Introduction to Epidemiology

Charles DiMaggio PA-C, MPH, PhD

Goals Define Epidemiology Discuss Concepts in Infectious Disease Epidemiology Introduce Biostatistical Concepts Introduce Study Designs

Defining Epidemiology

Epidemiology is What Epidemiologists
 Do
 Epidemiology is Possoned Argument

Epidemiology is Reasoned Argument

Epidemiologists Count Things

Epidemiologists are Clinicians to a Community

Defining Epidemiology

Epidemiology is the study of the distribution and determinants of disease in human populations

The Epidemiology of Cholera

Water	Number of	Deaths	Deaths per
Company	Houses	from	10,000 Houses
		Cholera	
Southwark	40,046	1263	315
and			
Vauxhall			
Lambeth	26,107	98	37
Rest of	256,423	1422	59
London			

Austin Bradford Hill

"The highest returns can be reaped by imagination in combination with a logical and critical mind, a spice of ingenuity coupled with an eye for the simple and humdrum, and a width of vision and pursuit of facts that is allied with an attention to detail that is almost nauseating"

"Nature makes the experiments, and we watch and understand them if we can"

Concepts in Infectious Disease Epidemiology

Glossary of Disease Transmission

The Epidemiologic Triad

Chain of Transmission

Glossary of Disease Transmission

Epidemic
Outbreak
Cluster
Endemic
Pandemic

Epidemiologic Triad

Agent Nutritive, Chemical, Physical, Infectious Host (Person) Inborn, Acquired, Behavioral Susceptible, Immune, Infected Environment

Disease Transmission

- Time (Epidemic Curve)
- Chain of Transmission
 - Source
 - Portal of Exit
 - Mode
 - direct vs. indirect (airborne, vector, vehicle, droplet nuclei, fomites)
 - Portal of Entry

Introduction to Biostatistical Concepts

Measures of Disease Frequency

Measures of Effect

Statistical Significance

Relative Effects = Ratios

Absolute Effects = Differences

Attributable Proportion

Difference vs. Ratio

Mortality Rates per 100,000 person-years form lung cancer and coronary artery disease for smokers and non-smokers

	Smokers	Non-	Odds	Risk
		Smokers	Ratio	Difference
Lung Cancer	48.3	4.5	10.8	43.8
CAD	294.7	169.5	1.7	125.13

The Importance of Significance

Chance and Probability

Confidence Intervals

1 is the loneliest number

Study Designs

Overview
 Ecologic Studies
 Cross-sectional Studies
 Randomized Clinical Trials
 Case-Control Studies

Overview of Study Designs

Ceteris Paribus Experiments and Quasi-Experiments Observational Studies Descriptive Studies Ecologic, Cross-sectional Analytic Studies Randomized Clinical Trials, Cohort, Case Control

Ecologic Studies

The Ecologic Fallacy

Lung Cancer and Pollution

Cross-Sectional Studies

Directionality

Incidence-Prevalence Bias

1-2 yrs	3-7 yrs	>7 yrs
30%	40%	30%
7% 28%		65%
	1-2 yrs 30% 7%	1-2 yrs 3-7 yrs 30% 40% 7% 28%

Randomized Clinical Trial

Selection of Study Population Reference, experimental, actual Random Allocation Placebo ♦Blinding Double, triple Weaknesses

Definition and Conduct
Types
Strengths
Weaknesses
Analysis
RR = (A/A+B) / (C/C+D)

Case-Control Studies

Definition and Conduct
Strengths
Weaknesses
Temporality
Control Group
Recall Bias
Analysis: The Odds Ratio

The Odds Ratio

Prospective vs. Retrospective Approach
Need for a New Measure of Effect
Exposure Odds Ratio
Disease Odds Ratio
Rare Disease Assumption
OR = ad/bc

Threats to Validity

- Confounding
 - Causally related to the disease
 - Associated with the exposure
 - Not a result of study design
- Bias
 - Systematic error
 - Design, conduct or analysis

Confounding

Definition

Examples

OR = ad/bc = (90)(60) / (60)(90) = 2.25

Myocardial Infarction					
Coffee		Yes	No		
Drinking	Yes	90	60	150	
	No	60	90	150	
		150	150	300	

Confounding

	Smoker	`S		Non-	
				Smokers	
	MI	No	MI	No MI	
		MI			
Coffee	80	40	10	20	
No	20	10	40	80	
Coffee					
Totals	100	50	50	100	
	OR =		OR =		
	10		1.0		

Selection Biases

Detection (Surveillance) Bias
Incidence Prevalence (Survivor) Bias
Loss to Follow up (Non Response Bias)
Health Worker Effect
Volunteer Bias
Berkson's Bias

Berkson's Bias

A

🛆 Truth	Type of Cancer				
V HUIH	Vaginal		Endometrial	Other	
No relationship	Bleeding	Yes	100	100	200
		No	900	900	1800
between vag bleed			1000		2000
and endometrial CA		-			
Bias			Type of		
Bias Drobability of			Type of Cancer		
 Bias Probability of 			Type of Cancer Endometrial	Other	
 Bias Probability of admission varies by 	Vaginal	Yes	Type of Cancer Endometrial 73	Other 85	158
 Bias Probability of admission varies by diagnosis 	Vaginal Bleeding	Yes No	Type of CancerEndometrial7390	Other 85 450	158 540
 Bias Probability of admission varies by diagnosis 	Vaginal Bleeding	Yes No	Type of CancerEndometrial7390163	Other 85 450 535	158 540 698

Standardization of Rates

Age-S	pecific M	lortality R	ates (per	1000):
Swede	en and Par	nama		
Age	Sweden	Panama		
 0-29	1.1	5.3		
30-	3.6	5.2		
 59				
>60	45.7	41.6		

Next,	we choose some standard age
distrib	oution, let's say:
Age	Weight
0-29	3, 145, 000
30-	3, 057, 000
59	
>60	1, 294,000

multiply the	age-spea	cific m	ortality	rate	by	the
standard po	pulation	rates				

 Age	Sweden	Panama
 0-29	1.1 x 3145000 =	5.3 x 3145000 =
 	3459.5	16668.5
30-	3.6 x 3057000 =	5.2 x 3057000 =
59	11005.2	15896.4
 >60	45.7 x 1294000 =	41.6 x 1294000 =
 	59135.8	53838.4

Divide by the total standard populations to get the standardized mortality rates:

Sweden = 73599.5 / 7, 496, 000 x 1000 = 9.8 per 1000

Panama = 86403.3 / 7, 496, 000 x 1000 = 11.5 per 1000