customer

abandonment and time-varying arrival rates. We summarize our main observations here and refer

the interested reader to the details of the numeric experiments in Sections EC.4.3 and EC.4.4 of

the E-Companion, respectively. In order to isolate the impact of each of these extensions, we start

by considering each of them individually. We then combine them, along with other relaxations, in

our case study.

With a time-varying input and general stability due to abandonment, the cost of the system

does not necessarily remain finite as T →∞. Therefore, for steady-state experiments, we solve the

modified Problem 2 with a finite but large number of stages to obtain an (approximately) periodic

GDR policy.
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7.2.1. Customer abandonment. We start with the impact of abandonment. We observe

that as long as the amount of abandonment is relatively small, allocating nurses according to a

policy (i.e., CMUT, DR, or BH) that ignores abandonment can still lead to significant benefits in

steady-state – with nearly 25% cost reductions compared to dedicated in some relevant parameter

regimes. As the abandonment rate increases, the benefit over dedicated decreases substantially as

the queue length processes reach steady-state very quickly. That said, the policies that explicitly

take abandonment and the implied costs into account perform better and degrade more gradually.

The LWBS rate in EDs is typically small (e.g., around 3% for our partner hospital), hence using a

policy that ignores abandonment can still achieve significant gains over dedicated, while also being

fairly easy to implement.

We observe that partial flexibility is most beneficial when the queue imbalances propagate past

the shift boundaries and the system requires a number of shifts before reaching steady-state. This

becomes more pronounced in the transient experiments as the system may not reach steady-state

before the end of the horizon. Even when the steady-state benefits of partial flexibility are small,

we observe that the proposed heuristics can significantly reduce the expected cost incurred over a

finite horizon compared to dedicated staffing. This is most notable when starting from an initial

condition that is “far” from the steady-state under the optimal dedicated staffing.

7.2.2. Time-Varying Arrivals We next turn our attention to systems with time-varying

arrival rates and investigate the benefits of partial flexibility for a variety of system parameters and

assuming sinusoidal arrival rates (see Section EC.4.4 for details). The observations are consistent

with those for the stationary experiments. Further, we observe that since time-varying arrivals

can move the system from underloaded to overloaded, the system can quickly move out of the

well-behaved steady-state dynamics where partial flexibility has more significant benefits. This is

even more pronounced when considering the transient performance.

We see that the GDR and CMUT heuristics perform comparably well. The BH achieves a lower

cost reduction compared to the other heuristics since it ignores the cost parameters. Nevertheless,

it still achieves a significant queue reduction by sharing capacity among different classes, without

incurring excessive idleness.

7.3. Guidelines on Choosing the Heuristic

Here we provide guidelines on choosing the heuristic based on our observations from the numerical

study. If the waiting costs across different classes are very similar or, in other words, balanced

queue lengths across different classes is a desirable outcome, we recommend using the BH heuristic.

When waiting costs differ significantly across the classes, the CMUT policy can achieve comparable
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performance to that of the asymptotically optimal DR policy given that an appropriate safety

parameter is used. The safety parameter can be chosen numerically by using a simulation model of

the system. When abandonment rates are relatively small (i.e., roughly speaking less than 5% of

customers abandon) using policies that ignore abandonment can still lead to significant benefits.

With higher abandonment rates, we recommend using the version of the heuristic that explicitly

takes abandonment into account. This, in particular when considering transient costs, can lead to

significant savings compared to policies that ignore abandonment.

7.4. Case Study

Finally, we evaluate the performance of the policies in Section 6.1 using a simulation model of the

system calibrated using data from our partner ED. The purpose of this example is to illustrate the

robustness of the proposed policies with respect to certain parametric and modeling assumptions

made in our stylized model. More specifically, in the simulation model we relax the assumption

of exponential service times and sinusoidal arrival rates, and incorporate key features of the ED

including patients who LWBS, congestion dependent service times, and multi-tasking. We explain

the details of the simulation model and its calibration next.

Simulation model. The simulation model for the case study has 4 customer classes that cor-

respond to each area of the ED. Our partner ED has 4 areas and patients are primarily routed

to specific areas based on their acuity level. More specifically, the majority of ESI level 1 and 2

patients (higher acuity) are treated in area 1; the majority of ESI level 4 and 5 patients (lower

acuity) are treated in area 4; and the majority of ESI level 3 patients are treated in areas 2 and 3.

Customers of each class arrive to the system according to a non-homogeneous Poisson process

with piecewise-constant (during each hour of the day) rates. Service times for each class are assumed

to be log-normally distributed, with parameters that vary depending on the congestion in that class

(e.g., as in Chan et al. 2014). More specifically, for each class, service times are generated from two

different Log-Normal distributions, depending on whether the number of patients in that class is

below or above a certain threshold, at the instances when service times are initiated. Finally, we

assume that patients in each class abandon after waiting for an exponentially distributed time.

Calibration of the simulation input parameters. The hourly arrival rates for each class

are estimated using the average number of arrivals for each hour of the day over the year in our

dataset. The parameters of the service time distributions and the congestion threshold at which the

parameters change for each class are estimated using Length of Stay (LOS) data (start of treatment

to discharge) from each area. The threshold is set to the third quartile of the observed congestion in

each area. The parameters of the log-normal distributions are then estimated using the maximum

likelihood method and using LOS data filtered based on whether the congestion is above or below
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Figure 9 Empirical hourly arrival rates for each bay and the corresponding Sinusoidal fit.

the estimated threshold, at time instances when treatments begin. The abandonment rates are set

to θ = (1/80,1/80,1/80,1/80) so that the percentage of abandonment under dedicated staffing is

approximately the same as the LWBS percentage observed in the data (i.e., ∼ 3%). The shift-length

is set to τ = 12 hours with the first shift of the day starting at 7 am.

Since the total offered load of the system is equal to 42.71, we set the total capacity to n= 44.

In the ED, nurses typically treat multiple patients at a time. Therefore, given a nurse-to-patient

ratio % ∈ Z+, we limit the assignments to groups of servers (of the given ratio) by rounding the

allocations obtained from our heuristic policies to multiples of %. We vary % ∈ {1/1,1/4} in our

simulation experiments. Similarly, when determining the approximately optimal dedicated staffing

using the Erlang-A formula, we find the best assignment of servers in multiples of 1/%.

Policy parameters. Note that the policies only require first-order statistics on (time-

dependent) arrival rates and service requirements. For service times, the policies use the average

LOS for each area. For arrival rates, we could use the empirical arrival rate function, which is the

arrival rate function used to evaluate performance in the simulation; however, this makes com-

puting the allocations for both heuristics more challenging. As such, the policies use a sinusoidal

arrival rate λi(t) = αi,1 + αi,2 sin(πt/12) with parameters αi,1, αi,2 for i ∈ {1,2,3,4} estimated by

minimizing the squared error with respect to the empirical rates from the data. Figure 9 illustrates

the arrival rates and the fitted Sinusoidal for each class. Note that curves fit the data coarsely. We

will see that despite this poor fit, the heuristics still achieve reasonable gains.

A summary of the simulation model and policy parameters is given in Table 2. Note that the

system parameters correspond to a regime with a “small” number of service completions during
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Area 1 Area 2 Area 3 Area 4

Service time

Congestion Thresh. 18 22 21 7
Below Thresh. (LogMean, LogSd) (1.77,0.55) (1.70,1.89) (1.75,0.55) (0.71,0.81)
Above Thresh. (LogMean, LogSd) (1.92,0.50) (1.89,0.52) (1.92,0.50) (0.85,0.72)

Mean (hrs) 7.00 6.67 6.89 2.76

Arrival rate
(αi,1, αi,2) (1.79,−0.67) (1.75,−0.70) (1.73,−0.70) (2.34,−0.98)

Mean (/hr) 1.80 1.76 1.73 2.34
Offered load 12.58 11.72 11.94 6.47

Dedicated staffing (%= 1/1) 13 12 12 7
Dedicated staffing (%= 1/4) 12 12 12 8

Table 2 Summary of the inputs for the case study.

each shift. This, together with the low abandonment rate and high utilization, implies, using our

previous insights and observations, that there are significant gains in using a partially flexible

design.

Results and discussion. The results of the case study are presented in Table 3. Both policies

achieve a significant reduction in terms of long-run average total cost over dedicated staffing assum-

ing holding cost h= (5,4,4,3) and abandonment cost γ = (30,24,24,18). Specifically, we observe

reductions of around 20% when the nurse-to-patient ratio is %= 1/1. The benefits are smaller when

the nurse-to-patient ratio is less than 1, as the policy is further limited with respect to reassign-

ments. However, we still observe reductions of over 10% in the total cost when %= 1/4. In addition,

the abandonment probabilities are reduced under all policies. We also report the average number

of servers that are reassigned to another area (compared to dedicated staffing) at each shift. More

specifically, the values are the long-run average (absolute) deviation from dedicated staffing for all

classes combined, then divided by 2 (because moving 1 server will result in deviations of 1 in 2

areas). We observe that the benefits are achieved with a modest number of reassignments under

all policies; about 4 servers (out of 48) when the nurse-to-patient ratio is 1/1, and about 3 servers

when the nurse-to-patient ratio is 1/4, which is approximately equivalent to 1 nurse. Thus, it may

be possible to achieve these gains without requiring too many reassignments of nurses.

To ensure that the improvements achieved by the policies are not due to the mismatch between

arrival processes used in the simulation (empirical) versus that used to determine the allocations

(sinusoidal), we also ran the experiments using the same sinusoidal arrivals in the simulation. We

observe that the queue and cost reductions are slightly smaller due to increased abandonment, but

are generally comparable to those reported in Table 3. See Section EC.4.5 for detailed results and

a discussion.

EDs are incredibly complex, so while our case study does not capture every nuanced featured

in such settings, it does relax a number of the assumptions needed for our theoretical results. In

doing so, we find that the qualitative benefits of our approach are quite robust to specific modeling

assumptions. Moreover, we estimate that the potential savings in practice are likely to be quite

substantial.
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%= 1/1 %= 1/4
Perf. meas. Ded. DR(0) BH CMUT(1) Ded. DR(0) BH CMUT(1)

E[Q1]
3.51 3.38 3.39 3.18 6.99 3.82 4.01 3.62
(±0.06) (±0.03) (±0.03) (±0.02) (±0.12) (±0.04) (±0.03) (±0.03)

E[Q2]
3.59 3.39 3.28 3.06 3.59 4.01 3.86 3.54
(±0.07) (±0.05) (±0.03) (±0.02) (±0.07) (±0.06) (±0.04) (±0.03)

E[Q3]
4.08 3.57 3.30 5.37 4.08 4.17 3.91 6.65
(±0.07) (±0.04) (±0.03) (±0.07) (±0.07) (±0.05) (±0.03) (±0.08)

E[Q4]
7.35 3.55 4.29 2.25 2.93 4.05 4.85 2.66
(±0.11) (±0.02) (±0.03) (±0.02) (0.03) (±0.03) (±0.04) (±0.03)∑

i E[Qi]
18.53 13.89 14.25 13.85 17.6 16.05 16.64 16.48
(±0.15) (±0.10) (±0.10) (±0.12) (±0.15) (±0.11) (±0.10) (±0.14)∑

i h̃iE[Qi]
75.57 59.54 60.30 60.56 80.05 68.75 70.62 71.97
(±0.62) (±0.42) (±0.40) (±0.50) (±0.72) (±0.48) (±0.44) (±0.61)

% Aband.
3.11 2.34 2.41 2.33 2.96 2.70 2.81 2.77
(±0.02) (±0.01) (±0.01) (±0.01) (±0.02) (±0.01) (±0.01) (±0.02)

Ave. dev. from ded.
- 2.27 3.58 3.21 - 1.60 3.18 2.55
- (±0.03) (±0.04) (±0.03) - (±0.05) (±0.05) (±0.04)

% Queue red. - 25.06% 23.12% 25.27% - 8.84% 5.50% 6.37%
% Cost red. - 21.21% 20.20% 19.87% - 14.12% 11.78% 10.18%

Table 3 Output of the case study simulation. (The numbers after ± correspond to %95 confidence intervals.)

8. Discussion and Future Research

In this paper, we study a partially flexible design for service systems with multiple customer classes

and staff who work in shifts. Such a design may be valuable in hospital EDs and knowledge-

intensive services where switching from one customer class to another is costly and may come with

loss of productivity for the servers or increase service times. We study a queueing model with

partial flexibility and propose associated fluid control problems that allow us to obtain effective

server assignment policies, and gain insights on the impact of the shift constraint on the structure

of control policies. Our analysis highlights a key insight in discrete-time assignment of servers

to different customer classes: when assigning additional servers to a certain class, one must be

cautious of excess idleness mid-shift. The incurred idleness comes at the cost of building queues in

other classes that have to be cleared in future shifts. Therefore, myopic assignments based on the

observed congestion or priority levels that do not take the incurred idleness into account, can result

in worse performance compared to dedicated staffing, or even lead to instability. When this trade-

off is properly taken into account and the parameters of the system are such that the system does

not reach steady-state quickly during each shift, the partial flexibility could significantly reduce

the expected waiting cost of the system compared to dedicated staffing.

The proposed queueing model stylizes the operations of complex service systems, such as the ED.

Hence, like any other model, it has limitations. First, our model assumes a single type of resource

that can process work at a specified rate at any of the areas. This may not always accurately capture

the dynamics of a multi-resource setting like the ED. Second, the FCFS discipline and identically

distributed service requirements within each class may be violated in some service systems. Third,

as discussed in Section 7, ED nurses handle multiple patients simultaneously, which may impact

the processing rate depending on how many patients are being treated. Despite these limitations,
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our numerical results and the case study in Section 7 suggests that the performance of the proposed

policies are fairly robust with respect to different system configurations.

Our model assumes that all staff are available for reassignment at the beginning of all shifts.

Some service systems use staggered or overlapping shifts; that is, different servers may start their

shifts at different times. While we do not directly consider staggered shifts in our model, the

impact can be estimated using our results. Introducing staggered shifts allows for more frequent

reassignments, but only for the subset of servers starting at each shift. As we observe numerically

in Section 7, more frequent reassignments increase the benefits of partial flexibility. Further, since

the benefits are achieved by reassigning a small number of staff at each shift, the limitation on the

number of available nurses for reassignment is not expected to have a significant impact on the

performance of the policies. We also note that the extension of the proposed policies to consider

different number of servers at each shift is straightforward.

The introduction of the partially flexible design leads to new research directions that could be

pursued in future. In the following, we discuss a few of these directions.

Choosing safety parameters for small systems. The discrete-review policy proposed in this work

uses a safety parameter to achieve robust performance for all system sizes. We calibrate the safety

parameters heuristically and rely on insights and numerical experiments. Although the experiments

suggest that the performance of the policies are fairly robust with respect to the choice of safety

parameters, developing a rigorous approach for selecting safety parameters is left for future research.

Impact of customer abandonment. Another future direction would be to study the impact of

abandonment on the structure of dynamic assignment policies under the shift constraint, and iden-

tify parameter regimes where despite significant abandonment, partial flexibility can be beneficial.

This is more likely to be feasible for a cost function that only includes cost of abandonment (and

not the holding cost; see Puha and Ward 2019) for which the optimal policy has a simpler structure

under full flexibility.

A general parallel server system. The proposed partially flexible design is suitable for service

systems offering specialized service to different classes of customers and when serving customers

in non-specialized server pools can compromise the quality of service, or increase service times as

empirically observed in Song et al. (2015). If customers of certain classes can be served in multiple

server pools without degradation of service, server reassignment can be considered jointly with

dynamic routing. Extensions of the proposed control problems to consider joint dynamic routing

and server assignment under the shift-constraint should be considered in future work.

Endnotes
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1. Note that because of this structure, where areas are typically differentiated by the severity of

the patients they treat, rerouting patients to different areas is rare.

2. Note that the idleness can also occur at the beginning of the shift in the case where the initial

condition of class 1 is below the equilibrium. See also the numerical example in EC.4.1.

3. In the case of the DR policy, this error can technically be eliminated by solving Problem 2

with sufficiently large number of stages. In our experiments, using N = 6 is typically sufficient to

obtain an stationary policy.
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e-companion to Chan, Huang, and Sarhangian: Dynamic Server Assignment in Multiclass Queues with Shifts ec1

Supplementary Results, Proofs, and Additional Numerical
Experiments

EC.1. Details of the Asymptotic Framework and Convergence to Fluid Limits

Here we provide details of the asymptotic framework introduced in Section 3 and formally establish

the convergence of the sequence of fluid-scaled processes. We begin by formally defining a sequence

of admissible control policies. Under the fully flexible design, a sequence of dynamic control policies

{Un} is said to be admissible if for each n there exists unique processes Xn,Qn, and Zn satisfying

the following relations:

Xn
i (t) =Xn

i (0) +Ai(λ
n
i t)−Si (µiT ni (t))≥ 0, for all i∈ I, (EC.1)

T ni (t) =

∫ t

0

Zni (s)ds, for all i∈ I, (EC.2)

Qn(t) =Xn(t)−Zn(t)≥ 0, (EC.3)

Un(t)−Zn(t)≥ 0, (EC.4)

Qn
i (t)(Un

i (t)−Zni (t)) = 0, for all i∈ I, (EC.5)

Un(t) · e≤ n. (EC.6)

Note that the relations are the same as those in (1)–(5) except that T ni (t) is used to express the

cumulative amount of time that all n servers have spent on class i up to time t.

A sequence of dynamic control policies {Un} is said to be admissible under the partially flexible

design, or discrete-review, if in addition to (EC.1)–(EC.6) and for almost all sample paths,

Un(t) =

k̄(t)−1∑
k=0

Un[k]1[tk,tk+1)(t), (EC.7)

for some sequence {Un[k]; 0≤ k≤ k̄(t)− 1} where 1B is the indicator function of set B, tk denotes

the starting time of shift k+1 with tk+1− tk = τ > 0, k ∈N and t0 = 0, and finally k̄(t) = min{k; tk ≥

t}. Note that (EC.7) limits the set of admissible policies under the partially flexible design to those

with piecewise-constant sample paths.

Let Y n(t) and Υ n(t) denote the cumulative assignment and queue length processes, that is

Y n(t) =

∫ t

0

Un(s)ds, and Υ n(t) =

∫ t

0

Qn(s)ds, (EC.8)

and define the fluid-scaled processes,

X̄n = n−1Xn, Q̄n = n−1Qn, Z̄n = n−1Zn, Ūn = n−1Un,

T̄ n = n−1T n, Ȳ n = n−1Y n, Ῡ n = n−1Υ n.
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The following proposition establishes the existence of a converging subsequence for the sequence

of the scaled processes {(X̄n, T̄ n, Ȳ n, Ῡ n)} associated with any sequence of control policies as n→

∞. The limiting dynamics of the sample paths are characterized by equations (EC.10)–(EC.16).

Equation (EC.10) is similar to the evolution of fluid limits under general scheduling policies

expressed in terms of cumulative time allocation to each class (see e.g., Dai and Tezcan 2011,

Appendix B) and holds for any sequence of admissible controls subject to the limiting relations

(EC.11)–(EC.14). Equation (EC.16) is specific to discrete-review policies and establishes the preser-

vation of the discrete-review structure in the limit. Note that although discrete-review controls

do not have continuous sample paths in the limit, since time remains unscaled, the convergence

in (EC.15) is uniform. We use this proposition later in developing asymptotic lower bounds and

establishing the asymptotic optimality of our proposed policy.

Proposition EC.1. Consider any sequence of admissible controls {Un} and the associated pro-

cesses satisfying (EC.1)–(EC.6). Assume that Assumptions 1 and 2 hold. Then, for almost all

sample paths, the sequence {(X̄n, T̄ n, Ȳ n, Ῡ n)} has a convergent subsequence {(X̄nj , T̄ nj , Ȳ nj , Ῡ nj )}.

That is, (
X̄nj (t), T̄ nj (t), Ȳ nj (t), Ῡ nj (t)

)
→
(
X̄(t), T̄ (t), Ȳ (t), Ῡ (t)

)
, u.o.c., (EC.9)

where X̄(t) and T̄ (t) satisfy

X̄i(t) = X̄i(0) + λ̄it−µiT̄i(t)≥ 0, for all i∈ I. (EC.10)

Furthermore, the functions X̄(t), T̄ (t), Ȳ (t), Ῡ (t) are absolutely continuous and time derivatives

Z̄(t)≡ ˙̄T (t), Ū(t)≡ ˙̄Y (t), and Q̄(t)≡ ˙̄Υ (t) exist a.e. and satisfy the following:

Q̄(t) = X̄(t)− Z̄(t)≥ 0, (EC.11)

Z̄(t) = Ū(t)∧ X̄(t) (EC.12)

Ū(t) · e≤ 1, (EC.13)

Ū(t)≥ 0. (EC.14)

Finally, if {Un} is a sequence of discrete-review policies, i.e., it satisfies (EC.7), then for almost

all sample paths,

Ūnj (t)→ Ū(t), u.o.c., (EC.15)

where

Ū(t) =

k̄(t)−1∑
k=0

Ū [k]1[tk,tk+1)(t), (EC.16)

for some {Ū [k]; 0≤ k≤ k̄(t)− 1}.
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Proof of Proposition EC.1. To prove the first part we need to show that, for almost all sample

paths ω, the sequence {
(
X̄n(·, ω), T̄ n(·, ω), Ȳ n(·, ω), Ῡ n(·, ω)

)
} is pre-compact as n → ∞ in the

Skorohod path space endowed with the u.o.c. topology. In the following, we fix a sample path and

omit ω from the notation for brevity; all statements hold a.s.

First, the pre-compactness of {(X̄n(·), T̄ n(·)} and the relation (EC.10) can be shown similarly

as in Theorem B.1. of Dai and Tezcan (2011) using the fact that for all n and i∈ I,

T̄ ni (t2)− T̄ ni (t1)≤ t2− t1, 0≤ t1 ≤ t2. (EC.17)

It follows that there exists a further subsequence, say {nj; j ∈N}, such that

(
X̄nj (·), T̄ nj (·)

)
→
(
X̄(·), T̄ (·)

)
, u.o.c.,

as j →∞ and X̄(t) and T̄ (t) satisfy (EC.10). Next, consider the sequence of scaled cumulative

assignment processes {Ȳ nj (·)}. Then, for all n and i∈ I, and noting that Ūn
i (t)≤ 1, we have

Ȳ n
i (t2)− Ȳ n

i (t1) ≤ t2− t1, 0≤ t1 ≤ t2. (EC.18)

Therefore, {Ȳ nj (·)} is also pre-compact and there exists a further subsequence that converges u.o.c.

to some function Ȳ (t). To simplify notation, we assume that the convergence occurs on the same

subsequence, that is

Ȳ nj (t)→ Ȳ (t), u.o.c. (EC.19)

Finally, consider the scaled sequence of cumulative queue length processes {Ῡ nj (·)}. We proceed

using a similar argument to that in the proof of Theorem B.1. in Dai and Tezcan 2011. Fix T > 0

and pick j0 large enough so that for j > j0,

max
i∈I

sup
t∈[0,T ]

∣∣n−1
j Ai(λ

nj
i t)− λ̄it

∣∣< ε,
for ε < 1 (where j0 exists by FSLLN for Ai). It follows that for i ∈ I and j > j0, n−1

j Ai(λ
nj
i t) ≤

M ′ ≡ 1 +T λ̄i. Therefore, using (EC.1) and (EC.3),

Ῡ
nj
i (t2)− Ῡ nji (t1) =

∫ t2

0

Q̄
nj
i (s)ds−

∫ t1

0

Q̄
nj
i (s)ds

≤
∫ t2

t1

n−1
j Ai(λ

nj
i s)ds

≤ (t2− t1)M ′, 0≤ t1 ≤ t2 ≤ T, (EC.20)

and hence (again simplifying notation by assuming that the convergence occurs on nj) we have

Ῡ nj (·)→ Ῡ (·) u.o.c., which concludes the first part of the proof.



ec4 e-companion to Chan, Huang, and Sarhangian: Dynamic Server Assignment in Multiclass Queues with Shifts

Next, it follows respectively from (EC.17), (EC.18) and (EC.20) that the functions T̄ (·), Ȳ (·) and

Ῡ (·) are Lipschitz and therefore they are absolutely continuous and their time-derivatives denoted

by Z̄(·), Ū(·), and Q̄(·) exists a.e. as claimed. The absolute continuity of X̄(t) then follows from

the relation between X̄(·) and T̄ (·) in (EC.10) which was established earlier.

We next turn to establishing (EC.11)–(EC.14). Define the cumulative idle time process for all

servers assigned to pool i∈ I up to time t as

Ini (t)≡
∫ t

0

(Un
i (s)−Zni (s))ds= Y n

i (t)−T ni (t),

with Īn(t) = In(t)/n and note that, Īnj (t)→ Ī(t)≡ Ȳ (t)− T̄ (t) u.o.c. where Ī(t) is Lipschitz. Now,

observe that by (EC.3)–(EC.4),

Ῡ
nj
i (t) =

∫ t

0

(X̄
nj
i (s)− Z̄nji (s))ds,

Ī
nj
i (t) =

∫ t

0

(Ū
nj
i (s)− Z̄nji (s))ds,

are non-decreasing in t for each nj. It follows that the limits Ῡi(·) and Īi(·) are also non-decreasing

for i∈ I, implying that

Q̄(t) = X̄(t)− Z̄(t) ≥ 0, (EC.21)

Ū(t)− Z̄(t) ≥ 0, (EC.22)

a.e.. Next, (EC.5) implies that for i∈ I,∫ t

0

Q̄
nj
i (s)dĪ

nj
i (s) = 0,

and hence using Lemma 4.4. in Dai (1995), we have∫ t

0

Q̄i(s)dĪi(s) = 0.

It follows that for i∈ I,

Q̄i(t)(Ūi(t)− Z̄i(t)) = 0, (EC.23)

holds a.e., which together with (EC.21)–(EC.22) establishes (EC.12). Furthermore, observing that∫ t

0

(1− Ūnj (s) · e)ds= t−
∑
i∈I

Ȳ
nj
i (t),

is non-decreasing by (EC.6) we can conclude that (EC.13) holds a.e.. In addition, (EC.14) is implied

by (EC.22).
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Finally, assume that (EC.7) is satisfied. Then for a fixed T > 0 we have

Ūnj (t) =

k̄(T )−1∑
k=0

Ūnj [k]I[tk,tk+1)(t), t∈ [0, T ],

for some {(Ūnj [0], . . . , Ūnj [k̄(T )− 1])}. Since for each k Ūnj [k] is uniformly bounded, there exists

a further subsequence, say again nj, such that as j→∞

(Ūnj [0], . . . , Ūnj [k̄(T )− 1])→ (Ū [0], . . . , Ū [k̄(T )− 1]), (EC.24)

for some (Ū [0], . . . , Ū [k̄(T )− 1]). Now, use this vector to define

Ū(t) =

k̄(T )−1∑
k=0

Ū [k]1[tk,tk+1)(t), t∈ [0, T ].

We need to show that
∣∣∣∣Ūnj′ (t)− Ū(t)

∣∣∣∣
T
→ 0 as j→∞. To this end, observe that for each i∈ I,

∣∣∣Ūnj′
i (t)− Ūi(t)

∣∣∣
T

= sup
t∈[0,T ]

∣∣∣∣∣∣
k̄(T )−1∑
k=0

(
Ū
nj
i [k]− Ūi[k]

)
1[tk,tk+1)(t)

∣∣∣∣∣∣
≤ sup

t∈[0,T ]

k̄(T )−1∑
k=0

∣∣(Ūnj
i [k]− Ūi[k])

)
1[tk,tk+1)(t)

∣∣
≤ (k̄(T )− 1) max

0≤k≤(k̄(T )−1)

∣∣(Ūnj
i [k]− Ūi[k]

)∣∣ ,
which vanishes as j→∞ by (EC.24) and noting that k̄(T )<∞. It follows that

∣∣∣∣Ūnj (t)− Ū(t)
∣∣∣∣
T

= sup
t∈[0,T ]

I∑
i=0

∣∣Ūnj
i (t)− Ūi(t)

∣∣≤ I∑
i=0

∣∣Ūnj
i (t)− Ūi(t)

∣∣
T
,

also goes to zero as j′→∞, which proves the claim. �

EC.2. Single-stage Cost and Transition Functions in the Presence of
Abandonment and under Stationary Arrivals

Starting with initial condition x at the beginning of a stage and under allocation vector u, the

dynamics of the system over a shift are described using the following IVP:

ẋ(t) = λ̄− µ̂ · (x(t)∧u[k])− θ̂ · (x(t)−u[k])+, (EC.25)

x(0) = x.

Similar to the case without abandonment, considering different cases depending on whether the

queue will empty during the stage or not, one can solve the IVP. The solution then allows us to

find the state of the fluid at the beginning of the next stage, as well as the incurred cost during the

stage. With a slight abuse of notation we use the same notation as in the case without abandonment
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to express the dynamics over a stage and the single-stage cost function. The state of class i at the

beginning of the next stage is given by,

fi(x,u, τ) =


1
θi

[
e−θiτ

(
xiθi + (eθiτ − 1)

(
λ̄i +ui(θi−µi)

))]
, , ui <xi and ui < ûi,

ρ̄i + e−µi(τ−σi)(ui− ρ̄i), , ui <xi and ui ≥ ûi,
1
θi

[
λ̄i(1− e−(τ−νi)θi) +ui(θi−µi(1− e−(τ−νi)θi)

]
, , ui ≥ xi and ui < ǔi,

ρ̄i + e−µiτi(xi− ρ̄i), , ui ≥ xi and ui ≥ ǔi,

where,

ûi =
xi + (λ̄i/θi)(e

τθi − 1)

1 + (µi/θi)(eτθi − 1)
, ǔi = ρ̄i + e−µiτ (x− ρ̄i),

and

σi =
1

θi
log

[
(ui−xi)θi + λ̄i−uiµi

λ̄i−uiµi

]
, νi =

1

µi
log

(
ρ̄i−xi
ρ̄i−ui

)
.

The single-stage cost function is g(x,u) = h̃ · c(x,u), where c(x,u) is given by,

ci(x,u) =



e−θiτ(λ̄i+θiui−µiui+eθiτ (λ̄i(θiτ−1)−ui(θiµiτ+θi−µi)+θixi)−θixi)
θ2
i

, ui <xi, ui < ûi,

(λ̄i−µiui) log

(
θi(xi−ui)
µiui−λ̄i

+1

)
+θi(xi−ui)

θ2
i

, ui <xi, ui ≥ ûi,

(λ̄i−µiui)
(
θiµiτ−µi+µie−θiτ

(
λ̄i−µixi
λ̄i−µiui

)θi/µi
−θi log

(
λ̄i−µixi
λi−µiui

))
θ2
i µi

, ui ≥ xi, ui < ǔi,
0, ui ≥ xi, ui ≥ ǔi.

EC.3. Proofs

EC.3.1. Proof of Theorem 1: Asymptotic Lower-Bounds

The proof of Theorem 1 extends the argument in Maglaras (2000) to a multiserver setting under

our modified specification of control policies.

Proof of Theorem 1. Consider any sequence of admissible controls {Un}. Then for almost all

sample paths ω, since {n−1Cn
T (Un)} is a sequence in R+ it has a subsequence, say {nj; j ∈N}, that

converges to its lim inf, i.e.,

lim inf
n→∞

n−1Cn
T (Un) = lim

j→∞
n−1
j C

nj
T (Unj ). (EC.26)

Applying Proposition EC.1 to this subsequence we have that there exists a further

subsequence say {nj′ ; j′ ∈ N} such that the scaled sequence of corresponding processes

{
(
X̄nj′ (·), T̄ nj′ (·), Ȳ nj′ (·), Ῡ nj′ (·)

)
} converges to

(
X̄(·), T̄ (·), Ȳ (·), Ῡ (·)

)
u.o.c. with the limiting

dynamics satisfying (EC.10)–(EC.14) a.e. as well as (EC.15) and (EC.16) if Un ∈Πn
τ for all n. This

together with absolute continuity of X̄ implies that (X̄(t), Ū(t)) is an admissible pair for Problem
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1 (9–14) starting from x0 = X̄(0, ω). Further, if Un ∈Πn
τ then Ū(t) is piecewise-constant and hence

(X̄(t), Ū(t)) is also admissible for Problem 2 (16–20). Therefore, we have a.s.,

h · Ῡ (T ) =

∫ T

0

h · Q̄(s)ds ≥ JT (X̄(0)), (EC.27)

h · Ῡ (T ) =

∫ T

0

h · Q̄(s)ds ≥ JT,τ (X̄(0)), if Un ∈Πn
τ . (EC.28)

Going back to (EC.26) and noting that nj′ is a convergent subsequence we have

lim
j→∞

n−1
j C

nj
T (Unj ) = lim

j′→∞
n−1
j′ C

nj′
T (Unj′ ) = lim

j′→∞
¯h ·Υ nj′ (T ) = h · Ῡ (T ). (EC.29)

It follows from (EC.26) and (EC.27)–(EC.28) that a.s.,

lim inf
n→∞

n−1Cn
T (Un) ≥ JT (X̄(0)), (EC.30)

lim inf
n→∞

n−1Cn
T (Un) ≥ JT,τ (X̄(0)), if Un ∈Πn

τ . (EC.31)

Further, since any solution to Problem 2 is feasible for Problem 1, we have a.s.,

JT,τ (X̄(0))≥ JT (X̄(0)). (EC.32)

Taking expectation in (EC.30) and (EC.31) and applying Fatou’s Lemma we get that

lim inf
n→∞

n−1E[Cn
T (Un)] ≥ E[lim inf

n→∞
n−1Cn

T (Un)]≥E[JT (X̄(0))],

lim inf
n→∞

n−1E[Cn
T (Un)] ≥ E[lim inf

n→∞
n−1Cn

T (Un)]≥E[JT,τ (X̄(0))], if Un ∈Πn
τ ,

establishing (25) and (26). Taking expectation in (EC.32) we have E[JT,τ (X̄(0))]≥E[JT (X̄(0))] as

claimed in (27). �

EC.3.2. Proof of Proposition 1 and Theorem 2: Properties of the Value Function

Proof of Proposition 1. To prove the claims we apply the “Maximum Theorem” (see Ok 2007,

Page 306) to the minimization problem in (35), i.e.,

V k(x) = min
u∈U

Ṽ k(x,u)≡ g(x,u) +V k+1(f(x,u, τ)), (EC.33)

for k ∈K. For our problem, the Maximum Theorem states that if Ṽ k(x,u) is continuous and U is

compact, then V k(x) is also continuous and the minimizer, φk(x), is a non-empty, compact-valued,

and upper hemicontinuous correspondence as claimed. Note that U is clearly compact and recall

from Section 4.2.1 that g(x,u) and f(x,u, τ) are both continuous in (x,u). For k=N − 1, we have

Ṽ N−1(x,u) ≡ g(x,u) which is continuous and, therefore, the claims directly follow. Now assume

that V k+1(·) is continuous for some k ≤N − 2. It follows from (EC.33) and using the continuity

of f(x,u, τ) and g(x,u) that Ṽ k(x,u) is also continuous. Therefore, the claims follow by induction

for all k ∈K. The proof is complete. �
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We need the following lemma before presenting the proof of Theorem 2.

Lemma EC.1. The function fi(x,u, t) is,

(i) convex in (x,u) for all i∈ I, t≥ 0,

(ii) nondecreasing in x for all i∈ I, t≥ 0, u∈ U ,

(iii) nonincreasing in u for all i∈ I, t≥ 0, x∈RI+.

Proof. Since for fixed t the function fi only depends on (xi, ui) ∈ R2
+, it suffices to prove the

claims for the piecewise-defined R+× [0,1]→R+ map,

f̃(xi, ui) =


xi + (λ̄i−µiui)t, (xi, ui)∈A1,

ρ̄i + e−µi(t−σi)(ui− ρ̄i), (xi, ui)∈A2,

ui + (λ̄i−uiµi)(t− νi), (xi, ui)∈A3,

ρ̄i + e−µit(xi− ρ̄i), (xi, ui)∈A4,

(EC.34)

with

A1 ≡ {(xi, ui); 0≤ ui ≤ xi and ui ≤ (xi + tλ̄i)/(1 + tµi)},

A2 ≡ {(xi, ui); 0≤ ui ≤ xi and ui ≥ (xi + tλ̄i)/(1 + tµi)}, (EC.35)

A3 ≡ {(xi, ui); 0≤ xi ≤ ui ≤ 1 and ui ≤ ρ̄i + e−µit(xi− ρ̄i)},

A4 ≡ {(xi, ui); 0≤ xi ≤ ui ≤ 1 and ui ≥ ρ̄i + e−µit(xi− ρ̄i)},

obtained by fixing t > 0 in (30) and substituting û and ǔ from (31) to define the four regions

Aj, j = 1,2,3,4. The lines specified in the four regions intersect at (ρ̄i, ρ̄i) creating a maximum

of four convex subsets of R2. Note that in defining the regions we have used the continuity of f̃

(recall that fi is continuous in (x,u)) and included the boundaries of each region (compared to

the 4 cases in (30)) such that the resulting subsets are also closed. (This will be useful later in the

proof.) To make the functions f̃ j, j = 2,3, well-defined at the boundaries, we set νi(ρ̄i, ρ̄i) = 0 and

σi(ρ̄i, ρ̄i) = 0.

To show convexity, we use a result from Bauschke et al. (2016) which provides sufficient conditions

for convexity of piecewise-defined functions, provided that each component is convex in the interior

of the corresponding region. To this end, we first compute the gradient of f̃ in the interior (int) of

each region. Denote the function specified in (EC.34) for region Aj by f̃ j and the gradient of f̃ in

the interior of region Aj by ∇f̃ j. We have,

∇f̃ j(xi, ui) =


(1,−µit), (xi, ui)∈ int A1,

(e−µi(t−σi),−µiσie−µi(t−σi)), (xi, ui)∈ int A2,

(e−µiνi ,−µi(t− νi) (xi, ui)∈ int A3,

(e−µit,0) (xi, ui)∈ int A4.
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The convexity of f̃ j in the interior of each region can be easily verified by checking that for each

j the Hessian of f̃ j is positive semi-definite. To establish the convexity of the function over the

whole domain we verify the conditions specified in Theorem 5.4 of Bauschke et al. (2016). First,

the functions {f̃ j} in (EC.34) form a system of compatible functions (Definition 4.1 in Bauschke et

al. 2016) since f̃ is continuous and f̃ j(xi, ui) = f̃ j
′
(xi, ui) for (xi, ui)∈Aj ∩Aj′ with j 6= j′. Second,

f̃ is differentiable in the interior of each region. Third, the domain of f̃ , i.e., R+× [0,1] = ∪jAj is

convex and two dimensional. Fourth, {Aj}, j = 1,2,3,4 is a compatible system of sets (Definition

3.1 in Bauschke et al. 2016) since it is comprised of a finite number of closed convex subsets of R2.

Finally, we verify that except at a finite subset of the interior points, i.e., the intersection of all

regions {(ρ̄i, ρ̄i)}, the following limits of the gradients exist along the boundaries of the regions:

lim
(xi,ui)→(x′i,y

′
i)∈(A2∩A4)\(ρ̄i,ρ̄i),

(xi,ui)∈IntA2

∇f̃2(xi, ui) = lim
(xi,ui)→(x′i,y

′
i)∈(A2∩A4)\(ρ̄i,ρ̄i),

(xi,ui)∈IntA4

∇f̃4(xi, ui) = (e−µit,0),

lim
(xi,ui)→(x′i,y

′
i)∈(A1∩A3)\(ρ̄i,ρ̄i),

(xi,ui)∈IntA1

∇f̃1(xi, ui) = lim
(xi,ui)→(x′i,y

′
i)∈(A1∩A3)\(ρ̄i,ρ̄i),

(xi,ui)∈IntA3

∇f̃3(xi, ui) = (1,−µit),

lim
(xi,ui)→(x′i,y

′
i)∈(A1∩A2)\(ρ̄i,ρ̄i),

(xi,ui)∈IntA1

∇f̃1(xi, ui) = lim
(xi,ui)→(x′i,y

′
i)∈(A1∩A2)\(ρ̄i,ρ̄i),

(xi,ui)∈IntA2

∇f̃2(xi, ui) = (1,−µit),

lim
(xi,ui)→(x′i,y

′
i)∈(A4∩A3)\(ρ̄i,ρ̄i),

(xi,ui)∈IntA4

∇f̃4(xi, ui) = lim
(xi,ui)→(x′i,y

′
i)∈(A4∩A3)\(ρ̄i,ρ̄i)

(xi,ui)∈IntA3

∇f̃3(xi, ui) = (e−µit,0).

It follows that f̃(xi, ui) is convex in (xi, ui) and continuously differentiable away from (ρ̄i, ρ̄i).

Next, noting that σi < t and νi < t, it is easy to see that for each j, ∇f̃ j1 ≥ 0 and ∇f̃ j2 ≤ 0. This

together with continuity and a.e. differentiability of f̃ implies its monotonicity in xi and ui as

claimed. �

Proof of Theorem 2. We first show monotonicity using induction on k. For k = N − 1,

V N−1(x) = minu∈U g(x,u). From Lemma EC.1 (i) we have that fi(·, u, t) is nondecreasing. It follows

directly that f(·, u, t) and using (15) that g(·, u) is also nondecreasing. Now consider x,x′ ∈ RI+
such that x ≥ x′ and let φ̂k(x) denote an arbitrary member of the correspondence φk(x), i.e.,

φ̂k(x)∈ φk(x). Observe that

V N−1(x) = g(x, φ̂N−1(x))

≥ g(x′, φ̂N−1(x))

≥ min
u∈U

g(x′, u) = V N−1(x′),

and hence V N−1(·) is nondecreasing. Next assuming that V k+1(·) is nondecreasing we show that

V k(·) is also nondecreasing. To this end again consider x≥ x′ and observe that, using monotonicity

of V k+1(·) and f(·, u, t), we have

V k(x) = min
u∈U

[
g(x,u) +V k+1(f(x,u, τ))

]
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= g(x, φ̂k(x)) +V k+1(f(x, φ̂k(x), τ))

≥ g(x′, φ̂k(x)) +V k+1(f(x′, φ̂k(x), τ))

≥ min
u∈U

[
g(x′, u) +V k+1(f(x′, u, τ))

]
= V k(x′),

which proves the claim.

Next, we show convexity again using induction. Consider V N−1(x). Since by Lemma EC.1

fi(·, ·, τ) is convex for all i∈ I we have that f(·, ·, τ) is convex. Further, since convexity is preserved

under summation and pointwise maximization it follows from (15) that g(·, ·) is also convex. Finally,

convexity of V N−1(x) follows since convexity is preserved under partial minimization. Next, assume

that V k+1(·) is convex. Then since f(·, ·, τ) is convex and V k+1(·) is convex nondecreasing, the

composition V k+1(f(·, ·, τ)) is also convex (see, e.g., Dattorro 2005), which together with convexity

of g(·, ·) implies that

Ṽ k(x,u)≡ g(x,u) +V k+1(f(x,u, τ)), (EC.36)

is convex. Therefore, we can conclude from (35) and preservation of convexity under partial mini-

mization that V k(·) is convex. The claim follows by induction. �

EC.3.3. Proof of Proposition 2 and Theorem 3: Properties of an optimal solution to Problem

2.

Proof of Proposition 2. Recall that an optimal policy (possibly non-unique) always exists. Now

assume there exists an optimal policy, say π′ ≡ {u′[k];k ∈K}, such that u′[j] · e< 1 for some j ∈J
where J ⊆K is nonempty. Denote the vector of fluid headcount under policy π′ by {x′[k];k ∈K}
and note that x[0] = x′[0] = x0. Pick j ∈ J and construct the policy π ≡ {u[k];k ∈ K} as follows:

u[k] = u′[k] for all k ∈K \ {j}, ui[j] = u′i[j] for all i ∈ I \ {l} and ul[j] = u′l[j] + (1− u′[j] · e) where

l ∈ argmini∈Iu
′[j]. That is the policy π uses the same allocation as π′ except at k = j where it

allocates the unused capacity 1−u′[j] · e to the class with minimum allocation (ties can be broken

arbitrarily). Note that u[j] · e = 1. We next compare the total cost of the two policies. To this

end, first note that x[k] = x′[k] and u[k] = u′[k] for k ∈ {0, . . . , j − 1} and at k = j we have u[j]>

u′[j] and x[j] = x′[j]. This implies using Lemma EC.1 part (iii) that x[j + 1] = f(x[j], u[j], τ) ≤
f(x′[j], u′[j], τ) = x′[j+1]. It follows using Lemma EC.1 (ii) and noting that by construction u[k] =

u′[k] for k ∈ {j+1, . . . ,N−1} that x[k]≤ x′[k] and u[k] = u′[k] for k ∈ {j+1, . . . ,N−1}. Therefore,

since by Lemma EC.1 and (15) the stage cost g(x,u) is nonincreasing in x and nondecreasing in

u, policy π achieves the same or a lower cost as π in all stages. If j is the only stage where π′ does

not use all capacity or the cost of π′ is strictly greater than that of π then we are done. Otherwise,

set π′← π and apply the same procedure to the next member of J until either a contradiction is

reached or another policy with the same cost as π′ is constructed. The proof is complete. �
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The following lemma will be useful in the proof of Theorem 3 and states that starting above the

stationary point ρ̄i, the class i trajectory xi(t) will remain above ρ̄i under any admissible policy.

We note that the trajectory could get arbitrarily close to the stationary point, but can never cross

below it.

Lemma EC.2. Assume that the initial condition x0 in Problem 2 satisfies x0
i > ρ̄i for i ∈ I ′ ⊆ I.

Then under any admissible policy the corresponding trajectory satisfies xi[k]> ρ̄i for all i∈ I ′ and

k ∈K.

Proof of Lemma EC.2. For each i∈ I ′ satisfying x0
i > ρ̄i we show using the transition function

fi in (30) that regardless of the allocation xi[k]> ρ̄i implies xi[k+ 1]> ρ̄i. The claim then follows

by induction. We do this by checking that in each case of (30), xi > ρ̄i implies fi(x,u, τ)> ρ̄i.

Case 1. Note that ui ≤ ûi(x, τ) ≡ (xi + τ λ̄i)/(1 + τµi) together with xi > ρ̄i implies that xi >

ûi(x, τ)≥ ui. Hence, we have

fi(x,u, τ) = xi + (λ̄i−µiui)τ ≥ xi(1−µiτ) + λ̄iτ > ρ̄i.

Case 2. Clearly, it suffices to show ui− ρ̄i > 0. This however follows noting that ui > ûi(x, τ)≡

(xi + τ λ̄i)/(1 + τµi) and ui <xi imply ui > (ui + τ λ̄i)/(1 + τµi), which yields ui > ρ̄i.

Case 3. The conditions of this case, i.e., xi ≤ ui < ǔi(x, τ)≡ ρ̄i+e−µiτ (xi− ρ̄i) cannot be satisfied

together with xi > ρ̄i. To see this note that xi ≤ ui < ǔi(x, τ) implies xi− ρ̄i ≤ ui− ρ̄i < e−µiτ (xi− ρ̄i),

which clearly cannot hold with xi − ρ̄i > 0. Hence, starting from xi > ρ̄i we cannot be in Case 3

under any allocation.

Case 4. The claim follows directly using the assumption xi > ρ̄i. This concludes the proof. �

Proof of Theorem 3. We show that the property holds for the first stage (at k = 0) for any

number of stages N ∈ N and starting from x0 = x > ρ̄ ∈ R2
+. Then since the dynamics and stage

cost are independent of k, the problem at stage k+ 1 is equivalent to that in the first stage for a

N−k stage problem and hence the claim follows for all k. Note that by Lemma EC.2 x> ρ̄ implies,

regardless of the allocations, that x[k]> ρ̄ for all k ∈K.

For simplicity and with a slight abuse of notation, in the rest of the proof we write f(x,u) for

f(x,u, τ), ûi(x) for ûi(x, τ), and ǔi(x) for ǔi(x, τ).

Consider the value function at k= 0 for the N stage problem denoted by V 0
N(·). From Proposition

2 we know that there exists an optimal policy where u · e ≤ 1 is satisfied with equality in every

stage. Adjoining the constraint u · e = 1 in (EC.36) we have

V 0
N(x) = min

u≥0

[
g(x,u) +V 1

N(f(x,u)) +β(u · e− 1)
]
, (EC.37)
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where β ≥ 0 is the Lagrangian multiplier. The necessary and sufficient optimality conditions then

imply that a minimizer of (EC.37) φ̂0(x) satisfies the following for i= 1,2,

∂g(x, φ̂0(x))

∂ui
+
∂V 1

N(f(x, φ̂0(x)))

∂xi
· ∂fi(x, φ̂

0(x))

∂ui
+β ≥ 0, (EC.38)(

∂g(x, φ̂0(x))

∂ui
+
∂V 1

N(f(x, φ̂0(x)))

∂xi
· ∂fi(x, φ̂

0(x))

∂ui
+β

)
φ̂0
i (x) = 0, (EC.39)

φ̂0(x) · e− 1 = 0, (EC.40)

φ̂0
i (x) ≥ 0, (EC.41)

assuming that the derivatives in (EC.38) and (EC.39) exist on {(x,u);x > ρ̄}. (Note that the

complementary condition in (EC.39) is introduced to handle the nonnegativity constraint u≥ 0.)

The partials ∂fi/∂ui and ∂fi/∂xi are given by

(
∂

∂xi
,
∂

∂ui
)fi =


(1,−µit), ui <xi and ui ≤ ûi(x),

(e−µi(t−σi),−µiσie−µi(t−σi)), ui <xi and ui > ûi(x),

(e−µiνi ,−µi(t− νi), ui ≥ xi and ui < ǔi(x),

(e−µit,0), ui ≥ xi and ui ≥ ǔi(x).

(EC.42)

Further, using (33) and differentiating (34) we have

∂g(x,u)

∂ui
=


−hi(τ +µiτ

2/2), ui <xi and ui ≤ ûi(x),

−hi(σi +µiσ
2
i /2), ui <xi and ui > ûi(x),

−hi
(
(τ − νi) +µi(τ − νi)2/2

)
, ui ≥ xi and ui < ǔi(x),

0, ui ≥ xi and ui ≥ ǔi(x),

(EC.43)

and

∂g(x,u)

∂xi
=


hiτ, ui <xi and ui ≤ ûi(x),

hiσi, ui <xi and ui > ûi(x),

hi(τ − νi)e−νiµi , ui ≥ xi and ui < ǔi(x),

0, ui ≥ xi and ui ≥ ǔi(x).

(EC.44)

It is straightforward to verify using the above that for all points (x,u) with x > ρ̄ the partial

derivatives exist and are continuous. Hence, f and g are both differentiable at any point (x,u) with

x> ρ̄. The following result establishes the required differentiability of the value function.

Proposition EC.2. The value function V k
N(x) is continuously differentiable in the interior of the

set {x∈RI+;x> ρ̄} for all k ∈K.

To prove the proposition we use the following result from Stokey and Lucas (1989) originally

proved in Benveniste and Scheinkman (1979).

Lemma EC.3. (Benveniste and Scheinkman 1979) Let Y ⊆ RI be a convex set, let V : Y → R

be concave, let y ∈ int(Y ), and let D be a neighborhood of y. If there is a concave, differentiable

function ω :D→R, with ω(y) = V (y) and with ω(y)≤ V (y) for all y ∈D, then V is differentiable

at y.
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Proof of Proposition EC.2. The proof is by induction on k. For k =N − 1 we have from (35)

that V N−1
N (x) = g(x, φ̂0(x)), where φ̂0(x)∈ φ0(x) is an optimal allocation at stage k= 0. Let x0 > ρ̄

and denote by D a neighborhood of x0. Define the function ωN−1 on D as ωN−1(x) = g(x, φ̂0(x0))

and note that ω is differentiable and convex, with ω(x0) = V N−1
N (x0) and ω(x)≥ V N−1

N (x). It follows

using Lemma EC.3 (applied to the concave function −V N−1
N ) that V N−1

N is differentiable in x0.

Next, assume that V k+1
N (x) is differentiable in all points with x> ρ̄ for some k≤N −2. Using (35)

we have V k
N(x) = g(x, φ̂k(x)) +V k+1

N (f(x, φ̂k(x)). Similar to the case with k=N −1, let D denote a

neighborhood of x0 > ρ̄, and define ωk(x) = g(x, φ̂k(x0))+V k+1
N (f(x, φ̂k(x0)) on D. Note that g and

f are both differentiable on D and by Lemma EC.2 f(x, φ̂k(x0))> ρ̄. It follows by the induction

assumption that ωk(x) is differentiable. Further, since g and V k+1
N are convex, ωk is also convex.

Noting that ωk(x0) = V k
N(x0) and ωk(x) ≥ V k

N(x) and again applying Lemma EC.3 we have that

V k
N(x) is differentiable at x0. The proof is complete. �

Define for x with x> ρ̄, the set of allocations

Û(x) = {(u1, u2);u1, u2 ≥ 0 and u1 +u2 = 1 and u1 ≥ û1(x)∧ 1} .

We prove the existence of an optimal solution φ0(x) ∈ Û(x) by showing that any non-wasteful

allocation u /∈ Û(x) (i.e., with u1 + u2 = 1) either does not satisfy the optimality equations

(EC.38)–(EC.41), or if it does, then there exists another optimal allocation that belongs to Û(x).

The proof is by induction on the number of stages N .

Base case. First, consider the single-stage problem (N = 1). In this case (EC.38) and (EC.39)

are simply

∂g(x, φ̂0(x))

∂ui
+β ≥ 0, and

(
∂g(x, φ̂0(x))

∂ui
+β

)
φ̂0
i (x) = 0, i= 1,2.

Therefore, depending on whether the solution is in the interior or at a corner point it satisfies one

of the following:

−∂g(x, φ̂0(x))

∂u1

=−∂g(x, φ̂0(x))

∂u2

= β, φ̂0
1(x)> 0, φ̂0

2(x)> 0, (EC.45)

−∂g(x, φ̂0(x))

∂u1

= β,−∂g(x, φ̂0(x))

∂u2

<β, φ̂0
1(x) = 1, φ̂0

2(x) = 0, (EC.46)

−∂g(x, φ̂0(x))

∂u1

<β,−∂g(x, φ̂0(x))

∂u2

= β, φ̂0
1(x) = 0, φ̂0

2(x) = 1, (EC.47)

together with φ̂0
1(x) + φ̂0

2(x) = 1. Now consider a non-wasteful allocation u /∈ Û(x) (i.e., with u1 <

û1(x)∧ 1) and observe that starting from an initial condition x > ρ̄ we must have u1 < x1. To see

this, consider two cases. If u1 ≤ ρ̄1 then trivially x1 > ρ̄1 ≥ u1, and if u1 > ρ1 then u1 < û1(x)∧ 1≤

û1(x) = (x1 + τ λ̄1)/(1 + τµ1) implies x1 > u1 + τµ1(u1 − ρ̄1) > u1. Therefore, for an allocation
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u /∈ Û(x) we have u1 < x1 and u1 ≤ û1(x) and hence we are in Case 1 of (EC.43). Considering the

four possible cases for class 2 we observe that

−∂g(x,u)

∂u1

= h1(τ+µ1τ
2/2)≥−∂g(x,u)

∂u2

=


h2(τ +µ2τ

2/2), u2 <x2 and u2 ≤ û2(x),

h2(σ2 +µ2σ
2
2/2), u2 <x2 and u2 ≤ û2(x),

h2

(
(τ − ν2) +µ2(τ − ν2)2/2

)
, u2 ≥ x2 and u2 < ǔ2(x),

0, u2 ≥ x2 and u2 ≥ ǔ2(x),

where the inequality follows from assumption (iii) in the first case, noting that σ2 < τ in the second

case, and since 0 < ν2 < τ in the third case. In words, the inequality implies that the marginal

value of allocating capacity to class 1 (in terms of cost reduction) is greater than or equal to that

of class 2 for any allocation u /∈ Û(x). Considering the possible cases in (EC.45)–(EC.47) it follows

that the allocation u can only be optimal if it satisfies (EC.45). But since σ2 < τ and ν2 > 0, u can

only be an optimal solution if

−∂g(x,u)

∂u1

= h1(τ +µ1τ
2/2) =−∂g(x,u)

∂u2

= h2(τ +µ2τ
2/2),

i.e., for class 2 we are also in Case 1 and assumption (iii) is satisfied with an equality. In this case

however the optimality equation is easily seen to also hold at (û1(x),1− û1(x))∈ Û(x) which proves

the claim for N = 1.

Remark EC.1. As mentioned in the body of the paper, for the single-stage problem, we can show

regardless of the initial condition that the marginal value of allocating capacity to class 1 is equal

or greater than that of allocating to class 2 as long as no idleness is incurred in class 1. This is

easily seen noting that as long as no idleness is incurred, we are in Case 1 of (EC.43) for class 1,

which as shown above is an upper bound for the marginal value of adding capacity to class 2 in all

possible four cases.

Induction hypothesis. Now assume that the claim holds for the N − 1 period problem

with N ≥ 2, i.e., there exists an allocation φ̂0(x) ∈ Û(x) that satisfies the optimality equations

(EC.38)–(EC.40) with N replaced by N−1. Further, differentiating the value function with respect

to the initial condition xi at the optimal allocation φ̂0(x) we obtain the following Envelop Condition

(EC):

∂V 0
N−1(x)

∂xi
=
∂g(x, φ̂0(x))

∂xi
+
∂fi(x, φ̂

0(x))

∂xi
·
∂V 1

N−1(f(x, φ̂0(x))

∂xi
, i= 1,2, (EC.48)

which will be instrumental in the next step of the proof.

Induction step. We now turn to the N period problem. We want to show that there exists

an optimal allocation φ̂0(x) ∈ Û(x) satisfying (EC.38)–(EC.41). Consider a non-idling allocation

u /∈ Û(x), i.e., an allocation that does not empty the queue for class 1 by the end of the first stage.
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Similar to the single-stage problem we show that for any such allocation the marginal value of

allocating capacity to class 1 is no less than that of allocating to class 2; the difference here being

that one needs to also consider the effect on future stages. For the N period problem this translates

to

− ∂g(x,u)

∂u1

− ∂V
1
N(f(x,u))

∂x1

· ∂f1(x,u)

∂u1

≥−∂g(x,u)

∂u2

− ∂V
1
N(f(x,u))

∂x2

· ∂f2(x,u)

∂u2

. (EC.49)

If the above inequality is strict then it follows directly that u does not satisfy the optimality

conditions (EC.38)–(EC.40). In the case where (EC.49) is satisfied with equality, we show that

there exists another optimal solution which belongs to Û(x).

We proceed by obtaining the terms in (EC.49). First, similar to the single-stage problem, u /∈ Û(x)

implies that in the first stage we have

− ∂g(x,u)

∂u1

= h1(τ +µ1τ
2/2), −∂g(x,u)

∂u2

≤ h2(τ +µ2τ
2/2). (EC.50)

Further, from (EC.42) at t= τ and with u /∈ Û(x) we have

− ∂f1(x,u)

∂u1

= µ1τ, −∂f2(x,u)

∂u2

≤ µ2τ, (EC.51)

where the inequality follows easily recalling that σi < τ and νi > 0. We next obtain explicit expres-

sions for ∂V 1
N(f(x,u))/∂xi, i= 1,2 required for verifying (EC.49). Denote by x̃≡ f(x,u) the initial

position at the beginning of the second stage (at k = 1) and recall from Lemma EC.2 that the

assumption x > ρ̄ implies, regardless of the allocation u, that x̃ > ρ̄. It follows by the induction

assumption, and noting V 1
N(x̃) = V 0

N−1(x̃), that at k= 1 there exists an optimal allocation φ1(x̃)∈

Û(x̃) satisfying the optimality equations

−∂g(x̃, φ̂1(x̃))

∂u1

−
∂V 0

N−1(f(x̃, φ̂1(x̃)))

∂x1

· ∂f1(x̃, φ̂1(x̃))

∂u1

= β, (EC.52)

−∂g(x̃, φ̂1(x̃))

∂u2

−
∂V 0

N−1(f(x̃, φ̂1(x̃)))

∂x2

· ∂f2(x̃, φ̂1(x̃))

∂u2

≤ β, (EC.53)

where (EC.53) is satisfied with equality if φ̂1(x̃) is an interior solution and is strict if it is the

corner solution φ̂1
1(x̃) = 1, φ̂1

2(x̃) = 0. Noting that ∂f2(x̃, φ̂1(x̃))/∂u2 ≤ 0 (see (EC.42)) this implies

that when ∂f2(x̃, φ̂1(x̃))/∂u2 6= 0,

∂V 0
N−1(f(x̃, φ̂1(x̃)))

∂x1

=

(
−β− ∂g(x̃, φ̂1(x̃))

∂u1

)/
∂f1(x̃, φ̂1(x̃))

∂u1

,

∂V 0
N−1(f(x̃, φ̂1(x̃)))

∂x2

≤

(
−β− ∂g(x̃, φ̂1(x̃))

∂u2

)/
∂f2(x̃, φ̂1(x̃))

∂u2

.
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Inserting the above in the EC (EC.48) starting from x̃ and with optimal allocation φ̂1(x̃), and

using V 1
N(x̃) = V 0

N−1(x̃) we get that when ∂f2(x̃, φ̂1(x̃))/∂u2 6= 0,

∂V 1
N(x̃)

∂x1

=
∂g(x̃, φ̂1(x̃))

∂x1

+

(
−β− ∂g(x̃, φ̂1(x̃))

∂u1

)(
∂f1(x̃, φ̂1(x̃))

∂x1

/
∂f1(x̃, φ̂1(x̃))

∂u1

)
,(EC.54)

∂V 1
N(x̃)

∂x2

≤ ∂g(x̃, φ̂1(x̃))

∂x2

+

(
−β− ∂g(x̃, φ̂1(x̃))

∂u2

)(
∂f2(x̃, φ̂1(x̃))

∂x2

/
∂f2(x̃, φ̂1(x̃))

∂u2

)
,(EC.55)

where we note again that the inequality in (EC.55) is strict in case of a corner solution (φ̂1
1(x̃) =

1, φ̂1
2(x̃) = 0) and is an equality in case of an interior solution (φ̂1

1(x̃) > 0, φ̂1
2(x̃) > 0 and φ̂1

1(x̃) +

φ̂1
2(x̃) = 1). Explicit expressions for the terms in (EC.54) and (EC.55) are readily available depend-

ing on which case the solution φ̂1(x̃) belongs to. For class 1, since x̃1 > ρ̄1 and φ̂1(x̃) ∈ Û(x̃) we

are either in Case 2 where φ̂1
1(x̃)< x̃1 and φ̂1

1(x̃)> û1(x̃) and the queue empties at time 0<σ1 < τ

during the stage, or we are in Case 1 with φ̂1
1(x̃) = û1(x̃)∧ 1 where the optimal policy is emptying

the queue τ time units into the stage, or allocating all capacity to it in the case of a corner solution.

Therefore, we have from (EC.43) and (EC.44) that

∂g(x̃, φ̂1(x̃))

∂x1

= h1θ, −∂g(x̃, φ̂1(x̃))

∂u1

= h1(θ+µ1θ
2/2), (EC.56)

and from (EC.42) at t= τ that

∂f1(x̃, φ̂1(x̃))

∂x1

= e−µ1(τ−θ), −∂f1(x̃, φ̂1(x̃))

∂u1

= µ1θe
−µ1(τ−θ), (EC.57)

where we have used parameter θ to unify the two cases: θ = σ1 < τ if φ̂1
1(x̃)> û1(x̃), and θ = τ if

φ̂1
1(x̃) = û1(x̃)∧ 1. We can therefore write (EC.54) as

∂V 1
N(x̃)

∂x1

= h1θ+
(
β−h1(θ+µ1θ

2/2)
)(

1/(µ1θ)
)
. (EC.58)

For class 2, we could be in Case 1, 2 or 4 but not 3 since x̃2 > ρ̄2 (see the proof of Lemma EC.2).

This in addition to the case where φ̂1(x̃) is a corner solution leads to four cases that we consider

separately below.

1. φ̂1(x̃) is a corner solution with φ̂1
1(x̃) = 1 and φ̂1

2(x̃) = 0: Since φ̂1
2(x̃) = 0 we are in Case 1 for

class 2 and θ = τ for class 1. Substituting the corresponding terms from (EC.43), (EC.44), and

(EC.42) (at t= τ) in (EC.55) and noting that φ̂1(x̃) is a corner solution we have

∂V 1
N(x̃)

∂x2

< h2τ +
(
β−h2(τ +µ2τ

2/2)
)

(1/(µ2τ)) .

This together with (EC.58) at θ= τ yields

−∂g(x,u)

∂u1

− ∂V
1
N(f(x,u))

∂x1

· ∂f1(x,u)

∂u1

= h1(τ +µ1τ
2/2) +h1µ1τ

2 +β−h1(τ +µ1τ
2/2) = h1µ1τ

2 +β,

−∂g(x,u)

∂u2

− ∂V
1
N(f(x,u))

∂x2

· ∂f2(x,u)

∂u2

< h2(τ +µ2τ
2/2) +h2µ2τ

2 +β−h2(τ +µ1τ
2/2) = h2µ2τ

2 +β,

which by assumption (ii) implies that (EC.49) is satisfied with a strict inequality.
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2. φ̂1(x̃) is an interior solution and φ̂1
2(x̃) < x̃2 and φ̂1

2(x̃) ≤ û2: We are in Case 1 where class

2 starts with a positive queue at stage 2 that remains positive during the stage. Substituting the

corresponding terms from (EC.43), (EC.44), and (EC.42) (at t= τ) in (EC.55) we have

∂V 1
N(x̃)

∂x2

= h2τ +
(
β−h2(τ +µ2τ

2/2)
)

(1/(µ2τ)) .

This together with (EC.58) yields

−∂g(x,u)

∂u1

− ∂V
1
N(f(x,u))

∂x1

· ∂f1(x,u)

∂u1

= h1(τ +µ1τ
2/2) +h1µ1τθ+ (τ/θ)

(
β−h1(θ+µ1θ

2/2)
)
,

−∂g(x,u)

∂u2

− ∂V
1
N(f(x,u))

∂x2

· ∂f2(x,u)

∂u2

≤ h2(τ +µ2τ
2/2) +h2µ2τ

2 +β−h2(τ +µ2τ
2/2).

We need to consider the two cases for θ separately.

(a) We first show that when θ = σ1 < τ (EC.49) holds with a strict inequality. After simpli-

fying, this is equivalent to showing

β
(
(τ/σ1)− 1

)
+h1µ1τ(τ +σ1)/2−h2µ2τ

2 > 0. (EC.59)

From the optimality equation (EC.53) we know that β ≥−∂g(x̃, φ̂1(x̃))/∂u2 = h2(τ +µ2τ
2/2) and

hence the LHS of (EC.59) is no less than

ξ(σ1)≡ h2(τ +µ2τ
2/2)

(
(τ/σ1)− 1

)
+h1µ1τ(τ +σ1)/2−h2µ2τ

2. (EC.60)

We show that ξ(σ1) > 0 for any σ1 ∈ (0, τ) and hence the claim follows. To this end we need to

consider two cases for σ1. First, assume that σ1 ≥ τ(h2µ2)/(h1µ1). Then it is easy to see that

ξ(σ1) > h1µ1τ(τ + σ1)/2 − h2µ2τ
2 ≥ 0. Next assume that σ1 < τ(h2µ2)/(h1µ1). Combined with

assumption (ii), we have (τ/σ1)2 > (h1µ1)/(h2µ2). This implies that ξ(σ1) is strictly decreasing

on σ1 ∈
(
0, τ(h2µ2)/(h1µ1)

)
since dh(σ1)/dσ1 = h1µ1τ/2− h2(τ/σ1)2 − h2µ2(τ/σ1)2(τ/2)< 0. The

claim then follows noting that ξ(σ1) is continuous and as we saw in the first case positive at

σ1 = τ(h2µ2)/(h1µ1).

(b) Next consider the case with θ= τ . We have

−∂g(x,u)

∂u1

− ∂V
1
N(f(x,u))

∂x1

· ∂f1(x,u)

∂u1

= h1(τ +µ1τ
2/2) +h1µ1τ

2 +β−h1(τ +µ1τ
2/2) = h1µ1τ

2 +β,

−∂g(x,u)

∂u2

− ∂V
1
N(f(x,u))

∂x2

· ∂f2(x,u)

∂u2

≤ h2(τ +µ2τ
2/2) +h2µ2τ

2 +β−h2(τ +µ2τ
2/2) = h2µ2τ

2 +β.

Therefore, if assumption (ii) holds with an inequality, i.e., h1µ1 > h2µ2, (EC.49) also holds with

an inequality and we are done. However, if h1µ1 = h2µ2 and also (EC.50) and (EC.51) are both

satisfied with equality (i.e., we are in Case 1 for class 2 in the first stage) then (EC.49) holds with

an equality and hence the allocation u belongs to some optimal policy, say π. In this case, however,
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we can construct another optimal policy that uses an allocation from Û(x) in the first stage as

follows: in stage 1, instead of u we use (û1(x),1− û1(x)) ∈ Û(x). In stage 2 we return the extra

capacity allocated to class 1, i.e., û1(x)−u1, to class 2 and use(
û1(x̃)− (û1(x)−u1),1− û1(x̃) + (û1(x)−u1)

)
.

Finally, we use the same allocations in all future periods as the policy π. It is then easy to verify

that we incur the same cost in the first two stages under the two policies and the trajectories couple

at the end of the second stage. Therefore, both policies incur the same total minimal cost.

3. φ̂1(x̃) is an interior solution and û2 < φ̂
1
2(x̃)< x̃2: We are in Case 2 where class 2 starts with

a positive queue at stage 2 that empties at some time σ2 < τ into the stage. Since by the induction

hypothesis queue 1 also empties by the end of the stage, using the same allocation φ̂1(x̃) in future

periods will keep both queues empty and hence future cost at zero. Therefore, the value function

at the beginning of the second stage is simply,

V 1
N(x̃) = g(x̃, φ̂1(x̃)),

yielding
∂V 1

N(x̃)

∂x1

= h1θ,
∂V 1

N(x̃)

∂x2

= h2σ2,

and thus

−∂g(x,u)

∂u1

− ∂V
1
N(f(x,u))

∂x1

· ∂f1(x,u)

∂u1

= h1(τ +µ1τ
2/2) +h1µ1τθ, (EC.61)

−∂g(x,u)

∂u2

− ∂V
1
N(f(x,u))

∂x2

· ∂f2(x,u)

∂u2

≤ h2(τ +µ2τ
2/2) +h2µ2τσ2. (EC.62)

It follows by assumptions (ii) and (iii) that if θ = τ (EC.49) holds with a strict inequality. In

the following we show that when θ = σ1 < τ either the inequality is again strict, or there exists

another optimal policy that uses an allocation in the first stage that belongs to Û(x). Assume that

θ= σ1 < τ and note that the optimality equations (EC.52)–(EC.53) for φ̂1(x̃) reduce to

−h1(σ1 +µ1σ
2
1/2) =−h2(σ2 +µ2σ

2
2/2) = β, (EC.63)

where as before we have suppressed the dependence of σi on x̃ and φ̂1(x̃). We want to show that

(EC.49) holds when θ= σ1, i.e., using (EC.61) and (EC.62),

h1(τ +µ1τ
2/2) +h1µ1τσ1 ≥ h2(τ +µ2τ

2/2) +h2µ2τσ2. (EC.64)

To simplify notation, we define z ≡ h2/h1. Note that assumptions (ii) and (iii) can be written as

µ1 ≥ zµ2 and (τ + µ1τ
2/2) ≥ z(τ + µ2τ

2/2), respectively, and the optimality equation (EC.63) is

σ1 +µ1σ
2
1/2 = z(σ2 +µ2σ

2
2/2) which can be written as

µ1σ1 =−1 +
√

1 + 2µ1zσ2 +µ1µ2zσ2
2. (EC.65)
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Finally, re-writing (EC.64), we want to show

τ +µ1τ
2/2 +µ1τσ1 ≥ z(τ +µ2τ

2/2 +µ2τσ2). (EC.66)

First assume that z < 1. Then we can use (EC.65) to write

τ +µ1τ
2/2 +µ1τσ1 = µ1τ

2/2 + τ
√

1 + 2µ1zσ2 +µ1µ2zσ2
2

≥ zµ2τ
2/2 + τ

√
1 + 2z2µ2σ2 + z2µ2

2σ
2
2

> zµ2τ
2/2 + τ

√
z2(1 + 2µ2σ2 +µ2

2σ
2
2)

= zµ2τ
2/2 + τz(1 +µ2σ2)

= z(τ +µ2τ
2/2 + τσ2µ2),

where the first inequality follows from the assumption µ1 ≥ zµ2 and the second from z < 1. Next

assume that z ≥ 1 and note that this together with assumption (ii) µ1 ≥ zµ2 implies that µ1 ≥ µ2.

Again using (EC.65) we have

µ1σ1 = −1 +
√

1 + 2µ1zσ2 +µ1µ2zσ2
2

≥ −1 +
√

1 + 2µ2zσ2 +µ2
2z

2σ2
2

= µ2zσ2,

where the inequality follows using µ1 ≥ µ2 in the first term in the squared root and µ1 ≥ zµ2 in the

second term. This, together with assumption (iii) (τ + µ1τ
2/2)≥ z(τ + µ2τ

2/2) proves the claim.

Now note that in the first case, i.e., z < 1 the inequality is strict. The same holds in the second case

as long as z > 1 or µ1 >µ2. Therefore, (EC.49) can only hold with equality if h1 = h2 and µ1 = µ2

and also both (EC.51) and (EC.50) hold with equality (i.e., we are in Case 1 for class 2 in the first

stage and (EC.62) holds with equality). This further implies using (EC.65) that σ1 = σ2. That is,

under an optimal policy we start with positive queues for both classes that remain positive in the

first stage and empty at the same time during the second stage. It is however easy to see that in

this case by using (û1(x),1− û1(x)) ∈ Û(x) in stage 1 and emptying the queues at the same time

in the second stage, the optimality equations are still satisfied and hence we are done.

4. φ̂1(x̃) is an interior solution and φ̂1
2(x̃)≥ x̃2 and φ̂1

2(x̃)≥ ǔ2: We are in Case 4 where class 2

starts with an empty queue in stage 2 that remains empty during the stage. In this case again since

both queues empty at the second stage we can keep the cost zero in future periods and hence,

V 1
N(x̃) = g(x̃, φ̂1(x̃)).

It is then easy to see that φ̂1(x̃) cannot be optimal since the optimality equation−h1(θ+µ1θ
2/2) = 0

cannot have a solution for θ > 0. The proof is complete. �
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EC.3.4. Proof of Theorem 4: Asymptotic Optimality of the DR Policy

We need the following basic lemma before presenting the proof.

Lemma EC.4. For any sequence of admissible control policies {Un} the corresponding sequence of

scaled total costs {n−1Cn
T (Un)} is uniformly integrable and

limsup
n→∞

E
[
n−1Cn

T (Un)
]
≤E

[
limsup
n→∞

n−1Cn
T (Un)

]
. (EC.67)

Proof. First, a simple bound for the sequence of scaled total costs can be obtained by bounding

the queue length by the total arrivals similar to that in Lemma 4.5. of Dai (1995). We have,

n−1Cn
T (Un) =

∫ T

0

h · Q̄n(s)ds ≤
∫ T

0

∑
i∈I

hi(X̄
n
i (0) +n−1Ai(λ

n
i s))ds

≤
∫ T

0

∑
i∈I

hi(M +n−1Ai(λ
n
i T ))ds

≤ T h̄(M +
∑
i∈I

n−1Ai(λ
n
i T )),

where h̄= maxi∈I hi. It is easy to verify that under Assumption 2 the sequence of scaled Poisson

random variables {n−1Ai(λ
n
i T )} is uniformly integrable for each i∈ I. It follows that {n−1Cn

T (Un)}

is also uniformly integrable. Next, we show (EC.67) by proving that it holds for any uniformly

integrable sequence {Bn}. To this end observe that,

limsup
n→∞

E [Bn] ≤ limsup
n→∞

E [Bn ∧ b] + sup
n

E [Bn1{Bn ≥ b}]

(Fatou’s Lemma) ≤ E
[
limsup
n→∞

Bn ∧ b
]

+ sup
n

E [Bn1{Bn ≥ b}]

≤ E
[
limsup
n→∞

Bn

]
+ sup

n
E [Bn1{Bn ≥ b}] .

Taking b→∞ the second term on the RHS vanishes by uniform integrability of {Bn} proving the

claim. This completes the proof. �

Proof of Theorem 4. Consider a sample path ω and denote by {nj; j ∈N} the subsequence under

which the limsup is achieved for n−1Cn
T (Un

∗ ) (i.e., under the DR policy). Note that since by Lemma

EC.4 {n−1Cn
T (Un

∗ )} is uniformly integrable the limsup is finite. By Proposition EC.1 for almost

all sample paths there exists a further subsequence, say {nj′ ; j′ ∈ N}, such that the sequence of

corresponding scaled processes {(X̄
nj′
∗ , T̄

nj′
∗ , Ȳ

nj′
∗ , Ῡ

nj′
∗ )} converges to some (X̄∗, T̄∗, Ȳ∗, Ῡ∗) satisfying

(EC.10)–(EC.14) a.e. It follows that a.s.,

limsup
n→∞

n−1Cn
T (Un

∗ ) = lim
j′→∞

n−1
j′ C

nj′
T (U

nj′
∗ )

= h · Ῡ∗(T ) =

∫ T

0

h · Q̄∗(s)ds=

∫ T

0

h ·
(
X̄∗(s)− Ū∗(s)

)+
ds. (EC.68)
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Next, note using (EC.10) and (EC.12) that X̄∗ and Ū∗ satisfy

˙̄X∗(t) = λ̄− µ̂ · (X̄∗(t)∧ Ū∗(t)). (EC.69)

Further, since Un
∗ ∈Πn

τ for all n, (EC.15) and (EC.16) hold, that is Ū∗ is piecewise-constant and

Ū∗(t) =

k̄(T )−1∑
k=0

Ū∗[k]1[tk,tk+1)(t), (EC.70)

for some {Ū∗[k]; 0 ≤ k ≤ k̄(T )− 1} with tk+1 − tk = τ . This, together with (EC.13) and (EC.14),

implies that (X̄∗, Ū∗) is an admissible pair for Problem 2 starting from x0 = X̄(0, ω). In the following,

we first show that {Ū∗[k]; 0 ≤ k ≤ N − 1} is an optimal policy for Problem 2 given the starting

point X(0, ω) and hence the total cost in (EC.68) is the optimal cost starting from X(0, ω), i.e.,

JT,τ (X(0, ω)), for almost all ω. We then take expectation and apply Lemma EC.4 to get the final

result in (40).

The first part of the proof is by (forward) induction on k. First, consider k = 0 and note that

by Assumption 1 the initial condition converges to the random variable X̄(0) a.s., so we have

X̄n
∗ (0, ω)→ X̄(0, ω) for almost all ω. Now substituting from (38) in (39) we can write the scaled

allocation at time k= 0 as

Ū
nj′
∗ [0]≡ n−1

j′ U
nj′
∗ [0] = n−1

j′

⌊
nj′Ũ

nj′
∗ [0]

⌋
= n−1

j′

⌊
nj′ φ̂

0
(

(X̄
nj′
∗ (0)− β̄nj′ )+

)⌋
= φ̂0

(
(X̄

nj′
∗ (0)− β̄nj′ )+

)
+n−1

j′ ε, (EC.71)

where the rounding error ε ∈ RI+ satisfies |εi| ≤ 1 for all i ∈ I. Next, taking the limit j′→∞ in

(EC.71) we claim that

Ū∗[0] = lim
j′→∞

Ū
nj′
∗ [0] =

ˆ̂
φ0
(
X̄(0, ω)

)
∈ φ0(X̄(0, ω)), (EC.72)

where
ˆ̂
φk(x) denotes an arbitrary member of the correspondence φk(x) which may or may not be

the same as φ̂k(x). To establish the claim first consider (EC.71) and note that since the safety vector

βn = o(n) is negligible under fluid scaling and the (·)+ function is continuous, we have (X̄
nj′
∗ (0)−

β̄nj′ )+ → X̄(0, ω) as j′ →∞. Indeed, if φ̂0(·) were a continuous function then the claim would

directly follow. However, the existence of a continuous “selection” from the optimal correspondence

is not generally guaranteed for convex optimization problems (unlike, e.g., linear programs as shown

and used in Bassamboo et al. 2006). Therefore, here we use a different argument based on the

properties of the correspondence established in Proposition 1. Since φk(·) is upper hemicontinuous
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and closed-valued, it also satisfies the closed-graph property (Ok 2007, Proposition 3). The closed-

graph property of the correspondence φk(·) implies that for any convergent sequences {xn} and

{yn} with xn→ x and yn→ y, we have y ∈ φk(x) whenever yn ∈ φk(xn) for all n (Ok 2007, Page

294). Since by definition, φ̂0
(
(X̄

nj′
∗ (0)− β̄nj′ )+

)
∈ φ0

(
(X̄

nj′
∗ (0)− β̄nj′ )+

)
for all j′, and {nj′ ; j′ ∈N}

is a convergent subsequence, the closed-graph property of φk(·) establishes the claim in (EC.72).

Next, assume that the sequence {Ū∗[κ]; 0≤ κ≤ k} is optimal up to time k. A similar argument

to that for k= 0 yields

Ū
nj′
∗ [k+ 1]≡ n−1

j′ U
nj′
∗ [k+ 1] = n−1

j′

(
nj′ φ̂

k+1
(

(X̄
nj′
∗ (tk+1)− β̄nj′ )+

)
+ ε
)
,

which implies, using the closed-graph property of φk+1(·) that,

Ū∗[k+ 1] = lim
j′→∞

Ū
nj′
∗ [k+ 1] =

ˆ̂
φk+1

(
X̄∗(tk+1)

)
∈ φk+1

(
X̄∗(tk+1)

)
.

For Ū∗[k+ 1] to be the optimal allocation at time k+ 1, we need X̄∗(tk+1) to be on the optimal

trajectory. This however follows noting that by the induction assumption X̄∗(t) is indeed the

optimal trajectory for t∈ [0, tk+1) and hence by the continuity of the trajectories (see Proposition

EC.1) X̄∗(tk+1) = X̄∗(tk+1−) is also on the optimal trajectory.

We have shown that for almost all sample paths ω, limsupn→∞ n
−1Cn

T (Un
∗ ) = JT,τ (X(0, ω)).

Therefore taking expectation and applying Lemma EC.4 we have

limsup
n→∞

E
[
n−1Cn

T (Un
∗ )
]
≤E

[
limsup
n→∞

n−1Cn
T (Un

∗ )

]
=E [JT,τ (X(0))] .

The proof is complete. �

EC.4. Additional Numerical Experiments

EC.4.1. On the conjecture formed in Section 4.2.3

Here we elaborate more on the conjecture formed in Section 4.2.3 and present a numerical example.

Our conjecture implies that regardless of the initial condition x0, assuming that conditions (ii) and

(iii) in Theorem 3 are met, there exists an optimal policy with class 1 allocations that satisfy the

following in each stage k,

φ̂k1(x[k]) ≥ û1(x[k], τ)∧ 1, x1[k]> ρ̄1, (EC.73)

φ̂k1(x[k]) ≥ x1[k]∧ 1, x1[k]≤ ρ̄1. (EC.74)

Note that in each case, the lower-bound is the maximum allocation such that no idleness is incurred

in class 1. The lower-bound in (EC.73) is the same as in Theorem 3 stated under the assumption

x[k]> ρ̄. (Recall that by Lemma EC.2, x0 > ρ̄ ensures x[k]> ρ̄ for all k ∈ K.) To understand the
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Figure EC.1 Optimal class 1 (solid) and class 2 (dashed) trajectories for Problem 2 with λ̄= (0.23,0.20), µ=

(0.5,0.5), x0 = (0.3,1.5), h= (4,2), and τ = 10. The dotted horizontal lines correspond to optimal

class 1 allocations for each stage.

lower-bound in (EC.74) note that when x1[k] ≤ ρ̄, any allocation smaller than x1[k] results in a

positive queue at the beginning of the stage that builds up linearly during the stage and hence

incurs no idleness. We demonstrate the above using an additional example. In Figure EC.1, we

plot the optimal trajectories for the same parameters as in Figure 3, but with initial condition

x0 = (0.3,1.5) which is below the equilibrium point, i.e., x1 < ρ̄1. We observe that the optimal

allocation in stage 1 satisfies x1 ≤ u1 < ρ̄1. That is, although less capacity is allocated to class 1 in

order to drain the large class 2 queue, the allocation is such that some idleness is incurred in class

1 at the beginning of the first stage. Note that in the second stage, where the conditions of the

theorem are met, the allocation to class 1 is such that the queue is emptied during the stage.

EC.4.2. On the relationship between conditions of Theorem 3

Here we numerically demonstrate that condition (ii) (h1µ1 ≥ h2µ2) is sufficient for the statement

of Theorem 3 to hold, as long the horizon is large enough for the queues to drain.

We consider a system with parameters (h1, h2) = (2,6), (µ1, µ2) = (2,0.5) and with τ = 4. Note

that h1µ1−h2µ2 = 1 and h2−h1 = 4, therefore condition (ii) is satisfied but condition (iii) does not

hold since (τ/2)(h1µ1− h2µ2)< h2− h1. Solving the problem with initial condition x0 = (1.6,0.9)

and with one stage (N = 1), the optimal allocation for class 1 is φ̂0
1(x0) = 0.43< û1 = 0.587 (min-

imum allocation required to empty the queue) which does not empty the queue during the stage.

However, when considering 2 (or more) stages the optimal allocation empties the class 1 queue in

stage 1. In Table EC.1 we report the optimal allocation in stage 1 when considering N = 1,2,3,

stages in the horizon. We also compare the total optimal cost with that of the policy which empties

queue 1 exactly at the end of each stage. Observe that the optimality gap quickly goes down as the

number of stages increases. Numerical experiments suggest that the observations hold regardless

of the parameters and initial conditions.



ec24 e-companion to Chan, Huang, and Sarhangian: Dynamic Server Assignment in Multiclass Queues with Shifts

Number of stages (N) 1 2 3
Optimal allocation in stage 1 0.419 0.589 0.589
Optimal total cost 14.133 20.922 21.492
Total cost when emptying at the end of each stage 15.413 21.179 21.528
Optimality gap 9.06% 1.23% 0.17%

Table EC.1 Comparing optimal allocations and total cost with those of the policy that empties the queue at

the end of each stage for an example with λ̄ = (0.92, 0.20), µ= (2,0.5), x0 = (1.6,0.9), h= (2,6), and τ = 4.

EC.4.3. Impact of Customer Abandonment

Here we study the impact of customer abandonment on the value of partial flexibility and demon-

strate the performance of the heuristics proposed in Section 6.3. To isolate the impact of aban-

donment, we assume a stationary arrival rate in the experiments. We evaluate the performance of

the heuristics for a two-class system with respect to both expected transient and steady-state cost,

and for different system parameters. In the presence of abandonment, we find that considering an

extended range of safety parameters can improve the performance of the policies. Hence, in our

experiments we vary the safety factor for class 1 in a ∈ {−2,−1,0,1,2} and set the safety factor

for class 2 to 0 as before. To find the optimal dedicated staffing, we use the Erlang-A formula to

exactly find the fixed assignment of servers that minimizes the total expected cost of the system.

We use system parameters µ = (0.5,0.5), r = (1/2,1/2), ρ = 0.96, and vary the shift-length and

system size. We assume the same holding cost h= (4,2) vector and set the abandonment cost to

be 6 times the holding cost, i.e., γ = (24,12) in the experiments, unless otherwise stated.

Steady-state experiments. We illustrate the observations summarized in the paper using

two sets of representative examples. In Figure EC.2 we plot the percentage of cost reduction

compared to dedicated staffing for increasing abandonment rates (starting with θ1 = θ2 = 1/256

and increasing the rates by a factor of two each time) and two system sizes n∈ {20,48} with shift

length τ = 4. The cost reductions are plotted as a function of the abandonment probability under

the optimal dedicated staffing. In addition to the heuristics which explicitly take abandonment

into account, we also plot the performance of the DR policy (which ignores abandonment and the

associated cost parameters). As we expect, with higher abandonment rates, the benefits of partial

flexibility decrease since the system reaches steady-state early into the shifts. However, with small

abandonment there could still be significant benefits in steady-state. The CMUT policy achieves a

comparable performance to that of GDR while the cost reduction under the BH heuristic is smaller

as it ignores the cost parameters. We also observe that when the abandonment rate is relatively

small, the performance of the DR policy is very similar to the GDR. As the abandonment rate

increases, GDR outperforms the DR policy, but this typically happens in the region where the

benefits are relatively small. The same observation holds when comparing the heuristics with their

counterparts which ignore abandonment.
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Figure EC.2 Performance of the heuristics in terms of estimated expected long-run average cost for increasing

abandonment rates and with cost parameters h = (4,2) and γ = (24,12), and system parameters

µ= (0.5,0.5), r= (1/2,1/2), ρ= 0.96, τ = 4; n= 20 (left) and n= 48 (right).
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Figure EC.3 Performance of the heuristics in terms of estimated expected long-run average cost for increasing

abandonment rates and with cost parameters h = (4,2) and γ = (24,12); system parameters µ =

(0.5,0.5), r= (1/2,1/2), ρ= 0.96, τ = 12; n= 20 (left) and n= 48 (right).

The effect of other system parameters on the benefits of partial flexibility are consistent with

those in the absence of abandonment. In Figure EC.3 we plot the results of the same experiments

for shift length τ = 12. The cost reductions are decreasing in the shift length, but larger for the

smaller system similar to Figure EC.2.

While the cost parameters directly affect the GDR assignments, they only determine the priority

ranking among different classes for the CMUT and CMUθT policies. In the above experiments, the

cµ and cµ/θ indexes are aligned and lead to the same ranking, and hence the two heuristics are

identical. When the indexes are not aligned, the performance of the heuristics could significantly
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Figure EC.4 Performance of the CMUT and CMUθT policies in terms of estimated expected long-run average

cost for increasing abandonment rates and with cost parameters h= (4,2) and γ = (24,12); system

parameters µ= (0.5,0.5), r= (1/2,1/2), ρ= 0.96, n= 20; τ = 4 (left) and τ = 12 (right).

differ. In Figure EC.4, we plot the performance of the two heuristics for a system with n= 20 and

the same cost parameters, but abandonment rates that lead to the opposite priority ranking. More

specifically, we set θ1 = 10× θ2 and increase θ2 by a factor of two starting from θ2 = 1/960. In

the left plot (with τ = 4) when the abandonment probability is small, the CMUT policy performs

better, whereas for high abandonment the CMUθT achieves a higher cost reduction. In the right

plot (with τ = 12) the CMUθT policy achieves a better performance for all abandonment rates. We

also find that while using the “right” priority ranking could have a significant effect, ignoring the

abandonment in the trajectories is less important. This can be explained noting that with relatively

small abandonment (where there are still benefits) the abandonment rate does not significantly

affect the dynamics of the system during a shift and hence its impact on the server assignment

(after rounding) is typically zero.

Transient experiments. We next demonstrate the performance of the heuristics with respect

to their expected cost over a finite horizon. We consider a two-class system with n = 48 servers

and even load r1 = r2 = 0.5. The cost parameters are h= (4,2) and γ = (24,12) (unless otherwise

stated) and the shift-length is τ = 12. The initial conditions are randomly generated in 4 different

regions with “high” (H) and “low” (L) initial congestion in each class. Similar to the experiments

for the base model, “low” congestion refers to starting with a headcount in {0, . . . ,0.5× n} and

a “high” congestion to a headcount in {n, . . . ,1.5× n}. We test the performance of the policies

for varying length of the horizon T ∈ {τ,2τ,3τ} and abandonment rates θi ∈ {0.033,0.067,1}, for

i= 1,2, and in comparison with the optimal dedicated staffing (with respect to the steady-state

cost).
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Figure EC.5 Average transient cost reduction over different initial conditions compared to dedicated staffing

under the GDR heuristic (left) and the DR policy (right) for varying horizon lengths and abandon-

ment rates. Cost parameters are h= (4,2) and γ = (24,12) and system parameters are µ= (0.5,0.5),

r= (1/2,1/2), ρ= 0.96, and τ = 12.

Figure EC.5 presents the performance of the GDR heuristic and the DR policy. The reported

values are average estimated cost reduction percentages across the 30 initial conditions considered

for each region. We observe that the GDR heuristic can achieve a significant cost reduction over

dedicated staffing, especially when the initial conditions are in different regions. The benefits are

considerable even for abandonment rates for which steady-state benefits are close to zero. In addi-

tion, the GDR policy achieves a higher cost reduction compared to the DR policy (which ignores

abandonment) especially when the abandonment rates are high and far from one another.

Figure EC.6 presents the same plots for CMUT (which in the examples coincides with CMUθT)

and BH heuristics. The CMUT heuristic achieves comparable cost reductions to GDR. The BH

heuristic does not perform well except when the abandonment rate is not too high and the initial

conditions are significantly imbalanced. This can be explained noting that BH does not take cost

parameters into account and only tries to balance the queue lengths, which does not necessarily

lead to good performance with respect to the expected incurred cost. In Figure EC.7 we present

the performance of the BH with respect to both cost and queue length reduction for the same

examples, but with identical holding h= (1,1) and abandonment cost γ = (12,12) rates. We observe

that the BH achieves significant cost reduction except when the abandonment rates are high. In all

cases a positive queue length reduction is observed. We conclude that the BH should be used when

the customer classes are sufficiently close with respect to their holding and abandonment costs,
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Figure EC.6 Average transient cost reduction over different initial conditions compared to dedicated staffing

under the CMUT heuristic (left) and the BH heuristic (right) for varying horizon lengths and

abandonment rates. Cost parameters are h = (4,2) and γ = (24,12) and system parameters are

µ= (0.5,0.5), r= (1/2,1/2), ρ= 0.96, and τ = 12.

and achieving a balanced queue length is a desirable outcome. Otherwise, CMUT (or CMUθT)

heuristics should be used.

EC.4.4. Experiments with Time-Varying Arrivals

Focusing on the long-run average cost and queue length, here we evaluate the performance of the

heuristic policies proposed in Section 6.1 using simulation experiments and under a variety of system

parameters. Similar to the stationary case we compare the performance to that under dedicated

staffing and the fully flexible cµ policy. In all experiments we consider the sinusoidal arrival rate

function λi(t) = λi − (λi/2) sin(πt/12) for i ∈ I and vary the average rates λi. The arrival rate

function has period 24. In all experiments, we assume that the first shift starts at 7 a.m. We note

that the sinusoidal arrival rates only allow for closed-form computation of the trajectories depending

on whether the queue length is positive or at zero, and hence require numerical computation of

the time-instances during the shift when the queue empties or starts building up.

Figure EC.8 illustrates the result for a 4-class system with service rate µi = 0.5, i∈ I and equal

offered load for all classes, i.e., ri = 1/4, i∈ I. The left plot corresponds to total utilization ρ= 0.92

and the right plot to ρ= 0.96 (computed using the average arrival rates during a 24-hour period).

Each plot illustrates the percentage of cost reduction with respect to the cost under optimal

dedicated staffing for different system sizes n ∈ {32,48,80}. In addition to the CMUT and BH
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Figure EC.7 Average transient cost reduction (left) and total queue-length reduction (right) over different initial

conditions compared to dedicated staffing under the BH heuristic (right) for varying horizon lengths

and abandonment rates. Cost parameters are h= (1,1) and γ = (12,12) and system parameters are

µ= (0.5,0.5), r= (1/2,1/2), ρ= 0.96, and τ = 12.

policies we also plot the performance under the GDR policy obtained by solving Problem 2 with

time-varying dynamics. Due to the increased computational burden introduced by the time-varying

dynamics, we solve the problem with N = 4 at the beginning of each stage. We observe that, similar

to the stationary case, the cost reduction under the partially flexible design is significant when the

queues do not reach steady-state early into the shifts.

To further demonstrate the performance of the heuristics, in Tables EC.2 and EC.3 we report

the detailed output of our simulation experiments for two examples. Table EC.2 corresponds to

a balanced system with equal offered load for all classes, i.e., ri = 1/4, i ∈ I, and µi = 0.5, i ∈ I,

with h = (4,3,2,1), τ = 12, ρ = 0.92. Table EC.3 corresponds to a system with r1 = r2 = 1/8,

r3 = r4 = 3/8, and µ1 = µ2 = 0.25, µ3 = µ4 = 0.5, with h = (4,3,2,1), τ = 12, ρ = 0.92. That is,

the offered load for the lower-priority classes is higher but the service times are higher on average

for the higher-priority classes. For both examples, we also report the percentage of expected total

cost and queue length reduction over that of dedicated staffing for all policies. (Note that notation

CMUT(a) indicates that the reported results are associated with the best performing safety factor

a.) We observe that compared to the CMUT policy, the BH usually achieves a lower total cost

reduction as it does not incorporate the cost parameters. However, it still achieves a significant

average queue length reduction compared to dedicated staffing. Further, note that in the balanced

case the expected queue length under the BH policy is equal for all classes. That is, cost reduction
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Figure EC.8 Performance of the heuristic policies in terms of estimated expected long-run average cost under

time-varying arrivals and system parameters µi = 0.5 and ri = 1/4 for i∈ {1,2,3,4}, τ = 12, ρ= 0.92

(left) and ρ= 0.96 (right).

n= 32 n= 48
Perf. meas. BH CMUT(2) cµ Ded. BH CMUT(2) cµ Ded.
E[Q1] 8.24± .06 7.06± .04 0.24± .00 11.53± .19 10.07± .08 8.51± .07 0.24± .00 12.70± .15
E[Q2] 8.17± .06 7.04± .04 0.58± .00 11.57± .17 10.06± .10 8.44± .06 0.58± .00 12.60± .14
E[Q3] 8.11± .07 7.06± .03 3.00± .02 11.45± .17 10.03± .10 8.49± .06 3.57± .02 12.64± .17
E[Q4] 8.07± .05 12.71± .15 16.47± .08 11.49± .15 9.98± .08 15.45± .20 22.84± .09 12.57± .14∑

iE[Qi] 32.59± .20 33.87± .16 20.29± .09 46.04± .29 40.14± .35 40.89± .30 27.23± .10 50.52± .31∑
i hiE[Qi] 81.75± .51 76.19± .25 25.19± .11 115.23± .86 100.52± .87 91.79± .55 32.67± .12 126.48± .86

% queue red. 29% 26% 56% - 21% 19% 46% -
% cost red. 29% 34% 78% - 21% 27% 74% -

Table EC.2 Detailed performance of the heuristic policies in terms of their estimated expected long-run average

improvement compared to optimal dedicated staffing for system parameters ri = 1/4, µi = 0.5, i∈ {1,2,3,4},

h= (4,3,2,1), τ = 12, and ρ= 0.92. (The numbers after ± correspond to %95 confidence intervals.)

is achieved by uniformly reducing the queue length for all classes. Under CMUT, similar to the cµ

policy, the queue length for the first 3 classes are significantly reduced, while the queue length for

the lowest-priority class is higher compared to dedicated staffing.

EC.4.5. Case Study Results with Sinusoidal Arrivals

In Table EC.4 we present the results of our case study simulation using the same sinusoidal arrival

rates used to obtain the policies (i.e. instead of the empirical arrival rates used in the original case

study). The sinusoidal arrival rates lead to higher abandonment probabilities and hence as expected

the benefits of partially flexible designs are slightly lower compared to those reported in Section

7.4. Generally speaking however the benefits are comparable with the exception of the CMUT

policy for the case of 1 nurse to 4 patient ratio where the benefits (in terms of cost reduction)

go down from 10.18% to 6.88%. A closer examination reveals that this loss of performance is due
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n= 32 n= 48
Perf. meas. BH CMUT(1) cµ Ded. BH CMUT(1) cµ Ded.
E[Q1] 2.65± .04 2.95± .03 0.24± .00 10.05± .30 2.90± .05 3.25± .03 0.24± .00 2.19± .03
E[Q2] 2.60± .05 2.88± .04 0.38± .00 9.83± .28 2.89± .05 3.24± .03 0.40± .00 9.84± .25
E[Q3] 12.68± .21 8.04± .06 0.58± .00 12.76± .16 15.98± .11 10.38± .06 0.58± .00 14.74± .15
E[Q4] 12.69± .19 19.52± .59 18.55± .12 12.67± .17 16.02± .16 21.02± .45 24.33± .12 40.42± .84∑

iE[Qi] 30.61± .45 33.40± .65 19.75± .12 45.30± .42 37.79± .32 37.89± .52 25.55± .12 67.18± .97∑
i hiE[Qi] 56.43± .83 56.04± .75 21.82± .13 107.86± 1.42 68.25± .60 64.50± .64 27.65± .13 108.15± 1.32

% queue red. 32% 26% 56% - 37% 44% 62% -
% cost red. 48% 48% 80% - 44% 40% 74% -

Table EC.3 Detailed performance of the heuristic policies in terms of their estimated expected long-run average

improvement compared to optimal dedicated staffing for system parameters r1 = r2 = 1/8, r3 = r4 = 3/8,

µ1 = µ2 = 0.25, µ3 = µ4 = 0.5, h= (4,3,2,1), τ = 12, and ρ= 0.92. (The numbers after ± correspond to %95

confidence intervals.)

%= 1/1 %= 1/4
Perf. meas. Ded. DR(1) BH CMUT(1) Ded. DR(0) BH CMUT(2)

E[Q1]
4.15 4.59 3.89 3.30 8.12 4.63 4.71 5.04
(±0.07) (±0.06) (±0.03) (±0.02) (±0.13) (±0.06) (±0.04) (±0.04)

E[Q2]
4.49 4.73 3.82 3.29 4.49 4.85 4.50 5.05
(±0.09) (±0.05) (±0.04) (±0.02) (±0.09) (±0.08) (±0.04) (±0.04)

E[Q3]
5.19 5.48 3.79 8.01 5.19 5.32 4.49 7.66
(±0.09) (±0.04) (±0.03) (±0.11) (±0.09) (±0.07) (±0.03) (±0.11)

E[Q4]
9.96 2.48 5.76 2.95 3.65 5.16 6.50 2.66
(±0.17) (±0.02) (±0.06) (±0.03) (±0.06) (±0.05) (±0.05) (±0.03)∑

iE[Qi]
23.79 17.80 17.27 17.55 21.45 19.96 20.19 20.42
(±0.21) (±0.13) (±0.13) (±0.17) (±0.17) (±0.15) (±0.12) (±0.18)∑

i h̃iE[Qi]
96.05 73.87 72.24 75.85 97.05 85.25 84.89 90.37
(±0.8) (±0.57) (±0.55) (±0.70) (±0.77) (±0.63) (±0.53) (±0.80)

% Aband.
3.89 3.00 2.82 2.87 3.50 3.26 3.30 3.33
(±0.02) (±0.03) (±0.02) (±0.02) (±0.02) (±0.02) (±0.02) (±0.02)

Ave. dev. from ded.
- 2.48 3.01 3.42 - 1.41 2.61 2.72
- (±0.02) (±0.04) (±0.05) - (±0.04) (±0.05) (±0.06)

% Queue red. - 25.17% 27.41% 26.21% - 6.97% 5.89% 4.80%
% Cost red. - 23.09% 24.79% 21.04% - 12.15% 12.52% 6.88%
Table EC.4 Output of the case study simulation with Sinosoidal Arrivals. (The numbers after ± correspond to

%95 confidence intervals.)

to the sensitivity of the CMUT policy to the choice of safety parameter as discussed in Section

7.1. Considering a wider range of safety parameters, we find that using a safety factor a = 1.25

increases the benefits of the policy to 10.70%.
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