
an introduction to R for epidemiologists
manipulating data

Charles DiMaggio, PhD, MPH, PA-C

New York University Department of Surgery and Population Health
NYU-Bellevue Division of Trauma and Surgical Critical Care

550 First Avenue, New York, NY 10016

Spring 2015

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/

Charles.DiMaggio@nyumc.org

http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/


Outline

1 functions for data
editing
merging data frames
subsetting
re-orienting

2 missing values (NA)

3 working with files
saving data sets
working from external code

4 DBMS interfaces

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 2 / 33



functions for data

R is not a DBMS

...clear presumption by the designers of R that you will be able to
modify your input files using other tools... (Venebles)

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 3 / 33



functions for data editing

Outline

1 functions for data
editing
merging data frames
subsetting
re-orienting

2 missing values (NA)

3 working with files
saving data sets
working from external code

4 DBMS interfaces

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 4 / 33



functions for data editing

spreadsheet interfaces
(not recommended)

vectorized approach best, but if you must...

data.entry() - automatically saves changes

looks like spreadsheet
automatically saves changes
better for vectors and matrices

edit()

looks like original object
must explicitly assign object name (e.g. overwrite original name)
better for arrays and data frames

fix() - like edit() but automatically overwrites and saves

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 5 / 33



functions for data editing

rearrange parts of variables
substr()/paste()/strsplit()

substr(x, start, end) - extract

paste(x,sep) - stitch together

strsplit(x, split) - split string by substring

date<-c("29Jan2007", "13Jul1963", "10Mar1999")

m<-substr(date,3,5)

d<-substr(date,1,2)

md<-paste(m,"/",d, sep="")

a<-strsplit(md,"/")

str(a)

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 6 / 33



functions for data editing

conditional transformations
ifelse()

ifelse(test, if test = TRUE do this, else do that).

x <- sample(c("M", "F"), 10, replace = T)

x

y <- ifelse(x=="M", "Male", "Female")

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 7 / 33



functions for data merging data frames

Outline

1 functions for data
editing
merging data frames
subsetting
re-orienting

2 missing values (NA)

3 working with files
saving data sets
working from external code

4 DBMS interfaces

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 8 / 33



functions for data merging data frames

merge()

set.seed(1972)

a<-data.frame(id=sample(1:100, 25),var1=round(rnorm(25,50,2)))

b<-data.frame(id=sample(1:100, 25),var2=round(rnorm(25,10,1)))

ab<-merge(a,b,by="id")

ab

match(a$id, b$id)

a$id %in% b$id

intersect(a$id, b$id)

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 9 / 33



functions for data merging data frames

about merge()

default for two dataframes merges rows based on columns (natural
join) returning only those rows which had observations for variables
common to both,

all=TRUE returns a full outer join
all.x=TRUE left join (if x is named first)
all.y=TRUE right join(if y is named second)

by= argument for fuller control of join (like in DBMS)

by more than one id variable: by=c(”id1”, ”id2”)
if id has different names in each dataset: by.x=”ID”, by.y=”ident”

as in any merging, caution multiple occurrences of values of a
merging variable

factors seem to mess with merge, best to merge on character variable

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 10 / 33



functions for data merging data frames

when merge doesn’t work

in general, merge() works intuitively and as expected...

... but, sometimes merge() behaves badly

e.g. all.x=TRUE left join returns multiple matches

plyr::join() a good alternative

works more like sql
setting match to ”first” takes care of multiple matches
the default ”all”, is set to emulate merge()

join(x, y, by = matchingVar,

type = "left", match = "first")

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 11 / 33



functions for data subsetting

Outline

1 functions for data
editing
merging data frames
subsetting
re-orienting

2 missing values (NA)

3 working with files
saving data sets
working from external code

4 DBMS interfaces

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 12 / 33



functions for data subsetting

subsetting data
indexing

1 create logical vector (index)
2 apply index

the oswego data set

library(epitools)

data(oswego)

ill<-oswego$ill=="Y" # create index

cases<-oswego[ill,] # apply index

multiple criteria: ill women who ate ice cream

ill.fem.ice<-oswego$ill=="Y" & oswego$sex=="F"

& oswego$vanilla.ice.cream=="Y"

cases2<-oswego[ill.fem.ice,]

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 13 / 33



functions for data subsetting

subsetting data
subset()

alternative to indexing (data frames only)

data frame object name

”subset=” creates logical vector (index)

”select=” variables to keep

oswego.fcv <- subset(oswego, subset = (ill=="Y" & sex=="F"

& vanilla.ice.cream=="Y"),

select = c(id:onset.date, vanilla.ice.cream))

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 14 / 33



functions for data re-orienting

Outline

1 functions for data
editing
merging data frames
subsetting
re-orienting

2 missing values (NA)

3 working with files
saving data sets
working from external code

4 DBMS interfaces

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 15 / 33



functions for data re-orienting

wide to long
stack()

e.g. anova expect data in single column, 2nd column identifying group

select= argument to choose just those variables you want stacked

unstack() goes in other direction, needs formula to explain roles of
variables

m <- matrix(data=round(cbind(rnorm(10, 0), rnorm(10, 2),

rnorm(10, 5))), nrow=10, ncol=3)

colnames(m)<-c("a", "b", "c")

m<-as.data.frame(m)

ms<-stack(m)

ms

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 16 / 33



functions for data re-orienting

reshape package
another approach

flexible aggregation, cross-tabulation; can apply functions

melt() - identify grouping (”id”) and analysis variables

default factor and integer vars as ”id”, others ”measure”
override with id.var= or measure.var= (need only specify one)

cast() - aggregate or cross-tab, apply function

cast(melted data, row ~ column, function)

e.g. cast(mstates, region~ses, mean)

returns mean SES for each region in a state

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 17 / 33



missing values (NA)

Outline

1 functions for data
editing
merging data frames
subsetting
re-orienting

2 missing values (NA)

3 working with files
saving data sets
working from external code

4 DBMS interfaces

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 18 / 33



missing values (NA)

”fix” missing values
assignment

individually replace missing with NA

x$age[wd$age=="."] <- NA

x$sex[wd$sex=="."]<-NA x$syndrome[wd$syndrome=="Unknown"]<-NA

x$death[wd$death=="."] <- NA

or, replace globally

x[x=="." | x=="Unknown"] <- NA

or, correct errors

x$County[wd$County=="Qweens"] <- "Queens"

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 19 / 33



missing values (NA)

”fix” missing values
matrix and dataframe

matrix

m <- m2 <- matrix (c(1, -99, 3, 4, -88, 5), 2, 3)

m[m[,1]==-99, 1] <- NA # one column at a time

m[m[,3]==-88, 3] <- NA

m2[m2==-99 | m2==-88] <- NA # globally

data frame

fname <- c("Tom", "Unknown", "Jerry")

age <- c(56, 34, -999)

z1 <- z2 <- data.frame(fname, age)

z1$fname[z1$fname=="Unknown"] <- NA # one column at a time

z1$age[z1$age==-999] <- NA

z2[z2=="Unknown" | z2==-999] <- NA # globally

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 20 / 33



missing values (NA)

missing vs. really missing
na.rm()

either value is truly missing

or the result of operation on object with missing values

can be addressed with na.rm = TRUE

x <- c(2, 4, NA, 5)

sum(x)

sum(x, na.rm = TRUE)

”na.action=” - set NA behavior in statistical models

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 21 / 33



missing values (NA)

logical vector (index) NA positions
is.na()

x <- c(10, NA, 33, NA, 57)

is.na(x) #generate logical vector

which(is.na(x)) #which positions are NA

x[is.na(x)] <- 999 #replacement

# assigning NA’s

x <- c(1, -99, 3, -88, 5)

x[x==-99 | x==-88] <- NA

x [1] 1 NA 3 NA 5

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 22 / 33



missing values (NA)

NA values in data frames
na.fail()

tests for any NA values

name <- c("Tom", "Dick", "Harry", "James", "John")

gender <- c("M", "F", "M", NA, "F")

age <- c(34, NA, 22, 18, 34)

df <- data.frame(name, gender, age)

df

na.fail(df) # all observations

na.fail(df[c(1, 3, 5),]) # complete obs

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 23 / 33



missing values (NA)

NA values in data frames
na.omit(), na.exclude(), complete.cases()

na.omit() / na.exclude() - remove observations contain NA
complete.cases() - return logical vector observations do not contain NAs

x[complete.cases(x),] equivalent to na.omit

is.na() - to remove NA observations in indexing operations (differs from
above functions that remove all missing values from data frame)

df$age

df[df$age<25, ] # index ages < 25

df[df$age<25 & !is.na(df$age), ] # remove uninformative row

na.strings= read.table option

what characters are to be converted to NA

(default na.strings="NA")

mydat <- read.table("dataset.txt",

na.strings = c(999, 888, "."))

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 24 / 33



working with files saving data sets

Outline

1 functions for data
editing
merging data frames
subsetting
re-orienting

2 missing values (NA)

3 working with files
saving data sets
working from external code

4 DBMS interfaces

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 25 / 33



working with files saving data sets

write/read R binary file
save()/load()

save(objects, file="~/file_name.Rdata")

x <- 1:5; y <- x^3

save(x, y, file="xy.RData")

rm(x, y)

ls()

load(file="xy.RData")

ls()

save(list=c("x", "y"), file="xy.RData") #using list

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 26 / 33



working with files saving data sets

write to generic ascii
write.table(), write.csv(), dump(), dput()

write.table() /write.csv() - data frame

write.table(infert, file="infert.dat")

write.csv(infert, file="infert.csv")

read.table() - to read back in
write() - matrix
dump() - takes list of R objects, converts to ascii text file

use to export or source the objects to another R session

dump(c("tab1", "array2"),"infert_tab.R")

open the infertTab.R file and run or source() to read back in)

dput() - like dump, writes R object R code to the console, or (if give a
name) to an ascii text file

dput(tab1) # to console

dput(tab1, "tab1.R") # to file

dget("tab1.R") # read back in

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 27 / 33



working with files saving data sets

write or export to non-R statistics packages
package ”foreign”

text files

write.foreign() - write to SPSS, Stata, SAS

write.foreign(infert, datafile=”infert.dat”, codefile=”infert.txt”,
package = ”SPSS”)

binary files (foreign package)

write.dbf()

write.dbf(infert, ”infert.dbf”)

write.dta (Stata)

write.dta(infert, ”infert.dta”)

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 28 / 33



working with files working from external code

Outline

1 functions for data
editing
merging data frames
subsetting
re-orienting

2 missing values (NA)

3 working with files
saving data sets
working from external code

4 DBMS interfaces

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 29 / 33



working with files working from external code

input from external file
source()

commands in external file

e.g. complex user-written function found online...

”echo = TRUE” print commands and results to console (otherwise no
printed output)

# save this code as "~/testSource.R"

i <- 1:5

x <- outer(i, i, "*")

show(x) # to get results on console

source("~/testSource.R", echo=TRUE)

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 30 / 33



working with files working from external code

send output to an external file
sink(), capture.output()

# save this code as "~/testSource2.R"

i <- 1:5

x <- outer(i, i, "*")

sink("~/testSource.log") # creates output file

cat("Here are the results of the outer function",

fill=TRUE)

show(x)

sink()

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 31 / 33



DBMS interfaces

Outline

1 functions for data
editing
merging data frames
subsetting
re-orienting

2 missing values (NA)

3 working with files
saving data sets
working from external code

4 DBMS interfaces

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 32 / 33



DBMS interfaces

SQL
package sqldf

sqldf package allows sql queries on R data frames

NB - in addition to installing the package, need to install
tcltk-8.5.5-x11.dmg

http://socserv.mcmaster.ca/jfox/Courses/soc3h6/

RInstallation.html

library(sqldf)

write.table(iris, "iris.csv", sep = ",", quote = FALSE,

row.names = FALSE)

iris.csv <- read.csv.sql("iris.csv",

sql = "select * from file where Sepal_Length > 5")

Charles DiMaggio, PhD, MPH, PA-C (New York University Department of Surgery and Population Health NYU-Bellevue Division of Trauma and Surgical Critical Care550 First Avenue, New York, NY 10016)R intro 2015 33 / 33

http://socserv.mcmaster.ca/jfox/Courses/soc3h6/RInstallation.html
http://socserv.mcmaster.ca/jfox/Courses/soc3h6/RInstallation.html

	functions for data
	editing
	merging data frames
	subsetting
	re-orienting

	missing values (NA)
	working with files
	saving data sets
	working from external code

	DBMS interfaces

