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1 Introduction

In the last lecture note we studied auctions with budgets and repeated auctions. However, we
ignored one important aspect: time. In this lecture note we consider an auction market setting
where a buyer is trying to adaptively pace their bids over time. The goal is to hit the “right” pacing
multiplier as before, but each bidder has to learn that multiplier as the market plays out. We’ll see
how we can approach this problem using ideas from regret minimization.

2 Dynamic Auctions Markets

In this setting we have n buyers who repeatedly participate in second-price auctions. At each time
period t = 1, . . . , T a single second-price auction is run. At time t, each bidder samples a valuation
vit independently from a cumulative distribution function Fi which is assumed to be absolutely
continuous and with bounded density fi whose support is [0, v̄i]. As usual, we assume that each
buyer has some budget Bi that they should satisfy, and we denote by ρi = Bi/T the per-period
target expenditure; we assume ρi ≤ v̄i. We may think of each buyer as being characterized by a
type θi = (Fi, ρi).

At each time period t buyer i observes their valuation vit and then submits a bid bit. We will use
dit = maxk 6=i bit to denote the highest bid other than that of i. As before the utility of an buyer is
quasi-linear and thus if they win auction t they get utility vit− dit. We may write the utility using
an indicator variable as uit = 1{dit ≤ bit}(vit − dit), and the expenditure zit = 1{di,t ≤ bit}dit.

It is assumed that each buyer has no information on the valuation distributions, including their
own. Instead, they just know their own target expenditure rate ρi and the total number of time
periods T . Buyers also do not know how many other buyers are in the market.

At time t, buyer i knows the history (viτ , biτ , ziτ , uiτ )t−1
τ=1 of own values, bids, payments, and

utilities. Furthermore, they know their current value vit. Based on this history, they choose a bid
bit. We will say that a bidding strategy for buyer i is a sequence of mappings β = β1, . . . where βt
maps the current history to a bid (potentially in randomized fashion). The strategy β is budget

feasible if the bids bβit generated by β are such that

T∑
t=1

1{dit ≤ bβit}dit ≤ Bi

under any vector of highest competitor bids di.
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For a given realization of values vi = vi1, . . . , viT and highest competitor bids di we denote the
expected value of a strategy β as

πβi (vi, di) = E

[
T∑
t=1

1{dit ≤ bβit}(vit − dit)

]
,

where the expectation is taken with respect to randomness in β.
We would like to compare our outcome to the hindsight optimal strategy. We denote the

expected value of that strategy as

πHi (vi, di) := max
xi∈{0,1}T

T∑
t=1

xit(vit − dit)

s.t.

T∑
t=1

xitdit ≤ Bi

(1)

The hindsight-optimal strategy has a simple structure: we simply choose the optimal subset of
items to win while satisfying our budget constraint. In the case where the budget constraint is
binding, this is a knapsack problem.

Ideally we would like to choose a strategy such that πβi approaches πHi . However, this turns
out not to be possible. We will use the idea of asymptotic γ-competitiveness to see this. Formally,
β is asymptotic γ-competitive if

lim sup
T→∞,
Bi=ρiT

sup
vi∈[0,v̄i]

T ,

di∈RT
+

1

T

(
πHi (vi, di)− γπβi (vi, di)

)
≤ 0

Intuitively, the condition says that asymptotically, β should achieve at least 1/γ of the hindsight-
optimal expected value.

For any γ < v̄i/ρi, asymptotic γ-competitiveness turns out to be impossible to achieve. Thus, if
our target expenditure ρi is much smaller than our maximum possible valuation, we cannot expect
to do anywhere near as well as the hindsight-optimal strategy.

The general proof is quite involved, but the high-level idea is not too complicated. Here we
show the construction for v̄i = 1, ρi = 1/2, and thus the claim is that γ < v̄i/ρi = 2 is unachievable.
The impossibility is via a worst-case instance. In this instance, the highest other bid comes from
one of the two following sequences:

d1 = (dhigh, . . . , dhigh, v̄i, . . . . . . , v̄i)

d2 = (dhigh, . . . , dhigh, dlow, . . . , dlow) ,

for v̄i ≥ dhigh > dlow > 0. The general idea behind this construction is that in the sequence d1,
buyer i must buy many of the expensive items in order to maximize their utility, since they receive
zero utility for winning items with price v̄i. However, in the sequence d2, buyer i must save money
so that they can buy the cheaper items priced at dlow.

For the case we consider here, there are T/2 of each type of highest other bid (assume T is even
for convenience). Now, we may set dhigh = 2ρi− ε and dlow = 2ρi−kε, where ε and k are constants
that can be tuned. For sufficiently small ε, i can only afford to buy T/2 items total, no matter the
combination of items. Furthermore, buying an item at price dlow yields k times as much utility as
buying an item at dhigh.
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Now, in order to achieve at least half of the optimal utility under d1, buyer i must purchase at
least T/4 of the items priced at dhigh. Since they don’t know whether d1 or d2 occurred until after
deciding whether to buy at least T/4 of the dhigh items, this must also occur under d2. But then
buyer i can at most afford to buy T/4 of the items priced at dlow when they find themselves in the
d2 case. Now for any γ < 2, we can pick k and ε such that achieving γπHi requires buying at least
T/4 + 1 of the dlow items.

It follows that we cannot hope to design an online algorithm that competes with γπHi for
γ < v̄i/ρi. However, it turns out that a subgradient descent algorithm can achieve exactly γ = v̄i/ρi

3 Adaptive Pacing Strategy

The idea is to construct a pacing multiplier αi = 1
1+µ by running a subgradient descent scheme on

the value for µ that allows i to smoothly spend their budget across the T time periods.
The algorithm takes as input a stepsize εi > 0 and some initial value µ1 ∈ [0, µ̄i] (where µ̄i

is some upper bound on how large µ needs to be). We use P[0,µ̄i] to denote projection onto the
interval [0, µ̄i]. The algorithm, which we call APS, proceeds as follows

• Initialize the remaining budget at B̃i1 = Bi

• For every time period t = 1, . . . , T :

1. Observe vit, construct a paced bid bit = min( vit
1+µt

, B̃it)

2. Observe spend zit, and update the pacing multiplier:

µt+1 = P[0,µ̄i](µt − εi(ρi − zit))

3. Update remaining budget B̃i,t+1 = B̃it − zit

This algorithm is motivated by Lagrangian duality. Consider the following Lagrangian relax-
ation of the hindsight-optimal optimization problem (1):

max
x∈{0,1}T

T∑
t=1

[xit(vit − (1− µ)dit) + µρi] .

The optimal solution for the relaxed problem is easy to characterize: we set xit = 1 for all t
such that vit ≥ (1− µ)dit. Importantly, this is achieved by the bid bit = vit

1+µ that we use in APS.
The Lagrangian dual is the minimization problem

inf
µ≥0

T∑
t=1

[
(vit − (1− µ)dit)

+ + µρi
]
, (2)

where (·)+ denotes thresholding at 0. This dual problem upper bounds πHi (but we do not nec-
essarily have strong duality since we did not even start out with a convex primal program). The
minimizer of the dual problem yields the strongest possible upper bound on φHi , however, solving
this requires us to know the entire sequences vi, di. APS approximates this optimal µ by taking a
subgradient step on the t’th term of the dual:

∂µ
[
(vit − (1− µ)dit)

+ + µρi
]
3 ρi − dit1{bit ≥ dit} = ρi − zit.
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Thus APS is taking subgradient steps based on the subdifferential of the t’th term of the Lagrangian
dual of the hindsight-optimal optimization problem.

The APS algorithm achieves exactly the lower bound we derived earlier, and is thus asymptot-
ically optimal:

Theorem 1. APS with stepsize εi = O(T−1/2) is v̄i
ρi

-asymptotic competitive, and converges at a

rate of O(T−1/2).

This result holds under adversarial conditions: for example, the sequence of highest other bids
may be as d1, d2 in the lower bound. However, in practice we do not necessarily expect the world
to be quite this adversarial. In a large-scale ad market, we would typically expect the sequences
vi, di to be more stochastic in nature. In a fully stochastic setting with independence, APS turns
out to achieve πHi asymptotically:

Theorem 2. Suppose (vit,dit) are sampled independently from stationary, absolutely continuous
CDFs with differentiable and bounded densities. Then the expected payoff from APS with stepsize
εi = O(T−1/2) approaches πHi asymptotically at a rate of T−1/2.

Theorem 2 shows that if the environment is well-behaved then we can expect much better
performance from APS.

4 Historical Notes

The material presented here was developed by Balseiro and Gur [1]. Beyond auction markets,
the idea of using paced bids based on the Lagrange multiplier µ has been studied in the revenue
management literature, see e.g. Talluri and Van Ryzin [3], where it is shown that this scheme is
asymptotically optimal as T tends to infinity. There is also recent work on the adaptive bidding
problem using multi-armed bandits [2].
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