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1 Introduction

The previous lecture note introduced novel aspects associated with internet advertising auctions,
and focused on how to manage the multi-item aspect via position auctions. This lecture note
studies a second major practical aspect of internet advertising auctions: budgets. In these auctions,
a large fraction of advertisers specify a budget constraint that must hold in aggregate across all of
the payments made by the advertiser. At an intuitive level, these budget constraints bind together
all the auctions, and thus we need to worry about strategic aspects that may not occur in the
analysis of each individual auction in isolation. Most prominently, the budget constraints break
the very nice property of second-price auctions which says that each buyer should simply bid their
true value.

2 Auctions Markets

Throughout the rest of this lecture note, we will consider settings where each individual auction is
a single-item auction, using either first or second-price rules. This itself is also a simplification: in
practice each individual auction would be more complicated, but even just for single-item individual
auctions it turns out that there are a lot of interesting problems.

In this setting we have n buyers and m goods. Buyer i has value vij for good j, and each
buyer has some budget Bi. Each good j will be sold via sealed-bid auction, using either first or
second-price. We assume that for all buyers i, there exists some item j such that vij > 0, and
similarly for all j there exists i such that vij > 0. Let x ∈ Rn×m be an allocation of items to
buyers, with associated prices p ∈ Rm. The utility that a buyer i derives from this allocation is

ui(xi, p) =

{
〈vi, xi〉 − 〈p, xi〉 if 〈p, xi〉 ≤ Bi
−∞ otherwise

.

We call this setting an auction market. If SP (FP) auctions are used then we call it an SP (FP)
auction market.

3 Second-Price Auction Markets

In the previous lecture we saw that the second-price auction is strategyproof. However, this relied
on there being a single auction, and no budgets. It’s easy to construct an example showing that
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Figure 1: Comparison of pacing methods. Left: no pacing, middle: probabilistic pacing, right:
multiplicative pacing.

this is no longer true in SP auction markets. Consider a setting with two buyers and two items,
with valuations v1 = (100, 100), v2 = (1, 1) and budgets B1 = B2 = 1. If both buyers submit their
true valuations then buyer 1 wins both items, pays 2, and gets −∞ utility.

Instead, each buyer needs to somehow smooth out their spending across auctions. For large-
scale Internet auctions this is typically achieved via some sort of pacing rule. Here we will mention
two that have been used in practice:

1. Probabilistic pacing : each buyer i is given a parameter αi ∈ [0, 1] denoting the probability
that they should participate in each auction. For each auction j, an independent coin is
flipped which comes up heads with probability αi, and if it comes up heads then the buyer
submits a bid bij = vij to that auction.

2. Multiplicative pacing : each buyer i is given a parameter αi ∈ [0, 1], which acts as a scalar
multiplier on their truthful bids. In particular, for each auction j, buyer i submits a bid
bij = αivij .

Both methods have been applied in real-life large-scale Internet ad markets.
Figure 1 shows a comparison of pacing methods for a simplified setting where time is taken into

account. Here we assume that we are considering some buyer i whose value is the same for every
item, but other bidders are causing the items to have different prices. On the x-axis we plot time,
and on the y-axis we plot the price of each item. On the left is the outcome from naive bidding: the
buyer spends their budget much too fast, and ends up running out of budget when there are many
high-value items left for them to buy. In practice, many buyers also prefer to smoothly spend their
budget throughout the day. In the middle we show probabilistic pacing, where we do get smooth
budget expenditure. However, the buyer ends up buying some very expensive item, while missing
out on much cheaper items that have the same value to them. Finally, on the right is the result
from probabilistic pacing, where the buyer picks an optimal threshold to buy at, and thus buys
item optimally in order of bang-per-buck.

In this note we will focus on multiplicative pacing, but see the historical notes section for some
references to papers that also consider probabilistic pacing.

The intuition given in Figure 1 can be shown to hold more generally when items have different
values to the buyer. Generally, it turns out that given a set of bids by all the other bidders, a buyer
can always specify a best response by choosing an optimal pacing multiplier:

Proposition 1. Suppose we allow arbitrary bids in each auction. If we hold all bids for buyers
k 6= i fixed, then buyer i has a best response that consists of multiplicatively-paced bids (assuming
that if a buyer is tied for winning an auction, they can specify the fraction that they win).

Proof. Since every other bid is held fixed, we can think of each item as having some price pj =
maxk 6=i bkj , which is what i would pay if they bid bij ≥ bkj . Now we may sort the items in decreasing

2



order of bang-per-buck
vij
pj

. An optimal allocation for i clearly consists of buying items in this order,

until they reach some index j such that if they buy every item with index l < j and some fraction
xij of item j, they either spend their whole budget, or j is the first item with

vij
pj
≥ 1 (if

vij
pj

> 1

then xij = 0). Now set αi =
pj
vij

. With this bid, i gets exactly this optimal allocation: for all items

l ≤ j (which are the items in the optimal allocation), we have αivil =
pj
vij
vil ≥ pl

vil
vil = pl.

The goal will be to find a pacing equilibrium:

Definition 1. A second-price pacing equilibrium (SPPE) is a vector of pacing multipliers α ∈
[0, 1]n, a fractional allocation xij, and a price vector such that for every buyer i:

• For all j,
∑

i xij = 1, and if xij > 0 then i is tied for highest bid on item j.

• If xij > 0 then pj = maxk 6=i αkvkj.

• For all i,
∑

j pjxij ≤ Bi. Additionally, if the inequality is strict then αi = 1.

The first and second conditions of pacing equilibrium simply enforce that the item always goes
to winning bids at the second-price rule. The third condition ensures that a buyer is only paced if
their budget constraint is binding. It follows (almost) immediately from Proposition 1 that every
buyer is best responding in SPPE.

A nice property of SPPE is that it is always guaranteed to exist (this is not immediate from the
existence of, say, a Nash equilibrium in a standard game, since an SPPE corresponds to a specific
type of pure-strategy Nash equilibrium):

Theorem 1. An SPPE of a pacing game is always guaranteed to exist.

We won’t cover the whole proof here, but we will state the main ingredients, which are useful
to know more generally.

• First, a smoothed pacing game is constructed. In the smoothed game, the allocation is
smoothed out among all bids that are within ε of the maximum bid, thus making the allocation
a deterministic function of the pacing multipliers α. Several other smooth approximations
are also introduced to deal with other discontinuities. In the end, a game is obtained, where
each player simply has as their action space the interval [0, 1] and utilities are nice continuous
and quasi-concave functions.

• Secondly, the following fixed-point theorem is invoked to guarantee existence of a pure-
strategy Nash equilibrium in the smoothed game.

Theorem 2. Consider a game with n players, strategy space Ai, and utility function ui(ai, a−i).
If the following conditions are satisfied:

– Ai is convex and compact for all i

– ui(si, ·) is continuous in s−i

– ui(·, s−i) is continuous and quasi-concave in si (quasi-concavity of a function f(x) means
that for all x, y and λ ∈ [0, 1] it holds that f(λx+ (1− λ)y) ≥ min(f(x), f(y)))

then a pure-strategy Nash equilibrium exists.

• Finally, the limit point of smoothed games as the smoothing factor ε tends to zero is shown
to yield an equilibrium in the original pacing problem.
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Figure 2: Multiplicity of SPPE. On the left is shown a problem instance, and on the right is shown
two possible second-price pacing equilibria.

Unfortunately, while SPPE is guaranteed to exist, it turns out that sometimes there are several
SPPE, and they can have large differences in revenue, social welfare, and so on. An example is
shown in Figure 2. In practice this means that we might need to worry about whether we are in a
good and fair equilibrium.

Another positive property of SPPE is that every SPPE is also a market equilibrium, if we
consider a market equilibrium setting where each buyer has a quasi-linear demand function that
respects the total supply as follows:

Di(p) = argmax0≤xi≤1〈vi − p, xi〉 s.t. 〈p, xi〉 ≤ Bi.

This follows immediately by simply using the allocation x and prices p from the SPPE as a market
equilibrium. Proposition 1 tells us that xi ∈ Di(p), and the market clears by definition of SPPE.
This means that SPPE has a number of nice properties such as no envy and Pareto optimality
(although Pareto optimality requires considering the seller as an agent too).

Finally we turn to the question of computing an SPPE. Unfortunately the news there is bad.
It was shown recently that computing an SPPE is a PPAD-complete problem. This means that
there exists a polynomial-time reduction between the problem of computing a Nash equilibrium in
a general-sum game and that of computing an SPPE, and thus the two problems are equally hard,
from the perspective of computing a solution in polynomial time. Moreover, it was also shown that
we cannot hope for iterative methods to efficiently compute an approximate SPPE. Beyond merely
computing any SPPE, we could also try to find one that maximizes revenue or social welfare. This
problem turns out to be NP complete.

There is a mixed-integer program for computing SPPE, but unfortunately it is not very scalable.

4 First-Price Auction Markets

Next we consider what happens if we instead sell each item by first-price auction as part of an
auction market.

First we start by defining what we call budget-feasible pacing multipliers. Intuitive, this is simply
a set of pacing multipliers such that everything is allocated according to first-price auction, and
everybody is within budget.
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Definition 2. A set of budget-feasible pacing multipliers (BFPM) is a vector of pacing multipliers
α ∈ [0, 1]n and a fractional allocation xij such that for every buyer i:

• Prices are defined to be pj = maxk αivkj.

• For all j,
∑

i xij = 1, and if xij > 0 then i is tied for highest bid on item j.

• For all i,
∑

j pjxij ≤ Bi.

Again, the goal will be to find a pacing equilibrium. This is simply a BFPM that satisfied the
complementarity condition on the budget constraint and pacing multiplier.

Definition 3. A first-price pacing equilibrium (FPPE) is a BFPM (α, x) such that for every buyer
i:

• For all i, if
∑

j pjxij < Bi then αi = 1.

Notably, the only difference to SPPE is the pricing condition, which now uses first price.
A very nice property of the first-price setting is that BFPMs satisfy a monotonicity condition:

if (α′, x′) and (α′′, x′′) are both BFPM, then the pacing vector α = max(α′, α′′) (where the max is
taken componentwise) is also a BFPM. The associated allocation is that for each item j, we first
identify whether the highest bid comes from α′ or α′′, and use the corresponding allocation of j
(breaking ties towards α′).

Intuitively, the reason that (α, x) is also BFPM is that for every buyer i, their bids are the same
as in one of the two previous BFPMs (say (α′, x′) WLOG.), and so the prices they pay are the
same as in (α′, x′). Furthermore, since every other buyer is bidding at least as much as in (α′, x′),
they win weakly less of each item (using the tie-breaking scheme described above). Since (α′, x′)
satisfied budgets, (α, x) must also satisfy budgets. The remaining conditions are easily checked.

In addition to componentwise maximality, there is also a maximal BFPM (α, x) (there could
be multiple x compatible with α) such that α ≥ α′ for all α′ that are part of any BFPM. Consider
α∗i = sup{αi|α is part of a BFPM}. For any ε and i, we know that there must exist a BFPM such
that αi > α∗i − ε. For a fixed ε we can take componentwise maxima to conclude that there exists
(αε, xε) that is a BFPM. This yields a sequence {(αε, xε)} as ε→ 0. Since the space of both α and
x is compact, the sequence has a limit point (α∗, x∗). By continuity (α∗, x∗) is a BFPM.

We can use this maximality to show existence and uniqueness (of multipliers) of FPPE:

Theorem 3. An FPPE always exists and the set of pacing multipliers {α} that are part of an
FPPE is a singleton.

Proof. Here we give a high-level proof, a more explicit proof can be found in the paper listed in
the notes.

Consider the component-wise maximal α and an associated allocation x such that they form a
BFPM.

Since α, x is a BFPM, we only need to check that it has no unnecessarily paced bidders. Suppose
some buyer i is spending strictly less than Bi and αi < 1. If i is not tied for any items, then we can
increase αi for some sufficiently small ε and retain budget feasibility, contradicting the maximality
of α. If i is tied for some item, consider the set N(i) of all bidders tied with i. Now take the
transitive closure of this set by repeatedly adding any bidder that is tied with any bidder in N(i).
We can now redistribute all the tied items among bidders in N(i) such that no bidder in N(i) is
budget constrained (this can be done by slightly increasing i’s share of every item they are tied
on, then slightly increasing the share of every other buyer in N(i) who is now below budget, and
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so on). But now there must exist some small enough δ > 0 such that we can increase the pacing
multiplier of every bidder in N(i) by δ while retaining budget feasibility and creating no new ties.
This contradicts α being maximal. We get that there can be no unnecessarily paced bidders under
α

Finally, to show uniqueness, consider any alternative BFPM α′, x′. Consider the set I of buyers
such that α′i < α; Since α ≥ α′ and α 6= α′ this set must have size at least one. Since all buyers
in I were spending less than their budget under α, and their collective spending strictly decreased,
at least one buyer in I must not be spending their whole budget. But α′i < αi ≤ 1 for all i ∈ I, so
that buyer must be unnecessarily paced.

4.1 Sensitivity

FPPE enjoys several nice monotonicity and sensitivity properties that SPPE does not. Several of
these follow from the maximality property of FPPE: the unique FPPE multipliers α are such that
α ≥ α′ for any other BFPM (α′, x′).

The following are all guaranteed to weakly increase revenue of the FPPE:

1. Adding a bidder i: the old FPPE (α, x) is still BFPM by setting αi = 0, xi = 0. By α
monotonicity prices increase weakly.

2. Adding an item: The new FPPE α′ satisfies α′ ≤ α (for contradiction, consider the set of
bidders whose multipliers increased, since they win weakly more and prices went up, somebody
must break their budget). Now consider the bidders such that α′i < αi. Those bidders spend
their whole budget by the FPPE “no unnecessary pacing” condition. For bidders such that
α′i = αi, they pay the same as before, and win weakly more.

3. Increasing a bidder i’s budget: the old FPPE (α, x) is still BFPM, so this follows by α
maximality.

It is also possible to show that revenue enjoys a Lipschitz property: increasing a single buyer’s
budget by ∆ increases revenue by at most ∆. Similarly, social welfare can be bounded in terms of
∆, though multiplicatively, and it does not satisfy monotonicity.

4.2 Convex Program

Next we consider how to compute an FPPE. This turns out to be easier than for SPPE. This is due
to a direct relationship between FPPE and market equilibrium: FPPE solutions are exactly the
set of solutions to the quasi-linear variant of the Eisenberg-Gale convex program for computing a
market equilibrium:

max
x≥0,δ≥0,u

∑
i

Bi log(ui)− δi

ui ≤
∑
j

xijvij + δi, ∀i (1)

∑
i

xij ≤ 1,∀j (2)

min
p≥0,β≥0

∑
j

pj −
∑
i

Bi log(βi)

∀i, pj ≥ vijβi
βi ≤ 1

(3)

On the left is shown the primal convex program, and on the right is shown the dual convex
program. The variables xij denote the amount of item j that bidder i wins. The leftover budget
is denoted by δi, it arises from the dual program: it is the primal variable for the dual constraint
βi ≤ 1, which constrains bidder i to paying at most a price-per-utility rate of 1.
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The dual variables βi, pj correspond to constraints (1) and (2), respectively. They can be
interpreted as follows: βi is the inverse bang-per-buck: minjs.t.xij>0

pj
vij

for buyer i, and pj is the

price of good j.
We may use the following basic fact from convex optimization to conclude that strong duality

holds and get optimality conditions:

Theorem 4. Consider a convex program and its dual

min
x

f(x)

gi(x) ≤ 0, ∀i
x ≥ 0

(4)

max
λ≥0

q(λ)

q(λ) := min
x≥0

L(x, λ)

L(x, λ) := f(x) +
∑
i

λigi(x)

(5)

with Lagrange multipliers λi for each constraint i. Assume that the following Slater constraint qual-
ification is satisfied: there exists some x ≥ 0 such that gi(x) < 0 for all i. If (4) has a finite optimal
value f∗ then (5) has a finite optimal value q∗ and f∗ = q∗. Furthermore a solution pair x∗, λ∗ is
optimal if and only if the following Karush-Kuhn-Tucker (KKT) conditions hold:

• (primal feasibility) x∗ is a feasible solution of (4)

• (dual feasibility) λ∗ ≥ 0

• (complementary slackness) λ∗i gi(x
∗) = 0 for all i

• (stationarity) x∗ ∈ argminx≥0 L(x, λ∗)

We can use the strong duality theorem above, and in particular the KKT conditions, to show
that FPPE and EG are equivalent.

Informally, the correspondence between FPPE and solutions to the convex program follows be-
cause βi specifies a single price-per-utility rate per bidder which exactly yields the pacing multiplier
αi = βi. Complementary slackness then guarantees that if pj > vijβi then xij = 0, so any item
allocated to i has exactly rate βi. Similarly, complementary slackness on βi ≤ 1 and the associated
primal variable δi guarantees that bidder i is only paced if they spend their whole budget.

Theorem 5. An optimal solution to the quasi-linear Eisenberg-Gale convex program corresponds
to an FPPE with pacing multiplier αi = βi and allocation xij, and vice versa.

Proof. Clearly the quasi-linear Eisenberg-Gale convex program satisfies the Slater constraint qual-
ification: we may use the proportional allocation where every buyers gets 1

n of every item to see
this. Thus the optimal solution must satisfy the following KKT conditions:

1. Bi
ui

= βi ⇔ ui = Bi
βi

2. βi ≤ 1

3. βi ≤ pj
vij

4. xij , δi, βi, pj ≥ 0

5. pj > 0⇒
∑

i xij = 1

6. δi > 0⇒ βi = 1

7. xij > 0⇒ βi =
pj
vij

It is easy to see that xij is a valid allocation: the primal program has the exact packing
constraints. Budgets are also satisfied (here we may assume ui > 0 since otherwise budgets are
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satisfied since the bidder wins no items): by KKT condition 1 and KKT condition 7 we have that
for any item j that bidder i is allocated part of:

Bi
ui

=
pj
vij
⇒ Bivijxij

ui
= pjxij

If δi = 0 then summing over all j gives

∑
j

pjxij = Bi

∑
j vijxij

ui
= Bi

This part of the budget argument is exactly the same as for the standard Eisenberg-Gale proof [12].
Note that (1) always holds exactly since the objective is strictly increasing in ui. Thus δi = 0 denotes
full budget expenditure. If δi > 0 then (1) implies that ui >

∑
j vijxij which gives:

∑
j

pjxij = Bi

∑
j vijxij

ui
< Bi

This shows that δi > 0 denotes some leftover budget.
If bidder i is winning some of item j (xij > 0) then KKT condition 7 implies that the price

on item j is αivij , so bidder i is paying their bid as is necessary in a first-price auction. Bidder
i is also guaranteed to be among the highest bids for item j: KKT conditions 7 and 3 guarantee
αivij = pj ≥ αi′vi′j for all i′.

Finally each bidder either spends their entire budget or is unpaced: KKT condition 6 says that
if δi > 0 (that is, some budget is leftover) then βi = αi = 1, so the bidder is unpaced.

Now we show that any FPPE satisfies the KKT conditions for EG. We set βi = αi and use the
allocation x from the FPPE. We set δi = 0 if α < 1, otherwise we set it to Bi −

∑
j xijvij . We set

ui equal to the utility of each bidder. KKT condition 1 is satisfied since each bidder either gets a
utility rate of 1 if they are unpaced and so ui = Bi or their utility rate is αi so they spend their
entire budget for utility Bi/αi. KKT condition 2 is satisfies since αi ∈ [0, 1]. KKT condition 3
is satisfied since each item bidder i wins has price-per-utility αi =

pj
vij

= βi, and every other item

has a higher price-per-utility. KKT conditions (4) and (5) are trivially satisfied by the definition
of FPPE. KKT condition 6 is satisfied by our solution construction. KKT condition 7 is satisfied
because a bidder i being allocated any amount of item j means that they have a winning bid, and
their bid is equal to vijαi.

It follows that an FPPE can be computed in polynomial time, and that we can apply various
first-order methods to compute large-scale FPPE.

5 Conclusion

There are interesting differences in the properties satisfied by SPPE and FPPE. We summarize
them quickly here (these are all covered in the literature noted in the Historical Notes):

• FPPE is unique (can be shown from the convex program, or directly from the monotonicity
property of BFPM), SPPE is not

• FPPE can be computed in polynomial time, computing an SPPE is a PPAD-complete problem
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• FPPE is less sensitive to perturbation (e.g. revenue increases smoothly as budgets are in-
creased)

• SPPE corresponds to a pure-strategy Nash equilibium, and thus buyers are best responding
to each other

• Both correspond to different market equilibria (but SPPE requires buyer demands to be
“supply aware”)

• Neither of them are strategyproof

• Due to the market equilibrium connection, both can be shown strategyproof in an appropriate
“large market” sense

FPPE and SPPE have also been studied experimentally, both via random instances, as well
as instances generated from real ad auction data. The most interesting takeaways from those
experiments are:

• In practice SPPE multiplicity seems to be very rare

• Manipulation is hard in both SPPE and FPPE if you can only lie about your value-per-click

• FPPE dominates SPPE on revenue

• Social welfare can be higher in either FPPE or SPPE. Experimentally it seems to largely be
a toss-up on which solution concept has higher social welfare.

6 Historical Notes

The multiplicative pacing equilibrium results shown in this lecture note were developed by Conitzer
et al. [7] for SP auction markets, and Conitzer et al. [8] for FP auction markets. Another strand
of literature has studied models where items arrive stochastically and valuations are then drawn
independently. Balseiro et al. [1] show existence of pacing equilibrium for multiplicative pacing as
well as several other pacing rules for such a setting; they also give a very interesting comparison
of revenue and social welfare properties of the various pacing option in the unique symmetric
equilibrium of their setting. Most notably, multiplicative pacing achieves strong social welfare
properties, while probabilistic pacing achieves higher revenue properties. Balseiro, Besbes, and
Weintraub [2] show that when bidders get to select their bids individually, multiplicative pacing
equilibrium arises naturally via Lagrangian duality on the budget constraint, under a fluid-based
mean-field market model. The PPAD-completeness of computing an SPPE was given by Chen,
Kroer, and Kumar [5]

The quasi-linear variant of Eisenberg-Gale was given by Chen, Ye, and Zhang [4] and inde-
pendently by Cole et al. [6] (an unpublished note from one of the authors in Cole et al. [6] was
in existence around a decade before the publication of Cole et al. [6]). Theorem 4 is a specializa-
tion to the FPPE setting. In reality much stronger statements can be made: For a more general
statement of the strong duality theorem and KKT conditions used here, see Bertsekas, Nedic, and
Ozdaglar [3] Proposition 6.4.4. The KKT conditions can be significantly generalized beyond convex
programming.

The fixed-point theorem that is invoked to guarantee existence of a pure-strategy Nash equilib-
rium in the smoothed game is by Debreu [9], Glicksberg [11], and Fan [10].
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