
Exponentially Fast Concentration of Vector
Approximate Message Passing to its State Evolution

Collin Cademartori
Columbia University, USA

Email: cac2301@columbia.edu

Cynthia Rush
Columbia University, USA

Email: cgr2130@columbia.edu

Abstract—Vector Approximate Message Passing is an itera-
tive algorithm for computationally-efficient estimation in high-
dimensional regression problems. Due to the presence of an
‘Onsager’ correction term in its iterates, for a wide class of N×M
design matrices A, namely those that are right orthogonally-
invariant, the asymptotic distribution of the estimate at any
iteration of the algorithm can be exactly characterized in the
large system limit as M/N → δ ∈ (0,∞) via a scalar recursion
referred to as state evolution. In this paper, we show that
appropriate functionals of the iterates in fact concentrate around
their limiting values predicted by these asymptotic distributions
with rates exponentially fast in N .

A full version of this paper is accessible at: http://www.
columbia.edu/~cgr2130/pubs.html

I. INTRODUCTION

Approximate message passing (AMP) algorithms are a class
of iterative methods for solving various high-dimensional sta-
tistical estimation and inference problems [1]–[5]. In this paper
we focus specifically on the problem of high-dimensional
regression. In particular, we consider estimating an unknown
coefficient vector or signal x0 from models of the form

y = Ax0 + w, w
iid∼ p(w), x0

iid∼ p(x0), (1)

where A ∈ RM×N with M < N and p(x0) and p(w) are prior
distributions on the signal and noise, respectively. AMP-style
algorithms can accommodate a range of estimation procedures
for the problem set-up in (1), including maximum a posteriori
(MAP) and minimum mean squared error (MMSE) estimation.

AMP is the following two-step iteration. At iteration k ≥ 0,
the algorithm updates its estimate of the signal x0 with esti-
mates x̂1, x̂2, Initializing with x−1 = v−1 = 1, calculate

x̂k = gk(rk), rk = x̂k−1 + ATvk−1, (2)

vk = y −Ax̂k +
N

M
vk−1div[gk(rk)], (3)

where gk is the so-called ‘denoiser’, an appropriately-chosen
Lipschitz function depending on the estimation procedure to be
performed, and div[gk(rk)] is the divergence of the denoiser,
measuring the sensitivity of gk at its input. The vk update in
(3) can be interpreted as a corrected residual: the usual residual
y −Ax̂k with an ‘Onsager correction’, N

M vk−1div[gk(rk)].
Due to the presence of the correction term in the residual

step, it is possible under certain conditions to characterize the
asymptotic distribution of rk in the large system limit where

N →∞ and M/N → δ ∈ (0,∞). In particular, for variances
τk that can be characterized exactly by a scalar recursion
referred to as state evolution, it can be shown that in this
limit, the elements of the vectors rk behave like samples from
an N(x0, τkIN) distribution, where x0 is the true signal.

More formally, it was shown in [3] that for all loss functions
φ in the class of pseudo-Lipschitz functions (defined in Section
3), empirical averages 1

N

∑N
i=1 φ([rk]i, [x0]i) will converge

to E{φ(X0 + τkZ,X0)} where Z ∼ N(0, 1) independent of
X0 ∼ p(x0). In [6], this distributional convergence is refined
with a finite sample analysis showing that these empirical
averages exhibit concentration around their limits with rates
exponential in N . However, such asymptotic guarantees for the
AMP iterates have only been established when the elements
of the design matrices A are i.i.d. sub-Gaussian [3], [7] and
concentration results only for i.i.d. Gaussian elements.

Vector approximate message passing (VAMP) is an AMP-
style algorithm, recently introduced in [8]. Remarkably, it was
shown to admit an exact asymptotic characterization in the
large system limit, analogous to that of AMP, but under a much
larger class of random design matrices A. In particular, this is
the class of right orthogonally invariant A, meaning that AV
has the same distribution as A for any M ×M orthogonal
matrix V. As we will see, this assumption represents a
significant relaxation of the i.i.d. sub-Gaussian condition.

This work extends the VAMP asymptotic analysis to a finite
sample analysis under nearly identical conditions. Structurally,
the proof is based on an approach used for the finite sample
analysis of AMP in [6], though there are critical differences
in the required analysis for VAMP; these are detailed in
Section IV-E. In short, we develop a suite of concentration of
measure tools to prove that, as the algorithm runs, the output
retains concentration around its expected values. The idea is
that if the algorithm concentrates through iteration k, then we
can prove that it will concentrate at iteration k+ 1, with only
a slightly degraded rate for the concentration.

II. VECTOR APPROXIMATE MESSAGE PASSING

VAMP is similar to that of AMP in (2)-(3), and, like
AMP, can be derived as a quadratic approximation to a belief
propagation algorithm associated to a particular factor graph.
The reader is referred to [8] for such a derivation. Here, we
provide some self-contained intuition for VAMP.

Algorithm 1 presents VAMP. We use

g2(r2k, γ2k) = (γwATA + γ2kI)−1(γwATy + γ2kr2k), (4)

where γw = 1/τw and τw < ∞ is the elementwise vari-
ance of the noise w. The function g2 in (4) has divergence
div [g2(r2k, γ2k)] = γ2kTr

(
γwATA + γ2kI

)
. Analogous to

the denoisers gk in the AMP case, g1(r1k, γ1k) must be
specified by the user, however now we have a single function
g1 with a continuous parameter γ1k > 0, rather than an
iteration-indexed collection of functions as in AMP.

Algorithm 1 VAMP
Require: Number of iterations K, design matrix A, observed

y, and denoiser g1(·, γ1k)
1: Initialize r10 and γ10 ≥ 0.
2: for k ← 1, . . . ,K do
3: x̂1k ← g1(r1k, γ1k) and α1k ← div [g1(r1k, γ1k)]
4: η1k ← γ1k/α1k and γ2k ← η1k − γ1k
5: r2k ← (η1kx̂1k − γ1kr1k) /γ2k
6: x̂2k ← g2(r2k, γ2k) and α2k ← div [g2(r2k, γ2k)]
7: η2k ← γ2k/α2k and γ1(k+1) ← η2k − γ2k
8: r1(k+1) ← (η2kx̂2k − γ2kr2k) /γ1k
9: end for

The choice of g1, and its relationship to g2, can be better
understood by examining VAMP with Gaussian noise w ∼
N (0, τwIM). As described above, we can view VAMP as
trying to estimate some summary (e.g. the mode or mean) of
the posterior distribution, which is proportion to the product
of the data likelihood and the signal prior, given by

p(x0 | y) ∝ f
(
y | Ax0, γ

−1
w I
)
·
N∏
i=1

p([x0]i),

where f(y | µ,Σ) is a multivariate normal density evaluated
at y having mean µ and covariance Σ. Recall from (1) that
we assume x0 has i.i.d. elements. At each iteration, VAMP
replaces the problem of computing a posterior summary with
two easier ones. First, observe that f(y | Ax0, γ

−1
w I), as a

function of [x0]i, is proportional to a normal density f([x0]i |
[r1]i, [τ 1]i). Making the simplifying assumption that [τ 1]i are
equal across i, then this yields the approximate posterior

f(x0 | r1, τ1I) ·
N∏
i=1

p([x0]i). (5)

If we instead approximate the priors p([x0]i) by independent
normal distributions with means [r2]i and equal variances τ2,
then we get the approximate posterior

f
(
y | Ax0, γ

−1
w I
)
· f (x0 | r2, τ2I) . (6)

In each iteration, VAMP uses both approximate posteriors
to update the estimate of x0. Estimating x0 by posterior (5)
requires specifying r1 and τ1, which control the approximate
likelihood of the data. Since approximation (6) uses the true
likelihood, VAMP uses the estimate from (6) to update r1 and
τ1 in (5). Similarly, the estimates from (5) (which use the

true prior) are used to update parameters r2 and τ2 for the
approximate prior in (6). By iterating these steps, VAMP uses
past estimates to improve both approximations, and then uses
the improved approximations to further improve our estimates.

In this context, g1 and g2 perform estimation of the two
approximate models. The definitions of these functions depend
on both the signal prior and desired posterior summary. In (6),
the prior is modeled as normal regardless of the true prior.
Since the resulting approximate posterior is again normal, and
the MMSE and MAP estimates are identical, (4) is the natural
choice for g2, as it calculates the mean of (6). However, (5)
depends on the choice of prior p(x0) and the desired summary,
so g1 must be specified by the user accordingly.

III. MAIN RESULT

A. Empirical Convergence and Concentration

Before stating our main concentration result for VAMP, we
first revisit the notion of empirical convergence. We say that a
sequence of vectors {vn}∞n=0 ⊂ RJ for some J ≥ 1 converges
empirically (with 2nd moment) to a random vector V ∈ RJ
if E{[V]2j} <∞ for all 1 ≤ j ≤ J and if 1

N

∑N
n=0 φ(vn)→

E{φ(V)}, almost surely for any φ : RJ → R that is pseudo-
Lipschitz1 of order 2, denoted φ ∈ PL(2). In what follows, we
will simply write that a vector sequence converges empirically
to some random variable, without explicitly stating that the
random variable has a finite 2nd moment.

Next we give the assumptions we need for our main result.
Assumption 0. The truth x0 converges empirically to a

random variable X0, the singular values si of A converge
empirically to a bounded random variable S, and the initial
precision estimate γ10 converges to non-negative γ1k.

Assumption 1. The design matrix A is right orthogonally
invariant. If A has singular value decomposition USVT , then
this is equivalent to V being Haar distributed on the group of
M ×M orthogonal matrices, denoted O(M). In other words,
VV′

d
= V for any other V′ ∈ O(M).

Assumption 2. The priors p(x0) and p(w) on the signal and
noise are sub-Gaussian, and p(x0) isstrongly log-concave.

Assumption 3. The estimating functions g1are separable2,
and both g1 and its derivative are uniformly Lipschitz3 at γ1k
for all k ≥ 0. When g1 is the MAP or MMSE estimator for the
model (5), it is separable. Henceforth, we will slightly abuse
notation by writing g` as taking both vector and scalar input.

Assumption 4. The γik are clipped so that they lie in some
interval [γmin, γmax] with 0 < γmin < γmax < ∞. This
prevents the iteration from returning invalid values of αik and
thus aids with convergence.

Assumption 5. We terminate the algorithm according to
stopping criteria that are given explicitly in the next section.

1A function φ : RJ → R is in PL(2) if, for vectors v,v′ ∈ RJ and some
constant L ≥ 0, it satisfies |φ(v)− φ(v′)| ≤ L‖v−v′‖ (1 + ‖v‖+ ‖v′‖) .

2A function g : RJ → R is separable if for v ∈ RJ , there exist a scalar
function g̃ : R→ R for which [g(v)]i = g̃([v]i).

3A function φ(w, c) is uniformly Lipschitz at c0 if there is an open
neighborhood U of c0 and a constant L > 0 such that φ(·, c) is
L−Lipschitz for any fixed c ∈ U , and such that |φ(w, c1)− φ(w, c2)| ≤
L (1 + ‖w‖) |c1 − c2| .

Essentially they imply that we stop if the MSE of our current
estimate is sufficiently small or if there is a sufficiently small
change in the estimate between successive iterations.

Under slightly milder conditions, Rangan et al. show em-
pirical convergence of the vector sequence

{([x̂1k]i, [r1k]i, [x0]i)}Ni=1 ,

to (X̂1k, R1k, X0) where R1k = X0 +
√
τ1kZ with X̂1k =

g1(R1k, γ1k) and Z ∼ N(0, 1) independent of X0. Our main
result, Theorem 1, characterizes the asymptotic rate of this
empirical convergence.

Theorem 1. Under the assumptions given above, for any φ :
R2 → R with φ ∈ PL(2) and any k ≥ 0,

P
(∣∣∣ 1

N

N∑
i=1

φ([x̂1k]i, [x0]i)− E{φ(X̂1k, X0)}
∣∣∣ ≥ ε)

≤ CCke−cckNε
2

,

where C, c, Ck, and ck are universal constants not depending
on ε or N , with Ck and ck depending on k (but not explicitly
specified), and X̂1k is defined just above.

The proof of Theorem 1 is given in Section IV-D. It requires
a more general convergence result given in Section IV-C. The
constants τ1k and γ1k that describe the limiting variable X̂1k

can be characterized exactly by the state evolution equations
for VAMP, which we turn our attention to now.

B. State Evolution

To specify the state evolution, we must define sensitivity
and error functions for each of the approximate models (5)
and (6). Following [8], the sensitivity functions are defined as

A1(γ1, τ1) = E{g′1(R1, γ1)},

A2(γ2, τ2) = lim
N→∞

γ2
N

Tr
[
(γwATA + γ2I)−1

]
, (7)

where R1 ∼ N(X0, τ1), and the error functions are defined as

E1(γ1, τ1) = E (g1(R1, γ1)−X0)
2
,

E2(γ2, τ2) = lim
N→∞

1

N
E ‖g2(r2, γ2)− x0‖2 , (8)

where r2 ∼ N(x0, τ2I) and y ∼ N
(
Ax0, γ

−1
w I
)
. Note that

the limits in (7) and (8) exist since the limiting expressions
only depend on the singular values of A (as shown in [8]),
and these are assumed to converge empirically. With these
functions defined, we can give the state evolution as follows.

α1k = A1(γ1k, τ1k), η1k = γ1k/α1k,

γ2k = η1k − γ1k, τ2k =
E1(γ1k, τ1k − α2

1kτ1k)

(1− α1k)2
,

α2k = A2(γ2k, τ2k), η2k = γ2k/α2k,

γ1(k+1) = η2k − γ2k, τ1(k+1) =
E1(γ2k, τ2k − α2

2kτ2k)

(1− α2k)2
.

These equations are initialized with the assumed first iteration
limiting precision γ10 and τ10 = E{(R10 −X0)

2}.

IV. A GENERAL CONCENTRATION RESULT

Theorem 1 is a consequence of a concentration result for
a more general iteration, Algorithm 2. Relative to the large
system behavior of the iterates, the primary innovation of
VAMP can be understood in terms of the fact that it is a
special case of this iteration. We do not explicitly state the
correspondence between the two algorithms, but refer the
reader to [8, Appendix G] for details. For simplicity, we
assume that A ∈ RN×N without loss of generality since,
as noted in [8], we can always achieve this by padding the
singular values of A with zeros. Notice that expressing A
with it singular value decomposition, A = USVT allows for
the effect of A to be broken up within the general algorithm,
isolating the effects of the singular values S and the effects of
the orthogonal matrix V in various stages.

Algorithm 2 General Algorithm
Require: Orthogonal matrix V ∈ RN×N , separable denoisers

fp, fq , divergence functions Ci, parameter update func-
tions Γi, initial data u0, and disturbance vectors wp,wq .

1: pk ← Vuk
2: α1k ← div[fp(pk,w

p, γ1k)] and γ2k ← Γ1 (γ1k, α1k)
3: vk ← C1(α1k) [fp(pk,w

p, γ1k)− α1kpk]
4: qk ← VTvk
5: α2k ← div[fq(qk,w

q, γ2k)] and γ1(k+1) ← Γ2 (γ2k, α2k)
6: uk+1 ← C2(α2k) [fq(qk,w

q, γ2k)− α2kqk]

The effect of the singular values can be entirely subsumed
within the denoiser fq through the disturbance vector wq .
Thus, we do not require any distributional assumptions about
the singular values beyond empirical convergence to bounded
random variables. Moreover, we clearly do not require any
distributional assumptions on U to analyze VAMP. Thus, the
large system behavior of VAMP can be characterized using
only distributional assumptions on V.

A. Notation

Before giving the concentration guarantees for Algorithm 2,
we introduce some necessary notation. Our result will imply
that iterates (p1, . . . ,pk) and (q1, . . . ,qk) converge empiri-
cally to mean-zero Gaussian vectors with variances τ1j and
τ2j , respectively, for 1 ≤ j ≤ k. We denote these vectors
(P1, . . . , Pk) and (Q1, . . . , Qk). It follows that uj and vj also
convergence empirically to Gaussian Uj and Vj as well.

The covariance matrices of these Gaussian vectors are
denoted Σp

k, Σq
k, Σu

k , and Σv
k, respectively. Define the vector

bpk = (E[P1Pk], . . . ,E[Pk−1Pk]), and bqk, buk , and bvk analo-
gously. By [8, Theorem 4], the Pk can be decomposed as

Pk
d
=

k−1∑
j=1

[β1k]jPj +
√
ρ1kZ (9)

where Z is a standard Gaussian variable, independent of
(P1, . . . , Pk−1), and the coefficients are given by

β1k = [Σp
k−1]−1bpk, and ρ1k = E{P 2

k } − (bpk)T [Σp
k]−1bpk.

(10)

The variance ρ1k represents how much additional randomness
is introduced in iterate pk. Similarly, we have coefficients β2k

and variances ρ2k which play an analogous role for Qk.
Define the matrix Uk having columns ui for 0 ≤ i ≤ k,

and define Vk, Pk, and Qk analogously. Define the matrices
Ak = [Pk Vk−1] and Bk = [Uk Qk−1], as well as

Ck = [Pk−1 Vk−1], and Dk = [Uk−1 Qk−1]. (11)

For a matrix M, let PM be the projection onto the column
space of M and PM⊥ = I − PM. Finally, define the sigma-
algebras generated by the columns of these matrices as

Gk = σ{Uk,Pk,Vk,Qk−1}, Hk+1 = σ{Uk+1,Pk,Vk,Qk}.
(12)

B. Assumptions

To prove our general convergence result, we make a number
of assumptions on the quantities in Algorithm 2. These are
broadly similar to those we made for Theorem 1 above.

Assumption 0’. The initial input u0 converges empirically
to U0, and γ10 converges to γ10 ≥ 0 as N →∞.

Assumptions 1’ & 2’. Same as above.
Assumption 3’. The denoisers fp and fq are separable, and

both them and their derivatives are uniformly Lipschitz at each
γik for k ≥ 1, and i = 1, 2. In the translation between the
general recursion and VAMP, the scalar components of fq are
defined as fq(qi, (ξi, si), γ) = γwsiξi+γqi

γws2i+γ
, where ξ = UTw

(see [8, Appendix G]), which is separable by definition and
uniformly Lipschitz. Also, we take fp(p,x0, γ) = g1(p +
x0, γ)−x0, which is separable and uniformly Lipschitz when
g1 is, which is guaranteed by Assumption 3 above.

Assumption 4’. The functions C1, C2,Γ1,Γ2 are Lipschitz
continuous and bounded over their domains. The log-concavity
of p(x0) (Assumption 2) and the clipping of γ1k (Assumption
4) imply that g′1(r1, γ1) ∈ [a, b] for some 0 < a < b < 1
and all r1 and γ1 > 0. Similarly for g′2. This implies that
C1, C2,Γ1,Γ2 have compact domains. Since they are also
continuously differentiable, they are Lipschitz and bounded.

Assumption 5’. Following [6], we define stopping criteria
that determine when the algorithm has effectively converged.
First, we stop the iteration if τ1k < ε1 or τ2k < ε2. In terms
Algorithm 1, this is equivalent to stopping the algorithm when
the variance of |R1k−X0| or |R2k−X0| is sufficiently small.
Next, we stop if ρ1k < δ1 or ρ2k < δ2. By the interpretation
of ρ1k and ρ2k from the last section, this condition stops the
algorithm if the difference in the (asymptotic distributions of)
successive iterates is sufficiently small.

C. General Algorithm Concentration

Under these assumptions, we state our general concentration
result for Algorithm 2 in Lemma 1 and Lemma 2. The proofs
can be found in a longer version of this paper [9].

First, we introduce deviance terms ∆p
k and ∆q

k to quan-
tify the discrepancy between the finite sample behavior of
(p1, . . . ,pk) and (q1, . . . ,qk) and the limiting behavior (e.g.
in (9)). This is done, in the following lemma, by studying the
distributions of the vectors conditional on the previous output

of the algorithm summarized by the sigma-algebras in (12).
We state the lemma only for pk conditional on Gk, but an
analogous statement holds for qk conditional on Hk as well.

Lemma 1. Conditioning on the sigma-algebras in (12),
p0|G0

d
=
√
ρ10Z10 + ∆p

0, and pk|Gk

d
=
∑k−1
`=0 [β1k]`p` +√

ρ1kZ1k + ∆p
k, where β1k and ρ1k are defined in (10) and

∆p
0 =

(‖u0‖
‖Z10‖

− √ρ10
)
Z10,

∆p
k = Ck

(
(CT

kCk)−1DT
k uk −

[β1k

0

])
,

+
(‖PD⊥

k
uk‖

‖Z1k‖
− √ρ1k

)
Z1k −

‖PD⊥
k

uk‖
‖Z1k‖

PCk
Z1k.

where Z1k ∈ RM are mutually independent standard Gaussian
vectors, independent of Gk and Ck,Dk are defined in (11).

The proof of Lemma 1 is given in a longer version of this
paper [9]. It requires studying the distribution of the Haar-
distributed matrix V (treated as random) conditional on the
sigma-algebras in (12). These results are given in [8, Appendix
D], and essentially use both the rotational invariance of V and
the fact that conditioning on the sigma-algebras is equivalent to
conditioning on linear constraints. Now, using the conditional
distributions in Lemma 1, we can state our main concentration
result for the general recursion (Algorithm 2).

Lemma 2. Throughout, C and c are generic universal con-
stants not depending on ε or N and let Ck and ck are universal
constants depending on k (but are not explicitly specified). Let
XN,k

··
= c mean P(|XN,k − c| ≥ ε) ≤ CCke

−cckNε2 . Then,
for all k ≥ 0 such that the stopping criteria are satisfied, we
have the following concentration results.
(a) For deviation terms ∆q

k and ∆p
k defined in Lemma 1,

1

N
‖∆q

k‖
2 ··= 0, and

1

N
‖∆p

k‖
2 ··= 0.

(b) For φ : Rk+2 → R pseudo-Lipschitz,

1

N

N∑
i=1

φ([q1]i, ..., [qk+1]i, [w
q]i)

··
= E{φ(Q0, ..., Qk,W

q)},

1

N

N∑
i=1

φ([p0]i, ..., [pk]i, [w
p]i)

··
= E{φ(P0, ..., Pk,W

p)},

where the Qi are jointly Gaussian with Qi ∼ N(0, τ2i) and
E{QiQj} = [Σq

k+1]ij , and the Pi are jointly Gaussian with
Pi ∼ N(0, τ1i) and E{PiPj} = [Σp

k]ij .

The full proof is given in a longer version of this paper [9],
but we sketch the main ideas here. In Section IV-D we use
Lemma 2 to prove Theorem 1 and in Section IV-E we discuss
the major differences between the proof of Lemma 2 and the
corresponding AMP result given in [6].

The proof of Lemma 2 uses induction on the iteration k.
From the definition of the deviation terms in Lemma 1, we
see that establishing part (a) requires proving concentration
to 0 for various expressions involving the VAMP iterates -

particularly projections, matrix products, and matrix inverses
- which is ultimately related to establishing concentration for
inner products of the VAMP iterates, uk,pk,vk, and qk. In
the inductive step k, this is done by relating these values to
pseudo-Lipschitz functions of the previous output at iterations
0, 1, . . . , k − 1, and thus the arguments here ultimately boil
down to applying part (b) with the inductive assumption.

Next part for (b), we sketch the result for pk and the result
for qk follows similarly. The proof uses two steps. First,
note that it was proven in [8] that (p1, . . . ,pk) converges
empirically to a zero mean Gaussian vector given in (9). Now,
if the vector ([p0]i, . . . , [pk]i) is replaced by independent
copies of this limiting variable, then the result follows just
by properties of the normal distribution and pseudo-Lipschitz
functions (see Lemma B.4 in [6]). Finishing the proof then
requires controlling the difference between this asymptotic
behavior and the finite sample behavior. It follows from
Lemma 1 and the pseudo-Lipschitz property of φ that this
can be controlled by showing that the deviation terms ∆p

k

concentrate to 0 fast enough and this is done in part (a).

D. Theorem 1 Proof Sketch

Theorem 1 follows from Lemma 2 part (b). In translating
VAMP (Algorithm 1) to the general iteration (Algorithm 2),
we set p1k = r1k − x0 and wp = x0. Along with the
definition of x̂1k, it follows φ([x̂1k]i, [x0]i) = φ(g1([p1k]i +
[wp]i, γ1k), [wp]i). To shorten notation we let pk := p1k+wp.
Using the pseudo-Lipschitz property of φ and the uniformly
Lipchitz property of g1, one can show that

1

N

N∑
i=1

∣∣∣φ(g1([pk]i, γ1k), [wp]i)− φ(g1([pk]i, γ1k), [wp]i)
∣∣∣

concentrates to 0. Then the desired result follows from show-
ing that 1

N

∑N
i=1 φ(g1([pk]i, γ1k), [wp]i) concentrates to the

desired limit. Since g1(·, γ1k) is Lipschitz, the composition
φ(g1(pk, γ1k),wp) is pseudo-Lipschitz, and therefore the de-
sired concentration follows by Lemma 2 (b).

To show that the sum above concentrates to 0, we use the
pseudo-Lipschitz property of φ and the Triangle Inequality to
upper bound the terms of the sum with the following:

L
[
1 +

∣∣∣g1([pk]i, γ1k)− g1([pk]i, γ1k)
∣∣∣

+ 2‖(g1([pk]i, γ1k),wp
i)‖
]
·
∣∣∣g1([pk]i, γ1k)− g1([pk]i, γ1k)

∣∣∣,
with constant L > 0. Next, since g1 is uniformly Lipschitz,
|g1([pk]i, γ1k) − g1([pk]i, γ1k)| ≤ L(1 + |[pk]i|)|γ1k − γ1k|.
Plugging this into the above bound, and noting that products of
Lipschitz functions are pseudo-Lipschitz, we get terms that are
products of pseudo-Lipschitz functions with powers of |γ1k−
γ1k|. The former concentrates by Lemma 2 (b), and the latter
is shown to concentrate in the proof of Lemma 2 (b) in [9].

E. Lemma 2 Proof Discussion

Structurally, Lemma 2 is similar to [6, Lemma 5], which
is used to establish the AMP analog of Theorem 1. However,

there are a number of differences between the algorithms that
lead to important differences in the proofs, discussed here.

(1) In AMP, we study vectors Ax where A has i.i.d.
Gaussian entries and x is deterministic. For Z having i.i.d.
N(0, 1) elements, Ax

d
= ‖x‖Z, since ‖x‖ is deterministic.

Importantly, the elements of ‖x‖Z are independent.
With VAMP, we study vectors Vx where V is uniformly

distributed on the group of orthogonal matrices. This property
of V implies that Vx has a rotationally invariant distri-
bution. Then for Z having i.i.d. N(0, 1) elements, Vx

d
=

(‖x‖/‖Z‖)Z. Thus we pay for relaxing the Gaussianity
condition by picking up a ‖Z‖ factor in the denominator,
causing dependencies in the elements of (‖x‖/‖Z‖)Z that
complicate the concentration arguments. By observing that the
Gaussiantiy of Z gives concentration of ‖Z‖/

√
N around 1, it

can be shown that Vx will concentrate around the same limit
as (‖x‖/

√
N)Z, which essentially returns us to the AMP case.

(2) Because the parameters γ1k, γ2k can vary with N , so too
can the behavior of the denoisers g1, g2. This is in contrast to
AMP, where the denoisers can vary by iteration but not with
N . In the concentration arguments, this must be accounted for
by using the uniformly Lipschitz condition on fp, fq to control
this additional source of variation.

(3) The order of denoising and subtracting the Onsager term
is interchanged in AMP and VAMP. This adds an additional
layer of complication in obtaining concentration for vk: from
Algorithm 2, vk = C1(α1k) [fp(pk,w

p, γ1k)− α1kpk], with
fp(pk,w

p, γ1k) − α1kpk failing to be Lipschitz (since α1k

also has a dependence on pk). This prevents us from simply
applying Lemma 2 (b) when proving concentration results for
vk. However, as with the 1/‖Z‖ dependence discussed in (1)
above, we handle this by using concentration of α1k to its
limit α1k, allowing oneto show that vk will concentrate around
the same limit as C1(α1k) [fp(pk,w

p, γ1k)− α1kpk]. This
function is Lipchitz, so (inductively) applying Lemma 2 (b)
gives the desired concentration.

V. CONCLUSION AND FUTURE WORK

This work presents rigorous non-asymptotic performance
guarantees for VAMP characterized by the state evolution. We
show that the probability of deviation from the state evolution
predictions decay exponentially in the problem size N . A next
step is to refine the bound of Theorem 1 to specify explicitly
the iteration dependence in the universal constants Ck, ck. This
will be pursued in the journal version of this work.

We expect these concentration results to extend beyond the
model (1) and assumptions considered in this work to other
settings where the VAMP state evolution has been rigorously
proved to characterize performance in the large system limit.
For example, when the denoisers are non-separable [10], the
distributional parameters of the noise and signal must be
learned [11], or the generalized linear model is studied [12].

ACKNOWLEDGMENT

The authors acknowledge NSF CCF #1849883 support.

REFERENCES

[1] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algo-
rithms for compressed sensing,” Proceedings of the National Academy
of Sciences, vol. 106 45, pp. 18 914–9, 2009.

[2] A. Montanari, “Graphical models concepts in compressed sensing,”
in Compressed Sensing, Y. C. Eldar and G. Kutyniok, Eds.
Cambridge University Press, 2012, pp. 394–438. [Online]. Available:
http://dx.doi.org/10.1017/CBO9780511794308.010

[3] M. Bayati and A. Montanari, “The dynamics of message passing on
dense graphs, with applications to compressed sensing,” IEEE Trans.
Inf. Theory, pp. 764–785, 2011.

[4] F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová,
“Probabilistic reconstruction in compressed sensing: algorithms, phase
diagrams, and threshold achieving matrices,” Journal of Statistical
Mechanics: Theory and Experiment, no. 8, 2012.

[5] S. Rangan, “Generalized approximate message passing for estimation
with random linear mixing,” 2011 IEEE International Symposium on
Information Theory Proceedings, pp. 2168–2172, 2010.

[6] C. Rush and R. Venkataramanan, “Finite sample analysis of approximate
message passing algorithms,” IEEE Transactions on Information Theory,
vol. 64, pp. 7264–7286, 2016.

[7] M. Bayati, M. Lelarge, and A. Montanari, “Universality in polytope
phase transitions and message passing algorithms,” Ann. Appl. Proba-
bility, vol. 25, no. 2, pp. 753–822, Feb. 2015.

[8] S. Rangan, A. K. Fletcher, V. K. Goyal, E. Byrne, and P. Schniter, “Vec-
tor approximate message passing,” 2017 IEEE International Symposium
on Information Theory (ISIT), pp. 1588–1592, 2017.

[9] C. Cademartori and C. Rush, “Finite-sample analysis of
Vector Approximate Message Passing,” online: Available on
http://www.columbia.edu/ cgr2130/pubs.html.

[10] A. Fletcher, M. Sahraee-Ardakan, S. Rangan, and P. Schniter, “Rigorous
dynamics and consistent estimation in arbitrarily conditioned linear
systems,” Advances in Neural Information Processing Systems, pp.
7440–7449, 2018.

[11] A. Fletcher, P. Pandit, S. Rangan, S. Sarkar, and P. Schniter, “Plug-
in estimation in high-dimensional linear inverse problems: A rigorous
analysis,” Advances in Neural Information Processing Systems, p. 2542–
2551, 2017.

[12] P. Schniter, S. Rangan, and A. Fletcher, “Vector approximate message
passing for the generalized linear model,” Proceedings of the 2016 50th
Asilomar Conference on Signals, Systems and Computers, 2017.

