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MAXIMIZING THE INFORMATION CONTENT OF A
BALANCED MATCHED SAMPLE IN A STUDY

OF THE ECONOMIC PERFORMANCE
OF GREEN BUILDINGS∗

By Cinar Kilcioglu and José R. Zubizarreta
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Buildings have a major impact on the environment through ex-
cessive use of resources, such as energy and water, and large carbon
dioxide emissions. In this paper we revisit the study of Eichholtz et al.
(2010) about the economics of environmentally sustainable build-
ings and estimate the effect of green building practices on market
rents. For this, we use new matching methods that take advantage of
the clustered structure of the buildings data. We propose a general
framework for matching in observational studies and specific match-
ing methods within this framework that simultaneously achieve three
goals: (i) maximize the information content of a matched sample
(and, in some cases, also minimize the variance of a difference-in-
means effect estimator); (ii) form the matches using a flexible match-
ing structure (such as a one-to-many/many-to-one structure); and
(iii) directly attain covariate balance as specified —before matching—
by the investigator. To our knowledge, existing matching methods are
only able to achieve, at most, two of these goals simultaneously. Also,
unlike most matching methods, the proposed methods do not require
estimation of the propensity score or other dimensionality reduction
techniques, although with the proposed methods these can be used
as additional balancing covariates in the context of (iii). Using these
matching methods, we find that green buildings have 3.3% higher
rental rates per square foot than otherwise similar buildings without
green ratings —a moderately larger effect than the one previously
found by Eichholtz et al. (2010).

1. Introduction: green buildings; buildings data; overview of
matching; outline.

1.1. Market performance of environmentally sustainable buildings. Build-
ings have a major impact on the environment through greenhouse gas emis-
sions and excessive use of natural resources. For example, the United States
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Environmental Protection Agency (EPA) reported that in 2013 nearly 39%
of total U.S. carbon dioxide emissions were due to residential and commercial
buildings.1 For the same year, the U.S. Energy Information Administration
reported that about 40% of total U.S. energy consumption was from these
types of buildings.2 At the same time, there is growing scientific consensus
that current levels of carbon dioxide and related greenhouse gas emissions
greatly increase the risks of climate change, and that excessive use of re-
sources can lead to resource depletion and habitat degradation. For these
reasons, the construction and operation of buildings can have a substantial
impact on the earth’s environment.

In an interesting and relevant study, Eichholtz, Kok, and Quigley (2010)
analyzed the effect of environmentally sustainable building practices on their
rents and selling prices. This is an important study subject for the reasons
already stated and also because there is not much empirical evidence for the
development of environmentally sustainable or green buildings. Among the
available evidence, there are the results of a study by the U.S. General Ser-
vice Administration Public Buildings Service that analyzed the performance
of 22 green buildings and found that, compared to national averages, green
buildings have 36% fewer carbon dioxide emissions and 25% less energy use,
in addition to 19% lower aggregate operational costs and 27% higher oc-
cupant satisfaction.3 Given the environmental and social benefits of green
buildings, one important question is how much these benefits affect the rent
of green commercial buildings. This is important to investors, developers
and property owners in order to invest in green buildings.

In their study, Eichholtz et al. (2010) analyzed a large sample of com-
mercial green- and non-green-rated buildings in the United States. Using
linear regression and propensity score methods, they found that buildings
with green ratings have 2.8% higher rental rates per square foot compared
to similar buildings without green ratings. In this paper, we revisit this im-
portant question using new matching methods that adjust more precisely
for covariates and better exploit the structure of the buildings data.

1.2. Buildings data. In the United States, green buildings are certified
as energy-efficient or sustainable by different agencies. The EPA gives the
“Energy Star” certification to commercial buildings if their amount of en-

1http://www.epa.gov/climatechange/Downloads/ghgemissions/

US-GHG-Inventory-2015-Main-Text.pdf, Table ES-7.
2http://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf, Table 2.1.
3http://www.gsa.gov/graphics/pbs/Green_Building_Performance.pdf.

http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2015-Main-Text.pdf 
http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2015-Main-Text.pdf 
http://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf
http://www.gsa.gov/graphics/pbs/Green_Building_Performance.pdf
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ergy used meets certain criteria.4 The Green Building Council (USGBC) la-
bels a building as LEED (Leadership in Energy and Environmental Design)
based on its performance in different categories such as indoor environmen-
tal quality, site sustainability and water conservation. Following Eichholtz
et al. (2010), we consider a building to be green if it is certified as Energy
Star or LEED and focus our analysis on commercial buildings.

To estimate the effect of energy efficiency and sustainability on the eco-
nomic returns of buildings, we compare green-rated buildings to similar
non-green-rated buildings in the same market. For this, we use multivari-
ate matching methods and find matches of green and non-green buildings
that are nearby and similar along a number of covariates, including age,
amenities, number of stories, quality and whether the building was recently
renovated. However, standard matching methods do not have the flexibility
to exploit the particular structure of the buildings data and will typically
result in imbalanced or inefficient analyses. In particular, the data consists
of 694 green buildings and 7,411 non-green buildings, organized in 694 geo-
graphic clusters. In each of these clusters, there is one green building and one
or more non-green buildings not further apart than one quarter mile from
the green building. While some clusters have only one non-green building,
others have as many as 83 non-green buildings. As a result of this struc-
ture, pair matching (or matching with a 1 : 1 ratio) would result in many
non-green buildings not being used in the analysis, and matching with a
fixed 1 : κ ratio (where κ is an integer greater than 1) would result in some
clusters not being used at all. Naturally, for our analyses we would like to
use a flexible matching ratio in order to match as many buildings as possi-
ble, while precisely balancing covariates. However, to our knowledge existing
matching methods are not able to achieve all of these goals simultaneously.
In the following section, we give an overview of standard matching methods,
to then, in the next section, explain more carefully the contribution of the
proposed methods.

1.3. Overview of matching in observational studies. In observational stud-
ies of causal effects, matching methods are often used in an attempt to
compare like with like; i.e., units that are the same ideally in every respect
except in their assignment to a treatment (Cochran and Rubin, 1973). In
our study, these units are buildings similar in terms of age, amenities, num-
ber of stories, etc., except in their green building practices. Of course, this

4Specifically, the EPA can give the “Energy Star” certification to buildings in the
top quarter of energy efficiency compared to similar buildings nationwide. The energy
efficiency calculation is done by the EPA using a scoring algorithm that takes into account
the characteristics of the building, such as size, location, number of occupants.
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comparison can be assessed in terms of observed covariates only, and with
matching methods (the same as with other regression or weighting meth-
ods of adjustment for observed covariates) the question about the influence
of unobserved covariates in effect estimates remains open [for instance, see
Chapter 4 of Rosenbaum (2002) for a formal discussion]. With standard
matching methods, other devices such as differential effects, evidence fac-
tors, multiple control groups and sensitivity analyses can be used to limit
and assess the influence of such unobserved covariates [see Rosenbaum (2015)
for a review of these devices].

The appeal of matching as a method of adjustment lies in part in its con-
ceptual simplicity [comparing like with like while keeping the unit of analysis
intact; Rosenbaum and Silber (2001)], that its adjustments are an interpo-
lation instead of an extrapolation based on a parametric model [Rosenbaum
(1987), Imbens (2015)], and in the fact that it is conducted without using
outcomes, thus preventing exploratory expeditions in the data to choose
the form of adjustments that better suits the hypotheses of the investiga-
tion (Rubin, 2008). It is for this last reason that matching is considered to
be part of the design as opposed to the analysis of an observational study
(Rosenbaum, 2010). However, some matching methods are cumbersome in
practice.

The main goal of matching is to find matched groups with similar or bal-
anced observed covariate distributions (Stuart, 2010). Ideally, these groups
would be formed by units identical in every way (by “clones” of treated and
control units), but usually this is not feasible in practice. There is a curse of
dimensionality in exact matching: as the number of observed covariates in-
creases, there is a combinatorial explosion in the resulting types of units. In
fact, with two binary covariates there are 22 or four types of units, but with
twenty binary covariates there are 220 or over a million types of units. Thus,
for an observational study of the typical size (like our building study with
a few thousand observations), there will not be enough units to match each
treated unit to one control exactly. It is for this reason, and also because ran-
domization does not produce exact matches but balance in expectation, that
weaker, aggregate forms of covariate balance than exact matching tend to be
pursued in practice, leaving exact matching for a few covariates of overrid-
ing prognostic importance [see Sections 3.3 and 9.3 of Rosenbaum (2010) for
a detailed exposition of this argument]. The propensity score (Rosenbaum
and Rubin, 1983) is an important tool used to achieve aggregate covariate
balance.

The propensity score is the probability of treatment assignment given
the observed covariates. It constitutes a dimensionality reduction technique
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in which a P -dimensional observed covariate is summarized into a single
scalar with important theoretical properties. Informally, theorems 1 and 3
in Rosenbaum and Rubin (1983) state that matching on the propensity score
tends to balance the P observed covariates used to estimate the score, and
that for balancing the P covariates it suffices to balance the one-dimensional
propensity score. However, these are stochastic properties that hold over re-
peated realizations of the data-generation mechanism, and for a given real-
ization (this is, for a given data set), even if the true treatment assignment
is known, it is not certain that the propensity score will balance the ob-
served covariates [especially if the covariates have many categories or are
sparse; see Zubizarreta et al. (2011) and Yang et al. (2012) for related dis-
cussions]. Also, in practice the true assignment mechanism is unknown, and
this makes the task of balancing the observed covariates even more difficult
due to misspecification of the propensity score model. Furthermore, while
matching on the propensity score is typically used for balancing means, in
some settings it is desirable to balance other features of the distribution of
the P observed covariates, such as the marginal distributions (Rosenbaum,
Ross, and Silber, 2007), and this can be very difficult by matching on the
propensity score [for a related argument in the context of weighting see, for
instance, Zubizarreta (2015)]. It is for these reasons that matching on the
propensity score involves a considerable amount of guesswork in practice.

A recent method that addresses these limitations is optimal cardinal-
ity matching, or cardinality matching for short (Zubizarreta, Paredes, and
Rosenbaum, 2014). Cardinality matching solves an integer programming
problem to maximize the cardinality or size of a matched sample subject
to constraints on covariate balance. These constraints allow the investigator
to balance the covariates directly and in a very precise manner. In their
weakest form, these constraints can require the means to be balanced [see
Zubizarreta (2012) for details], but they can also require other forms of
distributional balance such as fine balance (Rosenbaum et al., 2007) and
strength-k matching (Hsu et al., 2015).5 In this way cardinality matching
directly balances covariates.

Other interesting matching methods that aim at covariate balance in-
clude coarsened exact matching (Iacus, King, and Porro, 2012), balance
optimization subset selection (Nikolaev, Jacobson, Cho et al., 2013), genetic

5Fine balance forces the marginal distributions of a nominal variable to be identical,
but without constraining units to be matched within each of the categories of a nominal
variable (see Chapter 10 of Rosenbaum, 2010 for details); whereas strength-k matching is a
stronger form of balance in which low dimensional joints are forced to be identical: out of K
nominal covariates, each of the

(
K
k

)
possible interactions of covariates is finely balanced, so

the joint distributions of each of the
(
K
k

)
combinations of covariates is perfectly balanced.
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matching (Diamond and Sekhon, 2013), and refined covariate balance via
network flows (Pimentel, Kelz, Silber et al., 2015). Other related weighting
methods include inverse probability tilting (Graham, de Xavier Pinto, and
Egel, 2012), entropy balancing (Hainmueller, 2012), stable balancing weights
(Zubizarreta, 2015), calibration weighting (Chan, Yam, and Zhang, 2016),
and the overlap weights (Li, Morgan, and Zaslavsky, 2016).

Start

Obtain a sum-
mary measure
s(x) of the
covariates x

(e.g. estimate
the propen-
sity score)

Match on
s(x) (e.g.,

using a greedy
or optimal
matching

algorithm)

Assess covariate
balance: Does
the matched
data set meet
the covariate

balance
requirements?

End

Obtain a new
summary

measure s(x)
(e.g., adding
higher order

terms or
interactions to
the propensity
score model)

Yes

No

2

(a) Common matching methods

Start

Define covariate
balance

requirements
(e.g. perfect or
fine balance of

all the marginal
distributions)

Find the
largest matched

sample that
satisfies balance

requirements

End

3

(b) Cardinality aaa
aiiii matching

Fig 1. Flowcharts of common matching methods and cardinality matching
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The flowcharts in Figure 1 compare the basic steps involved in cardinal-
ity matching and in standard matching methods based on the propensity
score or other summary measures of the observed covariates (such as the
Mahalanobis distance). While standard matching methods can entail many
iterations to meet the covariate balance requirements by fine-tuning the
summary measure, cardinality matching directly finds the largest matched
sample that meets these requirements. In a sense, with cardinality matching
subject matter knowledge of the scientific question at hand comes naturally
into the matching problem through the balancing constraints, finding the
largest matched data set that satisfies the investigator’s specifications for
covariate balance or comparability between treated and control units. For
simplicity, in Figure 1(a) we omit the decisions involved in propensity score
matching about overlap, but typically additional steps would be present [for
example, see Chapter 15 of Imbens and Rubin (2015) for an extensive dis-
cussion]. In contrast, with cardinality matching the possibility of covariate
distributions exhibiting limited overlap is addressed in terms of the original
covariates, finding the largest match that meets the investigator’s specifica-
tions for covariate balance.

1.4. Outline. To analyze the effect of energy efficiency and sustainability
on the economic returns of buildings, in this paper we build on the method
of cardinality matching and propose a general matching framework to max-
imize the information content of a balance matched sample. Within this
framework, we present new matching methods that simultaneously achieve
three goals: (i) to maximize the information content of a matched sample
and, in some cases, minimize the variance of a widely used effect estima-
tor; (ii) to form the matched groups of the matched sample using a flexible
matching structure [such as a one-to-many/many-to-one or, in a sense, a
full matching structure; Rosenbaum (1989), Hansen (2004)]; and (iii) to
directly attain covariate balance as specified —before matching— by the
investigator. On the one hand, standard matching methods such as the ones
illustrated in Figure 1(a) are not designed to achieve goals (i) and (iii),
but on the other hand, cardinality matching does not allow flexible match-
ing structures beyond a one-to-many fixed matching ratio. Achieving these
three goals simultaneously poses a number of difficulties. First, maximiz-
ing the size of matched sample with a flexible matching ratio requires a
different notion of sample size than the one used in cardinality matching,
since, for instance, two one-to-one treated and control matches should not
count the same as one one-to-two match. This requires defining the infor-
mation content of the matched sample. Second, the differential weighting of
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the different matched groups needs to be taken into account when assessing
covariate balance and in the analyses, but this poses a number of challenges
in building a mathematical program and in computing its optimal solutions.
Third, a sound implementation of this method needs to take advantage of
modern advancements in parallel computing.

This paper is organized as follows. In Section 2 we review cardinality
matching, discuss different matching structures, and finally present a defini-
tion of the information content of a matched sample for a simple difference-
in-means effect estimator. In Section 3, we first introduce a general frame-
work for matching to maximize the information content of a balanced matched
sample, then show that cardinality matching is a particular case of this
framework, and present a formulation for matching with a variable one-to-
many ratio (in two other appendices, we present formulations for matching
to minimize the variance of the difference-in-means effect estimator and
matching with a flexible one-to-many/many-to-one or full matching struc-
ture). In Section 4 we evaluate the building matches in terms of covariate
balance and effective sample sizes, and also describe the details of the com-
putational implementation. In Section 5 we investigate the economic effects
of green buildings. In Section 6 we discuss the new matching methods pro-
posed. In Section 7 we close with a summary and remarks.

2. Review: cardinality matching; matching structures; informa-
tion content.

2.1. Cardinality matching. As described above, most matching methods
target covariate balance indirectly, by matching treated and control units
(green and non-green buildings) that are close on a summary measure of
the covariates such as the propensity score. Unlike these matching meth-
ods, cardinality matching uses the original covariates to match units and di-
rectly balance their covariate distributions (Zubizarreta et al., 2014). Specif-
ically, cardinality matching finds the largest matched sample that satisfies
the investigator’s specifications for covariate balance. Following Zubizarreta
(2012), these specifications for covariate balance may not only require mean
balance, but perhaps also other forms of distributional balance such as fine
balance (Rosenbaum et al., 2007), x-fine balance (Zubizarreta et al., 2011),
strength-k matching (Hsu et al., 2015), and exact matching [Rosenbaum
(2010), Section 9.3], all this on several covariates simultaneously. For ex-
ample, cardinality matching will find the largest matched sample in which
all the marginal distributions of the covariates are balanced. In this man-
ner, cardinality matching focuses on covariate balance in aggregate, allowing
the investigator to re-match the treated and control units in the balanced



MAXIMIZING THE INFORMATION OF A BALANCED MATCHED SAMPLE 9

matched sample to emphasize covariates that are strongly correlated with
the outcome. As illustrated in Zubizarreta et al. (2014), this has the effect of
reducing the heterogeneity of matched-group differences in outcomes and, in
turn, also reducing sensitivity to biases due to unmeasured confounders [see
Rosenbaum (2005) for a detailed exposition of this argument and Baiocchi
(2011) for an original alternative approach].

From a computational standpoint, cardinality matching requires solving
a linear integer programming problem, and while it has not been found
a polynomial time algorithm to solve the cardinality matching problem,
there is considerable structure in this problem and many instances of it can
be solved in time that from a user perspective is comparable to that of
common matching methods (see Appendix A). At the present, cardinality
matching is solved with the optimization solvers CPLEX, GLPK, Gurobi
and Symphony via the statistical package designmatch for R [Zubizarreta
(2012), Zubizarreta and Kilcioglu (2015)].

2.2. Matching structures. In its simplest form, a matched sample is as-
sembled by pairs of treated and control units selected from larger reservoirs
of both types of units. As in our buildings study, the reservoir of controls
is often much larger than the one of the treated units, and it is feasible
to match more than one control to each treated unit. One possible way of
doing this is by matching with a fixed 1 : κ ratio and either matching each
treated unit to κ controls or not matching it at all. A more flexible structure
is a variable 1 : κ ratio, in which each treated unit is matched at most to
κ controls (if matched at all). The most flexible structure is matching with
a one-to-many/many-to-one structure, or, loosely speaking, full matching
(Rosenbaum, 1989; Hansen, 2004). [In rigor, the term full match refers not
only to a one-to-many/many-to-one structure but to an optimal design for
an observational study in which all the treated units are matched to con-
trols forming groups as similar as possible in terms of a summary of the
covariates, s(x); see Section 10.3.6 of Rosenbaum (2002). In this sense, a
one-to-many/many-to-one matching structure always dominates a many-to-
many structure (Rosenbaum, 1991). Also, by matching without replacement
it is straightforward to conduct inference with existing methods ((Rosen-
baum, 1993, 2001).] We denote the one-to-many/many-to-one structure as
1 : κC/κT : 1, where κC is the maximum number of control units matched to
each treated unit, and κT is the maximum number of treated units matched
to each control. These different matching structures are illustrated in Figure
2 below.

It is desirable to extend cardinality matching to matching with a variable



10 KILCIOGLU AND ZUBIZARRETA

1

2

3

4

5

6

7

8

9

10

(a) 1 : 1 or pair
matching

1

2

3

4

5

6

7

8

9

10

(b) 1 : κ fixed

1

2

3

4

5

6

7

8

9

10

(c) 1 : κ variable

1

2

3

4

5

6

7

8

9

10

(d) 1 : κC/κT : 1 or
full matching

Fig 2. Different matching structures

one-to-many or a one-to-many/many-to-one structure, but a question that
arises is how to define the size of the matched sample with these flexible
matching structures. Naturally, five 1 : 1 matches of green and non-green
buildings (exemplified in Figure 3(a)) should count more than than two
1 : 2 matches plus one 1 : 1 match (Figure 3(b)), and this, in turn, should
count more than one 1 : 5 match (Figure 3(c)). Although the first and
second matchings have the same number of different controls, in the second
matching there are only two different treated units; so, subject to the same
constraints on covariate balance, the first matching should be preferable.
Intuitively, there is more information in the first match. In the following
section we formalize this notion using the concept of information content of
a matched sample for a difference-in-means effect estimator.
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Fig 3. Different matching structures with the same number of matches

2.3. Information content of a matched sample. Let i ∈ I = {1, 2, ..., I}
index the set of matched groups and j ∈ Ji = {1, 2, ..., Ji} index the set of
units (in our study, buildings) within each of these matched groups. Using
this notation, for example in Figure 2(a), Ji = 2 for each i ∈ I and the
matched groups constitute pairs, and in Figure 2(c), J1 = 4 and J2 = 3 and
so the groups form quadruples and triples, respectively. To accommodate
the more general one-to-many/many-to-one or full matching structure, we
adopt the convention that the first unit in each group is either a treated
unit and all the other units are controls, or that the first unit is a control
and all the other units are treated.

Following Haviland, Nagin, and Rosenbaum (2007), we pose a simple
treatment effect model

(2.1) Yij = αi + βZij + εij

where Yij is the observed outcome of unit j in matched group i, αi is a
group effect for all the units in group i (this indicates there is dependence
between units in each group, but that it may be eliminated by taking differ-
ences within groups), Zij is the treatment assignment indicator, and εij is a
residual term with εij ∼ N (0, σ2). Here, we assume the outcome variance is
constant across units. Consider the matched group difference in outcomes

(2.2) Di = Zi1

(
Yi1 −

∑
j 6=1 Yij

κi

)
+ (1− Zi1)

(
−Yi1 +

∑
j 6=1 Yij

κi

)
where κi is the number of controls units in matched group i. We can calculate
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the variance of this difference and find that

(2.3) Var(Di) = σ2
(

1 +
1

κi

)
∝

(
2

1
1 + 1

κi

)−1
.

In other words, the variance of the difference is inversely proportional to the
harmonic mean of the number of treated and control units in each matched
group [Kalton (1968); see also Hansen and Bowers (2008)]. We denote h(κ)

as the harmonic mean of the number of units in a matched group with a
1 : κ (or κ : 1) matching ratio

(2.4) h(κ) =
2

1

1
+

1

κ

=
2κ

1 + κ
.

In this manner, in a 1 : 1 match or pair match, h(1) = 1; in a 1 : 2 match,
h(2) = 4/3; in a 1 : 3 match, h(3) = 3/2; and so on.

We call the information content of a matched sample the sum of the
harmonic means of the number of treated and control units in each matched
group,

∑
i∈I h

(κi); that is, the sum of the Fisher informations of the matched
groups. In this way, for example, the information content of two 1 : 1 matches
will be 50% larger than the information of one 1 : 2 match (1 + 1 = 2 instead
of 4/3), and the information of three 1 : 1 matches will be the same as the
information of two 1 : 3 matches (1 + 1 + 1 = 3/2 + 3/2).

Another way of defining the information content in a matched sample
about the parameter β is the reciprocal of the variance of an effect estimator,
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for example of the average of the group differences
(2.5)

δ̂ =
1

I

∑
i∈I

(
Zi1

(
Yi1 −

∑
j 6=1 Yij

κi

)
+ (1− Zi1)

(
−Yi1 +

∑
j 6=1 Yij

κi

))
.

However, we find that this particular definition is somewhat restrictive, as
other estimators may be preferable in practice such as regressing the group
differences in outcomes on group differences in covariates as in Rubin (1979),
or using the weighted M-statistics in Rosenbaum (2014). Also, this definition
is less intuitive and more difficult to implement in practice (see Appendix
B), and has a weaker connection with cardinality matching. Clearly, if the
matching ratio given by κi is constant, then maximizing the information
content is equivalent to cardinality matching with a fixed 1 : κ ratio as in
Zubizarreta et al. (2014), so this provides a more general framework and a
richer interpretation for cardinality matching.

For these reasons we consider maximizing the sum of the harmonic means
of the number of treated and control units in each matched group; in other
words, maximizing the sum of the Fisher informations of the matched groups.
Building upon this notion of information content, in the next section we
present a general matching framework and specific matching formulations
that maximize the information content of a matched sample subject to co-
variate balance and matching structure constraints.

3. Maximizing the information of a balanced matched sample.

3.1. A general matching framework. Let t ∈ T = {1, . . . , T} index the
set of treated units (in our study, green buildings) and c ∈ C = {1, . . . , C}
index the set of controls (non-green buildings), with T ≤ C. Define p ∈ P =
{1, . . . , P} as the label of the P observed covariates. Each treated unit t ∈ T
has a vector of observed covariates xt = {xt,p1 , . . . , xt,pP }, and each control
c ∈ C has a similar vector xc = {xc,p1 , . . . , xc,pP }. We introduce the decision
variable mtc, which is 1 if treated unit t is matched with control c, and 0
otherwise.

In the abstract, we want to solve

(3.1) max
m
{I(m) : m ∈M∩ B}

where I(m) is the information content of the matched sample, andM and B
are matching and balancing constraints, respectively. This general formula-
tion pursues the goal of finding the largest matched sample —or, in general,
the matched sample with the largest information content— that satisfies
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certain requirements for matching structure M and covariate balance B.
Generally, the requirements for covariate balance are guided by scientific
knowledge of the research question at hand (in our study, what drives build-
ings’ rent). Ideally one would match with a flexible matching structure, but
as we discuss below this imposes computational restraints. We now discuss
the specific forms of I, M and B when matching with a 1 : κ fixed ratio, a
1 : κC variable ratio, and, due to space considerations, we relegate the case
of matching with a flexible 1 : κC/κT : 1 matching ratio to Appendix C.

3.2. Matching with a fixed 1 : κ ratio. Matching with a fixed 1 : κ ratio
is equivalent to cardinality matching. In (3.1), I, M and B take the forms

(3.2) I(m) =
∑
t∈T

∑
c∈C

mtc,

M =

{∑
c∈C

mtc = κ, t ∈ T if κ > 1 and
∑
c∈C

mtc ≤ κ, t ∈ T if κ = 1;

∑
t∈T

mtc ≤ 1, c ∈ C;mtc ∈ {0, 1}, t ∈ T , c ∈ C

}
,

(3.3)

B =

{
−εp

∑
t∈T

∑
c∈C

mtc ≤
∑
t∈T

∑
c∈C

mtc(f(xt,p)− f(xc,p)) ≤ εp
∑
t∈T

∑
c∈C

mtc,

mtc ∈ {0, 1}, t ∈ T , c ∈ C; p ∈ P

}
,

(3.4)

where εp ≥ 0 is a given constant, and f(·) is a suitable transformation of the
covariates. For example, if f(x·,p) = x·,p, then (3.4) constrains the matched
samples to have means that differ at most by εp for covariate p. Also, if f(·)
is a binary indicator for the categories of a nominal covariate p and εp = 0,
then (3.4) requires the matched samples to have the same number of treated
and control units within each category, but without constraining which units
are matched together.6 Similar ideas can be used to balance the interactions
of several nominal covariates. See Zubizarreta (2012) and Zubizarreta et al.
(2014) for more balancing examples.

6This technique is called fine balance (Rosenbaum et al., 2007) and it has the effect of
exactly balancing the mean of every linear combination of the categories of the covariates
finely balanced.
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3.3. Matching with a variable 1 : κC ratio. To generalize cardinality
matching for maximizing the information content of the matched sample
with a variable 1 : κC matching ratio, we introduce a new decision variable
nt, the number of control units that treated unit t is matched to, which is
bounded above by κC . Then problem (3.1) becomes

(3.5) I(m,n) =
∑
t∈T

h(nt),

M =

{∑
c∈C

mtc = nt, t ∈ T ;nt ≤ κC , t ∈ T ;
∑
t∈T

mtc ≤ 1, c ∈ C;

mtc ∈ {0, 1}, t ∈ T , c ∈ C;nt ≥ 0, t ∈ T

}
,

(3.6)

B =

{
−εp

∑
t∈T

h(nt) ≤
∑
t∈T

h(nt)xt,p −
∑
c∈C

(∑
t∈T

mtc
h(nt)

nt

)
xc,p ≤ εp

∑
t∈T

h(nt),

p ∈ P,mtc ∈ {0, 1}, t ∈ T , c ∈ C;nt ≥ 0, t ∈ T

}
.

(3.7)

Here, we let f(x) = x for mean balance. Note that by using transforma-
tions of the covariates, it is possible to balance statistics other than means
[e.g., by mean balancing indicators for the quantiles of x in the treated
units it is possible to approximately balance its marginal distribution; see
Zubizarreta (2012) for details]. Also, note that h(κ) is an increasing, convex
transformation of κ; that is, h(κ) increases as κ increases at a decreasing rate.

However, this optimization problem has the expressions h(nt) and mtc
h(nt)

nt

which are not linear in mtc and nt. To linearize h(nt), we define a new de-

cision variable m
(r)
t , which is 1 if treated unit t is matched with at least

r controls, and 0 otherwise (t ∈ T , r ∈ {1, . . . , κC−1}). This new decision
variable can be written using linear constraints as

m
(r)
t ≤ nt −

r−1∑
s=1

m
(s)
t , t ∈ T , r ∈ {1, . . . , κC−1}(3.8)

κCm
(r)
t ≥ nt −

r−1∑
s=1

m
(s)
t , t ∈ T , r ∈ {1, . . . , κC−1}.(3.9)
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Here we do not need to define the decision variable m
(κC)
t since m

(κC)
t =

nt−
∑κC−1

s=1 m
(s)
t ; therefore, it is not a decision variable. Using the m

(r)
t ’s, we

can rewrite h(nt) as

w
(1)
t := h(nt)

=

κC−1∑
s=1

(
h(s) − h(s−1)

)
m

(s)
t +

(
h(κC) − h(κC−1)

)(
nt −

κC−1∑
s=1

m
(s)
t

)
.

(3.10)

Hence, we can write the objective function in the linear form:
∑

t∈T w
(1)
t .

The next step is to write mtc
h(nt)

nt
in linear form. Define

w
(2)
t :=

h(nt)

nt

=

κC−1∑
s=1

(
h(s)

s
− h(s−1)

s− 1

)
m

(s)
t +

(
h(κC)

κC
− h(κC−1)

κC − 1

)(
nt −

κC−1∑
s=1

m
(s)
t

)
,

(3.11)

where h(0)

0 is set to 0. The expression of interest becomes mtcw
(2)
t which

is still not linear. Therefore, we define the decision variable qtc = mtcw
(2)
t ,

which is equal to w
(2)
t if mtc = 1, 0 otherwise. It can be written using linear

constraints as

qtc ≤ mtc, t ∈ T , c ∈ C(3.12)

qtc ≤ w
(2)
t , t ∈ T , c ∈ C(3.13)

qtc ≥ w
(2)
t − (1−mtc), t ∈ T , c ∈ C.(3.14)

Lastly, we define wc =
∑

t∈T qtc, c ∈ C, and rewrite mean balancing
constraints

(3.15) − εp
∑
t∈T

w
(1)
t ≤

∑
t∈T

w
(1)
t xt,p −

∑
c∈C

wcxc,p ≤ εp
∑
t∈T

w
(1)
t , p ∈ P

This program is no longer a pure integer programming (IP) problem,
as cardinality matching; it is a mixed integer programming (MIP) problem
with considerably less structure than the MIP problem solved by Zubizarreta
(2012). In fact, the constraints (3.8)-(3.15) make the program quite compli-
cated to solve in general.
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3.4. Matching with a flexible 1 : κC/κT : 1 ratio. One step further is to
formulate (3.1) to match with a flexible 1 : κC/κT : 1 matching ratio or full
matching. Due to space constraints, this is discussed in Appendix C.

4. Description of the matches. In our study, we find the matched
sample of green and non-green buildings with largest information content
(3.5) that satisfies the matching structure (3.6) and that balances the orig-
inal covariates in the sense of (3.7). In particular, we match with a variable
1 : κC matching ratio because each geographic cluster has only one green
building and a variable number of non-green buildings. We choose κC = 4
because the gains from matching with a higher 1 : 5 or a 1 : 6 ratio are
not very marked assuming the same number of treated units are matched
[see Table 2 of Haviland et al. (2007)] and because increasing the maxi-
mum matching ratio by one adds 2T constraints and T binary variables to
the mathematical program making it more difficult to solve (see Section 4.4
below).

4.1. Covariate balance. Table 1 shows the absolute standardized differ-
ences in means of the observed covariates before and after matching with
a variable 1 : 4 ratio. In the table, before matching there are a number of
substantial differences, most notably in the building classes, age (>40 years)
and amenities, whereas after matching all these differences are smaller than
0.1. Within the framework of (3.1), we designed the matched sample to be
balanced in this way.
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Table 1
Standardized differences in means before and after matching

Covariate Standardized difference in means
Before matching After matching

Building size 0.362 0.076
Building class A 1.005 0.096
Building class B -0.650 0.053
Building class C -0.557 -0.068
Net contract 0.127 0.020
Employment growth 0.043 0.000
Employment growth missing -0.010 0.000
Age ≤10 years 0.323 0.049
Age 11-20 years 0.400 0.034
Age 21-30 years 0.392 0.018
Age 31-40 years -0.066 -0.044
Age >40 years -0.974 -0.050
Age missing -0.150 -0.007
Renovated -0.389 0.033
Stories low -0.145 -0.066
Stories intermediate 0.032 0.046
Stories high 0.141 0.031
Stories missing -0.061 -0.014
Amenities 0.474 0.079

4.2. Information of the matched samples. Table 2 below shows the in-
formation content or, loosely speaking, the effective samples sizes of the
samples matched with fixed 1 : 1, 1 : 2, 1 : 3 and 1 : 4 ratios, and with
a variable 1 : 4 ratio. With a 1 : 1 ratio or pair matching, the resulting
information content is 666, meaning that 666 buildings were paired. With
fixed 1 : 2, 1 : 3 and 1 : 4 ratios, the information content is equivalent to
757, 708, and 642 pairs, whereas with a variable 1 : 4 ratio it is 941. In other
words, matching with a variable 1 : 4 ratio produces an effective sample size
47% larger than matching with a fixed 1 : 4 ratio. This shows the gains from
matching with a variable ratio.

Table 2
Effective sample sizes as measured by I in (3.5)

Matching structure Information or effective sample size

1 : 1 fixed 666
1 : 2 fixed 757.3
1 : 3 fixed 708
1 : 4 fixed 641.6

1 : 4 variable 940.6
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4.3. Comparison to optimal matching. Following the suggestion of a re-
viewer, we compare our method to optimal matching as implemented in
optmatch (Hansen, 2007). In optimal matching, we calculate the Maha-
lanobis distance with propensity score calipers as suggested in Rosenbaum
and Rubin (1985). For a strict comparison, in both methods we use a variable
1 : 4 matching ratio. As a result, with optimal matching the effective sam-
ple size is somewhat smaller than with our method (730 versus 940.6) and
there are substantial imbalances in several covariates (more than half of the
covariates exhibit differences in means larger than 0.1 standard deviations).
Arguably, covariate balance could be improved by recalculating the covari-
ate distances, but this would involve iteration in order to achieve covariate
balance (as described in Figure 1(a) above). With the proposed method, the
differences in means are constrained to be at most 0.1 standard deviations
by design. However, optmatch is optimal in another important sense — it
minimizes the total sum of covariate distances between matched units —
and it runs in polynomial time, so relatively large data sets can be handled
quickly (Hansen and Klopfer, 2006). As we discuss in the following section,
computation is an important aspect to consider in the implementation of
our method.

4.4. Computation and details of the implementation. Matching with a
variable 1 : κC ratio, (3.5)-(3.15), as in our study, and also matching with a
flexible 1 : κC/κT : 1 ratio, (C.3)-(C.29), as in Appendix C, have more com-
plicated structure than cardinality matching, mainly due to the harmonic
means used in the objective function and mean balancing constraints. Specif-
ically, while cardinality matching with a 1 : 1 ratio and mean balancing has
T × C binary decision variables and T + C + 2 × P constraints, matching
with a variable 1 : κC ratio with harmonic means has additional T×(κC+C)
continuous decision variables and T × (2×κC + 3×C − 1) constraints, after
some simplifications.

Although these two matching problems are considerably larger than car-
dinality matching, by using optimization solvers such as CPLEX and Gurobi
it is still possible to reach solutions with a small optimality gap in a rea-
sonable amount of time depending on the problem size (see Appendix D
for a simulation study using the buildings data). Nemhauser (2013) reports
that algorithmic speed in solvers such as CPLEX and Gurobi has increased
256000 times between 1991 and 2013. This, combined with a modest com-
puter speedup of 1000 times, translates into the ability to solve problems that
took nearly seven years in the early 1990’s to one second today (Nemhauser,
2013). These major improvements have been made possible by a combina-
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tion of advancements in preprocessing and heuristics for finding good feasible
solutions quickly, branch-and-bound methods to reduce the feasible set, lin-
ear programming implementations as the basic tool for solving IP and MIP
problems, and parallel computing [Bixby and Rothberg (2007), Linderoth
and Lodi (2010), Nemhauser (2013); see also Bertsimas (2014) for a related
discussion and applications of MIP to statistical and machine learning].

In addition to these optimization techniques, we used exact matching
constraints on the location covariate (see Appendix E), and divided the
problem into 10 subproblems to solve each of them in parallel. Using the R

packages doParallel and foreach (Weston and Calaway, 2014), we solved
the 10 subproblems independently and simultaneously using 10 processors
with 15-minute time limit. Among these subproblems, one gives the optimal
solution within the time limit, and the others give solutions with about
2% optimality gap at the end of the specified time. This computational
implementation method enables us to solve this problem under 20 minutes.
It would take more than 2 hours to reach the same solution if no parallel
computing methods were used. At the present time, the code that we used
for the analyses is available upon request, but soon it will be available within
the package designmatch for R.

5. Economic performance of green buildings. From our balanced
matched sample, we find that green buildings have 3.3% higher rental rates
per square foot than otherwise similar non-green buildings. The 95% confi-
dence interval associated to this estimate is [1.3%, 5.5%] [obtained using the
inferential procedures in Hansen, Rosenbaum, and Small (2014)]. For com-
parison, this estimate is moderately larger than the one of Eichholtz et al.
(2010), who reported that green buildings have rental rates 2.8% higher per
square foot than similar non-green buildings (with 95% confidence interval
of [1%, 4.6%]).

In principle, our estimand is not the same as the one of Eichholtz et al.
(2010), since our approach restricts the analysis to the sample with largest
information that is balanced, usually discarding some treated units (in our
study, these are 19 out of the 694 green buildings available before matching).
To get a better understanding of our matched sample, in Table 4 of Appendix
F we provide a description of the samples of green buildings before matching,
after matching, and of those green buildings that were unmatched and left
out from the analyses. Overall, this sample closely resembles that of all the
available green buildings before matching, so in principle these results can
be generalized to a population of buildings of similar characteristics.

Next, when conducting a sensitivity analysis to hidden biases, we find that
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for an unobserved covariate to explain away the estimated effect of 3.3% it
would need to simultaneously increase the odds of a building having green
ratings and of a positive difference in rent both by a factor of 1.9, so the
results are only moderately insensitive to hidden biases [see Rosenbaum and
Silber (2009) and Hansen et al. (2014) for details of this analysis].

To interpret these results, let us remember that about 30% of building
operating costs are driven by energy consumption and that green buildings
typically have 25% less energy use and in aggregate 19% lower operating
costs. Therefore, in rough terms, savings from operating costs overcome the
extra amount paid for a green building rent if the rent to operating costs ratio
is 5.75 (= 0.19/0.033) or more. Thus, it is an economically sound decision
for some companies to prefer green buildings and pay more rent. Moreover,
as Eichholtz et al. (2010) mention, even a small improvement on the energy
use of existing buildings has a big impact not only on the economy but also
on the environment. In this way, companies are also willing to pay more to
“go green” for a sustainable environment.

6. Discussion of the proposed matching methods. The main ob-
jective of matching in observational studies is to balance observed covariates
and thereby remove biases due to systematic differences in their distribu-
tions [Cochran (1965), Section 2.2]. As discussed in Section 8.7 of Rosen-
baum (2010), efficiency is a secondary concern in observational studies. The
explanation for this is that if there is a bias that does not decrease as the
sample size increases, then it tends to dominate the mean squared error in
large samples, resulting in a very precise estimate of the wrong quantity
(Haviland et al., 2007). For these reasons, in view of the bias-variance —or,
stated differently, the balance-precision— tradeoff involved in matching, we
give priority to balance over precision, and, subject to removing systematic
biases by balancing covariates, we maximize precision, or more specifically,
the information content of the matched sample.

The framework we proposed in Section 3.1 encompasses these objectives
in a general way. Within this framework, cardinality matching is a special
case when matching with a fixed 1 : κ ratio. Also, the formulations pre-
sented in Section 3.3, and in Appendices B and C, are different methods for
maximizing the information content of a balanced matched sample. Ideally,
if the outcome model follows (2.1) and if the outcome analyses use the effect
estimator (2.5), then one would solve the matching problem in Appendix B,
but as discussed this is a very complicated optimization problem because
the number of matched pairs I is also a decision variable. Interestingly, if the
solution to the cardinality matching problem uses all the available treated
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units, then this solution also minimizes the variance of the effect estimator
(2.5). With other estimators or non-constant variances across units, the for-
mulations in Section 3.3 and Appendix C for matching with a 1 : κC variable
ratio and the more flexible 1 : κC/κT : 1 matching ratio, respectively, may
be more appropriate.7 As discussed in Section 2.3, these formulations are
not only easier to implement but also more intuitive as they maximize the
sum of the Fisher informations of the matched groups.

Building on cardinality matching, the proposed methods do not require
estimation of the propensity score as they directly balance the original co-
variates. Nonetheless, the propensity score may be used as an additional
covariate in the balancing constraints B. In this paper we mainly discussed
mean balancing constraints, but other constraints can be implemented for
distributional balance such as fine balance (Rosenbaum et al., 2007) and
strength-k matching (Hsu et al., 2015); for a related discussion, see Zu-
bizarreta (2012).

Assessing overlap or lack of common support in covariate distributions
is a widespread practice undertaken in observational studies in order to
avoid extrapolating or fabricating results from regression models that as-
sume a particular functional form [Rosenbaum (2010), Section 18.2; Imbens
and Rubin (2015), Chapter 14]. This is typically done in two steps: first,
by trimming the sample on the propensity score, and second, by checking
balance. For instance, Imbens (2015) suggests dropping units with extreme
values of the estimated propensity score (Crump et al., 2009) and then check-
ing balance in normalized differences in average covariates. As in cardinality
matching, the methods proposed in this paper directly “trim” the sample to
satisfy the requirements for covariate balance of the original covariates. To
the extent that these requirements balance the covariates adequately, these
methods will avoid extrapolation by restricting the analysis to the matched
treated and control samples that overlap the most (again, in the sense of
information and the balance requirements).

Of course, restricting the analysis to the samples of treated and control

7 In model (2.1) we assumed that the variance is constant across units. One way to
relax this assumption is to suppose instead that the variance in the treated group is f
times bigger than the variance in the control group. Then h(κ) becomes the sum of the
harmonic means of 1 (treated unit) and κi/f (“control” units) for each matched group
(as opposed to 1 and κi, as before). As another example, suppose that the variance in
one category of a binary covariate is f times bigger than in the other category. Then the
weighting becomes h(κi)/f for the matched group with greater variance and emphasizing
to match f times as many groups from the strata with smaller variance. Extending on
this example, there may be important strata and one could estimate the variance in those
strata and plug in the estimates, but this would require using the outcomes for matching.
In general, if the variances vary arbitrarily, then the weights become intractable.
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units that overlap will typically change the estimand. In the case that treated
units are matched to a subset of the controls, the estimand will cease to be
the average treatment effect on the treated and it will become a more local
estimand, the average treatment effect on the matched treated units. In view
of this limitation of the data, one way to proceed without further modeling
assumptions is by describing both the matched and unmatched samples as in
Appendix F. This provides a basic understanding of the population to which,
in principle, the results of the matched analysis can be generalized [Hill
(2008); see also Traskin and Small (2011) and Fogarty et al. (2015)]. Another
way to proceed is by weighting the matched samples to a target population
of greater policy interest perhaps by using the method in Zubizarreta (2015).

In cardinality matching, finding the largest balanced matched sample is
followed by re-matching the pairs or groups that constitute the matched
sample to minimize their total sum of covariate distances. If these covariates
are predictive of the outcome, this re-matching will reduce heterogeneity
within matched groups and therefore sensitivity to biases due to unobserved
covariates (Rosenbaum, 2005). A possible direction for future research would
be to extend the proposed methods along these lines. Also, the proposed
methods can be used for adjustment in observational studies with a time-
dependent treatment and time-dependent covariates via risk set matching
[Li et al. (2001), Lu (2005)]. Under weaker identification assumptions than
those of “no unmeasured confounders,” the proposed methods can also be
used for treatment effect estimation with an instrumental variable [Baiocchi
et al. (2010), Zubizarreta et al. (2013)] or a discontinuity design (Keele et al.,
2015).

7. Summary. In this paper we revisited the study of Eichholtz et al.
(2010) about the market performance of green buildings. To analyze the ef-
fect of energy efficiency and sustainability on the economic returns of build-
ings, we used new matching methods that take more advantage of the clus-
tered structure of the buildings data than standard matching methods. We
proposed a general framework for matching in observational studies and spe-
cific matching methods within this framework that simultaneously achieve
three goals: (i) maximize the information content of a matched sample (and,
in some cases, also minimize the variance of a widely used effect estimator);
(ii) form the matches using a flexible matching structure (such as a one-to-
many/many-to-one structure); and (iii) directly attain covariate balance as
specified —before matching— by the investigator. To our knowledge, exist-
ing matching methods are only able to achieve, at most, two of these goals
simultaneously. Using these methods, we obtained a larger effective sample
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size and found that green buildings have 3.3% higher rental rates per square
foot than otherwise similar buildings without green ratings [a moderately
larger effect than the one previously found by Eichholtz et al. (2010)]. Thus,
besides being environmentally responsible it is also an economically sound
decision to pursuit environmentally sustainable building practices.
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APPENDIX A: COMPUTATIONAL COMPLEXITY OF
CARDINALITY MATCHING

In complexity theory, computational problems are categorized in terms
of their inherent difficulty, usually in connection with the time it takes to
find a solution (Papadimitriou, 1994). While some problems can be solved
quickly, with algorithms that run in polynomial time, other problems can-
not. Problems that can be solved with polynomial time algorithms are con-
sidered tractable in the sense that the number of arithmetic steps it takes
to solve a problem instance increases as a polynomial function of the size
of the problem. For instance, the assignment problem of matching treated
and controls units to minimize the total sum of covariate distances between
matched units [as in Rosenbaum (1989)] is considered tractable because it
has a worst-case time bound of O(U3) where U is the number of units avail-
able before matching [Kuhn (1955), Bertsekas (1981), Papadimitriou and
Steiglitz (1982)]. General IP and MIP problems are NP-hard in the sense
that no polynomial time algorithm has been found to solve any problem in
their general class so far.

Cardinality matching (3.2)-(3.4) is an IP problem and, although a polyno-
mial time algorithm has not been found to solve this specific problem, from
a user standpoint the time it takes in practice to solve a typical instance
of this problem is comparable to the time it takes to solve the assignment
problem. In the cardinality matching problem the constraint matrix defined
by (3.3)-(3.4) is not totally unimodular (meaning that the feasible region it
defines is not an integral polyhedron, so the problem cannot be solved by
relaxing the original problem and solving a linear program as in the assign-
ment problem), however there is much structure in the constraints (3.3)-(3.4)
so it can be solved in reasonable time with modern optimization solvers.
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APPENDIX B: MATCHING TO MINIMIZE THE VARIANCE OF A
DIFFERENCE-IN-MEANS EFFECT ESTIMATOR

Consider the effect estimator (2.5) and calculate its variance

(B.1)
∑
i∈I

Var(δ̂) =
σ2

I2

∑
i∈I

(
1 +

1

κi

)
.

Ideally, within the matching framework of (3.1), we would define the infor-
mation content I as the inverse of this variance; however, since the number
of matched pairs I is also a decision variable, the resulting optimization
problem is very complicated. A simplification is to fix I by matching all the
treated units with a variable 1 : κC ratio. For fixed I, the variance of the
effect estimator is proportional to

(B.2)
∑
i∈I

Var(δ̂) ∝
∑
i∈I

1

κi
.

Put `(κi) = 1
κi

. Since maximizing the inverse of the variance is equivalent
to minimizing the variance, the problem we want to solve can be written as

(B.3) min
m,n
{V(m,n) : (m,n) ∈M∩ B}

where

(B.4) V(m,n) =
∑
t∈T

`(nt),

M =

{∑
c∈C

mtc = nt, t ∈ T ;nt ≤ κC , t ∈ T ;
∑
t∈T

mtc ≤ 1, c ∈ C;

mtc ∈ {0, 1}, t ∈ T , c ∈ C;nt ≥ 1, t ∈ T

}
,

(B.5)

B =

{
−εpT ≤

∑
t∈T

xt,p −
∑
c∈C

(∑
t∈T

mtc`
(nt)

)
xc,p ≤ εpT,

p ∈ P,mtc ∈ {0, 1}, t ∈ T , c ∈ C;nt ≥ 1, t ∈ T

}
.

(B.6)
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Note that the set B above is only written for mean balancing constraints.
In a similar way to the model described in the paper, `(nt) and mtc`

(nt) have

to be linearized usingm
(r)
t s (t ∈ T , r ∈ {2, 3, . . . , κC−1}). The only difference

is we do not need m
(1)
t , it is set to 1 since all treated units are forced to be

matched with at least one control unit in this formulation. Therefore,

m
(r)
t ≤ nt −

r−1∑
s=2

m
(s)
t − 1, t ∈ T , r ∈ {2, . . . , κC−1}(B.7)

κCm
(r)
t ≥ nt −

r−1∑
s=2

m
(s)
t − 1, t ∈ T , r ∈ {2, . . . , κC−1},(B.8)

and

wt := `(nt)

= 1 +

κC−1∑
s=2

(
1

s
− 1

s− 1

)
m

(s)
t +

(
1

κC
− 1

κC − 1

)(
nt −

κC−1∑
s=2

m
(s)
t − 1

)
.

(B.9)

To linearize mtc`
(nt), define qtc = mtc`

(nt) which can be formulated as

qtc ≤ mtc, t ∈ T , c ∈ C(B.10)

qtc ≤ wt, t ∈ T , c ∈ C(B.11)

qtc ≥ wt − (1−mtc), t ∈ T , c ∈ C.(B.12)

Lastly, we define wc =
∑

t∈T qtc, c ∈ C, and rewrite mean balancing con-
straints

(B.13) − εpT ≤
∑
t∈T

xt,p −
∑
c∈C

wcxc,p ≤ εpT, p ∈ P.

APPENDIX C: MATCHING WITH A FLEXIBLE 1 : κC/κT : 1 RATIO

First, let us define gt and gc

gt =

h
(nt) if nt ≥ 2∑
c∈Cmtc

h(nc)

nc
if nt ≤ 1

t ∈ T ,(C.1)

gc =

h
(nc) if nc ≥ 2∑
t∈T mtc

h(nt)

nt
if nc ≤ 1

c ∈ C.(C.2)
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Then, the problem can be formulated as

(C.3) I(m,n) =
∑
t∈T

gt,

(C.4) M =M1 ∩M2 ∩M3

where
(C.5)

M1 =

{∑
c∈C

mtc = nt, t ∈ T ;nt ≤ κC , t ∈ T ;mtc ∈ {0, 1}, nt ≥ 0, t ∈ T

}
,

(C.6)

M2 =

{∑
t∈T

mtc = nc, c ∈ C;nc ≤ κT , c ∈ C;mtc ∈ {0, 1}, nc ≥ 0, c ∈ C

}
,

M3 = {(nt − 1)(nc − 1)mtc = 0, t ∈ T , c ∈ C;mtc ∈ {0, 1}, t ∈ T , c ∈ C;
nt ≥ 0, t ∈ T ;nc ≥ 0, c ∈ C} ,

(C.7)

and

B =

{
−εp

∑
t∈T

gt ≤
∑
t∈T

gtxt,p −
∑
c∈C

gcxc,p ≤ εp
∑
t∈T

gt, p ∈ P;

mtc ∈ {0, 1}, t ∈ T , c ∈ C;nt ≥ 0, t ∈ T ;nc ≥ 0, c ∈ C

}
.

(C.8)

Note that gt, gc and the constraint set M3 have to be written in linear

form. Let us define m
(r)
c , w

(1)
c and w

(2)
c analogous to m

(r)
t , w

(1)
t , and w

(2)
t .

The decision variable m
(r)
c is equal to 1 if control unit c is matched with at

least r number of treated units, and 0 otherwise (c ∈ C, r ∈ {1, . . . , κT −1}).
With linear constraints

m(r)
c ≤ nc −

κT −1∑
s=1

m(s)
c , c ∈ C, r ∈ {1, . . . , κT − 1}(C.9)

κTm
(r)
c ≥ nc −

κT −1∑
s=1

m(s)
c . c ∈ C, r ∈ {1, . . . , κT − 1}(C.10)
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Using m
(r)
c ,

w(1)
c :=

κT −1∑
s=1

(
h(s) − h(s−1)

)
m(s)
c +

(
h(κT ) − h(κT −1)

)(
nc −

κT −1∑
s=1

m(s)
c

)
,

(C.11)

w(2)
c :=

κT −1∑
s=1

(
h(s)

s
− h(s−1)

s− 1

)
m(s)
c +

(
h(κT )

κT
− h(κT −1)

κT − 1

)(
nc −

κT −1∑
s=1

m(s)
c

)
,

(C.12)

where h(0)

0 is set to 0.
Now, we can rewrite gt and gc as

gt =

{
w

(1)
t , if m

(2)
t = 1∑

c∈Cmtcw
(2)
c , if m

(2)
t = 0

, t ∈ T(C.13)

gc =

{
w

(1)
c , if m

(2)
c = 1∑

t∈T mtcw
(2)
t , if m

(2)
c = 0

. c ∈ C(C.14)

The expressions mtcw
(2)
c and mtcw

(2)
t are still not in linear form; there-

fore, we define two new sets of decision variables utc := mtcw
(2)
c and vtc :=

mtcw
(2)
t , and formulate them in the following way:

utc ≤ mtc, t ∈ T , c ∈ C(C.15)

utc ≤ w(2)
c , t ∈ T , c ∈ C(C.16)

utc ≥ w(2)
c − (1−mtc), t ∈ T , c ∈ C(C.17)

vtc ≤ mtc, t ∈ T , c ∈ C(C.18)

vtc ≤ w(2)
t , t ∈ T , c ∈ C(C.19)

vtc ≥ w(2)
t − (1−mtc). t ∈ T , c ∈ C(C.20)
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As the last step, we write gt and gc using conditional constraints

gt ≤ h(κC)m(2)
t +

∑
c∈C

utc, t ∈ T(C.21)

gt ≤ 1−m(2)
t + w

(1)
t , t ∈ T(C.22)

gt ≥
∑
c∈C

utc − κCm(2)
t , t ∈ T(C.23)

gt ≥ w(1)
t −

(
1−m(2)

t

)
h(κC), t ∈ T(C.24)

gc ≤ h(κT )m(2)
c +

∑
t∈T

vtc, c ∈ C(C.25)

gc ≤ 1−m(2)
c + w(1)

c , c ∈ C(C.26)

gc ≥
∑
t∈T

vtc − κTm(2)
c , c ∈ C(C.27)

gc ≥ w(1)
c −

(
1−m(2)

c

)
h(κT ). c ∈ C(C.28)

Finally, constraint set M3 can be written in linear form as

m
(2)
t +m(2)

c ≤ 2−mtc. t ∈ T , c ∈ C(C.29)

APPENDIX D: RUNNING TIMES

Here we present the results of a small simulation study to provide a sense
of the running times of the proposed methods. In the original data, we have
694 clusters with one treated (green) building and multiple control buildings.
In the simulation study, we randomly selected 100, 500 and 2000 clusters
with replacement, and for each of these number of clusters we tested our
method with different number of covariates: 5, 10, 20, and 50. For covariate
sizes 5 and 10 we randomly selected the covariates from our covariate set,
and for covariate sizes 20 and 50 (since there are not that many covariates
to begin) we included interactions of covariates that are fairly independent
of each other. As in the actual study, we divided each of the optimization
problem into 10 subproblems using exact matching constraints (as explained
in Appendix E) and solved each of them in parallel. We gave a time limit
of 60 minutes to each of the problems. The results are presented in the
following tables.

Table 3(a) presents the running times and optimality gaps for the method
used in the actual study; this is, matching with a variable 1 : 4 ratio with
the weighted balancing constraints (3.7). In each cell of the table, the first
row shows the running time of the optimization problem, which is the max-
imum running time of the 10 subproblems. (Since these problems are run in
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parallel, the total running time of the optimization portion is the maximum
running time of all the subproblems. A running time greater than 60 minutes
indicates that an optimal solution would be found after the reported dura-
tion.) The second row shows the optimality gaps in terms of the maximum
effective sample size reached in the given time limit and the tightest upper
bound found by the solver after the branch and bound procedure also within
the time limit. One can evaluate how close the provided solution is to the
theoretical solution from these numbers. In the table, we observe that one
can obtain relatively small optimality gaps within the time limit for samples
of size (nt, nc) ≈ (500, 5000), and for larger sample sizes if the number of
covariates is smaller than 10.

As described in Appendix E, one way to decrease the complexity of the
problem, and therefore to reduce computing times is by omitting the weights
in the balancing constraints. Table 3(b) presents the results for this approach
with a time limit of 15 minutes for each of the optimization problems. Within
this time limit, it is possible to find solutions with a small optimality gap
for all the instances in the table.
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Table 3
Running times and optimality gaps for matching for different combinations of sample

sizes and number of covariates. The running times are reported in minutes and the
optimality gaps appear in terms of two numbers: the best solution found within the given
time limit and the bounding (perhaps infeasible) solution found also within the time limit.

(a) Matching with a variable 1 : 4 ratio with the weighted balancing constraints (3.7)

Number of units Number of covariates
(nt, nc) 5 10 20 50

(100, 1228)
0.1 60.0 60.0 0.1

130.3–130.3 123.1–123.8 77.2–77.5 62.2–62.2

(500, 5237)
60.0 60.0 60.0 60.0

673.4–690.6 655.2–678.4 617.8–646.8 535.7–574.9

(1000, 10806)
60.0 60.0 60.0 60.0

1355.5–1405.8 1332.0–1391.4 1274.4–1365.1 1165.8–1286.8

(2000, 21190)
60.0 60.0 60.0 60.0

2700.3–2876.7 2630.0–2869.2 2468.7–2864.6 2244.4–2750.7

(b) Matching with a variable 1 : 4 ratio with the unweighted balancing constraints (3.4)

Number of units Number of covariates
(nt, nc) 5 10 20 50

(100, 1228)
0.1 0.1 0.1 0.1

132.4–132.4 127.0–127.0 78.9–78.9 66.2–66.2

(500, 5237)
0.1 0.2 15.0 15.0

700.5–700.5 692.1–692.1 658.4–658.4 585.8–592.5

(1000, 10806)
1.7 0.3 15.0 15.0

1405.3–1405.3 1397.2–1397.2 1366.0–1367.9 1288.6–1293.1

(2000, 21190)
0.5 15.0 15.0 15.0

2841.1–2841.1 2827.8–2827.9 2781.0–2782.7 2677.0–2683.5

APPENDIX E: DEVICES FOR SPEED

One tactic for more quickly solving the previous matching problems is
exact matching for nominal covariates of prognostic relevance or which are
to be used for subgroup analyses. Let x·,p be a nominal covariate taking
integer values ñ ∈ N ⊂ N. To match exactly for x·,p, one possibility is to
include the constraint

(E.1)
∑
t∈T

∑
c∈C

mtc

∣∣1xt,p=ñ − 1xc,p=ñ∣∣ = 0, ∀ñ ∈ N ,

where 1 is the indicator function. Exact matching constraints reduce the fea-
sible region considerably and therefore the optimal solution is found faster.
Another possibility to match exactly for x·,p is to divide the dataset into
smaller, mutually exclusive and collectively exhaustive pieces based on the
categories of N and solve a matching problem for each piece in parallel. If
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the problem is run on a machine with multiple processors and/or multiple
cores, each subproblem can be assigned to be solved independently by a
processing unit. The default settings in R do not use all the cores available
in the machine running the code; however, there are some packages available
to create a parallel backend so that independent subproblems can be solved
simultaneously on different processing units [see, for instance, Weston and
Calaway (2014) for the R packages doParallel and foreach].

Other tactics that can be used to attain computational speedups include
simplifying the matching problem by eliminating the harmonic mean weights
from the balancing constraints (but not the objective function) or using
Yoon’s (2009) entire number to determine the matching ratio for each unit
before matching (Zubizarreta, 2012). However, we do not recommend the
first of these approaches because it results in an inconsistency between the
balance criteria used to assess the quality of the match and the balance crite-
ria needed for unbiased estimation with an estimator that uses the harmonic
mean weights. Also, we are not enthusiastic about the second approach be-
cause it requires that one estimate the propensity score in order to calculate
the entire number.
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APPENDIX F: DESCRIPTION OF THE MATCHED SAMPLE

Table 4 below describes the samples of green buildings before matching,
after matching and of those green buildings that were left out from the
matched analyses due to lack of good controls. We observe that the sample
of matched green buildings is very similar to that of all the green buildings
(after all, only 19 green buildings were unmatched and left out from the anal-
yses). Among others, the unmatched buildings are larger on average, have
better quality (are all in class A and have a higher proportion of amenities),
are not very old, less of them are renovated, and have high stories.

Table 4
Means and sizes of the samples of green buildings before matching (“All”), after

matching (“Matched”) and of those green buildings that were left out from the analyses
due to lack of good controls (“Unmatched”).

Covariate Sample
All Matched Unmatched

Building size 0.324 0.327 0.520
Building class A 0.794 0.780 1.000
Building class B 0.195 0.207 0.000
Building class C 0.012 0.012 0.000
Net contract 0.058 0.059 0.053
Employment growth 0.035 0.037 -0.028
Employment growth missing 0.009 0.009 0.000
Age ≤10 years 0.143 0.140 0.158
Age 11-20 years 0.241 0.234 0.316
Age 21-30 years 0.434 0.425 0.526
Age 31-40 years 0.111 0.120 0.000
Age >40 years 0.059 0.066 0.000
Age missing 0.013 0.014 0.000
Renovated 0.210 0.213 0.158
Stories low 0.463 0.455 0.211
Stories intermediate 0.267 0.264 0.263
Stories high 0.271 0.281 0.526
Stories missing 0.000 0.000 0.000
Amenities 0.718 0.711 0.895

Sample size 694 675 19
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