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ABSTRACT
The public cloud “infrastructure as a service” market pos-
sesses unique features that make it difficult to predict long-
run economic behavior. On the one hand, major providers
buy their hardware from the same manufacturers, operate
in similar locations and offer a similar menu of products.
On the other hand, the competitors use different propri-
etary “fabric” to manage virtualization, resource allocation
and data transfer. The menus offered by each provider in-
volve a discrete number of choices (virtual machine sizes)
and allow providers to locate in different parts of the price-
quality space. We document this differentiation empirically
by running benchmarking tests. This allows us to calibrate
a model of firm technology. Firm technology is an input
into our theoretical model of price-quality competition. The
monopoly case highlights the importance of competition in
blocking “bad equilibrium” where performance is intention-
ally slowed down or options are unduly limited. In duopoly,
price competition is fierce, but prices do not converge to
the same level because of price-quality differentiation. The
model helps explain market trends, such the healthy oper-
ating profit margin recently reported by Amazon Web Ser-
vices. Our empirically calibrated model helps not only ex-
plain price cutting behavior but also how providers can man-
age a profit despite predictions that the market “should be”
totally commoditized.
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1. INTRODUCTION
Cloud computing uses two key pieces of technology. The

first is virtualization, the ability to create a simulated envi-
ronment that can run software just like a physical computer.
Virtualization is governed by the “cloud fabric,” which func-
tions as the hypervisor, scheduler and manages fault toler-
ance. The second piece is network communication protocol,
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both within the datacenter and between different datacen-
ters. While both technologies have been around for decades,
there have been many proprietary advances and thus the
quality of the service offered can vary, even when datacen-
ters use the same underlying physical hardware. An analogy
is the operating system of a single computer—firms invest in
operating system technology to improve performance given
the expected capabilities of the underlying hardware.

While the importance of these technologies is widely re-
searched in the systems community (see e.g., [21, 23]), the
“infrastructure as a service” public cloud marketplace is of-
ten described as “commoditized” from an economic compe-
tition perspective [17]. The reasoning is putatively straight-
forward. Since cloud providers use similar, if not identi-
cal, physical hardware they cannot meaningfully differen-
tiate their products and thus profit margins should con-
verge to zero. We begin our analysis by empirically assess-
ing this claim by running a series of benchmarking work-
loads across two major provider’s various service levels (“vir-
tual machine” (VM) size), similar to the approach used in
[16]. We find different run-times for similarly described of-
ferings, such as “2 virtual cores, 4GB memory.” While run-
time decreases for both providers as one moves to larger
VMs, the price-performance trade-offs are different, which
means there are different feasible price-quality combinations.
We formalize this insight with a two-parameter model of
the firm’s production technology and the calibrated model
achieves good fit to our data.

The fitted parameters are used in our theoretical model
as one source of differentiation across firms. We view these
technologies as fixed for our analysis, imagining they are
the result of countless engineering decisions made over the
years. Endowed with a technology, firms then choose perfor-
mance menus, which provides a second source of potential
differentiation. A performance menu is a set of VMs with
different CPU, memory and disk configurations. For exam-
ple, Amazon Web Services (AWS) offers about 20 different
VM configurations, ranging from low performance “micro”
to high performance “extra large.” We model customers as
having heterogeneous types with varying sensitivity to job
completion time, but with a common job completion valua-
tion and workload requirement. Customers choose optimally
from the price-quality menus provided by firms.

We start with the monopoly case. There are a number
of reasons this is a useful starting point even though most
large regional markets are not currently characterized by
monopoly. First, SEC Filings reveal that AWS is currently
many times larger than the next closest competitor, indi-



cating that one provider “pulling away” from the competi-
tion is certainly not implausible. Second, smaller countries
often have only a single major provider with a datacenter
within national boundaries. Finally, a customer that has
used a given provider for some time could face large switch-
ing costs, leading to potential monopolistic dynamics tar-
geted at “locked in” customers.

For the monopoly case, we characterize the optimal base
price, quality level and associated customer demand func-
tions. Interestingly, under some conditions, offering an ad-
ditional quality level does not generate more revenue. We
provide sufficient conditions for when a firm should offer
multiple quality levels. The conditions show that when the
quality level is increasing almost linearly in price and there
are some customer types in the system that are highly sensi-
tive to delay, offering an additional higher quality products,
up to a point, generates more revenue.

The results also reveal an interesting dynamic with respect
to customer valuations and quality. When valuations in-
crease, the optimal strategy for the service provider is to in-
tentionally degrade the quality level of lower tier offerings as
opposed to increasing the unit price. While this might sound
counter-intuitive at first, it is readily understood by recog-
nizing that customers are paying per time-unit. A higher
quality product is not only more expensive, but offers faster
runtime—the faster runtime reduces the net payment on the
margin. As valuations increase, there is an incentive to make
the low quality options less attractive to “high types.” By
damaging the product, it is effectively more expensive and
less attractive due to increased delay. This“double dividend”
for damaging the good has previously been observed in the
computing hardware and shipping/transport industries [13].
Overall, the results for the monopoly case highlight the nu-
anced role of competition in this marketplace.

We next move on to the duopoly case. We start by char-
acterizing the Nash equilibrium when each service provider
is restricted to offer only one quality level. In this case the
higher quality provider attracts high-type customers (the
ones that are more sensitive runtime delays) at a higher
price. In other words, there is stable differentiation on the
quality dimension. When providers are allowed to offer mul-
tiple quality levels, we no longer have a closed form solution.
We thus simulate the game under different market settings
where providers compete in base price level. Interestingly,
prices do not converge and instead display Edgeworth cycles
(as in [18]). The intuition for these cycles is the standard
one, with a a bit of tweak. Despite the quality differentia-
tion, the goods are relatively good substitutes for each other
and thus Bertrand-like price competition leads to successive
undercutting of price, albeit at different price levels (the
tweak). That is, prices move in parallel down to a point of
very low returns for the firm. At this point, a war of attri-
tion ensues and one firm “leads” the pair back up to a higher
price point and the cycle repeats.

Past research has shown that these types of cycles, though
commonly predicted, are empirically quite rare. Exceptions
occur in markets where prices change flexibly and there are
other sources of price volatility (e.g. due to cost shifters such
as oil prices in the retail gasoline market [20]). Perhaps un-
surprisingly, then, we do not observe classical Edgeworth
cycles in cloud computing. It turns out, however, that once
we consider important market features the observed price

patterns share qualitatively similar features with classic cy-
cles.

The most important dynamic is the relatively rapid re-
ductions in the cost per compute cycle due to technolog-
ical advances, which are commonly attributed to Moore’s
law. In reality the situation is more complex, with Moore’s
law slowly giving way and other advances breaking through
[12]. Nonetheless, these advances provide both a real decline
in costs for the provider and a strong consumer perception
that prices should fall, not rise. In practice, cloud providers
tend to replace physical hardware approximately every three
years. The release of new hardware enables new, superior
“generations” of VMs. But the old generations can nonethe-
less be virtualized on the new hardware, just with less phys-
ical resources required than before and thus at a lower cost.
This means constant prices for older generations are effec-
tive increases relative to costs. We examine historical prices
and observe that the largest provider, AWS, tends to offer
newer generations at lower prices and keep older generation
prices relatively high. Indeed we document that older, infe-
rior generations are often priced higher than the comparable
VMs in the new generations. So while the model predicts
varying intensity of price competition over time, in practice
we observe this variance across products by release date. In
other words, some “regions” of the product space have vig-
orous competition—we view this as substantively similar to
the cycling prediction.

Further, we highlight that our model predicts that price
differences can be maintained in equilibrium and the market
will not totally commoditized. Interestingly, in the Summer
of 2015 one major provider dropped prices rather substan-
tially and the other two major providers did not follow suit.
Our model gives a rigorous explanation as to why.

Related Literature. To the best of our knowledge, it
is the first paper that models the cloud computing prod-
ucts from price-quality perspective under competition. The
analysis draws on three main streams of literature. The first
is from economics and marketing literature on price-quality
competition. Most papers here focus on the case when play-
ers are symmetric and each player chooses one quality and
one price under competition or one player chooses two dis-
tinct quality levels under monopoly ([18, 19, 25]). Here we
have two asymmetric players each choosing multiple quality
levels and prices, and both quality levels and prices are in-
terdependent, which is why we have to rely on simulations
at times.

The second stream of literature is on cloud pricing. [8,
27] look at the problem from a higher level and try to find
the best pricing strategy by offering the same product in
different pricing mechanisms. In this work, we aim to find
a revenue maximizing price-quality menu with fixed prices.
There are papers on competition in an oligopoly market with
multiple providers. [14] studies non-cooperative competition
model in a cloud market and computes an equilibrium price.
However, each player has single product type in this study.
[10] studies the price competition in cloud computing by
considering all three layers of cloud. Our focus in this study
is only the IaaS market.

The third stream is the analysis reports prepared by pri-
vate cloud companies ([2, 3, 7]). They investigate the per-
formance of different cloud providers from different angles.
Although their methodology contains extensive performance
analysis, it does not have a solid economic framework, and



performance values and units prices are not incorporated
into the analysis in a transparent manner.

2. MODEL
On the customer side, there are n customer types indexed

by i, where customer type i has a valuation (vi), delay sen-
sitivity (ci), both per unit time of workload1 under nominal
quality level, and arrival rate (λi). We assume there is only
one type of workload which can be parallelizable up to a
certain extent, and all customer types need to run the same
workload. We relax this assumption and discuss the results
in §5.

On the provider side, there arem different service providers
indexed by j, where service provider j chooses a base qual-
ity level qj1 (0 < qj1 < q̄j), where q̄j is the maximum base
quality level that can be offered, price per unit time for the
base quality level pj1, and number of quality levels to offer
Lj . Each service provider has an inherent performance scal-
ing factor αj determined by the structure and technology
used (which will later estimate, 0.5 < αj < 1), and each
offers a price-quality menu (pjk, qjk), where pjk = 2k−1pj1,
qjk = 2k−1αk−1

j qj1 for k = 1, 2, . . . , Lj .
The size of a workload is defined as the time it takes to

complete the job using a baseline quality product. We are
assuming job completion time function W (w, q) := w

q
where

w is the completion time of a job under baseline quality and
q is the quality level.

The utility of customer type i with workload w, choosing
quality level k of service provider j is

Uijk = viw − ciW (w, qjk)− pjkW (w, qjk)

= w

(
vi −

ci + 2k−1pj1

2k−1αk−1
j qj1

)
,

with Uij0 = 0 representing the no-buy option.
Then, customer type i chooses quality level k∗ of service

provider j∗, where

j∗ = argmax
j∈{1,2,...,m}

{ max
k∈{0,1,2,...,Lj}

Uijk} and

k∗ = argmax
k∈0,1,2,...,Lj∗

Uij∗k.

Service providers are revenue maximizers.2 Assuming each
customer type has workload w, the revenue function for ser-
vice provider j is

Πj(pj1, qj1) = w

 ∑
i∈Sj1

λi
pj1
qj1

+
∑
i∈Sj2

λi
pj1
αjqj1

+ . . .

+
∑

i∈SjLj

λi
pj1

α
Lj−1

j qj1

 ,
where Sjk is the set of customer types that choose quality
level k of service provider j (k = 1, 2, . . . , Lj).

Model Validity. All big cloud providers offer different
product families to their customers, and each product family
is customized for special kind of workloads. Amazon has t2,

1We use workload and job interchangeably throughout the
paper.
2We later discuss how to incorporate costs in the analysis.

m4, c4 ; Google has standard, high-mem; and Microsoft has
A, D, G, to name a few ([1, 5, 6]). In most of these prod-
uct families companies offer 4 different product sizes with
different prices; however, what they actually pick is a base
level product configuration and a price for this base level.
Once the base level is picked, second product is configured
as the double the size of the base product with twice the
price, third product is configured as the double of the sec-
ond product, and finally fourth is configured as the double
of the third product. Price - Configuration menu for Mi-
crosoft’s D product family with Linux Machine for Central
US region is given in Table 1 as an example of this structure.

Table 1: Azure Price - Configuration Menu
Product Cores Ram Disk Sizes Unit Price

D1 1 3.5 GB 50 GB $0.077/hr
D2 2 7 GB 100 GB $0.154/hr
D3 4 14 GB 200 GB $0.308/hr
D4 8 28 GB 400 GB $0.616/hr

To validate our price-quality model, we have picked two
service providers (a and b) with one product family for each.
Therefore, we have products ai and bi, lower i indicating
smaller size product, with unit prices 2i−10.100 and 2i−10.126
(i = 1, 2, 3, 4) for providers a and b, respectively.3 The
workload we have chosen for this experiment is DaCapo ([4,
11]). DaCapo is a benchmark suite that runs different Java
workloads with non-trivial memory loads. We have run the
workload once a day for one week at the same time for both
providers with different product sizes in similar regions. Av-
erage running times and cost values are summarized in Table
2.4 Contrary to the previous literature ([22, 24, 26]), our ex-
periment with one type of workload has shown that the job
completion time does not vary too much over time for the
same product (the average standard deviation in comple-
tion time is less than 5% of the mean completion time per
product), unless the product is a burstable type product, or
has a shared CPU (t2 product family in AWS, f1-micro in
Google).

Table 2: Price-Quality Comparison
Product Unit Price Avg. Comp. Time Total Cost

a1 $0.100/hr 738.14 sec $0.021
a2 $0.200/hr 490.47 sec $0.027
a3 $0.400/hr 383.90 sec $0.043
a4 $0.800/hr 360.57 sec $0.080
b1 $0.126/hr 719.71 sec $0.025
b2 $0.252/hr 468.00 sec $0.033
b3 $0.504/hr 360.71 sec $0.051
b4 $1.008/hr 308.71 sec $0.086

Figure 1 shows how products are located in time/cost
space for this specific workload. User utility increases as
we move towards the origin, as it signals faster performance
and lower cost. Interestingly, all product offerings are Pareto
efficient, that is, there is no product that is both cheaper and

3For anonymity, names are filtered and unit prices are trans-
formed.
4In total cost calculations, it is assumed that cost is incurred
per second basis.



faster than any other products. Therefore, each product can
be chosen by a rational customer based on her time/cost
trade-off. Since users differ with respect to time sensitivity,
they will choose different performance level.
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Figure 1: Completion Time vs Total Cost

Assuming w = 1000 for the workload we are experiment-
ing with, we try to estimate the scaling factor and base qual-
ity level for both products. We find that (α1, q1) = (0.693,
1.355), and (α2, q2) = (0.616, 1.733) for service providers a
and b. respectively. The mean percentage absolute error of
our fit is 8% for both providers.5 Hence, we can conclude
that our model with quality level function 2k−1αk−1

j qj1 is
fairly realistic. Note that in reality, α value is not only
provider dependent, but also workload dependent. No mat-
ter how good infrastructure one provider has, if the workload
to be run is not parallelizable, α value would end up being
low. We are doing our analysis for a specific type of work-
load which is fairly parallelizable, and we discuss possible
extensions to this in §5. Reader may refer to [9] and [15] for
detailed analysis on maximum achievable performance gain
with parallelization formulations based on workload type.

3. REVENUE MAXIMIZATION UNDER
MONOPOLY

After describing our model and validate it, we start our
analysis with a monopolistic, revenue maximizing service
provider, and therefore, drop the subscript j. In the first
part of this section, we allow the provider to set both base
price and quality level, and in the second part we maximize
the provider’s revenue for a given base quality level and we
provide some numerical examples.

3.1 Optimal Price-Quality Menu
The service provider chooses base quality level q1, base

price level p1 and number of quality levels to offer L; scaling
factor α is endogenous.

The revenue of the monopolistic service provider when she
offers only one quality level (q1):

Π1(p1, q1) =
∑

i∈I(p1,q1)

λip1
w

q1
,

5The accuracy of our fit is not dependent on w = 1000
assumption. Any w would yield the same accuracy.

where I(p1, q1) is the set of customer types that choose to
buy the product when the price is p1 and the quality level
is q1.

When the service provider offers two quality levels (q1, 2αq1),
the revenue becomes

Π2(p1, q1) =
∑

i∈I1(p1,q1)

λip1
w

q1
+

∑
i∈I2(p1,q1)

λip1
w

αq1
,

where I1(p1, q1) is the set of customer types that choose
to buy the low quality product and I2(p1, q1) is the set of
customer types that choose to buy the high quality product
when the price-quality menu is {(p1, q1), (2p1, 2αq1)}.

Lemma 1. I1(p1, q1) ∪ I2(p1, q1) ⊇ I(p1, q1). for any
(p1, q1).

Proof. Suppose i ∈ I(p1, q1) and i 6∈ I1(p1, q1)∪I2(p1, q1).

If i ∈ I(p1, q1), then vi ≥
ci + p1

q1
. If i 6∈ I1(p1, q1) ∪

I2(p1, q1) then vi <
ci + p1

q1
and vi <

ci + 2p1

2αq1
. Contra-

diction.

Proposition 1. Offering an additional quality level gen-
erates at least as much revenue as offering fewer number of
quality levels.

Proof. It is enough to show that Πk+1(p1, q1) ≥ Πk(p1, q1)
for any (p1, q1) and k ≥ 1.

We can easily show the inequality holds for k = 1 case,
i.e., Π2(p1, q1) ≥ Π1(p1, q1) for any (p1, q1).

Π2(p1, q1) =
∑

i∈I1(p1,q1)

λip1
wi
q1

+
∑

i∈I2(p1,q1)

λip1
wi
αq1

≥
∑

i∈I1(p1,q1)

λip1
wi
q1

+
∑

i∈I2(p1,q1)

λip1
wi
q1

≥
∑

i∈I(p1,q1)

λip1
wi
q1

= Π1(p1, q1).

The same procedure follows for any k > 1.

Proposition 1 shows that offering a higher quality level
does not cannibalize the service provider’s revenue. The
next step is to formulate customer preferences on different
quality levels.

Proposition 2. If ci ∈
[
0,

2p1(1− α)

2α− 1

)
, then customer

type i chooses the first quality level given that her utility is

nonnegative. Similarly, if ci ∈
[

2k−1p1(1− α)

2α− 1
,

2kp1(1− α)

2α− 1

)
,

then customer type i chooses quality level k given that her
utility is nonnegative.

Proof. Let fk(c) =
c+ 2k−1p1

2k−1αk−1
. fk(c) is linearly increas-

ing in c for any nonnegative integer k. The slope of fk(c)

is
1

2k−1αk−1
which is decreasing in k. Hence, for any k, if

c̄+ 2kp1

2kαkq1
≤ c̄+ 2k−1p1

2k−1αk−1q1
for a given c̄, then the inequality

holds ∀ c ≥ c̄.
Let ck be the level such that fk+1(ck) = fk(ck) (which

implies fk+1(c) ≤ fk(c) ∀ c ≥ ck). If ci ∈ [0, c1), then
customer type i chooses the first quality level, and if ci ∈
[ck−1, ck). then customer type i chooses quality level k.



Finally, if fk+1(ck) =
ck + 2kp1

2kαk
=
ck + 2k−1p1

2k−1αk−1
= fk(ck),

then ck =
2kp1(1− α)

2α− 1
for 0.5 < αj < 1.

So far we have assumed that all customer types have the
same valuation v and workload requirement w. From this
point on, we make an additional assumption that there is a
continuum of customer types that differ with respect to the
delay sensitivity parameter, c, where c ∼ U(0, c̄). Moreover,
we assume that the number of quality levels can be at most
4, which is aligned with what we observe in the market.6

We start with the revenue maximization problem with one
quality level:

maximize
p1,q1

Π1(p1, q1) =
1

c̄

p1

q1
(min{vq1 − p1, c̄})

subject to 0 < q1 ≤ q̄1, p1 ≥ 0.

(1)

Let (p∗1, q
∗
1) be the optimal base price and quality level

and Π∗1 be the optimal revenue for (1). Then, using first
order conditions, it can easily be shown that

p∗1 =


vq̄

2
, if q̄ ≤ 2c̄

v

vq̄ − c̄, if q̄ >
2c̄

v

,

and

Π∗1 =


v2q̄

4c̄
, if q̄ ≤ 2c̄

v

v − c̄

q̄
, if q̄ >

2c̄

v

.

As the number of quality levels offered increases, the rev-
enue maximization problem gets more complicated, and the
closed form solutions have multiple cases. Therefore, we only
present the results for the case where there are exactly four
quality levels assuming q̄ is high enough that it is not bind-
ing in the problem.7 The revenue function can be written
as

Π4(p1, q1) =
1

c̄

p1

q1

{
1

α3

[
min

{
8α3vq1 − 8p1, c̄

}
−min

{
8p1(1− α)

2α− 1
, c̄

}]
+

1

α2

[
min

{
8p1(1− α)

2α− 1
, c̄

}
− min

{
4p1(1− α)

2α− 1
, c̄

}]
+

1

α

[
min

{
4p1(1− α)

2α− 1
, c̄

}
− min

{
2p1(1− α)

2α− 1
, c̄

}]
+ min

{
2p1(1− α)

2α− 1
, c̄

}}
.

(2)

6There are a few product families with 5 or 6 quality levels,
such as Google’s n1-standard and n1-highmem families. We
only choose 4 quality levels here for simplification.
7The formulation presented assumes the third quality level
is chosen by at least some customer types.

Proposition 3. Let the optimal price and base quality
level in (2) be (p∗1, q

∗
1). Then

p∗1 =
c̄

8

[√
α6 + 2α5 − 3α4 − 8α2 + 8α

α3 + α2 − 6α+ 4
− 1

]
(3)

and

q∗1 =
c̄+ 8p∗1
8α3v

.

Proof. The revenue function can be rewritten as

Π4(p1, q1) =
1

c̄

p1

q1

{
1

α3
min

{
8α3vq1 − 8p1, c̄

}
−
(

1

α3
− 1

α2

)
min

{
8p1(1− α)

2α− 1
, c̄

}
−
(

1

α2
− 1

α

)
min

{
4p1(1− α)

2α− 1
, c̄

}
−
(

1

α
− 1

)
min

{
2p1(1− α)

2α− 1
, c̄

}}
.

First, in the optimal solution, there will be some customer
types that choose the highest quality product (by assump-
tion), which implies

8α3vq1 − 8p1 ≥ c̄ >
8p1(1− α)

2α− 1
. (4)

Therefore, the revenue function can be written as

Π4(p1, q1) =
1

c̄

p1

q1

{
1

α3
min

{
8α3vq1 − 8p1, c̄

}
−
(

1

α3
− 1

α2

)
8p1(1− α)

2α− 1
−
(

1

α2
− 1

α

)
4p1(1− α)

2α− 1

−
(

1

α
− 1

)
2p1(1− α)

2α− 1

}
.

Assume (p̄1, q̄1) is a global maximizer of the function above
with 8α3vq̄1 − 8p̄1 > c̄. Since Π4(p̄1, q̄1) ≥ Π4(0, q̄1) ≥ 0,
it can easily be shown that Π4(p̄1, q̄1 − ε) ≥ Π4(p̄1, q̄1) for
a positive ε. Hence, 8α3vq∗1 − 8p∗1 = c̄ where (p∗1, q

∗
1) is

the optimal base price, base quality level couple. Using this
equality, the revenue function can be rewritten as

Π4(p1) =
1

c̄

{
8α3vp1

c̄+ 8p1

[
1

α3
c̄− 8p1(1− α)2

(2α− 1)α3

−4p1(1− α)2

(2α− 1)α2
− 2p1(1− α)2

(2α− 1)α

]}
,

where p1 ∈
[
0,
c̄(2α− 1)

8(1− α)

)
. The upper bound is found by

using (4). Then,

p∗1 = argmax
0≤p1<

c̄(2α−1)
8(1−α)

{
8α3vp1

c̄+ 8p1

[
1

α3
c̄− 8p1(1− α)2

(2α− 1)α3

−4p1(1− α)2

(2α− 1)α2
− 2p1(1− α)2

(2α− 1)α

]}
,

Π4(p1) has a global maximum in
[
0, c̄(2α−1)

8(1−α)

)
and the first

order conditions give

p∗1 = {p1 > 0 | c̄2(2α− 1) =

4p1(c̄+ 4p1)(1− α)(4− 2α− α2)}.



The positive root of p∗1 is

p∗1 =
−α3c̄− α2c̄+ 6αc̄− 4c̄

8(α3 + α2 − 6α+ 4)

+

√
α6c̄2 + 2α5c̄2 − 3α4c̄2 − 8α2c̄2 + 8αc̄2

8(α3 + α2 − 6α+ 4)
,

which is equivalent to (3).

Proposition 3 shows that as c̄ increases, both p∗1 and q∗1
increase. Moreover, as v increases p∗1 does not change while
q∗1 decreases. It means that as customers are willing to pay
more for the service, instead of increasing the unit price, the
provider would deliberately degrade the quality level and sell
it with the same unit price, which increases the revenue in re-
turn since the processing time becomes longer. The intuition
for this result is that increasing the base price makes some
customer types choose lower quality levels. Since higher
quality products always generate more revenue to the provider,
this shift lowers the impact of revenue increase coming from
the price increase. On the other hand, decreasing the base
quality level does not make any changes on customer pref-
erences and all customer types pays more for the service
completion.

Next, we provide sufficient conditions on the optimal num-
ber of quality levels to offer under monopoly.

Proposition 4. Sufficient conditions for offering multi-
ple quality levels:

i) If vq̄

(
2α− 2α− 1

α

)
≤ c̄ and

2

3
< α < 1, offering two

quality levels generate more revenue than offering only
one quality level.

ii) If 2αvq̄

(
2α− 2α− 1

α

)
≤ c̄ and

2

3
< α < 1, offering

three quality levels generate more revenue than offering
two quality levels.

iii) If 4α2vq̄

(
2α− 2α− 1

α

)
≤ c̄ and

2

3
< α < 1, offering

four quality levels generate more revenue than offering
three quality levels.

Proof. i) vq̄

(
2α− 2α− 1

α

)
≤ c̄ implies q̄ ≤ 2c̄

v
. Hence,

the revenue of the one-quality-level case is
v2q̄

4c̄
. Under

the given conditions, the revenue of the two-quality-

level case is
v2q̄(2α− 1)

2αc̄
. For positive v and c̄,

v2q̄(2α− 1)

2αc̄
>
v2q̄

4c̄

when
2

3
< α < 1.

ii) Let Π∗2 be the optimal revenue when two quality levels
are offered, with the optimal base quality level q̄ (op-
timal base quality level has to be equal to q̄ when the
condition in the first point is satisfied), and the optimal
base price p∗2. Let Π̄2 be the revenue when the ser-
vice provider offers only the second quality level with
price 2p∗2. Then Π̄2 > Π∗2, since the second quality level
still gives nonnegative utility to the customer types that

chose the first quality level when the first quality level is
present, and they pay more than before. Now, assume
that the new highest base quality level is 2αq̄, and follow
the first item of this proposition.

iii) The same idea follows.

3.2 Optimal Price Menu under Fixed Quality
Levels

While controlling both price and quality levels at the same
time potentially generates more revenue to the service provider,
another interesting question is to find the optimal prices
given quality levels. When the service provider offers only
one quality level p1, the optimal price is similar to what we
presented in the previous section:

p∗1 =


vq1
2
, if q1 ≤

2c̄

v

vq1 − c̄, if q1 >
2c̄

v

. (5)

When there are two quality levels, (q1, 2αq1), the optimal
price menu is (p∗1, 2p

∗
1), where

p∗1 = max
{2vαq − c̄

2
,
vq(2α− 1)

2α

}
, (6)

only if p∗1 ≤
c̄(2α− 1)

2(1− α)
; otherwise offering one quality level

is preferred to offering two.
When there are more than two quality levels, the optimal

price depends on multiple conditions and it is beyond the
scope of this exercise. Instead, we provide some numerical
examples.

Numerical Examples. In this part, we are going to
illustrate cases on how many quality levels the monopolistic
service provider offers in the optimal solution given its base
quality level, scaling factor, and customer characteristics.8

1. If service provider a from the previous section with
(α, q1) = (0.693, 1.355) is the only provider in the mar-
ket with v = 0.488 and c̄ = 0.961, then the optimal
price is indeed $0.100 and offering 4 quality levels is
the revenue maximizing strategy. In other words, if
service provider a has (α, q1) = (0.693, 1.355) and of-
fers 4 quality levels with base price level $0.100, then,
we can infer the market conditions as v = 0.488 and
c̄ = 0.961 (using Proposition 3).

2. If service provider b from the previous section with
(α, q1) = (0.616, 1.733) is the only provider in the mar-
ket with v = 0.488 and c̄ = 0.961 (as above), then the
optimal price is $0.423 and only the base quality level
product is being chosen by some customers and the rest
choose the no-buy option. Setting a price of $0.126 in
this market generates less revenue although all four
quality levels are chosen by some customer types and
there is no customer type that chooses the no-buy op-
tion.

8The optimal prices found here are searched on a grid with
$0.001 increments. Therefore, the sensitivity of the optimal
prices is $0.001.



These examples show that given market conditions and
selected product quality, the monopolistic service provider
may choose to offer multiple products (as in Example 1
above) or choose to offer only one product with a price level
that may be too high for low customer types (as in Example
2). This behavior is intuitive when the service provider has
a relatively high base quality level and a low scaling factor
as higher product types do not provide much higher quality
than the base quality, which is already high for the market.

4. REVENUE MAXIMIZATION UNDER
DUOPOLY

In this section we extend our previous analysis to duopoly
case where providers have their own base quality levels and
scaling factor set and announced, and they compete with
the base price. We still assume that each provider can offer
at most 4 quality levels and customers have common val-
uation v and workload w, and different delay sensitivities
c ∼ U(0, c̄).

We start with a simple model where each provider offers
only one quality level. Let (p1, q1) and (p2, q2) be the price
and quality for the first and second providers, respectively.
Without loss of generality, assume q1 < q2. Then, cus-
tomers with lower type (lower delay sensitivity) choose the
first provider, while high types choose the second. Customer
type ĉ is indifferent between the first and second provider,
where

ĉ =
p2q1 − p1q2
q2 − q1

,

assuming ĉ ≥ 0.9 Given p2, the objective function of the
first provider is

R1(p1) =
1

c̄

p1

q1
ĉ =

1

c̄

p1

q1

p2q1 − p1q2
q2 − q1

and given p1, the objective function of the second provider
is

R2(p2) =
1

c̄

p2

q2

[
max

{
min

{
vq2 − p2, c̄

}
− p2q1 − p1q2

q2 − q1
, 0
}]

.

Proposition 5. Let pe1 and pe2 be the equilibrium prices
for the first and second provider. Then the Nash equilibrium
satisfies

pe1 =
pe2q1
2q2

,

and

pe2 = argmax
p2∈{0,px2 ,p

y
2}
R(p2),

where R(p2) is evaluated for p1 = pe1, and

px2 = max
{
vq2 − c̄,

2vq2(q2 − q1)

4q2 − q1

}
,

py2 = min
{
vq2 − c̄,

2c̄(q2 − q1)

3q1

}
.

Proof. First, we write down the first order conditions
for p1:

pe1 =
pe2q1
2q2

.

9In Nash equilibrium, ĉ is indeed nonnegative, which could
be derived using Proposition 5.

Then, we separate the second provider’s problem into two
cases, (P1) and (P2), and solve both.

(P1) : maximize
p2

1

c̄

p2

q2

[
vq2 − p2 −

p2q1 − p1q2
q2 − q1

]
subject to p2 ≥ vq2 − c̄.

By taking the derivative of the revenue function and then
plugging pc1 for p1, we reach

px2 = max
{
vq2 − c̄,

2vq2(q2 − q1)

4q2 − q1

}
.

(P2) : maximize
p2

1

c̄

p2

q2

[
c̄− p2q1 − p1q2

q2 − q1

]
subject to p2 ≤ vq2 − c̄.

By taking the derivative of the revenue function and then
plugging pc1 for p1, we reach

py2 = min
{
vq2 − c̄,

2c̄(q2 − q1)

3q1

}
.

If both (P1) and (P2) give a negative revenue in the op-
timal solution, then, pe2 = 0 which generates zero revenue;
otherwise, pe2 = argmax

p2∈{px2 ,p
y
2}
R(p2)

As we point out in the previous section, when we allow
the service provider to have more than one quality level, the
solution depends on v, c̄, and the base quality level in a more
complicated way. Therefore, it is not straightforward to find
closed-form solutions for duopoly case. Instead we simulate
the market with different parameters.10 In our simulation
model, first, service provider a from the previous section sets
its monopoly price. Second, given a’s price, service provider
b finds its best response. Then, service provider a finds
its best response given b’s price, so on and so forth. We
iterate this game for 100 times to see if the game reaches a
Nash equilibrium that neither of the players would want to
change their prices. We analyze four different cases below.
In none of the cases we reach a Nash equilibrium. Each case
has a different Edgeworth cycle with different price ranges
and periodicity. These case are depicted in Figure 2 and
described below.

1. v = 0.488, c̄ = 0.961: We have shown that the opti-
mal price for a in this market is $0.100 when there is
monopoly, while it is $0.423 for b; and we have con-
cluded that if b is the monopoly, there is no point of
offering more than one quality level. However, when
there is competition, offering more than one quality
level becomes preferable to offering only one level for
b.

The price competition makes a decrease its monopoly
prices by more than 50%. The price for a varies be-
tween $0.035 and $0.042 in the cycle, while it is $0.026
and $0.032 for b (Figure 2(a)).

2. v = 0.5, c̄ = 0.25: a only uses the base quality level
under monopoly, where the optimal price is $0.4275,
which is found using (5). Under duopoly, we have
found that only the first quality level is used in both

10As before, we use a price grid with $0.001 increments.
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Figure 2: Price Paths under Duopoly with Different Parameter Settings

providers in the Edgeworth cycle, and the prices range
from $0.427 to $0.481 for a, $0.615 to $0.617 for b (Fig-
ure 2(b)).

Since higher quality levels are not selected in either of
the providers, we can assume that each provider offers
only one quality level and try to find the equilibrium
prices that could potentially be aligned with Figure
2(b). Under this assumption, the equilibrium prices
can be calculated by using Proposition 5 as

pe1 = $0.018 and pe2 = $0.045.

However, when we relax this assumption and let both
providers to offer four quality levels, these prices are
no longer equilibrium prices because they are so low
that high type customers prefer higher quality levels;
and therefore, the equilibrium is no longer sustained.

3. v = 0.5, c̄ = 0.5: two quality levels are used in a under
monopoly with the optimal price of $0.220, which is
found using (6). Under duopoly, first two quality levels
are used in a and only one quality level is used in b in
the cycle. The price ranges in the Edgeworth cycle are
from $0.22 to $0.286 and from $0.367 to $0.433 for a
and b, respectively (Figure 2(c)).

4. v = 0.5, c̄ = 2: all four quality levels are used in a
under monopoly. Under duopoly, all quality levels in
both providers are used as well. In this setting, the

price varies more for both providers in the Edgeworth
cycle (Figure 2(d)).

While the price of a is higher than the price of b in Cases
1 & 4, it is reversed in Cases 2 & 3. It is important to
note that the price cycle ranges depend on the initial price
level we start the iterative pricing procedure. For instance,
if we start Case 2 with a lower price level for provider a, we
reach a price cycle with ranges from $0.005 to $0.006 and
from $0.003 to $0.004 for providers a and b, respectively.
In this solution, both providers generate lower revenue al-
though all four quality levels are selected by some customer
types, which in turn, pushes the prices for provider a to be
higher than provider b in the price cycle, contrary to the one
quality level case.

5. MODEL EXTENSIONS
There are many avenues to explore by using our price-

quality model as a building block. In this paper, we have as-
sumed there is one common workload for all customer types,
which implies that the scaling factor, α, only depends on the
provider in our model. In reality customers have different
workloads and the scaling factor is a combination of the type
of workload and the scaling performance of the provider.
One potential way to modify the model would be to write
the scaling factor as α = βγ, where β ∈ [0.5, 1] is a work-
load dependent parameter that denotes how parallelizable
the workload is, and γ is the scaling factor of the provider.



Assuming that our DaCapo workload has β = 0.8, since it is
moderately parallelizable, γ values become 0.866 and 0.770
for providers a and b, respectively. We have simulated sce-
narios where β is uniformly distributed between 0.5 and 1
and reached similar results with Edgeworth cycles.

Another extension is to solve profit maximization problem
instead of revenue maximization. However, this would add
an additional layer of complication on the cost side. At
the simplest level, unit cost of a product depends on the
configuration that the provider uses, rather than the quality
level, and the scale of the provider, since economies of scale
plays an important role. With enough information on cost,
the model can be modified for profit maximization.

The cloud computing market is a fast growing market and
in such market dynamics, sometimes players aim to maxi-
mize their market share in the short run before revenue or
profit maximization, which could potentially generate higher
profits to a player in the long run once the it has its own cus-
tomer base. In market share maximization case, the duopoly
prices are determined based on how much providers can han-
dle profit loss in the short run. In the extreme case, both
set prices equal to zero. On the other hand, in zero profit
case prices would be set based on costs which may give rise
to interesting results as the quality levels and the scaling
factors play an important role.

One potential work would be to extend our duopoly game
to a two-stage game in which providers first compete in qual-
ity and then compete in price.

6. RECONCILING MODEL PREDICTIONS
AND REAL-WORLD BEHAVIOR

As mentioned in the introduction, price cycles in cloud
computing are not observed in practice. In the comput-
ing, technological advances mean costs are constantly falling.
This provides both a market perception that prices should
not rise and means that constant prices can be effectively
viewed as price increases relative to costs. In Figure 3 we
show AWS prices for the “general compute” (M series), large
size, with the number indicating the generation. Later gen-
erations can only run on newer, higher performance hard-
ware. This new hardware can also run the older generations
more cost effectively than before. While this is only one
product family, the trends are representative.

A few interesting observations can be derived from the fig-
ure. First, in the most recent time period, the best VM sells
at the lowest price, whereas the worst sells at the highest
price. Second, during the price war period of April 2014,
the then-newest generation saw a larger price decrease than
the older generation. Finally, the oldest generation is still
offered and sold in the marketplace. Relative to the falling
prices of new generations, this constant price can be con-
ceptualized as a price increase. While these patterns are
certainly not equivalent to Edgeworth cycles, they do evi-
dence “price wars” in one segment of the product space (new
generations) and relatively high prices in other parts.

Finally we note some caveats to the realism of our model.
We calibrated the model using certain benchmark work-
loads, but in practice customers will have heterogenous needs
and we, by no means, captured all of them. Further, providers
may innovate to serve a particular niche, such as genomics,
with customized offerings. These “menu choices” could be
incorporated into our model but at present we do not ad-
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dress this layer of detail. Finally, customers vary in terms
of sophistication and how “active” they are in their choice
processes. Out of simplicity we ignore these complexities,
but concede they could play a significant role in market dy-
namics and thus are a fruitful area for future research.

7. DISCUSSION AND CONCLUSION
The public cloud “infrastructure as a service” market pos-

sesses interesting features that make it hard to predict im-
portant facets of competition, such as market shares and
provider margins, in the long-run. On the one hand, major
providers buy their hardware from the same manufacturers
(who in turn generally use the same chipsets and so forth),
operate in similar locations and offer seemingly similar prod-
ucts (e.g. VMs specified by number of virtual cores, RAM
and disk). On the other hand, the competitors use different
proprietary “fabric” to manage virtualization, resource allo-
cation and data transfer. Just as a laptop would tend to run
applications differently depending on the operating system,
this opens up the space for performance differentiation in the
cloud. Further, the menus offered by each provider involve
a discrete number of choices and allow providers to locate
in different parts of the price-quality space. Our empirical
work documents such differentiation.

Our theoretical model gives a long-run view on compe-
tition. First, the monopoly case highlights how additional
competitors can block “bad equilibrium” where performance
is intentionally slowed down or options are unduly limited.
In duopoly, price competition is fierce, but prices do not
converge to the same low level because of price-quality dif-
ferentiation. The model also predicts Edgeworth cycles and
we have discussed institutional factors that help explain why
these are not observed. Once these factors are taken into
consideration, the observed patterns can be viewed as being
qualitatively similar to the model’s predictions: periods of
constant prices punctuated by price wars that do not neces-
sarily end with providers having the same prices, and older
generations having substantially less vigorous competition
than the newest offerings. Further, in Q2 2015 Amazon
itemized AWS earnings for the first time and revealed the
service has a health operating profit. Our empirically cali-



brated model helps not only explain price cutting behavior
but also how providers can manage a profit despite predic-
tions that the market “should be” totally commoditized.
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P. Hui. Exploiting hardware heterogeneity within the
same instance type of amazon ec2. In 4th USENIX
Workshop on Hot Topics in Cloud Computing
(HotCloud), 2012.

[23] B. P. Rimal, E. Choi, and I. Lumb. A taxonomy and
survey of cloud computing systems. In INC, IMS and
IDC, 2009. NCM’09. Fifth International Joint
Conference on, pages 44–51. Ieee, 2009.

[24] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime
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