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1 What is Bayesian Analysis?

A Bayesian is one who, vaguely expecting a horse, and catching a glimpse
of a donkey, strongly believes he has seen a mule.

1.1 What are the chances?

Probability is at the heart of much rational thinking. 1 Consider the following quick
series of calculations that might start your morning. What should I wear today?
It’s fall and usually cold, so a jacket might make sense. My weather app shows
bright sun and temperatures in the 70’s. But it was a free app, and it’s wrong a lot
of the time. OK. A light jacket it is.

At each stage, you are evaluating probabilities against evidence, then revising the
probabilities. This is, essentially, Bayesian reasoning. Bayesian statistics allow us a
method of calculating precise, numeric estimates of the kinds of probabilities that
we often take for granted in our day-to-day reasoning. These kinds of estimates can
be applied to the work of epidemiology.

1If you are not at all familiar with probability theory, I have a paper on the topic.
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1.2 Conditional Probability

2 Deriving Bayes Theorem

Bayes Theorem, named after the Rev. Thomas Bayes2, is strikingly simple in its
derivation, but profound in it’s implications. If you know the probability that event
A occurs given that event B occurs, like the probability of the New York Mets
winning the world series given that they recruited some hot new ace pitcher, Bayes
theorem states that we can use that information to calculate the probability that
event B occured, given event A occurred. In our example, that the Mets recruited
some ace pitcher given that they won the World Series. In probability nomenclature,
Bayes Theorem says that if we know Pr[A|B] we can get at Pr[B|A].

Deriving Baye’s Theorem from first principles is fairly straightforward:

Pr[A ∩B] = Pr[B ∩A] (1)

Pr[A ∩B] = Pr[A|B]Pr[B] (2)

Pr[B ∩A] = Pr[B|A]Pr[A] (3)

Pr[A|B]Pr[B] = Pr[B|A]Pr[A] (4)

Pr[A|B] =
Pr[B|A]Pr[A]

Pr[B]
(5)

Pr[B|A] =
Pr[A|B]Pr[B]

Pr[A]
(6)

We are going to pay close attention to the denominator in those last two equations.
By the law of total probability, Pr[A] = Pr[A|B]Pr[B] + Pr[A|B]Pr[B] , so

Pr[B|A] =
Pr[A|B]Pr[B]

Pr[A|B]Pr[B] + Pr[A|B]Pr[B]
(7)

Pr[B|A] =
Pr[A|B]Pr[B]∑
Pr[A|B]Pr[B]

(8)

This equation is for categorical or discrete events, but when we work in probabilities
we are frequently interested in probability distributions which sum to one, so the
equation may more properly be written:

2Turnbridge Wells, England, c1763
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Pr[B|A] =
Pr[A|B]Pr[B]∫
dBPr[A|B]Pr[B]

(9)

2.1 Example: Positive Predictive Value

The classic example of Bayes Theorem from clinical epidemiology is that of the
sensitivity and specificity of a medical test vs. its positive and negative predictive
values. in the 1990’s, ELISA was used as a screening test for HIV. It was documented
as being nearly 100% sensitive and 100% specific for detecting HIV. If the ELISA
came back negative, the person was informed they were HIV negative. But, if the
ELISA screening test came back positive, a confirmatory Western Blot test was
performed. If both the ELISA and the Western Blot were positive, the person was
informed they were HIV positive. If the Western Blot was negative, the sample was
discarded and person was not informed about their positive screening test. Why?
It’s a matter of conditional probabilities.

Consider what the sensitivity and specificity of a test tell us. The sensitivity of
a test is the probability that a person will test positive given that they have the
disease (Pr[+|D). The specificity of a test is the probability that a person will
test negative given that they do not have the disease (Pr[−|D). It is an attribute
of the test and invariant. But it is not what a patient and his or her health care
provider are interested in. Rather than wondering if they will test positive if they
have the disease, they are concerned whether they have the disease given that they
tested positive (or don’t have the disease, given that they tested negative). And
this is a very different question. These measures are called the positive and negative
predictive values of a test.

Consider the following table based on actual data:

elisa western blot
pos neg

pos 498 4 502
neg 10 488 498

508 492 1000

Let’s use our derived Bayes Theorem formula to calculate the sensitivity of the
ELISA screening test.3 The sensitivity of a test is the Pr[+|D] which we can calcu-
late from the table as as:

3There are more intuitive ways of calculating these values from a simple table like this. But we
want to illustrate the formula, so bear with me.
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Pr[D|+]P [+]

Pr[D|+]P [+] + Pr[D|−]P [−]
(10)

(498/502)(502/1000)

(498/502)(502/1000) + (10/498)(498/1000)
(11)

In R, we write:

((498/502)*(502/1000))/(((498/502)*(502/1000)) + ((10/498)*(498/1000)))

And our result is, as advertised, a sensitivity of 98%.

The calculation for positive predictive value is:

Pr[D|+] =
Pr[+|D]P [D]

Pr[+|D]P [D] + Pr[+|D]P [D]
(12)

=
(498/508)(508/1000)

(498/508)(508/1000) + (4/488)(492/1000)
(13)

Which results in a positive predictive value of 99%. So, then, why the confirmatory
Western Blot? Well, did you notice the prevalence of disease in this population?
More than half of this group is HIV positive. In fact, they were a group of IV
Drug Users in the New York City area. What if we were to make these calculations
with a group with a prevalence more in line with the general population? Since the
sensitivity and specificity of a test is an attribute of the test itself, we can apply
those proportions to a hypothetical population of a million people, with a disease
prevalence of 0.02%:

elisa western blot
pos neg

pos 1960 784 9944
neg 40 990016 990056

2000 998000 1000000

A positive predictive value using these numbers is:

(1960/2000)(2000/1000000)

(1960/2000)(2000/1000000) + (784/998000)(998000/1000000)
(14)

For a positive predictive value of about 20%.

We can see a couple of things here. First, Bayes Theorem works, and that’s certainly
nice enough. Second, we can use Bayes theorem to derive probabilities for separate
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but related events, and that’s actually quite provocative. Third, some terms we
use in epidemiology, like prevalence, may have different names, like Pr[D] in other
statistical traditions. That is only to be expected, but can pose an initial obstacle
to understanding Bayesian statistics.

2.2 A More Intuitive Approach to Bayes Theorem

Bayes Theorem can be a bit of a mind scrambler when you first encounter it. There
is, though, a more intuitive approach to it than that of deriving probability formulas.
A hint at this approach can be got at by considering the cells of the ELISA tables
above. This is a familiar approach to epidemiologists. So for example, when we
calculated the positive predictive value of ELISA in a population, we could have
used the table cells and said that the probability of someone being diseased given
that they have a positive test is simply the number of diseased persons among all
those with a positive test, or (in the classic epi 2-by-2 table terminology a/a + b.
Similarly the sensitivity of a test is a/a + c. All we are doing is restricting our
attention (and basing our denominator) on either the row total or the column total.

This approach can be applied to tables of probabilities to arrive at a more intuitive
appreciation of Bayes Theorem. Say we have two separate but related events that
can occur. For example we toss a coin three times and are interested in (1) the
number of heads, and (2) the number of times we ‘switch’ from head to tails. Here
is the total sample space:

result heads switches probability

TTT 0 0 1/8
TTH 1 1 1/8
THT 1 2 1/8
THH 2 1 1/8
HTT 1 1 1/8
HTH 2 2 1/8
HHT 2 1 1/8
HHH 3 0 1/8

We can summarize the probability of the joint probability of these two outcomes
(total number of switches, total number of heads) in a single table:

heads
switches 0 1 2 3

0 1/8 0 0 1/8
1 0 2/8 2/8 0
2 0 1/8 1/8 0

taking this one step further, we can sum the joint probabilities to arrive at the
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marginal probabilities

heads
switches 0 1 2 3

0 1/8 0 0 1/8 2/8
1 0 2/8 2/8 0 4/8
2 0 1/8 1/8 0 2/8

1/8 3/8 3/8 3/8

The final row, is the marginal probability for the number of heads. The final column
is the marginal probability for the number of switches. Notice that the marginal
probabilities sum to one when we add them up across the final row or column. This
makes sense, because we are accounting for every possible outcome and one of them
must occur.

Consider how we can use this table to arrive at a conditional probability. The
probability of one switch, given one head is (2/8)/(3/8) = 2/3 All we need to do is
look at the cell for one switch that is contained in the column for one head. Now, say
we wanted to know the probability of one head given one switch. Now, we restrict
our attention to the row that corresponds to one switch, and select the cell for one
head to arrive at (2/8)/(4/8) = 1/2. This is really what we are doing when applying
Bayes Theorem. The joint probability of a single cell can be seen relative to the
column total or the row total. This simple idea of joint and marginal probabilities
will become exceedingly important when we begin to discuss sampling approaches
to solving Bayesian problems. 4

3 Applying Bayes Theorem to Models and Data

All this talk of probabilities is well and good, but we know that as epidemiologists
and scientists we live in a world of regression equations, models and data. It is a
relatively simple step from the world of probability to the world of models and data.

4Another, intuitive example comes from Michael Starbird and involves (as it so often does in
probability) playing cards. It begins with the question: What is the probability of choosing a red
card that is a face card. It is, clearly, the same as the probability of choosing a face card that is also
a red card. This is saying that Pr[face∩ red] = [red∩ face] Think of the marginal and conditional
probabilities upon which the joint probabilities are based. The joint probability of choosing a face
card that is red is the product of the marginal probability of choosing a face card (12/52) and
the conditional probability of choosing a red card given that we have chosen a face card (6/12).
Alternatively, the joint probability of choosing a red card that is a face card is the product of the
marginal probability of choosing a red card (26/52) time the conditional probability of choosing
a face card given that we have chosen a red card (4/12) Feel free to satisfy yourself that those
two calculations equal the same probability. Then, picture the two marginals meeting at the same
‘square’ on a table of joint probabilities.
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We need only adapt the table of joint probabilities so that the rows correspond to
data (our observations) and the columns correspond to models (our parameters).

Our model values are the probabilities of observing the data values given our choice
of model and parameters. For example, say we are flipping a coin 5 and have three
candidates for a binomial model parameter θ = .25, θ = .5, θ = .7 We generate
data by flipping our coin 12 times. Say we observe 3 heads. We can calculate
the likelihood of observing that data given our model for each of the three possible
parameters by applying the binomial formula: Pr[data|θ] = θ3(1− θ9) Let’s set up
a quick function in R:

prob<-function(x){

(x^3)*((1-x)^9)

}

v<-c(0.25,0.5, 0.75)

prob(v)

The three likelihoods that correspond to our three possible θ′s are :

[1] 1.173198e-03 2.441406e-04 1.609325e-06

The maximum likelihood corresponds to a value for θ of 0.25. 6

Notice something: we have arrived very neatly at the Pr[data|θ], but much like in
the case of our screening tests, is this really what we want to know? We are, in fact,
interested in Pr[θ|data]. But we now know we can get at that with Bayes Theorem:

Pr[θ|data] =
Pr[data|θ]Pr[θ]

Pr[data]
(15)

Which leads us back to our table of joint and marginal probabilities:

model
data (θ value) (marginal)

(data value) Pr[θ|data] ∗ Pr[data]=Pr[data|θ] ∗ Pr[θ] Pr[data]

(marginal) Pr[θ]

5There is a lot of coin flipping, card playing and plucking colored objects from urns in probability
theory...

6This is, in fact, the maximum likelihood estimate or MLE
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And we can again intuit that applying Bayes Theorem is like restricting our attention
to one or the other set of marginal probabilitis.

4 Why do Bayesian Analysis

You may by this point have a better appreciation of what Bayesian analysis is.
But why should you care? From a purely statistical perspective, we analyze data
for three main reasons: to estimate parameters, to predict, and to compare mod-
els. Bayesian analysis offers advantages in all three areas. First, we can directly
estimate the probability of parameters. This is simply not possible with more tra-
ditional frequentist statistics. Second, we can directly predict data values because
we can explicitly calculate the probability of a value given all possible values (the
evidence) Third, model comparisons are enhanced because Bayesian analyses inher-
ently account for model complexity. In general, we penalize more complex models
because they are more likely than simpler models to account for any data, including
random data. A simpler model, in Baysian terms, will parcel out the total proba-
bility to few values. If the data are closer to those values, the model will be more
likely. A more complex model. with more possible parameter values will be less
likely to have a strong probability for any particular value.

But perhaps the most compelling reason to do Bayesian analysis is that it offers an
attractively intuitive yet methodologically rigorous way of updating our knowledge.
If our knowledge is scant or non-existent, the results will be, essentially, the same
as the maximum likelihood estimate. But, if we have some prior or pre-existing
knowledge, shouldn’t we use it? Rational thought is at its core a matter of updating
our beliefs, and the very role of data is to influence those beliefs.

5 Objections to Bayesian Analysis

Bayesian analysis has been, and in some quarters continues to be, the subject of
debate and controversy. There are a number of objections, but three common ones
are that the calculations, especially for realistic and complicated models, can be
statistically intractable, priors are capricious, idiosyncratic or unknowable, and our
‘beliefs’ should not influence data-based analyses.

The intractability issue was, in fact, true for many years. Bayesian calculations
involve summing the probability of the data (the ’evidence’ in the denominator of
Bayes Theorem). This can be a difficult integral. For many years we were limited to
3 possible approaches. We could choose a prior that was conjugate to the likelihood
which makes the posterior come out the same as the prior. We could approximate
the true but intractable function with other functions that were easier to work with.
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Or, we could approximate the integral by using a grid of values. Each of these
approaches had their limitations, particularly for the kind of complex problem with
which we are most often interested.

Over the last 10 or 15 years, though, simulation based approaches, particularly
Markov Chain Monte Carlo methods, and the concomitant availability of sufficient
computing power to usefully apply them, have largely obviated the issue of calcula-
tions, leading to an explosion of interest in Bayesian methods.

As for capricious priors, well I suppose that could be a problem in theory, but it
is rarely one in practice. In fact, priors almost invariably come from the published
literature, generally agreed upon facts or accepted theories. At the very least,
Bayesian analysis forces us to consider our assumptions.

Finally, as I alluded to above, our beliefs or prior assumptions are invariably the
starting point for the advancement of knowledge. In scientific endeavors, those
beliefs are usually informed by previous evidence, sometimes in the form of data
and studies, sometimes in the form of individual experience, sometimes in the form
of received wisdom. We instinctively evaluate additional evidence, experience or
information in light of those beliefs or prior assumptions. Bayesian analysis simply
formalizes and quantifies the process.
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