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1 Introduction

This lecture note introduces a new topic: electricity markets, and their associated optimization
problems. As we shall see, both economics and optimization play a key role in modern electricity
grids.

For the first hundred years or so of the existence of the US power grid, it was managed by what
are called vertically integrated utilities. These were companies that generated, sold, and transferred
electricity directly to users. Typically these would also be monopolies, meaning that they were the
only possible supplier in a given region. In contrast, the late 1990’s and early 2000’s saw what’s
usually referred to as the deregulationﬂ of the electric grid,

In the deregulated markets, the choice of who generates what is made using auction-based mech-
anisms where the auctioneer is an independent system operator (ISO). ISOs are quasi-governmental
entities whose charter is to operate the grid, including deciding who generates what using auctions.
The overarching setup is very complicated, because e.g. the New York market uses two electricity
auctions: a spot auction every five minutes (which decides on the allocation of generation and
purchasing for the next five minutes), and a day-ahead auction every hour (which allocates power
generation and purchasing for that hourly interval of the following day), as well as several capacity
auctions meant to ensure that the grid has sufficient generation capacity. We will focus more on
these auctions in the next lecture notes. First, this note will introduce the operational optimization
problems that ISOs need to solve on a continuous basis.

Compared to a normal markets, the electric grid has many peculiarities. For example:

1. The grid operates in a continuous fashion, whereas the spot markets are operating every 5
minutes.

2. Supply (power generation) and demand (load generated by users) must be balanced at all
times. The system will collapse if these quantities are not kept in check.

3. Goods (electricity) is generated at particular locations, and must be “transported” to the
point of usage, potentially with a loss in power, or congestion of the wires

4. Electricity should be thought of as a “flow” in a network; therefore it’s generally not possible
to say that a particular user takes electricity from a particular plant. Both simply take
electricity in and out of the “pool.”
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5. Different types of electricity generators (e.g. wind, gas, nuclear) all have very different oper-
ating constraints, and thus differ in their ability to increase or decrease productions, and the
speed at which they can do so.

These peculiarities are good to keep in mind when thinking about the grid and its markets, because
they mean that e.g. incentives can be a tricky subject.

2 Optimal Power Flow

We now introduce the optimal power flow (OPF) problem. In OPF, we are given a directed network
V, E of nodes and edges representing the electric grid in question. The set of nodes V in power
parlance is called the set of buses. I will use nodes and buses interchangeably. The buses should
be thought of as important locations in the physical grid, e.g. generation points, load points, or
substations. The set of edges E is the connections between buses. In power parlance, these are
called transmission lines. We let E; be the set of edges departing bus <.

The alternating current OPF (ACOPF) problem is a nonconvex quadratic optimization problem
which models physics of the power flow problem including the fact that complex variables are
needed. In particular, the net addition or removal of flow at a bus ¢ will be a complex variable
pi + ig;, and similarly the power flow on a line (4, j) € £ will be a complex variable p;; + ig;;. We
will mostly work with a linearization of this model, but I want to briefly describe it, so that you
are aware of the approximation that is being made in the eventual LP we will use. To represent
the problem, we will need the following variables:

e v; is a complex number describing the voltage at bus ¢ € V

e p; is a real number describing the difference between generation and demand of real power at
bus:i eV

e ¢; is the complex part of the difference between generation and demand of reactive power at
bus:i eV

e p;j is the real part of the power flow on line 7,j € E; p;; > 0 means power is flowing from i
to j and p;; < 0 means power flows the opposite direction

e ¢;; is the reactive power flow on line 7,j € E
We will also need the following constants:
e i will refer to the imaginary unit satisfying i2 = 1
® y;j = gij +ib;; is a complex number describing the admittance of the line ¢ to j
e v,,U; are lower and upper bounds on the voltage at bus ¢
e Each bus ¢ € V is subject to box constraints on its real power P, Dis and reactive power 9,5

e Each line ¢, j € E is subject to a bound 5;; on the apparent power flow pgj + quj



With all that, the ACOPF problem looks as follows, where f is some objective functions that
we wish to optimize subject to the power flow constraints.

v7p7q
s.t. Dij + ing = Ui(ru;;k - U;)y;}, V(’L,j) S
Py + @ < Sij, V(i,j) € B
Z Dij = Dis VieV
JeEs (ACOPF)
Z Qij = Qs VieV
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4 € g, @, VieV
| € [v;, V4], VieV

The above problem is a very difficult optimization problem. In particular, even if f is a linear
function, the first constraint is a nonconvex quadratic constraint, which makes the problem NP-
hard in general. This leads to numerous problems, including the fact that this problem is typically
too hard to solve to optimality for real-world OPF problems. A second issue is the lack of strong
duality, which is something that we will need later.

3 Linearized Power Flow

Going forward, we will work with a simplified model of power flows, which linearizes the nonconvex
quadratic constraint in Eq. . We will call this model DC power flow (DCOPF), though this
terminology is misleading, because it does not actually model direct-current power flows. Instead,
it is simply a linearized approximation to AC power flows.

This model is obtained by making a number of simplifying assumptions of Eq. . First,
because reactive power is negligible relative to real power, we set all reactive power variables to
zero, meaning that we can remove all ¢ variables and associated constraints.

Next, we write the complex variables using polar coordinates v; = |m;|ei? for each i. Then, we
get the following equation for the real part of the nonconvex equation:

pij = gijlmil* — [mallm;| (gij cos(6; — 6;) — by sin(6; — 6;)).
Then, we set all voltage magnitudes equal to one, i.e. |m;| = 1. Finally, we set g;; = 0 because

gij < bij.
After making all these simplifications, the DCOPF problems has only linear constraints:

min f(6,p)
0,p
s.t. pij = bl](ez - 9]'), V(Za]) S¥J)

Z Pij = Di, VieV (DCOPF)
JEE;
Ipij| < Sij, V(i,j) € £



If f is also a linear function, then Eq. (DCOPF)) is an LP.

In the formulation given here, each node i € V has a single power flow p; into it (if p; > 0) or
out of it (if p; < 0).

4 Economic Dispatch

In practice, nodes are often thought of as locations that potentially have both generators and
demands. While Eq. is completely general, it will be more convenient to include these
multiple types of generators and demands in the model. To that end, let ¥ be the set of demands
at node i, where each demand d € \IIZD has some utility ug of receiving power, and some upper bound
Dg on how much power they can consume. Similarly, let \Iff be the set of generators at node i, where
each generator g € \I/ZG has some cost ¢g of generating power, and a maximum generating capacity
Pg- If we now set our objective f to be equal to the social welfare of the resulting allocation, we
get the following LP:

HelaXZ Z UgPd — Z CgPyg

P
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A solution of this LP is referred to as economic dispatch because it maximizes efficiency. It also
has a market equilibrium interpretation: let A\’ be the dual variable associated to Eq. (2 in an
optimal solution, i.e. an economic dispatch solution. Then A} can be thought of as the locational
marginal price (LMP) of electricity at node i: each demand at ¢ is charged this price, and each
generator at 7 is paid this price per unit of electricity. In fact, a variant of this LP that takes
into account additional operational constraints is used for pricing in many real-world electricity
markets.

4.1 Market Equilibrium Properties for Generators and Demands

If we consider the Lagrangified problem using the A} dual variables, we get the problem

max | D uapa= Y Py |+ DN | Do o= D pa= Y by

i€V \dewP geT§ eV gevs dewP JEE;

s.t. pij = bij(0; — 0;), V(i,j) € E (6)
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pij| < 5ij, v(i,j) € B 9)



Now, if we consider the problem faced by an individual generator g € \IJZG for some node i, in
order to maximize their own utility they would like to solve the problem

max (A} — ¢g)py
Pg

s.t. pg € (0,1, (10)

But we can see that the Lagrangified LP decomposes along generators, in the sense that p, appears
only in its own constraint Eq. , and with the exact same coefficients as in the individual generator
utility maximization problem. Thus, by stationarity conditions, we get that the value py from the
economic dispatch solution is also optimal for the individual generator given A7. A completely
analogous argument shows that each demand also maximizes its utility.

It follows from the above that the prices and allocation from economic dispatch constitute a
market equilibrium.

4.2 Spatial Arbitrage

Finally, let us try to understand the transmission variables p;; which also depend on A; in the
objective of Eq. (§]). Consider the following problem given the optimal \*:

max ZA;" Z Dij

Pi v jeE, a1)
S.t. pij = sz((gz — Hj), V(Z,j) clk
Ipij| < 5ij, V(i,j) e E

This can be thought of as a spatial arbitraging operation. Since ZjeEi Pij = Zde\llf’ pd_ZdE\IJ? Dy,
we know that A} ) jepi Pij 1s the excess payment at node ¢, which can be either positive or negative.
While individual line revenues for the arbitrageur may thus be positive or negative, we see that
Eq. maximizes all the possible ways of transferring power across the network, given the prices.
By a similar argument as before, we see that the economic dispatch solution optimally solves the
spatial arbitrage problem. Thus, if we let the transmission operator collect these excess payments,
then the transmission operator acts as a spatial arbitrageur, who optimally tries to buy and sell
power while satisfying the (linearized) transmission constraints.

4.3 Economic Dispatch as a Mechanism

The economic dispatch framework derived in this section gives us a way to use markets to allocate
power consumption and generation:

e Have every demand and generator submit their utility per unit of electricity, along with the
consumption and generation caps

e Compute an economic dispatch solution for who generates and consumes what

e Charge everyone according to the dual prices

This is how allocation and pricing is performed in many of the spot markets used by various
ISOs. Spot markets run on a frequent basis (e.g. every five minutes), and determine generation
and consumption for any uncommitted load and generation capacity. I stress the uncommitted part
here, because some generators and demands will already have entered binding contracts on price
and quantity in earlier markets, such as the day-ahead market.

We now investigate a few properties that would be nice to have for this market.



e Truthfulness: Unfortunately this mechanism is not truthful. To see this, note that while
each participant acts optimally given the prices, they can themselves influence the prices.
If one considers a network with a single node, then it is straightforward to see that some
generator and demander end up being the two entities setting the marginal price. They could
then misreport in order to shift this price.

e Efficiency: if the submitted bids are truthful, then we would get efficiency by definition of the
economic dispatch model. That said, we already noted that this mechanism is easily seen to
not be truthful. A second concern for efficiency is that we introduced a lot of approximations
in order to arrive at an LP.

e Budget balance: The ISO needs to ensure that after paying generators and charging de-
mands it ends up with a nonnegative amount of leftover money. However, we already saw in
the spatial arbitrage section that the excess payments are captured via the p;; variables, and
the spatial arbitrager can make their utility at least zero, so revenue adequacy is guaranteed.
ISOs are typically not allowed to make money either; for that reason the money made from
spatial arbitrage is usually thought of as going to the providers of the transmission network,
or towards additional investment in the network.

e Individual rationality: is every participant incentivized to participate in the market? This
is easily seen to be true from the market equilibrium condition, as long as participants do
not overstate their capacity, or report utilities/costs that are respectively higher/lower than
their true values.

In addition to the approximations that we made going from ACOPF to DCOPF, this note
also made some implicit assumptions. One of the biggest is that every generator can choose in
continuous fashion how much electricity to produce. In practice, generators have various types of
constraints on how they can change their output. For example, several types of energy producers
require a long time to ramp up or down production (say up to a day), and they may have minimum
generation levels for when they are turned on. This is the case for several traditional generators
such as nuclear and coal. Natural gas also has similar constraints. This introduces a discrete
nature into the problem: we may need a day or more to reach certain production levels, and so the
real-time market is operating “too late” for some decisions to be made. This motivates the use of
day-ahead markets, which we will study in the next lecture note.

Renewables also have different types of constraints on their production, that depend on the
type of renewable. For example, wind generators are not necessarily able to adjust their output
at all, and are thus required to produce electricity at whatever level the weather dictates. This
can even lead to negative energy prices, depending on whether we have a cost-free way of handling
excess power. All these constraints, as well as a general desire on the part of market participants
for a certain amount of predictability in their revenues, necessitate additional market mechanisms
that allow us to settle some generation and consumption further in advance than the spot market
allows. This will be the topic of the next note.

5 Historical Notes

A good book on the optimization aspects of the power grid is Taylor [3]. This book also has some
coverage of energy markets. Kirschen and Strbac [I] has extensive coverage of the economic aspects
of energy system.



Sweeney [2] provides a detailed account of the California energy crisis, which is an interesting
case study in how not to design an energy markets. That crisis lead to severe blackouts, huge budget
deficits for several energy companies (with one going bankrupt), and had large ramifications for
the state budget.

There are also several good courses available online in various formst. Penn State has lecture
notes availableﬂ for an excellent introductory course on the power grid and markets. Jalal Kazem-
pour from the Danish Technical University has a set of slides and lecture Videosﬂ that give a really
nice optimization-based introduction.
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