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A Bayesian is one who, vaguely expecting to see a horse and
catching a glimpse of a donkey, strongly concludes he has seen a
mule. (Senn, 1997)

The Bayesian approach is “the explicit use of external evidence
in the design, monitoring, analysis, interpretation and reporting
of a (scientific investigation)” (Spiegelhalter, 2004)

“you shall know them by their posteriors”
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The Bayesian Way

a natural and coherent approach

theoretically correct, and now practical and doable

advantages

It is flexible and can adapt to complex situations

It is efficient, using all available information

It is intuitively informative, providing relevant probability summaries in
a way that is consistent with how we think and learn.

It captures additional uncertainty in predictions by allowing parameter
estimates to vary.
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The Bayesian Way

Bayes in a nutshell

parameters (θ) are allowed to vary randomly

direct probability statements about θ

combine what you know with what you observe to update your
knowledge

prior + data = update
Pr [θ|y ] ∝ Pr [y |θ]Pr [θ]

additional variation in predictions

posterior predictive distributions
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The Bayesian Way

there is no free lunch

specifying a prior distribution and combining it with the data likelihood
will complicate our lives
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The Bayesian Way Why Bayes?

statistics

1 Estimating unknown parameters (What is the mean value for some
medical test in a population?)

2 Accounting for variability in estimated parameters (How much does
that value vary around the mean?)

3 Testing hypotheses (Is the value for the medical test different in
treated vs. untreated populations)

4 Making predictions (What would we expect the mean value to be in a
new sample of patients?)
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The Bayesian Way Why Bayes?

classical statistics

parameters (means, standard deviations, regression coefficients) fixed
but unknown

the only thing that varies is the sample

what is a 95% CI?
if take 100 samples, 95 of them contain the true value

...so take a lot of samples

but not really...

rely on asymptotics and CLT
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The Bayesian Way Why Bayes?

the data likelihood

classical emphasis on data sample → MLE

e.g. batting average for baseball team
overall probability multiply all the batting averages: p(y |θ = Π(yi |θ)
called the likelihood function (joint probability of all observations)

MLE - parameters that make data you observed as likely as possible

take derivative set it equal to zero

intuitive results for standard distributions

e.g. normal, ΣYi/n for µ and (yi − ŷ)2/n for variance

more difficult for non-standard distributions
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The Bayesian Way Why Bayes?

Bayesian statistics

parameters vary randomly (normal, binomial, Poisson)

in addition to characterizing the likelihood of the data, added task
characterizing parameter probability distributions, called prior
distributions

combine data likelihood (p(y |θ)) with prior expectation(p(θ)) to
update inference on parameters called posterior (p(θ|y))

Bayes rule: p(θ|y) = p(y |θ)p(θ)
p(y) , or

p(θ|y) ∝ p(y|θ)p(θ) (1)

(p(y) drops out as normalizing term)
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The Bayesian Way Why Bayes?

Bayesian weighting

posterior is a weighted combination of the likelihood and the prior

lots of data, likelihood ”swamps” the prior

small data, prior influential

e.g. normal prior normal likelihood

prior influences prior through τ

likelihood influences through n

Figure : Posterior Distribution for Normal Mean (α = prior mean, µ0)
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The Bayesian Way Why Bayes?

it’s all about the priors

alot of skepticism about priors (choice, assumptions)

ideally, based on real prior information

else, ”non” or ”minimally” informative priors

won’t exert too much influence
more on that soon
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The Bayesian Way Why Bayes?

so, really, why Bayes?
is it worth the hassle?

direct probability statements = fewer logical gymnastics

less reliance on asymptotics = more inference from small data

principled and logical approach to scientific learning

when we actually do know something, we don’t have to ignore or throw
it out

more conservative predictions

posterior predictive distribution: p(y ∗ |Y ) = p(y ∗ |θ)p(θ|y)

includes variability in data and variability in the parameter
classical regression prediction uses model (regression line)
Bayesian regression prediction includes variability in the regression line
itself
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The Bayesian Way Bayes Theorem

Bayes theorem for discrete outcomes

Bayes Theorem says that if we know Pr [A|B] we can get at Pr [B|A].

Pr [A ∩ B] = Pr [B ∩ A]

Pr [A ∩ B] = Pr [A|B]Pr [B]

Pr [B ∩ A] = Pr [B|A]Pr [A]

Pr [A|B]Pr [B] = Pr [B|A]Pr [A]

Pr [A|B] =
Pr [B|A]Pr [A]

Pr [B]

Pr [B|A] =
Pr [A|B]Pr [B]

Pr [A]
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The Bayesian Way Bayes Theorem

Bayes theorem for parameter distributions

Pr [θ|y ] =
Pr [y |θ]Pr [θ]∫
dBPr [y |θ]Pr [θ]

integration in denominator can be a bear, so

Pr [θ|y ] ∝ Pr [y |θ]Pr [θ]

remove normalizing constant in denominator (makes it sum to 1)
form the same (only size changes)
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The Bayesian Way Bayes Theorem

a first example: student sleep habits
Jim Albert

what proportion of students get 8 or more hours sleep?

intuition says somewhere between 0 and 50%, but close to about 30%
(the prior)

class survey says 11
27 = .47 (the likelihood)

how can we combine using Bayes rule to update our prior?
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The Bayesian Way Bayes Theorem

the likelihood

binomially distributed, θk ∗ (1− θ)n−k , where,

θ is the probability of sleeping more than 8 hours

k is the number of students who said they slept more than 8 hours

n is the number of students surveyed.
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The Bayesian Way Bayes Theorem

the prior
trickier

“discrete” approach.

list plausible values

weight them by how probable we think they are

convert the weights to a probability distribution that sums to one by
dividing through by the sum of the weights.
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The Bayesian Way Bayes Theorem

creating the discrete prior

plausible values for proportion of heavy sleepers (theta)

0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.86, 0.95

weights for those plausible values

0, 1, 2, 3, 4, 2, 1, 0, 0, 0

convert to probabilities

0.00, 0.08, 0.15, 0.23, 0.31, 0.15, 0.08, 0.00, 0.00, 0.00
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The Bayesian Way Bayes Theorem

calculating the posterior

multiply each value of the posterior by the likelihood of that value
(involves logs etc...)
use pdisc() from “LearnBayes”

library(LearnBayes)

data<-c(11, 16) # number successes and failures

theta<-seq(0.05, 0.95, by = 0.1)

weights<-c(0, 1, 2, 3, 4, 2, 1, 0, 0,0)

prior<-weights/sum(weights)

plot(theta, prior, type="h", ylab="Prior Probability")

post<-pdisc(theta, prior, data)

round(cbind(theta, prior, post), 2)

par(mfrow=c(3,1))

plot(c(0,1),c(11/(11+16),16/(11+16)), type="h", ylim=c(0,.7),

lwd=5, main="data" )

plot(theta, prior, type="h", ylab="Prior Probability",

ylim=c(0,.7), lwd=5, main="prior")

plot(theta, post, type="h", ylab="Posterior Probability",

ylim=c(0,.7), lwd=5, main="posterior")
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Conjugate Single-Parameter Problems
Binomial Examples: Race and Promotion, Perchlorate and

Thyroid Tumors

Single Parameter Binomial Example: Race and Promotion
at a State Agency

26/48 Black vs. 206/259 White applicants passed test

What is the probability of a Black applicant passing the test
compared to a White applicant?

What is the probability of a future Black applicant passing the test?

binomial likelihood for the theta (like in sleep example)

use a more realistic continuously distributed prior (rather than
discrete) that can combine with a binomial likelihood

if we are being ”agnostic” about it, need a prior that does not influence
the data
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Conjugate Single-Parameter Problems
Binomial Examples: Race and Promotion, Perchlorate and

Thyroid Tumors

Beta prior for binomial likelihood

Beta distributions have properties that make them easy to combine
with binomial distributions

∼Beta(α, β)

µ =
α

α + β

σ2 =
αβ

(αβ)2(α + β) + 1

Beta(1,1) is flat on range 0 to 1
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Conjugate Single-Parameter Problems
Binomial Examples: Race and Promotion, Perchlorate and

Thyroid Tumors

posterior distribution for beta-binomial

Binomial(y , n) combines with Beta[α, β] to produce
Beta[y + α, n − y + β]

Posterior distribution for Black applicants is Beta(27,23), for Whites
Beta(207,54)

Simulate many times from these distributions, draw inferences,
compare
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Conjugate Single-Parameter Problems
Binomial Examples: Race and Promotion, Perchlorate and

Thyroid Tumors

code for race and promotion example

# data

y.black <- 26; n.black <- 48

y.white <- 206; n.white <- 259

# likelihood for black applicants

?rbinom

likelihood.black<-rbinom(10000, 48 ,(26/48))

plot(density(likelihood.black))

# Beta(1,1) prior

?rbeta

prior<- rbeta(10000,1,1)

plot(density(prior))

# posterior from updated uniform Beta(1,1) by adding 1 to number of successes and 1 to number of failures

# 10000 simulation for blacks and whites

theta.black <- rbeta(10000,y.black+1,n.black-y.black+1)

theta.white <- rbeta(10000,y.white+1,n.white-y.white+1)

# plot densities

old.par<-par()

par(mfrow=c(2,1))

plot(density(theta.black), xlim=c(0,1), main="probability of blacks passing")

plot(density(theta.white), col="red", xlim=c(0,1), main="probability of whites passing")

# plot histograms

mintheta <- min(theta.black,theta.white)

maxtheta <- max(theta.black,theta.white)

hist(theta.black,col="gray",xlim=c(mintheta,maxtheta))

hist(theta.white,col="gray",xlim=c(mintheta,maxtheta))

par(old.par)

# compute posterior probability blacks scoring less than whites

# proportion times in the 10000 simulations blacks scored less than whites

(prob <- sum(theta.black <= theta.white)/10000)

# essentially 100%
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Conjugate Single-Parameter Problems
Binomial Examples: Race and Promotion, Perchlorate and

Thyroid Tumors

prediction
future pool of 100 Black applicants

sample a large number (10000) of θ’s from the Beta(27,23) posterior

for each of those values of θi , sample a single y* from Binomial(100,
θi )

(classical approach might be a parametric bootstrap, sampling y*
from Binomial(100, θ) from single value of θ)
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Conjugate Single-Parameter Problems
Binomial Examples: Race and Promotion, Perchlorate and

Thyroid Tumors

about that Beta prior...

Beta(1,1) like adding two observations to the data, one success and
one failure

subtly ”pulls” posterior estimate to center

this kind of ”compromise” between data and prior is a characteristic
of Bayesian analyses

allows us to draw inferences even when little data

e.g. say zero outcomes, Binomial(0,25)
classical CI of 1.96 plus minus

√
pq/n collapses to infinity

combining Beta(1,1) with Binomial(0,25) mostly near zero
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Conjugate Single-Parameter Problems
Binomial Examples: Race and Promotion, Perchlorate and

Thyroid Tumors

about ”non-informative” priors

all priors carry information and assumptions

even if the assumption is that you know nothing

for small data sets (5 or 6 observations), prior will have an influence

flat prior on Binomial may make sense if constrained range 0,1

flat prior on normal, (−∞,+∞) means we are so unsure we believe it
ranges across infinite values (?)

1950’a Sir Harold Jeffreys described an approach or general scheme
for selecting minimally informative priors

Jeffreys prior, set prior equal to the square root of the expected Fisher
information
Jeffreys prior for binomial data is Beta(0.5,0.5) for θ

C. DiMaggio (Columbia University) Bayes Intro 2014 28 / 50



Conjugate Single-Parameter Problems
Binomial Examples: Race and Promotion, Perchlorate and

Thyroid Tumors

Single Parameter Binomial Example: Perchlorate and
Thyroid Tumors

David Dunson

Percholorate - ground water contaminant associated with thyroid
tumors

sparse data - 2/30 exposed rats develop tumors vs. 0/30 control

Classical approach - Fisher exact test

(rat.dat<-matrix(c(2,0,28,30), nrow = 2))

fisher.test(rat.dat)
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Conjugate Single-Parameter Problems
Binomial Examples: Race and Promotion, Perchlorate and

Thyroid Tumors

Bayesian approach

# data

y.perchlorate <- 2; n.perchlorate <- 30

y.control <- 0; n.control<- 30

# update Beta(1,1) prior for exposed and unexposed

theta.perchlorate <- rbeta(10000,y.perchlorate+1,n.perchlorate-y.perchlorate+1)

theta.control <- rbeta(10000,y.control+1,n.control-y.control+1)

# graphically compare exposed and unexposed

par(mfrow=c(2,1))

plot(density(theta.perchlorate), xlim=c(0,1), main="probability of tumor in exposed rats")

plot(density(theta.control), col="red", xlim=c(0,1), main="probability of tumor in control rats")

# probability that exposed have more tumors than unexposed

sum(theta.perchlorate >= theta.control)/10000

theta.diff<-theta.perchlorate-theta.control

# 95% credible interval

quantile(theta.diff, probs=c(0.05,0.95))

# plot differences

plot(density(theta.diff))

Beta(1,1) prior exerts considerable influence
87% simulations, perchlorate exposed rats developed more thyroid
tumors
note - can now calculate probability interval for difference (most of
probability to R of zero)
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Conjugate Single-Parameter Problems
Binomial Examples: Race and Promotion, Perchlorate and

Thyroid Tumors

what about a more informative prior?

likely some prior evidence (else why are we doing the study?)

prior studies suggest Beta(0.11, 2.6) reasonable

theta.perchlorate <- rbeta(10000,y.perchlorate+.11,

n.perchlorate-y.perchlorate+2.6)

theta.control <- rbeta(10000,y.control+.11,

n.control-y.control+2.6)

theta.diff<-theta.perchlorate-theta.control

quantile(theta.diff, probs=c(0.05,0.95))
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Conjugate Single-Parameter Problems Poisson Example: Airline Crashes

Airline Crashes
Poisson-Gamma Model

airline crash data 1976 to 1985:
y = (24, 25, 31, 31, 22, 21, 26, 20, 16, 22)

Poisson data likelihood

no underlying number of ”trials” as in Binomial

assume 10 realizations of Poisson process with same underlying rate
(will explore this more later)

p(yi |θ) =
θyi e−θ

yi !
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Conjugate Single-Parameter Problems Poisson Example: Airline Crashes

Gamma prior for Poisson Likelihood

Gamma is analytically convenient prior for Poisson data

∼Γ(α, β),

µ =
α

β
, σ2 =

α

β2

”looks” like Poisson p(yi |θ) = θα−1e−beta∗θ

Poisson( Σyi
n ) likelihood * Gamma(α, β) prior →

Gamma(y + α,n + β)

α as number of outcomes prior is ”worth”, β as number of ”units”

Jeffreys prior for Poisson-gamma is improper Gamma(0.5,0), use
Gamma(0.5,0.0001)
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Conjugate Single-Parameter Problems Poisson Example: Airline Crashes

code for airline crash example

# data

years <- c(1976,1977,1978,1979,1980,1981,1982,1983,1984,1985)

crashes <- c(24,25,31,31,22,21,26,20,16,22)

numyears <- length(years)

sumcrashes <- sum(crashes)

# posterior from updated noninformative (Jeffrey) prior

theta <- rgamma(10000,shape=(sumcrashes+0.5),rate=(numyears+0.0001))

plot(density(theta))

# posterior predictive distribution for crashes in next year

y.star <- rep(NA,10000) # vector to hold simulations

# sample one observation from the posterior distribution

for (i in 1:10000){

y.star[i] <- rpois(1,theta[i])

}

# plot histograms for data, posterior and posterior predictive on same scale

par(mfrow=c(3,1))

hist(crashes,col="gray",xlim=c(0,50),breaks=10)

hist(theta,col="gray",xlim=c(0,50))

hist(y.star,col="gray",xlim=c(0,50))

posterior distribution vs. the posterio predictive distribution

mean(theta)

quantile(theta, probs=c(0.05,0.95))

mean(y.star)

quantile(y.star, probs=c(0.05,0.95))

sum(theta>30)/10000

sum(y.star>30)/10000
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Conjugate Single-Parameter Problems Poisson Example: Airline Crashes

prediction in the airline crash example

simulating from the posterior predictive distribution

includes variation in parameter

in addition to the usual variation in the data

95% posterior predictive interval wider

10% probability crashes in following year will exceed 30
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Conjugate Single-Parameter Problems Single-Parameter Normal Model

single parameter normal model

characterized by two parameters, so odd to assume know one but not
the other

but, if we did...
analytically tractable prior for normal data likelihood is also normal

why not Poisson for Poisson, or Binomial for Binomial?
analytically intractable (don’t combine nicely...)
gamma-gamma will combine, by heteroskedasticity (mean linked to
variance...)

confidence in prior (small τ) up weights the prior, accumulating
evidence (large n) up weights the data
as prior variance → infty , results → MLE estimates

Figure : Posterior Distribution for Normal Mean (α = prior mean, µ0)
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Conjugate Single-Parameter Problems Single-Parameter Normal Model

about conjugacy

analyses so far have been conjugate

prior and likelihood from same ”family” of distributions

analytically convenient, introduce concepts, but restrictive

will soon need other approaches, e.g. MCMC

Likelihood Prior Posterior
Normal Normal Normal
Binomial Beta Beta
Poisson Gamma Gamma
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Conjugate Single-Parameter Problems
(More) Conjugate Examples: Drug Response, London Bombings,

Heart Transplant Mortality

beta-binomial model

binomial likelihood Pr(y |θ) =
(n
k

)
pkqn−k

”n choose k” n!
k!(n−k)!

minimally informative prior ∼ Beta(1, 1)

posterior

Pr(θ|y) = Pr(θ|k , n) ∝ (θk)(1− θ)n−k ∗ 1

∼ Beta(1 + k, 1 + n − k)

C. DiMaggio (Columbia University) Bayes Intro 2014 38 / 50



Conjugate Single-Parameter Problems
(More) Conjugate Examples: Drug Response, London Bombings,

Heart Transplant Mortality

drug response example

believe somewhere between 0.2 and 0.6 of patients will respond

µ = 0.4, σ2 = 0.1

corresponds to a Beta(9.2, 13.8)

what is the probability that 15/20 patients will respond?

this is pure simulation or Monte Carlo (no data likelihood yet)

will simulate from beta, and plug results into binomial, plot and tally
results
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Conjugate Single-Parameter Problems
(More) Conjugate Examples: Drug Response, London Bombings,

Heart Transplant Mortality

code for simple simulation for drug response

N=1000

theta<-rbeta(N,9.2,13.8)

x<-rbinom(N,20, theta)

y<-0

accept<-ifelse(x>14.5, y+1, y+0)

plot(density(accept))

(prob<-sum(accept)/N)

sneak peek at BUGS:

#binomial monte carlo

Model{

y~dbin(theta , 20) #sampling dstn

theta ~ dbeta (9.2, 13.8) #parameter from sampling dstn

p.crit <- step(y-14.5) # indicator, 1 if y>=15, 0 else
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Conjugate Single-Parameter Problems
(More) Conjugate Examples: Drug Response, London Bombings,

Heart Transplant Mortality

add data to drug response example

suppose, rather than trying to guess, enroll and treat 20 patients, and
15 respond

now, instead of pure simulation, we are updating the prior with the
likelihood

Beta(9.2, 13.8) → Beta (9.2+15, 13.8+20-15) = Beta (24.2, 18.8)

µ =24.2/24.2+18.8 = 0.56 (closed conjugate, no need for simulation)

how likely to see 25 successes in additional 40 patients?

will simulate from posterior predictive distribution
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Conjugate Single-Parameter Problems
(More) Conjugate Examples: Drug Response, London Bombings,

Heart Transplant Mortality

code for drug response prediction

theta.drug<-rbeta(10000, 24.2, 18.8)

mean(theta.drug) # check mean close to analytic

x<-rbinom(N,40, theta.drug)

y<-0

accept<-ifelse(x>24.5, y+1, y+0)

prob<-sum(accept)/N

prob

see website for how to run this in JAGS...
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Conjugate Single-Parameter Problems
(More) Conjugate Examples: Drug Response, London Bombings,

Heart Transplant Mortality

where did that Beta prior come from?

we said Beta(9.2, 13.8) consistent with a mean response 0.4 and sd
0.1. Why?

general approach described in this informative stackexchange response

can use this little function:

estBetaParams <- function(mu, var) {

alpha <- ((1 - mu) / var - 1 / mu) * mu ^ 2

beta <- alpha * (1 / mu - 1)

return(params = list(alpha = alpha, beta = beta))

or the betaselect() function in ”LearnBayes”
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Conjugate Single-Parameter Problems
(More) Conjugate Examples: Drug Response, London Bombings,

Heart Transplant Mortality

the Gamma-Poisson model

Poisson likelihood for count data Pr [k] = e−λ ∗ λk/k!

conjugate Gamma(a,b) prior

µ = a
b and σ2 = a

b2

Gamma posterior Gamma(a + nx̄ , b + n)

compromise between the prior mean ( a
b ) and the MLE of the mean

from the likelihood (x̄)
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Conjugate Single-Parameter Problems
(More) Conjugate Examples: Drug Response, London Bombings,

Heart Transplant Mortality

London bombings during WWII

count bomb hits in 36km2 area S. London partitioned into 0.25km2

grid

537 events (Σxi ∗ ni = 537 total hits), over 576 observations
(Σni = 576 areas)

Hits
(x)

0 1 2 3 4 7

Areas
(n)

229 211 93 35 7 1
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Conjugate Single-Parameter Problems
(More) Conjugate Examples: Drug Response, London Bombings,

Heart Transplant Mortality

conjugate analysis of London bombing data

Poisson data likelihood, with Jeffreys prior (improper) Gamma (0.5, 0)

p(θ|y) = Γ(537 + 0.5, 576 + 0) = Γ(537.5, 576)

µ = 537.5/576 = 0.933

σ2 = 537.5/5762 = 0.0016

vs. data µ = 537/576 = 0.932

In general, as the sample size increases, the posterior mean
approaches the MLE mean, and the posterior s.d. approaches the
MLE s.d.
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Conjugate Single-Parameter Problems
(More) Conjugate Examples: Drug Response, London Bombings,

Heart Transplant Mortality

heart transplant mortality example
Jim Albert

interested 30-d heart transplant mortality

SMR is λ = y
e

unstable when sparse data

use Bayesian approach to incorporate evidence from comparable
hospitals

Gamma(α, β) prior

α sum 30-d deaths 10 nearby hospitals, β sum procedures

Hospital A, 1 death 66 surgeries; Hospital B, 4 deaths 1767 surgeries.
comparison 16 deaths 15,174 procedures
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results of heart transplant mortality analysis

unadjusted MLE estimates 1.5% (95% CI 0.08%, 9.3%) hospital A,
and 0.2% (95% CI 0.07%, 0.6%) hospital B

Bayesian ”smoothed” estimates little or no difference

posterior hospital A closer to prior (more influence of prior)
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code for heart transplant mortality

y_A<-1

n_A<-66

prop.test(y_A, n_A)

y_B<-4

n_B<-1767

prop.test(y_B, n_B)

y_T<-16

n_T<-15174

prop.test(y_T, n_T)

# conjugate analysis

lambda_A<-rgamma(1000, shape=y_T+y_A, rate=n_T+n_A)

lambda_B<-rgamma(1000, shape=y_T+y_B, rate=n_T+n_B)

summary(lambda_A)

summary(lambda_B)

relevant

t.test(lambda_A, lambda_B)

par(mfrow = c(2, 1))

plot(density(lambda_A), main="HOSPITAL A", xlab="lambda_A", lwd=3)

curve(dgamma(x, shape = y_T, rate = n_T), add=TRUE)

legend("topright",legend=c("prior","posterior"),lwd=c(1,3))

plot(density(lambda_B), main="HOSPITAL B", xlab="lambda_B", lwd=3)

curve(dgamma(x, shape = y_T, rate = n_T), add=TRUE)

legend("topright",legend=c("prior","posterior"),lwd=c(1,3))
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conclusions about Bayesian analysis

philosophically coherent

provides intuitive and directly relevant results

uses all available information

captures additional uncertainty in predictions

deserves greater application in epidemiological analyses
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